1
|
Liu A, Liao P, Jiang H, Huang S, Li S, Wei JCC, Ying Z. COVID- 19 vaccination reduces new-onset fibromyalgia risk in survivors. BMC Med 2025; 23:255. [PMID: 40312371 PMCID: PMC12046932 DOI: 10.1186/s12916-025-04069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 04/10/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Numerous studies have demonstrated that COVID-19 is associated with an increased risk of new-onset fibromyalgia (FM), which not only significantly impacts patients' quality of life but also places a substantial burden on healthcare systems. However, no studies have yet investigated whether COVID-19 vaccination may mitigate the risk of developing new-onset FM in individuals who have survived COVID-19. This study aimed to assess the potential effect of COVID-19 vaccination in reducing the risk of new-onset FM among COVID-19 survivors. METHODS We utilized the data resources from the TriNetX platform to compare 90,508 COVID-19 survivors who received the COVID-19 vaccine with 90,508 unvaccinated survivors. The Cox proportional hazards regression model was used to estimate the hazard ratio (HR) and its corresponding 95% confidence interval (CI). The incidence was calculated using the Kaplan-Meier survival analysis method. Furthermore, we conducted detailed subgroup analyses and sensitivity analyses. RESULTS The cohort analysis of the present study revealed a significant reduction in the risk of new-onset FM among COVID-19 survivors who received the COVID-19 vaccine, compared to the unvaccinated group (HR 0.84; 95% CI 0.71-0.99). Notably, the results of the subgroup analysis indicated that the COVID-19 vaccine exerted a protective effect against the development of new-onset FM in males, individuals with a body mass index (BMI) < 30, and those with comorbid depression and anxiety. CONCLUSIONS Our findings suggest that COVID-19 vaccination may play a protective role in reducing the risk of new-onset FM among COVID-19 survivors. The findings may indicate the importance of targeting vaccination to specific subgroups, such as males, individuals with lower BMIs, and those with mental health conditions, including depression and anxiety. This approach may enhance the protective effects of the vaccine and further reduce the incidence of long-term health complications associated with COVID-19. Further research is needed to validate these observations.
Collapse
Affiliation(s)
- Aihui Liu
- Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Cultivation for Arthritis Diagnosis and Treatment, Zhejiang Province, Hangzhou, China
- Rheumatology and Immunology Research Institute, Hangzhou Medical College, Zhejiang Province, Hangzhou, China
| | - PeiLun Liao
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Center for Health Data Science, Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hongyang Jiang
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310000, Zhejiang, China
| | - Shan Huang
- Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Cultivation for Arthritis Diagnosis and Treatment, Zhejiang Province, Hangzhou, China
- Rheumatology and Immunology Research Institute, Hangzhou Medical College, Zhejiang Province, Hangzhou, China
| | - Shinan Li
- Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Cultivation for Arthritis Diagnosis and Treatment, Zhejiang Province, Hangzhou, China
- Rheumatology and Immunology Research Institute, Hangzhou Medical College, Zhejiang Province, Hangzhou, China
| | - James Cheng-Chung Wei
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China.
- Department of Allergy, Chung Shan Medical University Hospital, Immunology & Rheumatology, Taichung, Taiwan.
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.
- Institute of Medicine/Department of Nursing, Chung Shan Medical University, Taichung, Taiwan.
| | - Zhenhua Ying
- Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Cultivation for Arthritis Diagnosis and Treatment, Zhejiang Province, Hangzhou, China.
- Rheumatology and Immunology Research Institute, Hangzhou Medical College, Zhejiang Province, Hangzhou, China.
| |
Collapse
|
2
|
Szögi T, Borsos BN, Masic D, Radics B, Bella Z, Bánfi A, Ördög N, Zsiros C, Kiricsi Á, Pankotai-Bodó G, Kovács Á, Paróczai D, Botkáné AL, Kajtár B, Sükösd F, Lehoczki A, Polgár T, Letoha A, Pankotai T, Tiszlavicz L. Novel biomarkers of mitochondrial dysfunction in Long COVID patients. GeroScience 2025; 47:2245-2261. [PMID: 39495479 PMCID: PMC11979091 DOI: 10.1007/s11357-024-01398-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) can lead to severe acute respiratory syndrome, and while most individuals recover within weeks, approximately 30-40% experience persistent symptoms collectively known as Long COVID, post-COVID-19 syndrome, or post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (PASC). These enduring symptoms, including fatigue, respiratory difficulties, body pain, short-term memory loss, concentration issues, and sleep disturbances, can persist for months. According to recent studies, SARS-CoV-2 infection causes prolonged disruptions in mitochondrial function, significantly altering cellular energy metabolism. Our research employed transmission electron microscopy to reveal distinct mitochondrial structural abnormalities in Long COVID patients, notably including significant swelling, disrupted cristae, and an overall irregular morphology, which collectively indicates severe mitochondrial distress. We noted increased levels of superoxide dismutase 1 which signals oxidative stress and elevated autophagy-related 4B cysteine peptidase levels, indicating disruptions in mitophagy. Importantly, our analysis also identified reduced levels of circulating cell-free mitochondrial DNA (ccf-mtDNA) in these patients, serving as a novel biomarker for the condition. These findings underscore the crucial role of persistent mitochondrial dysfunction in the pathogenesis of Long COVID. Further exploration of the cellular and molecular mechanisms underlying post-viral mitochondrial dysfunction is critical, particularly to understand the roles of autoimmune reactions and the reactivation of latent viruses in perpetuating these conditions. This comprehensive understanding could pave the way for targeted therapeutic interventions designed to alleviate the chronic impacts of Long COVID. By utilizing circulating ccf-mtDNA and other novel mitochondrial biomarkers, we can enhance our diagnostic capabilities and improve the management of this complex syndrome.
Collapse
Affiliation(s)
- Titanilla Szögi
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Barbara N Borsos
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
| | - Dejana Masic
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Bence Radics
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Zsolt Bella
- Department of Oto-Rhino- Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Andrea Bánfi
- Department of Pediatrics and Pediatric Health Center, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Nóra Ördög
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Csenge Zsiros
- Department of Oto-Rhino- Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ágnes Kiricsi
- Department of Oto-Rhino- Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gabriella Pankotai-Bodó
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ágnes Kovács
- Pulmonology Clinic, Albert Szent-Györgyi Medical and Pharmaceutical Centre, University of Szeged, Szeged, Hungary
| | - Dóra Paróczai
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Andrea Lugosi Botkáné
- Pulmonology Clinic, Albert Szent-Györgyi Medical and Pharmaceutical Centre, University of Szeged, Szeged, Hungary
| | - Béla Kajtár
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - Farkas Sükösd
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Tamás Polgár
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Annamária Letoha
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tibor Pankotai
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary.
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Hungarian Centre of Excellence for Molecular Medicine, Szeged, Hungary.
| | - László Tiszlavicz
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
3
|
Kavalcı Kol B, Boşnak Güçlü M, Baytok E, Yılmaz Demirci N. Comparison of the muscle oxygenation during submaximal and maximal exercise tests in patients post-coronavirus disease 2019 syndrome with pulmonary involvement. Physiother Theory Pract 2025; 41:275-288. [PMID: 38469863 DOI: 10.1080/09593985.2024.2327534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/13/2024]
Abstract
INTRODUCTION Pulmonary involvement is prevalent in patients with coronavirus disease 2019 (COVID-19). Arterial hypoxemia may reduce oxygen transferred to the skeletal muscles, possibly leading to impaired exercise capacity. Oxygen uptake may vary depending on the increased oxygen demand of the muscles during submaximal and maximal exercise. OBJECTIVE This study aimed to compare muscle oxygenation during submaximal and maximal exercise tests in patients with post-COVID-19 syndrome with pulmonary involvement. METHODS Thirty-nine patients were included. Pulmonary function (spirometry), peripheral muscle strength (dynamometer), quadriceps femoris (QF) muscle oxygenation (Moxy® device), and submaximal exercise capacity (six-minute walk test (6-MWT)) were tested on the first day, maximal exercise capacity (cardiopulmonary exercise test (CPET)) was tested on the second day. Physical activity level was evaluated using an activity monitor worn for five consecutive days. Cardiopulmonary responses and muscle oxygenation were compared during 6-MWT and CPET. RESULTS Patients' minimum and recovery muscle oxygen saturation were significantly decreased; maximum total hemoglobin increased, heart rate, blood pressure, breathing frequency, dyspnea, fatigue, and leg fatigue at the end-of-test and recovery increased in CPET compared to 6-MWT (p < .050). Peak oxygen consumption (VO2peak) was 18.15 ± 4.75 ml/min/kg, VO2peak; percent predicted < 80% was measured in 51.28% patients. Six-MWT distance and QF muscle strength were less than 80% predicted in 58.9% and 76.9% patients, respectively. CONCLUSIONS In patients with post-COVID-19 syndrome with pulmonary involvement, muscle deoxygenation of QF is greater during maximal exercise than during submaximal exercise. Specifically, patients with lung impairment should be evaluated for deoxygenation and should be taken into consideration during pulmonary rehabilitation.
Collapse
Affiliation(s)
- Başak Kavalcı Kol
- Pilot Health Coordinatorship, Kırşehir Ahi Evran University, Kırşehir, Türkiye
| | - Meral Boşnak Güçlü
- Faculty of Health Sciences, Department of Physical Therapy and Rehabilitation, Gazi University, Çankaya, Ankara, Türkiye
| | - Ece Baytok
- Faculty of Health Sciences, Department of Physical Therapy and Rehabilitation, Gazi University, Çankaya, Ankara, Türkiye
| | - Nilgün Yılmaz Demirci
- Faculty of Medicine, Department of Pulmonology, Gazi University, Yenimahalle, Ankara, Türkiye
| |
Collapse
|
4
|
Gómez-Delgado I, López-Pastor AR, González-Jiménez A, Ramos-Acosta C, Hernández-Garate Y, Martínez-Micaelo N, Amigó N, Espino-Paisán L, Anguita E, Urcelay E. Long-term mitochondrial and metabolic impairment in lymphocytes of subjects who recovered after severe COVID-19. Cell Biol Toxicol 2025; 41:27. [PMID: 39792183 PMCID: PMC11723900 DOI: 10.1007/s10565-024-09976-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025]
Abstract
The underlying mechanisms explaining the differential course of SARS-CoV-2 infection and the potential clinical consequences after COVID-19 resolution have not been fully elucidated. As a dysregulated mitochondrial activity could impair the immune response, we explored long-lasting changes in mitochondrial functionality, circulating cytokine levels, and metabolomic profiles of infected individuals after symptoms resolution, to evaluate whether a complete recovery could be achieved. Results of this pilot study evidenced that different parameters of aerobic respiration in lymphocytes of individuals recuperated from a severe course lagged behind those shown upon mild COVID-19 recovery, in basal conditions and after simulated reinfection, and they also showed altered glycolytic capacity. The severe groups showed trends to enhanced superoxide production in parallel to lower OPA1-S levels. Unbalance of pivotal mitochondrial fusion (MFN2, OPA1) and fission (DRP1, FIS1) proteins was detected, suggesting a disruption in mitochondrial dynamics, as well as a lack of structural integrity in the electron transport chain. In serum, altered cytokine levels of IL-1β, IFN-α2, and IL-27 persisted long after clinical recovery, and growing amounts of the latter after severe infection correlated with lower basal and maximal respiration, ATP production, and glycolytic capacity. Finally, a trend for higher circulating levels of 3-hydroxybutyrate was found in individuals recovered after severe compared to mild course. In summary, long after acute infection, mitochondrial and metabolic changes seem to differ in a situation of full recovery after mild infection versus the one evolving from severe infection.
Collapse
Affiliation(s)
- Irene Gómez-Delgado
- Lab. Genetics and Molecular Bases of Complex Diseases, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
- Cooperative Research Networks Oriented to Health Results (RICORS, REI), ISCIII, 28029, Madrid, Spain
| | - Andrea R López-Pastor
- Lab. Genetics and Molecular Bases of Complex Diseases, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
- Cooperative Research Networks Oriented to Health Results (RICORS, REI), ISCIII, 28029, Madrid, Spain
| | - Adela González-Jiménez
- Lab. Genetics and Molecular Bases of Complex Diseases, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
- Cooperative Research Networks Oriented to Health Results (RICORS, REI), ISCIII, 28029, Madrid, Spain
| | - Carlos Ramos-Acosta
- Hematology Group, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| | - Yenitzeh Hernández-Garate
- Lab. Genetics and Molecular Bases of Complex Diseases, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| | | | - Núria Amigó
- Biosfer Teslab, 43201, Reus, Tarragona, Spain
- Department of Basic Medical Sciences, Rovira I Virgili University, 43007, Tarragona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Laura Espino-Paisán
- Lab. Genetics and Molecular Bases of Complex Diseases, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
- Cooperative Research Networks Oriented to Health Results (RICORS, REI), ISCIII, 28029, Madrid, Spain
| | - Eduardo Anguita
- Hematology Group, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
- Department of Medicine, Medical School, Universidad Complutense de Madrid, 28040, Madrid, Spain
- Hematology Department, IML, Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Elena Urcelay
- Lab. Genetics and Molecular Bases of Complex Diseases, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain.
- Cooperative Research Networks Oriented to Health Results (RICORS, REI), ISCIII, 28029, Madrid, Spain.
| |
Collapse
|
5
|
Yu A, Hou H, Ran L, Sun X, Xin W, Feng T. A nomogram for predicting neonatal acute respiratory distress syndrome in patients with neonatal pneumonia after 34 weeks of gestation. Front Pediatr 2025; 12:1451466. [PMID: 39850203 PMCID: PMC11754297 DOI: 10.3389/fped.2024.1451466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Objective To establish a prediction nomogram for early prediction of neonatal acute respiratory distress syndrome (NARDS). Methods This is a retrospective cross-sectional study conducted between January 2021 and December 2023. Clinical characteristics and laboratory results of cases with neonatal pneumonia were compared in terms of presence of NARDS diagnosis based on the Montreux Definition. The NARDS group and non-NARDS group were then compared to establish a prediction nomogram for early prediction of NARDS. The predictive accuracy and compliance of the model were evaluated using subject operating characteristic curves, area under the ROC curve, and calibration curves, and the model performance was estimated by self-lifting weight sampling. The Hosmer-Lemeshow test was used to assess the goodness of fit of the model. Findings NARDS group consisted of 104, non-NARDS group consisted of 238 newborns in our study. Gestational age, triple concave sign, blood glucose measurement after birth (Glu), Apgar score at the 5th minute (Apgar5), neutrophil count (ANC) and platelet count (PLT) are independent predictors of NARDS in late preterm and term newborns who present with progressive respiratory distress and require varying degrees of respiratory support within the first 24 h of life to minimize work of breathing and restore organismal oxygenation. The area under the ROC curve was 0.829 (95% CI = 0.785-0.873), indicating the model's strong predictive power. In addition, decision curve analysis showed that the model had significantly better net benefits. Conclusion In this study, a predictive column-line plot was constructed based on six clinically accessible conventional variables. Early application of this model has a better predictive effect on the early diagnosis of NARDS, thus facilitating more timely and effective interventions.
Collapse
Affiliation(s)
- Aosong Yu
- Department of Pediatrics, Dandong Central Hospital, China Medical University, Dandong, China
| | - Huanhuan Hou
- Department of Pediatrics, Dandong Central Hospital, China Medical University, Dandong, China
- School of Clinical Medicine, Xinjiang Medical University, Urumqi, China
| | - Lingyi Ran
- School of Clinical Medicine, Xinjiang Medical University, Urumqi, China
| | - Xiaojia Sun
- School of Clinical Medicine, Xinjiang Medical University, Urumqi, China
| | - Wanchun Xin
- School of Clinical Medicine, Xinjiang Medical University, Urumqi, China
| | - Tong Feng
- Department of Pediatrics, Dandong Central Hospital, China Medical University, Dandong, China
| |
Collapse
|
6
|
Licata A, Seidita A, Como S, de Carlo G, Cammilleri M, Bonica R, Soresi M, Veronese N, Chianetta R, Citarrella R, Giannitrapani L, Barbagallo M. Herbal and Dietary Supplements as Adjunctive Treatment for Mild SARS-CoV-2 Infection in Italy. Nutrients 2025; 17:230. [PMID: 39861359 PMCID: PMC11767322 DOI: 10.3390/nu17020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
During the COVID-19 pandemic, several observational studies proved a certain efficacy of nutraceuticals, herbal products, and other dietary supplements as adjuvant therapies used alongside antiviral drugs. Although their use has not been widespread in Italy, according to preliminary evidence, many supplements with demonstrated immunomodulatory effects, such as vitamins C and D, herbal medicines and essential oils, might relieve the respiratory symptoms of COVID-19, since SARS-CoV-2 can activate inflammasome-mediated inflammatory signaling pathways. Other observational studies have shown that herbal treatments, such as Echinacea purpurea and ginseng, help alleviate respiratory symptoms and reduce serum levels of inflammatory cytokines, which are typically overexpressed in both adult and pediatric SARS-CoV-2 patients. Further, vitamins C and D can attenuate the immune response thanks to their cytokine suppression ability and to their known antimicrobial activity and potential to modulate T helper cell response. The strong immune response triggered by SARS-CoV-2 infection is responsible for the severity of the disease. Preliminary data have also shown that L-arginine, an endothelial-derived relaxing factor, is able to modulate endothelial damage, which appears to be one of the main targets of this systemic disease. Finally, some essential oils and their isolated compounds, such as eucalyptol, may be helpful in reducing many of the respiratory symptoms of COVID-19, although others, such as menthol, are not recommended, since it can lead to an undervaluation of the clinical status of a patient. In this narrative review, despite the lack of strong evidence in this field, we aimed to give an overview of the current available literature (mainly observational and cross-sectional studies) regarding herbal products and dietary supplements and their use in the treatment of mild disease from SARS-CoV-2 infection. Obviously, dietary supplements and herbal products do not constitute a standardized treatment for COVID-19 disease, but they could represent an adjunctive and useful treatment when used together with antivirals.
Collapse
Affiliation(s)
- Anna Licata
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| | - Aurelio Seidita
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, 90146 Palermo, Italy; (A.S.)
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90146 Palermo, Italy
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Silvia Como
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| | - Gabriele de Carlo
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, 90146 Palermo, Italy; (A.S.)
| | - Marcella Cammilleri
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| | - Roberta Bonica
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| | - Maurizio Soresi
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| | - Nicola Veronese
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| | - Roberta Chianetta
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| | - Roberto Citarrella
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| | - Lydia Giannitrapani
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Mario Barbagallo
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| |
Collapse
|
7
|
Castillo-Galán S, Parra V, Cuenca J. Unraveling the pathogenesis of viral-induced pulmonary arterial hypertension: Possible new therapeutic avenues with mesenchymal stromal cells and their derivatives. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167519. [PMID: 39332781 DOI: 10.1016/j.bbadis.2024.167519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/16/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
Pulmonary hypertension (PH) is a severe condition characterized by elevated pressure in the pulmonary artery, where metabolic and mitochondrial dysfunction may contribute to its progression. Within the PH spectrum, pulmonary arterial hypertension (PAH) stands out with its primary pulmonary vasculopathy. PAH's prevalence varies from 0.4 to 1.4 per 100,000 individuals and is associated with diverse conditions, including viral infections such as HIV. Notably, recent observations highlight an increased occurrence of PAH among COVID-19 patients, even in the absence of pre-existing cardiopulmonary disorders. While current treatments offer partial relief, there's a pressing need for innovative therapeutic strategies, among which mesenchymal stromal cells (MSCs) and their derivatives hold promise. This review critically evaluates recent investigations into viral-induced PAH, encompassing pathogens like human immunodeficiency virus, herpesvirus, Cytomegalovirus, Hepatitis B and C viruses, SARS-CoV-2, and Human endogenous retrovirus K (HERKV), with a specific emphasis on mitochondrial dysfunction. Furthermore, we explore the underlying rationale driving novel therapeutic modalities, including MSCs, extracellular vesicles, and mitochondrial interventions, within the framework of PAH management.
Collapse
Affiliation(s)
- Sebastián Castillo-Galán
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| | - Valentina Parra
- Laboratory of Differentiation and Cell Metabolism (D&M), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile; SYSTEMIX Center for Systems Biology, O'Higgins University, Rancagua, Chile
| | - Jimena Cuenca
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile; Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile; Cells for Cells, Santiago, Chile.
| |
Collapse
|
8
|
Müller L, Di Benedetto S. The impact of COVID-19 on accelerating of immunosenescence and brain aging. Front Cell Neurosci 2024; 18:1471192. [PMID: 39720706 PMCID: PMC11666534 DOI: 10.3389/fncel.2024.1471192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/29/2024] [Indexed: 12/26/2024] Open
Abstract
The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has profoundly impacted global health, affecting not only the immediate morbidity and mortality rates but also long-term health outcomes across various populations. Although the acute effects of COVID-19 on the respiratory system have initially been the primary focus, it is increasingly evident that the virus can have significant impacts on multiple physiological systems, including the nervous and immune systems. The pandemic has highlighted the complex interplay between viral infection, immune aging, and brain health, that can potentially accelerate neuroimmune aging and contribute to the persistence of long COVID conditions. By inducing chronic inflammation, immunosenescence, and neuroinflammation, COVID-19 may exacerbate the processes of neuroimmune aging, leading to increased risks of cognitive decline, neurodegenerative diseases, and impaired immune function. Key factors include chronic immune dysregulation, oxidative stress, neuroinflammation, and the disruption of cellular processes. These overlapping mechanisms between aging and COVID-19 illustrate how the virus can induce and accelerate aging-related processes, leading to an increased risk of neurodegenerative diseases and other age-related conditions. This mini-review examines key features and possible mechanisms of COVID-19-induced neuroimmune aging that may contribute to the persistence and severity of long COVID. Understanding these interactions is crucial for developing effective interventions. Anti-inflammatory therapies, neuroprotective agents, immunomodulatory treatments, and lifestyle interventions all hold potential for mitigating the long-term effects of the virus. By addressing these challenges, we can improve health outcomes and quality of life for millions affected by the pandemic.
Collapse
Affiliation(s)
- Ludmila Müller
- Max Planck Institute for Human Development Center for Lifespan Psychology, Berlin, Germany
| | | |
Collapse
|
9
|
Li Z, Chen J, Li Y, Li L, Zhan Y, Yang J, Wu H, Li S, Mo X, Wang X, Mi Y, Zhou X, Li Y, Wang J, Li Y, Sun R, Cai W, Ye F. Impact of SARS-CoV-2 infection on respiratory and gut microbiome stability: a metagenomic investigation in long-term-hospitalized COVID-19 patients. NPJ Biofilms Microbiomes 2024; 10:126. [PMID: 39537661 PMCID: PMC11561083 DOI: 10.1038/s41522-024-00596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, the exploration of microecology has been essential for elucidating the intricacies of infection mechanisms and the recovery of afflicted individuals. To decipher the interplay of microorganisms between the intestinal and respiratory tracts, we collected sputum and throat swabs and feces from COVID-19 patients and explored the mutual migration among intestinal and respiratory microorganisms. Using next-generation sequencing (NGS) technology, we investigated intestinal and respiratory microorganism intermigration in two patients with severe COVID-19 during their hospitalization. Notably, we observed an expedited recovery of microecological equilibrium in one patient harboring Mycobacterium avium. Comparative analyses between 32 healthy controls and 110 COVID-19 patients with different disease severities revealed alterations in predominant microorganisms inhabiting the respiratory and intestinal tracts of COVID-19 patients. Among the alterations, intestinal Bacteroides vulgatus (BV) was identified as a noteworthy microorganism that exhibited marked enrichment in patients with severe COVID-19. BV, when highly abundant, may inhibit the transitional growth of Escherichia coli/Enterococcus, indirectly prevent the overgrowth of salivary streptococci, and maintain lung/intestinal microecology stability. In summary, this study elucidates the bidirectional microbial intermigration between the intestinal and respiratory tracts in COVID-19 patients. These findings are expected to provide new ideas for the treatment and management of COVID-19, underscoring the essential role of microecology in infectious diseases. Nevertheless, a systematic study of the roles of BV in recovery from infection is required to gain a deeper understanding of the mechanisms of microbial migration.
Collapse
Affiliation(s)
- Zhengtu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, China
| | - Jing Chen
- Hangzhou Matridx Biotechnology Co., Ltd, Hangzhou, China
| | - Yinhu Li
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Linghua Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yangqing Zhan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, China
| | - Jiasheng Yang
- Department of Pulmonary and Critical Care Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Huiqin Wu
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Quality and Safety of Traditional Chinese Medicine, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, China
| | - Shaoqiang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, China
| | - Xiaoneng Mo
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xidong Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, China
| | - Yiqun Mi
- Hangzhou Matridx Biotechnology Co., Ltd, Hangzhou, China
| | - Xi Zhou
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Quality and Safety of Traditional Chinese Medicine, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, China
| | - Yongming Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, China
| | - Jun Wang
- Hangzhou Matridx Biotechnology Co., Ltd, Hangzhou, China
| | - Yuanxiang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, China
| | - Ruilin Sun
- Department of Pulmonary and Critical Care Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Weiping Cai
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Feng Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, China.
| |
Collapse
|
10
|
Bustos IG, Wiscovitch-Russo R, Singh H, Sievers BL, Matsuoka M, Freire M, Tan GS, Cala MP, Guerrero JL, Martin-Loeches I, Gonzalez-Juarbe N, Reyes LF. Major alteration of lung microbiome and the host responses in critically ill COVID-19 patients with high viral load. Sci Rep 2024; 14:27637. [PMID: 39532981 PMCID: PMC11557576 DOI: 10.1038/s41598-024-78992-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Patients with COVID-19 under invasive mechanical ventilation are at higher risk of developing ventilator-associated pneumonia (VAP), associated with increased healthcare costs, and unfavorable prognosis. The underlying mechanisms of this phenomenon have not been thoroughly dissected. Therefore, this study attempted to bridge this gap by performing a lung microbiota analysis and evaluating the host immune responses that could drive the development of VAP. In this prospective cohort study, mechanically ventilated patients with confirmed SARS-CoV-2 infection were enrolled. Nasal swabs (NS), endotracheal aspirates (ETA), and blood samples were collected initially within 12 h of intubation and again at 72 h post-intubation. Plasma samples underwent cytokine and metabolomic analyses, while NS and ETA samples were sequenced for lung microbiome examination. The cohort was categorized based on the development of VAP. Data analysis was conducted using RStudio version 4.3.1. In a study of 36 COVID-19 patients on mechanical ventilation, significant differences were found in the nasal and pulmonary microbiome, notably in Staphylococcus and Enterobacteriaceae, linked to VAP. Patients with VAP showed a higher SARS-CoV-2 viral load in respiratory samples, elevated neutralizing antibodies, and reduced inflammatory cytokines, including IFN-δ, IL-1β, IL-12p70, IL-18, IL-6, TNF-α, and CCL4. Metabolomic analysis revealed changes in 22 metabolites in non-VAP patients and 27 in VAP patients, highlighting D-Maltose-Lactose, Histidinyl-Glycine, and various phosphatidylcholines, indicating a metabolic predisposition to VAP. This study reveals a critical link between respiratory microbiome alterations and ventilator-associated pneumonia in COVID-19 patients with higher SARS-CoV-2 viral loads in respiratory samples, elevated neutralizing antibodies, and reduced inflammatory cytokines, including IFN-δ, IL-1β, IL-12p70, IL-18, IL-6, TNF-α, and CCL4. These findings provide novel insights into the underlying mechanisms of VAP, with potential implications for management and prevention.
Collapse
Affiliation(s)
- Ingrid G Bustos
- Unisabana Center of Translational Science, Universidad de La Sabana, Campus Puente del Común, KM 7.5 Autopista Norte de Bogotá, Chia, Colombia
- Bioscience Ph.D., Engineering Faculty, Universidad de La Sabana, Chia, Colombia
| | - Rosana Wiscovitch-Russo
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, 9605 Medical Center Drive Suite 150, Rockville, MD, 20850, USA
| | - Harinder Singh
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, 9605 Medical Center Drive Suite 150, Rockville, MD, 20850, USA
| | - Benjamín L Sievers
- Infectious Disease Group, J Craig Venter Institute, 4120 Capricorn Ln, La Jolla, CA, USA
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Michele Matsuoka
- Infectious Disease Group, J Craig Venter Institute, 4120 Capricorn Ln, La Jolla, CA, USA
| | - Marcelo Freire
- Infectious Disease Group, J Craig Venter Institute, 4120 Capricorn Ln, La Jolla, CA, USA
| | - Gene S Tan
- Infectious Disease Group, J Craig Venter Institute, 4120 Capricorn Ln, La Jolla, CA, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA, 9203, USA
| | - Mónica P Cala
- MetCore-Metabolomics Core Facility, Vice-Presidency of Research and Knowledge Creation, Universidad de Los Andes, Bogotá, Colombia
| | - Jose L Guerrero
- MetCore-Metabolomics Core Facility, Vice-Presidency of Research and Knowledge Creation, Universidad de Los Andes, Bogotá, Colombia
| | - Ignacio Martin-Loeches
- Multidisciplinary Intensive Care Research Organization (MICRO), St James's Hospital, Dublin, Ireland
| | - Norberto Gonzalez-Juarbe
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, 9605 Medical Center Drive Suite 150, Rockville, MD, 20850, USA.
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
| | - Luis Felipe Reyes
- Unisabana Center of Translational Science, Universidad de La Sabana, Campus Puente del Común, KM 7.5 Autopista Norte de Bogotá, Chia, Colombia.
- Clinica Universidad de La Sabana, Chia, Colombia.
- Pandemic Sciences Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Matviichuk A, Yerokhovych V, Ilkiv Y, Krasnienkov D, Korcheva V, Gurbych O, Shcherbakova A, Botsun P, Falalyeyeva T, Sulaieva O, Kobyliak N. HbA1c and leukocyte mtDNA levels as major factors associated with post-COVID-19 syndrome in type 2 diabetes patients. Sci Rep 2024; 14:25533. [PMID: 39462048 PMCID: PMC11513135 DOI: 10.1038/s41598-024-77496-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024] Open
Abstract
Post-COVID-19 syndrome (PCS) is an emerging health problem in people recovering from COVID-19 infection within the past 3-6 months. The current study aimed to define the predictive factors of PCS development by assessing the mitochondrial DNA (mtDNA) levels in blood leukocytes, inflammatory markers and HbA1c in type 2 diabetes patients (T2D) with regard to clinical phenotype, gender, and biological age. In this case-control study, 65 T2D patients were selected. Patients were divided into 2 groups depending on PCS presence: the PCS group (n = 44) and patients who did not develop PCS (n = 21) for up to 6 months after COVID-19 infection. HbA1c and mtDNA levels were the primary factors linked to PCS in different models. We observed significantly lower mtDNA content in T2D patients with PCS compared to those without PCS (1.26 ± 0.25 vs. 1.44 ± 0.24; p = 0.011). In gender-specific and age-related analyses, the mt-DNA amount did not differ significantly between the subgroups. According to the stepwise multivariate logistic regression analysis, low mtDNA content and HbA1c were independent variables associated with PCS development, regardless of oxygen, glucocorticoid therapy and COVID-19 severity. The top-performing model for PCS prediction was the gradient boosting machine (GBM). HbA1c and mtDNA had a notably greater influence than the other variables, indicating their potential as prognostic biomarkers.
Collapse
Affiliation(s)
- Anton Matviichuk
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
| | | | - Yeva Ilkiv
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
| | - Dmytro Krasnienkov
- Laboratory of Epigenetics, Institute of Gerontology Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
- Blackthorn AI, Ltd, London, UK
| | - Veronika Korcheva
- Laboratory of Epigenetics, Institute of Gerontology Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Oleksandr Gurbych
- Blackthorn AI, Ltd, London, UK
- Lviv Polytechnic National University, Lviv, Ukraine
| | | | | | - Tetyana Falalyeyeva
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Medical Laboratory CSD, Kyiv, Ukraine
| | - Oksana Sulaieva
- Medical Laboratory CSD, Kyiv, Ukraine
- Kyiv Medical University, Kyiv, Ukraine
| | - Nazarii Kobyliak
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine.
- Medical Laboratory CSD, Kyiv, Ukraine.
- Doctor of Medicine, Endocrinology Department, Bogomolets National Medical University, Ievgena Chykalenka 22a str, Kyiv, 01601, Ukraine.
| |
Collapse
|
12
|
Yuan Y, Li R, Zhang Y, Zhao Y, Liu Q, Wang J, Yan X, Su J. Attenuating mitochondrial dysfunction-derived reactive oxygen species and reducing inflammation: the potential of Daphnetin in the viral pneumonia crisis. Front Pharmacol 2024; 15:1477680. [PMID: 39494349 PMCID: PMC11527716 DOI: 10.3389/fphar.2024.1477680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
Amidst the global burden of viral pneumonia, mitigating the excessive inflammatory response induced by viral pneumonia has emerged as a significant challenge. Pneumovirus infections can lead to the persistent activation of M1 macrophages, culminating in cytokine storms that exacerbate pulmonary inflammation and contribute to the development of pulmonary fibrosis. Mitochondria, beyond their role as cellular powerhouses, are pivotal in integrating inflammatory signals and regulating macrophage polarization. Mitochondrial damage in alveolar macrophages is postulated to trigger excessive release of reactive oxygen species (ROS), thereby amplifying macrophage-mediated inflammatory pathways. Recent investigations have highlighted the anti-inflammatory potential of Daphnetin, particularly in the context of cardiovascular and renal disorders. This review elucidates the mechanisms by which viral infection-induced mitochondrial damage promotes ROS generation, leading to the phenotypic shift of alveolar macrophages towards a pro-inflammatory state. Furthermore, we propose a mechanism whereby Daphnetin attenuates inflammatory signaling by inhibiting excessive release of mitochondrial ROS, thus offering mitochondrial protection. Daphnetin may represent a promising pharmacological intervention for viral pneumonia and could play a crucial role in addressing future pandemics.
Collapse
Affiliation(s)
- Yuan Yuan
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Runyuan Li
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yinji Zhang
- Jilin Province Xidian Pharmaceutical Sci-Tech Development Co.,Ltd, Panshi, Jilin, China
| | - Yuanxin Zhao
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Qingqing Liu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jian Wang
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaoyu Yan
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
13
|
Damanti S, Senini E, De Lorenzo R, Merolla A, Santoro S, Festorazzi C, Messina M, Vitali G, Sciorati C, Rovere-Querini P. Acute Sarcopenia: Mechanisms and Management. Nutrients 2024; 16:3428. [PMID: 39458423 PMCID: PMC11510680 DOI: 10.3390/nu16203428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Acute sarcopenia refers to the swift decline in muscle function and mass following acute events such as illness, surgery, trauma, or burns that presents significant challenges in hospitalized older adults. METHODS narrative review to describe the mechanisms and management of acute sarcopenia. RESULTS The prevalence of acute sarcopenia ranges from 28% to 69%, likely underdiagnosed due to the absence of muscle mass and function assessments in most clinical settings. Systemic inflammation, immune-endocrine dysregulation, and anabolic resistance are identified as key pathophysiological factors. Interventions include early mobilization, resistance exercise, neuromuscular electrical stimulation, and nutritional strategies such as protein supplementation, leucine, β-hydroxy-β-methyl-butyrate, omega-3 fatty acids, and creatine monohydrate. Pharmaceuticals show variable efficacy. CONCLUSIONS Future research should prioritize serial monitoring of muscle parameters, identification of predictive biomarkers, and the involvement of multidisciplinary teams from hospital admission to address sarcopenia. Early and targeted interventions are crucial to improve outcomes and prevent long-term disability associated with acute sarcopenia.
Collapse
Affiliation(s)
- Sarah Damanti
- Internal Medicine Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (S.D.); (G.V.); (P.R.-Q.)
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Eleonora Senini
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Rebecca De Lorenzo
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Aurora Merolla
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Simona Santoro
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Costanza Festorazzi
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Marco Messina
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Giordano Vitali
- Internal Medicine Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (S.D.); (G.V.); (P.R.-Q.)
| | - Clara Sciorati
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Patrizia Rovere-Querini
- Internal Medicine Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (S.D.); (G.V.); (P.R.-Q.)
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| |
Collapse
|
14
|
Monaco V, Iacobucci I, Canè L, Cipollone I, Ferrucci V, de Antonellis P, Quaranta M, Pascarella S, Zollo M, Monti M. SARS-CoV-2 uses Spike glycoprotein to control the host's anaerobic metabolism by inhibiting LDHB. Int J Biol Macromol 2024; 278:134638. [PMID: 39147351 DOI: 10.1016/j.ijbiomac.2024.134638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
The SARS-CoV-2 pandemic, responsible for approximately 7 million deaths worldwide, highlights the urgent need to understand the molecular mechanisms of the virus in order to prevent future outbreaks. The Spike glycoprotein of SARS-CoV-2, which is critical for viral entry through its interaction with ACE2 and other host cell receptors, has been a focus of this study. The present research goes beyond receptor recognition to explore Spike's influence on cellular metabolism. AP-MS interactome analysis revealed an interaction between the Spike S1 domain and lactate dehydrogenase B (LDHB), which was further confirmed by co-immunoprecipitation and immunofluorescence, indicating colocalisation in cells expressing the S1 domain. The study showed that Spike inhibits the catalytic activity of LDHB, leading to increased lactate levels in HEK-293T cells overexpressing the S1 subunit. In the hypothesised mechanism, Spike deprives LDHB of NAD+, facilitating a metabolic switch from aerobic to anaerobic energy production during infection. The Spike-NAD+ interacting region was characterised and mainly involves the W436 within the RDB domain. This novel hypothesis suggests that the Spike protein may play a broader role in altering host cell metabolism, thereby contributing to the pathophysiology of viral infection.
Collapse
Affiliation(s)
- Vittoria Monaco
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy
| | - Ilaria Iacobucci
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy
| | - Luisa Canè
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Irene Cipollone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy
| | - Veronica Ferrucci
- CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Pasqualino de Antonellis
- CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Miriana Quaranta
- Sapienza Università di Roma, Department of Biochemical Sciences "A. Rossi Fanelli", Rome 00185, Italy
| | - Stefano Pascarella
- Sapienza Università di Roma, Department of Biochemical Sciences "A. Rossi Fanelli", Rome 00185, Italy
| | - Massimo Zollo
- CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy.
| |
Collapse
|
15
|
Xu WT, An XB, Chen MJ, Ma J, Wang XQ, Yang JN, Wang Q, Wang DY, Wu Y, Zeng L, Qu Y, Zhao B, Ai J. A Gene Cluster of Mitochondrial Complexes Contributes to the Cognitive Decline of COVID-19 Infection. Mol Neurobiol 2024:10.1007/s12035-024-04471-3. [PMID: 39271627 DOI: 10.1007/s12035-024-04471-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
"Brain fog," a persistent cognitive impairment syndrome, stands out as a significant neurological aftermath of coronavirus disease 2019 (COVID-19). Yet, the underlying mechanisms by which COVID-19 induces cognitive deficits remain elusive. In our study, we observed an upregulation in the expression of genes linked to the inflammatory response and oxidative stress, whereas genes associated with cognitive function were downregulated in the brains of patients infected with COVID-19. Through single-nucleus RNA sequencing (snRNA-seq) analysis, we found that COVID-19 infection triggers the immune responses in microglia and astrocytes and exacerbates oxidative stress in oligodendrocytes, oligodendrocyte progenitors (OPCs), and neurons. Further investigations revealed that COVID-19 infection elevates LUC7L2 expression, which inhibits mitochondrial oxidative phosphorylation (OXPHOS) and suppresses the expression of mitochondrial complex genes such as MT-ND1, MT-ND2, MT-ND3, MT-ND4L, MT-CYB, MT-CO3, and MT-ATP6. A holistic approach to protect mitochondrial complex function, rather than targeting a single molecular, should be an effective therapeutic strategy to prevent and treat the long-term consequences of "long COVID."
Collapse
Affiliation(s)
- Wen-Tao Xu
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Xiao-Bin An
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Mei-Jie Chen
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Jing Ma
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Xu-Qiao Wang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Ji-Nan Yang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Qin Wang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Dong-Yang Wang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Yan Wu
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Lu Zeng
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Yang Qu
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Bowen Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Jing Ai
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China.
| |
Collapse
|
16
|
Shafqat A, Masters MC, Tripathi U, Tchkonia T, Kirkland JL, Hashmi SK. Long COVID as a disease of accelerated biological aging: An opportunity to translate geroscience interventions. Ageing Res Rev 2024; 99:102400. [PMID: 38945306 DOI: 10.1016/j.arr.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
It has been four years since long COVID-the protracted consequences that survivors of COVID-19 face-was first described. Yet, this entity continues to devastate the quality of life of an increasing number of COVID-19 survivors without any approved therapy and a paucity of clinical trials addressing its biological root causes. Notably, many of the symptoms of long COVID are typically seen with advancing age. Leveraging this similarity, we posit that Geroscience-which aims to target the biological drivers of aging to prevent age-associated conditions as a group-could offer promising therapeutic avenues for long COVID. Bearing this in mind, this review presents a translational framework for studying long COVID as a state of effectively accelerated biological aging, identifying research gaps and offering recommendations for future preclinical and clinical studies.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Mary Clare Masters
- Division of Infectious Diseases, Northwestern University, Chicago, IL, USA
| | - Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shahrukh K Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA; Research and Innovation Center, Department of Health, Abu Dhabi, UAE; College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
17
|
Diekman CO, Thomas PJ, Wilson CG. COVID-19 and silent hypoxemia in a minimal closed-loop model of the respiratory rhythm generator. BIOLOGICAL CYBERNETICS 2024; 118:145-163. [PMID: 38884785 PMCID: PMC11289179 DOI: 10.1007/s00422-024-00989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 03/28/2024] [Indexed: 06/18/2024]
Abstract
Silent hypoxemia, or "happy hypoxia," is a puzzling phenomenon in which patients who have contracted COVID-19 exhibit very low oxygen saturation ( SaO 2 < 80%) but do not experience discomfort in breathing. The mechanism by which this blunted response to hypoxia occurs is unknown. We have previously shown that a computational model of the respiratory neural network (Diekman et al. in J Neurophysiol 118(4):2194-2215, 2017) can be used to test hypotheses focused on changes in chemosensory inputs to the central pattern generator (CPG). We hypothesize that altered chemosensory function at the level of the carotid bodies and/or the nucleus tractus solitarii are responsible for the blunted response to hypoxia. Here, we use our model to explore this hypothesis by altering the properties of the gain function representing oxygen sensing inputs to the CPG. We then vary other parameters in the model and show that oxygen carrying capacity is the most salient factor for producing silent hypoxemia. We call for clinicians to measure hematocrit as a clinical index of altered physiology in response to COVID-19 infection.
Collapse
Affiliation(s)
- Casey O Diekman
- Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA.
| | - Peter J Thomas
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Christopher G Wilson
- Department of Pediatrics and Basic Sciences, Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University, 11223 Campus St, Loma Linda, CA, 92350, USA
| |
Collapse
|
18
|
Ma Q, Luo G, Wang F, Li H, Li X, Liu Y, Li Z, Guo Y, Li Y. NK Cell Mitochondrial Membrane Potential-Associated Model Predicts Outcomes in Critically Ill Patients with COVID-19. J Inflamm Res 2024; 17:4361-4372. [PMID: 38983452 PMCID: PMC11232957 DOI: 10.2147/jir.s458749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
Purpose This study investigated potential predictive models associated with natural killer (NK) cell mitochondrial membrane potential (MMP or ΔΨm) in predicting death among critically ill patients with COVID-19. Patients and Methods We included 97 patients with COVID-19 of different severities attending Peking Union Medical College Hospital from December 2022 to January 2023. Patients were divided into three groups according to oxygen and mechanical ventilation use during specimen collection and were followed for survival and death at 3 months. The lymphocyte subpopulation MMP was detected via flow cytometry. We constructed a joint diagnostic model by integrating identified key indicators and generating receiver operating curves (ROCs) and evaluated its predictive performance for mortality risk in critically ill patients. Results The NK-cell MMP median fluorescence intensity (MFI) was significantly lower in critically ill patients who died from COVID-19 (p<0.0001) and significantly and positively correlated with D-dimer content in critically ill patients (r=0.56, p=0.0023). The random forest model suggested that fibrinogen levels and NK-cell MMP MFI were the most important indicators. Integrating the above predictive models for the ROC yielded an area under the curve of 0.94. Conclusion This study revealed the potential of combining NK-cell MMP with key clinical indicators (D-dimer and fibrinogen levels) to predict death among critically ill patients with COVID-19, which may help in early risk stratification of critically ill patients and improve patient care and clinical outcomes.
Collapse
Affiliation(s)
- Qingqing Ma
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Medical Laboratory Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, People’s Republic of China
| | - Guoju Luo
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Fei Wang
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Haolong Li
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Xiaomeng Li
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Yongmei Liu
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Zhan Li
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Ye Guo
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
19
|
López-Ayllón BD, Marin S, Fernández MF, García-García T, Fernández-Rodríguez R, de Lucas-Rius A, Redondo N, Mendoza-García L, Foguet C, Grigas J, Calvet A, Villalba JM, Gómez MJR, Megías D, Mandracchia B, Luque D, Lozano JJ, Calvo C, Herrán UM, Thomson TM, Garrido JJ, Cascante M, Montoya M. Metabolic and mitochondria alterations induced by SARS-CoV-2 accessory proteins ORF3a, ORF9b, ORF9c and ORF10. J Med Virol 2024; 96:e29752. [PMID: 38949191 DOI: 10.1002/jmv.29752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 07/02/2024]
Abstract
Antiviral signaling, immune response and cell metabolism are dysregulated by SARS-CoV-2, the causative agent of COVID-19. Here, we show that SARS-CoV-2 accessory proteins ORF3a, ORF9b, ORF9c and ORF10 induce a significant mitochondrial and metabolic reprogramming in A549 lung epithelial cells. While ORF9b, ORF9c and ORF10 induced largely overlapping transcriptomes, ORF3a induced a distinct transcriptome, including the downregulation of numerous genes with critical roles in mitochondrial function and morphology. On the other hand, all four ORFs altered mitochondrial dynamics and function, but only ORF3a and ORF9c induced a marked alteration in mitochondrial cristae structure. Genome-Scale Metabolic Models identified both metabolic flux reprogramming features both shared across all accessory proteins and specific for each accessory protein. Notably, a downregulated amino acid metabolism was observed in ORF9b, ORF9c and ORF10, while an upregulated lipid metabolism was distinctly induced by ORF3a. These findings reveal metabolic dependencies and vulnerabilities prompted by SARS-CoV-2 accessory proteins that may be exploited to identify new targets for intervention.
Collapse
Affiliation(s)
- Blanca D López-Ayllón
- Viral Immunology Lab, Molecular Biomedicine Department, BICS Unit. Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Silvia Marin
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Institute of Biomedicine of University of Barcelona (IBUB), University of Barcelona (UB), Barcelona, Spain
| | - Marco Fariñas Fernández
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tránsito García-García
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research, Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - Raúl Fernández-Rodríguez
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research, Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - Ana de Lucas-Rius
- Viral Immunology Lab, Molecular Biomedicine Department, BICS Unit. Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Natalia Redondo
- Unit of Infectious Diseases, University Hospital '12 de Octubre', Institute for Health Research Hospital '12 de Octubre' (imas12), Madrid, Spain
- Centre for Biomedical Research Network on Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Laura Mendoza-García
- Viral Immunology Lab, Molecular Biomedicine Department, BICS Unit. Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Carles Foguet
- British Heart Foundation Cardiovascular Epidemiology Unit and Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Juozas Grigas
- Laboratory of Immunology, Department of Anatomy and Physiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alba Calvet
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
- Institute of Biomedicine of University of Barcelona (IBUB), University of Barcelona (UB), Barcelona, Spain
| | - José Manuel Villalba
- Department of Cell Biology, Physiology and Immunology, Agrifood Campus of International Excellence, University of Córdoba, Córdoba, Spain
| | - María Josefa Rodríguez Gómez
- Scientific-Technical Central Units, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Diego Megías
- Scientific-Technical Central Units, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| | - Biagio Mandracchia
- Scientific-Technical Central Units, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
- ETSI Telecommunication, University of Valladolid, Valladolid, Spain
| | - Daniel Luque
- Scientific-Technical Central Units, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Juan José Lozano
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Cristina Calvo
- Barcelona Institute for Molecular Biology (IBMB-CSIC), Barcelona, Spain
| | - Unai Merino Herrán
- Viral Immunology Lab, Molecular Biomedicine Department, BICS Unit. Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Timothy M Thomson
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Barcelona Institute for Molecular Biology (IBMB-CSIC), Barcelona, Spain
- Translational Research and Computational Biology Laboratory, Faculty of Science and Engineering, Peruvian University Cayetano Heredia, Lima, Perú
| | - Juan J Garrido
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research, Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Institute of Biomedicine of University of Barcelona (IBUB), University of Barcelona (UB), Barcelona, Spain
| | - María Montoya
- Viral Immunology Lab, Molecular Biomedicine Department, BICS Unit. Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| |
Collapse
|
20
|
Rurek M. Mitochondria in COVID-19: from cellular and molecular perspective. Front Physiol 2024; 15:1406635. [PMID: 38974521 PMCID: PMC11224649 DOI: 10.3389/fphys.2024.1406635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
The rapid development of the COVID-19 pandemic resulted in a closer analysis of cell functioning during β-coronavirus infection. This review will describe evidence for COVID-19 as a syndrome with a strong, albeit still underestimated, mitochondrial component. Due to the sensitivity of host mitochondria to coronavirus infection, SARS-CoV-2 affects mitochondrial signaling, modulates the immune response, modifies cellular energy metabolism, induces apoptosis and ageing, worsening COVID-19 symptoms which can sometimes be fatal. Various aberrations across human systems and tissues and their relationships with mitochondria were reported. In this review, particular attention is given to characterization of multiple alterations in gene expression pattern and mitochondrial metabolism in COVID-19; the complexity of interactions between SARS-CoV-2 and mitochondrial proteins is presented. The participation of mitogenome fragments in cell signaling and the occurrence of SARS-CoV-2 subgenomic RNA within membranous compartments, including mitochondria is widely discussed. As SARS-CoV-2 severely affects the quality system of mitochondria, the cellular background for aberrations in mitochondrial dynamics in COVID-19 is additionally characterized. Finally, perspectives on the mitigation of COVID-19 symptoms by affecting mitochondrial biogenesis by numerous compounds and therapeutic treatments are briefly outlined.
Collapse
Affiliation(s)
- Michał Rurek
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
21
|
Zhang Q, Shi L, Lin Y, Dai H, Bai Y, You P. Abnormal Serum Biochemical Results and Mitochondrial Damage of Lymphocytes in Patients with Schizophrenia and SARS-CoV-2 Infection: A Retrospective Study. Neuropsychiatr Dis Treat 2024; 20:1321-1330. [PMID: 38933096 PMCID: PMC11199166 DOI: 10.2147/ndt.s462496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Purpose In this study, we investigated the differences in clinical biochemical values and mitochondrial mass between schizophrenia patients with and without COVID-19, so as to provide assistance to the treatment and management of COVID-19 positive patients with schizophrenia. Patients and methods We undertook an exploratory, retrospective review of patient data from Dec. 6, 2022, to Jan. 31, 2023. A total of 1696 inpatients with psychosis (921 schizophrenia patients and 775 diagnosed with other mental diseases) during this period were identified. Finally, 60 schizophrenia patients were enrolled in our study, and 20 of them were infected with syndrome coronavirus 2 (SARS-CoV-2). The serum biochemical levels and single-cell mitochondrial mass (SCMM) of the T lymphocytes of all schizophrenia patients were analyzed. Results The serum levels of aspartate aminotransferase (AST), alkaline phosphatase (ALP), creatinine (Cr) and lactate dehydrogenase (LDH) were significantly higher in schizophrenia patients with COVID-19 (SCZ-C) group. In addition, the SCZ-C group showed lower CD3+, CD3+CD4+ and CD3+CD8+ cell counts and higher SCMM of T lymphocytes compared to SCZ group. Furthermore, positive correlations were found between the T-cell subpopulation counts and positive symptom scores on the Positive and Negative Syndrome Scale (PANSS). Conclusion Our study findings showed that schizophrenia patients with COVID-19 have a phenotype of mitochondrial damage in T lymphocytes and higher serum levels of AST, ALP, Cr and LDH, which might provide evidence for treating individuals with schizophrenia during subsequent spread of infectious disease.
Collapse
Affiliation(s)
- Qiao Zhang
- Xiamen Xianyue Hospital, Xianyue Hospital Affiliated to Xiamen Medical College, Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen, Fujian, 361012, People’s Republic of China
| | - Lei Shi
- Xiamen Xianyue Hospital, Xianyue Hospital Affiliated to Xiamen Medical College, Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen, Fujian, 361012, People’s Republic of China
| | - Yanping Lin
- The Third Hospital of Xiamen, Xiamen, Fujian, 361100, People’s Republic of China
| | - Huirong Dai
- Xiamen Xianyue Hospital, Xianyue Hospital Affiliated to Xiamen Medical College, Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen, Fujian, 361012, People’s Republic of China
| | - Yixuan Bai
- Xiamen Xianyue Hospital, Xianyue Hospital Affiliated to Xiamen Medical College, Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen, Fujian, 361012, People’s Republic of China
| | - Pan You
- Xiamen Xianyue Hospital, Xianyue Hospital Affiliated to Xiamen Medical College, Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen, Fujian, 361012, People’s Republic of China
| |
Collapse
|
22
|
Wu K, Shieh JS, Qin L, Guo JJ. Mitochondrial mechanisms in the pathogenesis of chronic inflammatory musculoskeletal disorders. Cell Biosci 2024; 14:76. [PMID: 38849951 PMCID: PMC11162051 DOI: 10.1186/s13578-024-01259-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Chronic inflammatory musculoskeletal disorders characterized by prolonged muscle inflammation, resulting in enduring pain and diminished functionality, pose significant challenges for the patients. Emerging scientific evidence points to mitochondrial malfunction as a pivotal factor contributing to these ailments. Mitochondria play a critical role in powering skeletal muscle activity, but in the context of persistent inflammation, disruptions in their quantity, configuration, and performance have been well-documented. Various disturbances, encompassing alterations in mitochondrial dynamics (such as fission and fusion), calcium regulation, oxidative stress, biogenesis, and the process of mitophagy, are believed to play a central role in the progression of these disorders. Additionally, unfolded protein responses and the accumulation of fatty acids within muscle cells may adversely affect the internal milieu, impairing the equilibrium of mitochondrial functioning. The structural discrepancies between different mitochondrial subsets namely, intramyofibrillar and subsarcolemmal mitochondria likely impact their metabolic capabilities and susceptibility to inflammatory influences. The release of signals from damaged mitochondria is known to incite inflammatory responses. Intriguingly, migrasomes and extracellular vesicles serve as vehicles for intercellular transfer of mitochondria, aiding in the removal of impaired mitochondria and regulation of inflammation. Viral infections have been implicated in inducing stress on mitochondria. Prolonged dysfunction of these vital organelles sustains oxidative harm, metabolic irregularities, and heightened cytokine release, impeding the body's ability to repair tissues. This review provides a comprehensive analysis of advancements in understanding changes in the intracellular environment, mitochondrial architecture and distribution, biogenesis, dynamics, autophagy, oxidative stress, cytokines associated with mitochondria, vesicular structures, and associated membranes in the context of chronic inflammatory musculoskeletal disorders. Strategies targeting key elements regulating mitochondrial quality exhibit promise in the restoration of mitochondrial function, alleviation of inflammation, and enhancement of overall outcomes.
Collapse
Affiliation(s)
- Kailun Wu
- Department of Orthopedics, The Fourth Affiliated Hospital of Soochow University/Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, People's Republic of China
- Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Ju-Sheng Shieh
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 11490, Taiwan
| | - Ling Qin
- Musculoskeletal Research Laboratory of the Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Jiong Jiong Guo
- Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China.
- MOE China-Europe Sports Medicine Belt and Road Joint Laboratory, Soochow University, Suzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
23
|
Guarnieri JW, Haltom JA, Albrecht YES, Lie T, Olali AZ, Widjaja GA, Ranshing SS, Angelin A, Murdock D, Wallace DC. SARS-CoV-2 mitochondrial metabolic and epigenomic reprogramming in COVID-19. Pharmacol Res 2024; 204:107170. [PMID: 38614374 DOI: 10.1016/j.phrs.2024.107170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
To determine the effects of SARS-CoV-2 infection on cellular metabolism, we conducted an exhaustive survey of the cellular metabolic pathways modulated by SARS-CoV-2 infection and confirmed their importance for SARS-CoV-2 propagation by cataloging the effects of specific pathway inhibitors. This revealed that SARS-CoV-2 strongly inhibits mitochondrial oxidative phosphorylation (OXPHOS) resulting in increased mitochondrial reactive oxygen species (mROS) production. The elevated mROS stabilizes HIF-1α which redirects carbon molecules from mitochondrial oxidation through glycolysis and the pentose phosphate pathway (PPP) to provide substrates for viral biogenesis. mROS also induces the release of mitochondrial DNA (mtDNA) which activates innate immunity. The restructuring of cellular energy metabolism is mediated in part by SARS-CoV-2 Orf8 and Orf10 whose expression restructures nuclear DNA (nDNA) and mtDNA OXPHOS gene expression. These viral proteins likely alter the epigenome, either by directly altering histone modifications or by modulating mitochondrial metabolite substrates of epigenome modification enzymes, potentially silencing OXPHOS gene expression and contributing to long-COVID.
Collapse
Affiliation(s)
- Joseph W Guarnieri
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jeffrey A Haltom
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yentli E Soto Albrecht
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy Lie
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arnold Z Olali
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Gabrielle A Widjaja
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sujata S Ranshing
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alessia Angelin
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Deborah Murdock
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
Barker-Tejeda TC, Zubeldia-Varela E, Macías-Camero A, Alonso L, Martín-Antoniano IA, Rey-Stolle MF, Mera-Berriatua L, Bazire R, Cabrera-Freitag P, Shanmuganathan M, Britz-McKibbin P, Ubeda C, Francino MP, Barber D, Ibáñez-Sandín MD, Barbas C, Pérez-Gordo M, Villaseñor A. Comparative characterization of the infant gut microbiome and their maternal lineage by a multi-omics approach. Nat Commun 2024; 15:3004. [PMID: 38589361 PMCID: PMC11001937 DOI: 10.1038/s41467-024-47182-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
The human gut microbiome establishes and matures during infancy, and dysregulation at this stage may lead to pathologies later in life. We conducted a multi-omics study comprising three generations of family members to investigate the early development of the gut microbiota. Fecal samples from 200 individuals, including infants (0-12 months old; 55% females, 45% males) and their respective mothers and grandmothers, were analyzed using two independent metabolomics platforms and metagenomics. For metabolomics, gas chromatography and capillary electrophoresis coupled to mass spectrometry were applied. For metagenomics, both 16S rRNA gene and shotgun sequencing were performed. Here we show that infants greatly vary from their elders in fecal microbiota populations, function, and metabolome. Infants have a less diverse microbiota than adults and present differences in several metabolite classes, such as short- and branched-chain fatty acids, which are associated with shifts in bacterial populations. These findings provide innovative biochemical insights into the shaping of the gut microbiome within the same generational line that could be beneficial in improving childhood health outcomes.
Collapse
Affiliation(s)
- Tomás Clive Barker-Tejeda
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Elisa Zubeldia-Varela
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Andrea Macías-Camero
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Lola Alonso
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Isabel Adoración Martín-Antoniano
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Instituto de Estudios de las Adicciones IEA-CEU, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - María Fernanda Rey-Stolle
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Leticia Mera-Berriatua
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Raphaëlle Bazire
- Department of Allergy, Hospital Infantil Niño Jesús, Fib-HNJ, Madrid, Spain
- Instituto de Investigación Sanitaria-La Princesa, Madrid, Spain
| | - Paula Cabrera-Freitag
- Pedriatic Allergy Unit, Allergy Service, Hospital General Universitario Gregorio Marañón, and Gregorio Marañón Health Research Institute, Madrid, Spain
| | - Meera Shanmuganathan
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Philip Britz-McKibbin
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Carles Ubeda
- Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO), Valencia, Spain
- CIBER en Epidemiología y Salud Pública, Madrid, Spain
| | - M Pilar Francino
- CIBER en Epidemiología y Salud Pública, Madrid, Spain
- Joint Research Unit in Genomics and Health, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO) and Institut de Biologia Integrativa de Sistemes (Universitat de València / Consejo Superior de Investigaciones Científicas), València, Spain
| | - Domingo Barber
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - María Dolores Ibáñez-Sandín
- Department of Allergy, Hospital Infantil Niño Jesús, Fib-HNJ, Madrid, Spain
- Instituto de Investigación Sanitaria-La Princesa, Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Marina Pérez-Gordo
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain.
| | - Alma Villaseñor
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain.
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain.
| |
Collapse
|
25
|
Naidu AS, Wang CK, Rao P, Mancini F, Clemens RA, Wirakartakusumah A, Chiu HF, Yen CH, Porretta S, Mathai I, Naidu SAG. Precision nutrition to reset virus-induced human metabolic reprogramming and dysregulation (HMRD) in long-COVID. NPJ Sci Food 2024; 8:19. [PMID: 38555403 PMCID: PMC10981760 DOI: 10.1038/s41538-024-00261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
SARS-CoV-2, the etiological agent of COVID-19, is devoid of any metabolic capacity; therefore, it is critical for the viral pathogen to hijack host cellular metabolic machinery for its replication and propagation. This single-stranded RNA virus with a 29.9 kb genome encodes 14 open reading frames (ORFs) and initiates a plethora of virus-host protein-protein interactions in the human body. These extensive viral protein interactions with host-specific cellular targets could trigger severe human metabolic reprogramming/dysregulation (HMRD), a rewiring of sugar-, amino acid-, lipid-, and nucleotide-metabolism(s), as well as altered or impaired bioenergetics, immune dysfunction, and redox imbalance in the body. In the infectious process, the viral pathogen hijacks two major human receptors, angiotensin-converting enzyme (ACE)-2 and/or neuropilin (NRP)-1, for initial adhesion to cell surface; then utilizes two major host proteases, TMPRSS2 and/or furin, to gain cellular entry; and finally employs an endosomal enzyme, cathepsin L (CTSL) for fusogenic release of its viral genome. The virus-induced HMRD results in 5 possible infectious outcomes: asymptomatic, mild, moderate, severe to fatal episodes; while the symptomatic acute COVID-19 condition could manifest into 3 clinical phases: (i) hypoxia and hypoxemia (Warburg effect), (ii) hyperferritinemia ('cytokine storm'), and (iii) thrombocytosis (coagulopathy). The mean incubation period for COVID-19 onset was estimated to be 5.1 days, and most cases develop symptoms after 14 days. The mean viral clearance times were 24, 30, and 39 days for acute, severe, and ICU-admitted COVID-19 patients, respectively. However, about 25-70% of virus-free COVID-19 survivors continue to sustain virus-induced HMRD and exhibit a wide range of symptoms that are persistent, exacerbated, or new 'onset' clinical incidents, collectively termed as post-acute sequelae of COVID-19 (PASC) or long COVID. PASC patients experience several debilitating clinical condition(s) with >200 different and overlapping symptoms that may last for weeks to months. Chronic PASC is a cumulative outcome of at least 10 different HMRD-related pathophysiological mechanisms involving both virus-derived virulence factors and a multitude of innate host responses. Based on HMRD and virus-free clinical impairments of different human organs/systems, PASC patients can be categorized into 4 different clusters or sub-phenotypes: sub-phenotype-1 (33.8%) with cardiac and renal manifestations; sub-phenotype-2 (32.8%) with respiratory, sleep and anxiety disorders; sub-phenotype-3 (23.4%) with skeleto-muscular and nervous disorders; and sub-phenotype-4 (10.1%) with digestive and pulmonary dysfunctions. This narrative review elucidates the effects of viral hijack on host cellular machinery during SARS-CoV-2 infection, ensuing detrimental effect(s) of virus-induced HMRD on human metabolism, consequential symptomatic clinical implications, and damage to multiple organ systems; as well as chronic pathophysiological sequelae in virus-free PASC patients. We have also provided a few evidence-based, human randomized controlled trial (RCT)-tested, precision nutrients to reset HMRD for health recovery of PASC patients.
Collapse
Affiliation(s)
- A Satyanarayan Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA.
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA.
| | - Chin-Kun Wang
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung, 40201, Taiwan
| | - Pingfan Rao
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- College of Food and Bioengineering, Fujian Polytechnic Normal University, No.1, Campus New Village, Longjiang Street, Fuqing City, Fujian, China
| | - Fabrizio Mancini
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President-Emeritus, Parker University, 2540 Walnut Hill Lane, Dallas, TX, 75229, USA
| | - Roger A Clemens
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- University of Southern California, Alfred E. Mann School of Pharmacy/D. K. Kim International Center for Regulatory & Quality Sciences, 1540 Alcazar St., CHP 140, Los Angeles, CA, 90089, USA
| | - Aman Wirakartakusumah
- International Union of Food Science and Technology (IUFoST), Guelph, ON, Canada
- IPMI International Business School Jakarta; South East Asian Food and Agriculture Science and Technology, IPB University, Bogor, Indonesia
| | - Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital, Ministry of Health & Well-being, Taichung, Taiwan
| | - Chi-Hua Yen
- Department of Family and Community Medicine, Chung Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Sebastiano Porretta
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President, Italian Association of Food Technology (AITA), Milan, Italy
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121, Parma, Italy
| | - Issac Mathai
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- Soukya International Holistic Health Center, Whitefield, Bengaluru, India
| | - Sreus A G Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA
| |
Collapse
|
26
|
Bustos IG, Wiscovitch-Russo R, Singh H, Sievers BL, Matsuoka M, Freire M, Tan GS, Cala MP, Guerrero JL, Martin-Loeches I, Gonzalez-Juarbe N, Reyes LF. Major alteration of Lung Microbiome and the Host Reaction in critically ill COVID-19 Patients with high viral load. RESEARCH SQUARE 2024:rs.3.rs-3952944. [PMID: 38496464 PMCID: PMC10942552 DOI: 10.21203/rs.3.rs-3952944/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background Patients with COVID-19 under invasive mechanical ventilation are at higher risk of developing ventilator-associated pneumonia (VAP), associated with increased healthcare costs, and unfavorable prognosis. The underlying mechanisms of this phenomenon have not been thoroughly dissected. Therefore, this study attempted to bridge this gap by performing a lung microbiota analysis and evaluating the host immune responses that could drive the development of VAP. Materials and methods In this prospective cohort study, mechanically ventilated patients with confirmed SARS-CoV-2 infection were enrolled. Nasal swabs (NS), endotracheal aspirates (ETA), and blood samples were collected initially within 12 hours of intubation and again at 72 hours post-intubation. Plasma samples underwent cytokine and metabolomic analyses, while NS and ETA samples were sequenced for lung microbiome examination. The cohort was categorized based on the development of VAP. Data analysis was conducted using RStudio version 4.3.1. Results In a study of 36 COVID-19 patients on mechanical ventilation, significant differences were found in the nasal and pulmonary microbiome, notably in Staphylococcus and Enterobacteriaceae, linked to VAP. Patients with VAP showed a higher SARS-CoV-2 viral load, elevated neutralizing antibodies, and reduced inflammatory cytokines, including IFN-δ, IL-1β, IL-12p70, IL-18, IL-6, TNF-α, and CCL4. Metabolomic analysis revealed changes in 22 metabolites in non-VAP patients and 27 in VAP patients, highlighting D-Maltose-Lactose, Histidinyl-Glycine, and various phosphatidylcholines, indicating a metabolic predisposition to VAP. Conclusions This study reveals a critical link between respiratory microbiome alterations and ventilator-associated pneumonia in COVID-19 patients, with elevated SARS-CoV-2 levels and metabolic changes, providing novel insights into the underlying mechanisms of VAP with potential management and prevention implications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mónica P Cala
- MetCore- Metabolomics Core Facility, Universidad de Los Andes
| | - Jose L Guerrero
- MetCore- Metabolomics Core Facility, Universidad de Los Andes
| | | | | | | |
Collapse
|
27
|
Xu Z, Wang H, Jiang S, Teng J, Zhou D, Chen Z, Wen C, Xu Z. Brain Pathology in COVID-19: Clinical Manifestations and Potential Mechanisms. Neurosci Bull 2024; 40:383-400. [PMID: 37715924 PMCID: PMC10912108 DOI: 10.1007/s12264-023-01110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/25/2023] [Indexed: 09/18/2023] Open
Abstract
Neurological manifestations of coronavirus disease 2019 (COVID-19) are less noticeable than the respiratory symptoms, but they may be associated with disability and mortality in COVID-19. Even though Omicron caused less severe disease than Delta, the incidence of neurological manifestations is similar. More than 30% of patients experienced "brain fog", delirium, stroke, and cognitive impairment, and over half of these patients presented abnormal neuroimaging outcomes. In this review, we summarize current advances in the clinical findings of neurological manifestations in COVID-19 patients and compare them with those in patients with influenza infection. We also illustrate the structure and cellular invasion mechanisms of SARS-CoV-2 and describe the pathway for central SARS-CoV-2 invasion. In addition, we discuss direct damage and other pathological conditions caused by SARS-CoV-2, such as an aberrant interferon response, cytokine storm, lymphopenia, and hypercoagulation, to provide treatment ideas. This review may offer new insights into preventing or treating brain damage in COVID-19.
Collapse
Affiliation(s)
- Zhixing Xu
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hui Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Siya Jiang
- Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiao Teng
- Affiliated Lin'an People's Hospital of Hangzhou Medical College, First People's Hospital of Hangzhou Lin'an District, Lin'an, Hangzhou, 311300, China
| | - Dongxu Zhou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhong Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chengping Wen
- Laboratory of Rheumatology and Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhenghao Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Laboratory of Rheumatology and Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
28
|
Lempesis IG, Georgakopoulou VE, Reiter RJ, Spandidos DA. A mid‑pandemic night's dream: Melatonin, from harbinger of anti‑inflammation to mitochondrial savior in acute and long COVID‑19 (Review). Int J Mol Med 2024; 53:28. [PMID: 38299237 PMCID: PMC10852014 DOI: 10.3892/ijmm.2024.5352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
Coronavirus disease 2019 (COVID‑19), a systemic illness caused by severe acute respiratory distress syndrome 2 (SARS‑CoV‑2), has triggered a worldwide pandemic with symptoms ranging from asymptomatic to chronic, affecting practically every organ. Melatonin, an ancient antioxidant found in all living organisms, has been suggested as a safe and effective therapeutic option for the treatment of SARS‑CoV‑2 infection due to its good safety characteristics and broad‑spectrum antiviral medication properties. Melatonin is essential in various metabolic pathways and governs physiological processes, such as the sleep‑wake cycle and circadian rhythms. It exhibits oncostatic, anti‑inflammatory, antioxidant and anti‑aging properties, exhibiting promise for use in the treatment of numerous disorders, including COVID‑19. The preventive and therapeutic effects of melatonin have been widely explored in a number of conditions and have been well‑established in experimental ischemia/reperfusion investigations, particularly in coronary heart disease and stroke. Clinical research evaluating the use of melatonin in COVID‑19 has shown various improved outcomes, including reduced hospitalization durations; however, the trials are small. Melatonin can alleviate mitochondrial dysfunction in COVID‑19, improve immune cell function and provide antioxidant properties. However, its therapeutic potential remains underexplored due to funding limitations and thus further investigations are required.
Collapse
Affiliation(s)
- Ioannis G. Lempesis
- Department of Pathophysiology, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vasiliki Epameinondas Georgakopoulou
- Department of Pathophysiology, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
29
|
Bľandová G, Janoštiaková N, Kodada D, Pastorek M, Lipták R, Hodosy J, Šebeková K, Celec P, Krasňanská G, Eliaš V, Wachsmannová L, Konečný M, Repiská V, Baldovič M. Mitochondrial DNA variability and Covid-19 in the Slovak population. Mitochondrion 2024; 75:101827. [PMID: 38135240 DOI: 10.1016/j.mito.2023.101827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/27/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Recent studies have shown that mitochondria are involved in the pathogenesis of Covid-19. Mitochondria play a role in production of reactive oxygen species and induction of an innate immune response, both important during infections. Common variability of mitochondrial DNA (mtDNA) can affect oxidative phosphorylation and the risk or lethality of cardiovascular, neurodegenerative diseases and sepsis. However, it is unclear whether susceptibility of severe Covid-19 might be affected by mtDNA variation. Thus, we have analyzed mtDNA in a sample of 446 Slovak patients hospitalized due to Covid-19 and a control population group consisting of 1874 individuals. MtDNA variants in the HVRI region have been analyzed and classified into haplogroups at various phylogenetic levels. Binary logistic regression was used to assess the risk of Covid-19. Haplogroups T1, H11, K and variants 16256C > T, 16265A > C, 16293A > G, 16311 T > C and 16399A > G were associated with an increased Covid-19 risk. On contrary, Haplogroup J1, haplogroup clusters H + U5b and T2b + U5b, and the mtDNA variant 16189 T > C were associated with decreased risk of Covid-19. Following the application of the Bonferroni correction, statistical significance was observed exclusively for the cluster of haplogroups H + U5b. Unsurprisingly, the most significant factor contributing to the mortality of patients with Covid-19 is the age of patients. Our findings suggest that mtDNA haplogroups can play a role in Covid-19 pathogenesis, thus potentially useful in identifying susceptibility to its severe form. To confirm these associations, further studies taking into account the nuclear genome or other non-biological influences are needed.
Collapse
Affiliation(s)
- Gabriela Bľandová
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| | - Nikola Janoštiaková
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Dominik Kodada
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Michal Pastorek
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Róbert Lipták
- Department of Emergency Medicine, University Hospital, Bratislava, Slovakia
| | - Július Hodosy
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Department of Emergency Medicine, University Hospital, Bratislava, Slovakia
| | - Katarína Šebeková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Gabriela Krasňanská
- Laboratory of Genomic Medicine, GHC GENETICS SK, Science Park Comenius University, Bratislava, Slovakia; Department of Biology, Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of St. Cyril and Methodius, Trnava, Slovakia
| | - Vladimír Eliaš
- Laboratory of Genomic Medicine, GHC GENETICS SK, Science Park Comenius University, Bratislava, Slovakia
| | - Lenka Wachsmannová
- Laboratory of Genomic Medicine, GHC GENETICS SK, Science Park Comenius University, Bratislava, Slovakia
| | - Michal Konečný
- Laboratory of Genomic Medicine, GHC GENETICS SK, Science Park Comenius University, Bratislava, Slovakia; Department of Biology, Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of St. Cyril and Methodius, Trnava, Slovakia
| | - Vanda Repiská
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Marian Baldovič
- Laboratory of Genomic Medicine, GHC GENETICS SK, Science Park Comenius University, Bratislava, Slovakia; Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
30
|
Barreiro-Sisto U, Fernández-Fariña S, González-Noya AM, Pedrido R, Maneiro M. Enemies or Allies? Hormetic and Apparent Non-Dose-Dependent Effects of Natural Bioactive Antioxidants in the Treatment of Inflammation. Int J Mol Sci 2024; 25:1892. [PMID: 38339170 PMCID: PMC10855620 DOI: 10.3390/ijms25031892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
This review aims to analyze the emerging number of studies on biological media that describe the unexpected effects of different natural bioactive antioxidants. Hormetic effects, with a biphasic response depending on the dose, or activities that are apparently non-dose-dependent, have been described for compounds such as resveratrol, curcumin, ferulic acid or linoleic acid, among others. The analysis of the reported studies confirms the incidence of these types of effects, which should be taken into account by researchers, discarding initial interpretations of imprecise methodologies or measurements. The incidence of these types of effects should enhance research into the different mechanisms of action, particularly those studied in the field of basic research, that will help us understand the causes of these unusual behaviors, depending on the dose, such as the inactivation of the signaling pathways of the immune defense system. Antioxidative and anti-inflammatory activities in biological media should be addressed in ways that go beyond a mere statistical approach. In this work, some of the research pathways that may explain the understanding of these activities are revised, paying special attention to the ability of the selected bioactive compounds (curcumin, resveratrol, ferulic acid and linoleic acid) to form metal complexes and the activity of these complexes in biological media.
Collapse
Affiliation(s)
- Uxía Barreiro-Sisto
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (U.B.-S.); (S.F.-F.)
| | - Sandra Fernández-Fariña
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (U.B.-S.); (S.F.-F.)
| | - Ana M. González-Noya
- Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Rosa Pedrido
- Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Marcelino Maneiro
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (U.B.-S.); (S.F.-F.)
| |
Collapse
|
31
|
Bi J, Zhang C, Lu C, Mo C, Zeng J, Yao M, Jia B, Liu Z, Yuan P, Xu S. Age-related bone diseases: Role of inflammaging. J Autoimmun 2024; 143:103169. [PMID: 38340675 DOI: 10.1016/j.jaut.2024.103169] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/03/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Bone aging is characterized by an imbalance in the physiological and pathological processes of osteogenesis, osteoclastogenesis, adipogenesis, and chondrogenesis, resulting in exacerbated bone loss and the development of age-related bone diseases, including osteoporosis, osteoarthritis, rheumatoid arthritis, and periodontitis. Inflammaging, a novel concept in the field of aging research, pertains to the persistent and gradual escalation of pro-inflammatory reactions during the aging process. This phenomenon is distinguished by its low intensity, systemic nature, absence of symptoms, and potential for management. The mechanisms by which inflammaging contribute to age-related chronic diseases, particularly in the context of age-related bone diseases, remain unclear. The precise manner in which systemic inflammation induces bone aging and consequently contributes to the development of age-related bone diseases has yet to be fully elucidated. This article primarily examines the mechanisms underlying inflammaging and its association with age-related bone diseases, to elucidate the potential mechanisms of inflammaging in age-related bone diseases and offer insights for developing preventive and therapeutic strategies for such conditions.
Collapse
Affiliation(s)
- Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Caimei Zhang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Caihong Lu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiawei Zeng
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingyan Yao
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China; Department of Endocrinology, Baoding No.1 Central Hospital, Baoding, China
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Peiyan Yuan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
32
|
LeFort KR, Rungratanawanich W, Song BJ. Contributing roles of mitochondrial dysfunction and hepatocyte apoptosis in liver diseases through oxidative stress, post-translational modifications, inflammation, and intestinal barrier dysfunction. Cell Mol Life Sci 2024; 81:34. [PMID: 38214802 PMCID: PMC10786752 DOI: 10.1007/s00018-023-05061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
This review provides an update on recent findings from basic, translational, and clinical studies on the molecular mechanisms of mitochondrial dysfunction and apoptosis of hepatocytes in multiple liver diseases, including but not limited to alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and drug-induced liver injury (DILI). While the ethanol-inducible cytochrome P450-2E1 (CYP2E1) is mainly responsible for oxidizing binge alcohol via the microsomal ethanol oxidizing system, it is also responsible for metabolizing many xenobiotics, including pollutants, chemicals, drugs, and specific diets abundant in n-6 fatty acids, into toxic metabolites in many organs, including the liver, causing pathological insults through organelles such as mitochondria and endoplasmic reticula. Oxidative imbalances (oxidative stress) in mitochondria promote the covalent modifications of lipids, proteins, and nucleic acids through enzymatic and non-enzymatic mechanisms. Excessive changes stimulate various post-translational modifications (PTMs) of mitochondrial proteins, transcription factors, and histones. Increased PTMs of mitochondrial proteins inactivate many enzymes involved in the reduction of oxidative species, fatty acid metabolism, and mitophagy pathways, leading to mitochondrial dysfunction, energy depletion, and apoptosis. Unique from other organelles, mitochondria control many signaling cascades involved in bioenergetics (fat metabolism), inflammation, and apoptosis/necrosis of hepatocytes. When mitochondrial homeostasis is shifted, these pathways become altered or shut down, likely contributing to the death of hepatocytes with activation of inflammation and hepatic stellate cells, causing liver fibrosis and cirrhosis. This review will encapsulate how mitochondrial dysfunction contributes to hepatocyte apoptosis in several types of liver diseases in order to provide recommendations for targeted therapeutics.
Collapse
Affiliation(s)
- Karli R LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
33
|
Gavilán E, Medina-Guzman R, Bahatyrevich-Kharitonik B, Ruano D. Protein Quality Control Systems and ER Stress as Key Players in SARS-CoV-2-Induced Neurodegeneration. Cells 2024; 13:123. [PMID: 38247815 PMCID: PMC10814689 DOI: 10.3390/cells13020123] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
The COVID-19 pandemic has brought to the forefront the intricate relationship between SARS-CoV-2 and its impact on neurological complications, including potential links to neurodegenerative processes, characterized by a dysfunction of the protein quality control systems and ER stress. This review article explores the role of protein quality control systems, such as the Unfolded Protein Response (UPR), the Endoplasmic Reticulum-Associated Degradation (ERAD), the Ubiquitin-Proteasome System (UPS), autophagy and the molecular chaperones, in SARS-CoV-2 infection. Our hypothesis suggests that SARS-CoV-2 produces ER stress and exploits the protein quality control systems, leading to a disruption in proteostasis that cannot be solved by the host cell. This disruption culminates in cell death and may represent a link between SARS-CoV-2 and neurodegeneration.
Collapse
Affiliation(s)
- Elena Gavilán
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Junta de Andalucía, CSIC, University of Seville (US), 41013 Sevilla, Spain
| | - Rafael Medina-Guzman
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
| | - Bazhena Bahatyrevich-Kharitonik
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Junta de Andalucía, CSIC, University of Seville (US), 41013 Sevilla, Spain
| | - Diego Ruano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Junta de Andalucía, CSIC, University of Seville (US), 41013 Sevilla, Spain
| |
Collapse
|
34
|
Chu Y, Li M, Sun M, Wang J, Xin W, Xu L. Gene crosstalk between COVID-19 and preeclampsia revealed by blood transcriptome analysis. Front Immunol 2024; 14:1243450. [PMID: 38259479 PMCID: PMC10800816 DOI: 10.3389/fimmu.2023.1243450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Background The extensive spread of coronavirus disease 2019 (COVID-19) has led to a rapid increase in global mortality. Preeclampsia is a commonly observed pregnancy ailment characterized by high maternal morbidity and mortality rates, in addition to the restriction of fetal growth within the uterine environment. Pregnant individuals afflicted with vascular disorders, including preeclampsia, exhibit an increased susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection via mechanisms that have not been fully delineated. Additionally, the intricate molecular mechanisms underlying preeclampsia and COVID-19 have not been fully elucidated. This study aimed to discern commonalities in gene expression, regulators, and pathways shared between COVID-19 and preeclampsia. The objective was to uncover potential insights that could contribute to novel treatment strategies for both COVID-19 and preeclampsia. Method Transcriptomic datasets for COVID-19 peripheral blood (GSE152418) and preeclampsia blood (GSE48424) were initially sourced from the Gene Expression Omnibus (GEO) database. Subsequent to that, we conducted a subanalysis by selecting females from the GSE152418 dataset and employed the "Deseq2" package to identify genes that exhibited differential expression. Simultaneously, the "limma" package was applied to identify differentially expressed genes (DEGs) in the preeclampsia dataset (GSE48424). Following that, an intersection analysis was conducted to identify the common DEGs obtained from both the COVID-19 and preeclampsia datasets. The identified shared DEGs were subsequently utilized for functional enrichment analysis, transcription factor (TF) and microRNAs (miRNA) prediction, pathway analysis, and identification of potential candidate drugs. Finally, to validate the bioinformatics findings, we collected peripheral blood mononuclear cell (PBMC) samples from healthy individuals, COVID-19 patients, and Preeclampsia patients. The abundance of the top 10 Hub genes in both diseases was assessed using real-time quantitative polymerase chain reaction (RT-qPCR). Result A total of 355 overlapping DEGs were identified in both preeclampsia and COVID-19 datasets. Subsequent ontological analysis, encompassing Gene Ontology (GO) functional assessment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, revealed a significant association between the two conditions. Protein-protein interactions (PPIs) were constructed using the STRING database. Additionally, the top 10 hub genes (MRPL11, MRPS12, UQCRH, ATP5I, UQCRQ, ATP5D, COX6B1, ATP5O, ATP5H, NDUFA6) were selected based on their ranking scores using the degree algorithm, which considered the shared DEGs. Moreover, transcription factor-gene interactions, protein-drug interactions, co-regulatory networks of DEGs and miRNAs, and protein-drug interactions involving the shared DEGs were also identified in the datasets. Finally, RT-PCR results confirmed that 10 hub genes do exhibit distinct expression profiles in the two diseases. Conclusion This study successfully identified overlapping DEGs, functional pathways, and regulatory elements between COVID-19 and preeclampsia. The findings provide valuable insights into the shared molecular mechanisms and potential therapeutic targets for both diseases. The validation through RT-qPCR further supports the distinct expression profiles of the identified hub genes in COVID-19 and preeclampsia, emphasizing their potential roles as biomarkers or therapeutic targets in these conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Lin Xu
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
35
|
Matías-Pérez D, Antonio-Estrada C, Guerra-Martínez A, García-Melo KS, Hernández-Bautista E, García-Montalvo IA. Relationship of quercetin intake and oxidative stress in persistent COVID. Front Nutr 2024; 10:1278039. [PMID: 38260057 PMCID: PMC10800910 DOI: 10.3389/fnut.2023.1278039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Affiliation(s)
- Diana Matías-Pérez
- Division of Graduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca, Oaxaca, Mexico
| | - Carolina Antonio-Estrada
- Division of Graduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca, Oaxaca, Mexico
| | - Araceli Guerra-Martínez
- Division of Graduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca, Oaxaca, Mexico
| | - Karen Seydel García-Melo
- Division of Graduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca, Oaxaca, Mexico
| | - Emilio Hernández-Bautista
- Department of Chemical Engineering, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca, Oaxaca, Mexico
| | - Iván Antonio García-Montalvo
- Division of Graduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca, Oaxaca, Mexico
| |
Collapse
|
36
|
Khan KM, Zimpfer MJ, Sultana R, Parvez TM, Navas-Acien A, Parvez F. Role of Metals on SARS-CoV-2 Infection: a Review of Recent Epidemiological Studies. Curr Environ Health Rep 2023; 10:353-368. [PMID: 37665544 PMCID: PMC11149155 DOI: 10.1007/s40572-023-00409-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE OF REVIEW Metals and metalloids are known for their nutritional as well as toxic effects in humans. In the context of the SARS-CoV-2 pandemic, understanding the role of metals on COVID-19 infection is becoming important due to their role in infectious diseases. During the past 2 years, a significant number of studies have examined the impact of metals and metalloids on COVID-19 morbidity and mortality. We conducted a systematic review of peer-reviewed manuscripts on the association of metals and metalloids with SARS-CoV-2 infection and COVID-19 severity published since the onset of the pandemic. RECENT FINDINGS We searched for epidemiological studies available through the PubMed database published from January 2020 to December 2022. Of 92 studies identified, 20 met our inclusion criteria. These articles investigated the association of zinc (Zn), iron (Fe), selenium (Se), manganese (Mn), cadmium (Cd), arsenic (As), copper (Cu), magnesium (Mg), chromium (Cr), and/or lead (Pb) levels on SARS-CoV-2 infection and/or COVID-19 severity. Of the ten metals and metalloids of interest that reported either positive, negative, or no associations, Zn yielded the highest number of articles (n = 13), followed by epidemiological studies on Se (n = 7) and Fe (n = 5). Elevated serum Zn and Se were associated with reduced COVID-19 severity and mortality. Similarly, higher levels of serum Fe were associated with lower levels of cellular damage and symptoms of SARS-CoV-2 infection and with faster recovery from COVID-19. On the other hand, higher serum and urinary Cu and serum Mg levels were associated with higher COVID-19 severity and mortality. Along with the positive or negative effects, some studies reported no impact of metals on SARS-CoV-2 infection. This systematic review suggests that metals, particularly Zn, Fe, and Se, may help reduce the severity of COVID-19, while Cu and Mg may aggravate it. Our review suggests that future pandemic mitigation strategies may evaluate the role of Zn, Se, and Fe as potential therapeutic interventions.
Collapse
Affiliation(s)
- Khalid M Khan
- Department of Public Health, College of Health Sciences, Sam Houston State University, Huntsville, USA
| | - Mariah J Zimpfer
- Department of Public Health, College of Health Sciences, Sam Houston State University, Huntsville, USA
| | - Rasheda Sultana
- Department of Public Health, College of Health Sciences, Sam Houston State University, Huntsville, USA
| | - Tahmid M Parvez
- Department of Biology, Hofstra University, Hempstead, NY, USA
| | - Ana Navas-Acien
- Department of Environmental Health, Mailman School of Public Health, Columbia University, 722W, 168Th St., New York, NY, 10032, USA
| | - Faruque Parvez
- Department of Environmental Health, Mailman School of Public Health, Columbia University, 722W, 168Th St., New York, NY, 10032, USA.
| |
Collapse
|
37
|
Zhu J, Li X, Lv F, Zhou W. Bioinformatics Approach to Identify the Influences of COVID-19 on Ischemic Stroke. Biochem Genet 2023; 61:2222-2241. [PMID: 37184686 PMCID: PMC10184096 DOI: 10.1007/s10528-023-10366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/09/2023] [Indexed: 05/16/2023]
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) is becoming more infectious and less virulent, symptoms beyond the lungs of the Coronavirus Disease 2019 (COVID-19) patients are a growing concern. Studies have found that the severity of COVID-19 patients is associated with an increased risk of ischemic stroke (IS); however, the underlying pathogenic mechanisms remain unknown. In this study, bioinformatics approaches were utilized to explore potential pathogenic mechanisms and predict potential drugs that may be useful in the treatment of COVID-19 and IS. The GSE152418 and GSE122709 datasets were downloaded from the GEO website to obtain the common differentially expressed genes (DEGs) of the two datasets for further functional enrichment, pathway analysis, and drug candidate prediction. A total of 80 common DEGs were identified in COVID-19 and IS datasets for GO and KEGG analysis. Next, the protein-protein interaction (PPI) network was constructed and hub genes were identified. Further, transcription factor-gene interactions and DEGs-miRNAs coregulatory network were investigated to explore their regulatory roles in disease. Finally, protein-drug interactions with common DEGs were analyzed to predict potential drugs. We successfully identified the top 10 hub genes that could serve as novel targeted therapies for COVID-19 and screened out some potential drugs for the treatment of COVID-19 and IS.
Collapse
Affiliation(s)
- Jiabao Zhu
- Department of Vascular Surgery, The Second Affliated Hospital of Nanchang University, Minde Road 1, Nanchang City, Jiangxi Province, China
| | - Xiangui Li
- Department of Vascular Surgery, The Second Affliated Hospital of Nanchang University, Minde Road 1, Nanchang City, Jiangxi Province, China
| | - Fanzhen Lv
- Department of Vascular Surgery, The Second Affliated Hospital of Nanchang University, Minde Road 1, Nanchang City, Jiangxi Province, China
| | - Weimin Zhou
- Department of Vascular Surgery, The Second Affliated Hospital of Nanchang University, Minde Road 1, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
38
|
Mahmoodpoor A, Mohammadzadeh M, Asghari R, Tagizadeh M, Iranpour A, Rezayi M, Pahnvar AJ, Emamalizadeh B, Sohrabifar N, Kazeminasab S. Prognostic potential of circulating cell free mitochondrial DNA levels in COVID-19 patients. Mol Biol Rep 2023; 50:10249-10255. [PMID: 37934373 DOI: 10.1007/s11033-023-08841-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/25/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND In viral infections, mitochondria act as one of the main hubs of the pathogenesis. Recent findings present new insights into the potential role of circulating cell-free mitochondrial DNA (ccf-mtDNA) in COVID-19 pathogenesis by the induction of immune response and aggressive cytokine storm in SARS-CoV-2 infection. METHODS AND RESULTS The levels of ccf-mtDNA were investigated in 102 hospitalized patients with COVID-19 using the quantitative PCR (q-PCR) method. Statistical analysis confirmed a strong association between the levels of ccf-mtDNA and and mortality, ICU admission, and intubation. Also, our findings highlighted the pivotal role of comorbidities as a risk factor for COVID-19 mortality and severity. CONCLUSION Higher levels of ccf-mtDNA can serve as a potential early indicator for progress and poor prognosis of COVID-19.
Collapse
Affiliation(s)
- Ata Mahmoodpoor
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Mohammadzadeh
- Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rogayyeh Asghari
- Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Tagizadeh
- Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mansour Rezayi
- Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aynour Jalali Pahnvar
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Babak Emamalizadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Sohrabifar
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Somayeh Kazeminasab
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Sadr Laboratories Group, Medical Genetics Laboratory, Tabriz, Iran.
| |
Collapse
|
39
|
Jiang S, Yang H, Sun Z, Zhang Y, Li Y, Li J. The basis of complications in the context of SARS-CoV-2 infection: Pathological activation of ADAM17. Biochem Biophys Res Commun 2023; 679:37-46. [PMID: 37666046 DOI: 10.1016/j.bbrc.2023.08.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
The virulence of SARS-CoV-2 decreases with increasing infectivity, the primary approaches for antiviral treatments will be preventing or minimizing the complications resulting from virus infection. ADAM metallopeptidase domain 17 (ADAM17) activation by SARS-CoV-2 infection has a dual effect on the development of the disease: increased release of inflammatory cytokines and dysregulation of Angiotensin converting enzyme II (ACE2) on cell surfaces, inflammatory cytokine infiltration and loss of ACE2 protective function lead to a significant increase in the incidence of related complications. Importantly, pathologically activated ADAM17 showed superior features than S protein in regulating ACE2 expression and participating in the intra cellular replication of SARS-CoV-2. In short, SARS-CoV-2 elicits only a limited immune response when it promotes its own replication and pathogenicity through ADAM17. Therefore, the pathological activation of ADAM17 may also represent a diminished innate antiviral defense and an altered strategy of SARS-CoV-2 infection. In this review, we summarized recent advances in our understanding of the pathophysiology of ADAM17, with a focus on the new findings that SARS-CoV-2 affects ADAM17 expression through Furin protein converting enzyme and Mitogen-activated protein kinase (MAPK) pathway, and raises the hypothesis that SARS-CoV-2 may mediates the pathological activation of ADAM17 by hijacking the actin regulatory pathway, and discussed the underlying biological principles.
Collapse
Affiliation(s)
| | - Hao Yang
- Zunyi Medical University Guizhou, China
| | | | - Yi Zhang
- Zunyi Medical University Guizhou, China
| | - Yan Li
- Zunyi Medical University Guizhou, China
| | - Jida Li
- Zunyi Medical University Guizhou, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou, China.
| |
Collapse
|
40
|
Gałgańska H, Jarmuszkiewicz W, Gałgański Ł. Carbon dioxide and MAPK signalling: towards therapy for inflammation. Cell Commun Signal 2023; 21:280. [PMID: 37817178 PMCID: PMC10566067 DOI: 10.1186/s12964-023-01306-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023] Open
Abstract
Inflammation, although necessary to fight infections, becomes a threat when it exceeds the capability of the immune system to control it. In addition, inflammation is a cause and/or symptom of many different disorders, including metabolic, neurodegenerative, autoimmune and cardiovascular diseases. Comorbidities and advanced age are typical predictors of more severe cases of seasonal viral infection, with COVID-19 a clear example. The primary importance of mitogen-activated protein kinases (MAPKs) in the course of COVID-19 is evident in the mechanisms by which cells are infected with SARS-CoV-2; the cytokine storm that profoundly worsens a patient's condition; the pathogenesis of diseases, such as diabetes, obesity, and hypertension, that contribute to a worsened prognosis; and post-COVID-19 complications, such as brain fog and thrombosis. An increasing number of reports have revealed that MAPKs are regulated by carbon dioxide (CO2); hence, we reviewed the literature to identify associations between CO2 and MAPKs and possible therapeutic benefits resulting from the elevation of CO2 levels. CO2 regulates key processes leading to and resulting from inflammation, and the therapeutic effects of CO2 (or bicarbonate, HCO3-) have been documented in all of the abovementioned comorbidities and complications of COVID-19 in which MAPKs play roles. The overlapping MAPK and CO2 signalling pathways in the contexts of allergy, apoptosis and cell survival, pulmonary oedema (alveolar fluid resorption), and mechanical ventilation-induced responses in lungs and related to mitochondria are also discussed. Video Abstract.
Collapse
Affiliation(s)
- Hanna Gałgańska
- Faculty of Biology, Molecular Biology Techniques Laboratory, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Wieslawa Jarmuszkiewicz
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University in Poznan, Institute of Molecular Biology and Biotechnology, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Łukasz Gałgański
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University in Poznan, Institute of Molecular Biology and Biotechnology, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
41
|
Hekmat H, Rasooli A, Siami Z, Rutajengwa KA, Vahabi Z, Mirzadeh FA. A Review of Antibiotic Efficacy in COVID-19 Control. J Immunol Res 2023; 2023:6687437. [PMID: 37854054 PMCID: PMC10581857 DOI: 10.1155/2023/6687437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/05/2023] [Accepted: 08/30/2023] [Indexed: 10/20/2023] Open
Abstract
Severe acute respiratory disease is associated with chronic secondary infections that exacerbate symptoms and mortality. So far, many drugs have been introduced to treat this disease, none of which effectively control the coronavirus. Numerous studies have shown that mitochondria, as the center of cell biogenesis, are vulnerable to drugs, especially antibiotics. Antibiotics were widely prescribed during the early phase of the pandemic. We performed a literature review to assess the reasons, evidence, and practices on the use of antibiotics in coronavirus disease 2019 (COVID-19) in- and outpatients. The current research found widespread usage of antibiotics, mostly in an empirical context, among COVID-19 hospitalized patients. The effectiveness of this approach has not been established. Given the high death rate linked with secondary infections in COVID-19 patients and the developing antimicrobial resistance, further study is urgently needed to identify the most appropriate rationale for antibiotic therapy in these patients.
Collapse
Affiliation(s)
- Hamidreza Hekmat
- Cardiology Department, Ziaeian Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aziz Rasooli
- Department of Emergency Medicine, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Siami
- Department of Infectious Disease, Ziaeian Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kauthar Amir Rutajengwa
- Medical School Department, Ziaeian Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Vahabi
- Geriatric Department, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Cognitive Neurology and Neuropsychiatry Division, Psychiatry Department, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
42
|
Georgieva E, Ananiev J, Yovchev Y, Arabadzhiev G, Abrashev H, Abrasheva D, Atanasov V, Kostandieva R, Mitev M, Petkova-Parlapanska K, Karamalakova Y, Koleva-Korkelia I, Tsoneva V, Nikolova G. COVID-19 Complications: Oxidative Stress, Inflammation, and Mitochondrial and Endothelial Dysfunction. Int J Mol Sci 2023; 24:14876. [PMID: 37834324 PMCID: PMC10573237 DOI: 10.3390/ijms241914876] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
SARS-CoV-2 infection, discovered and isolated in Wuhan City, Hubei Province, China, causes acute atypical respiratory symptoms and has led to profound changes in our lives. COVID-19 is characterized by a wide range of complications, which include pulmonary embolism, thromboembolism and arterial clot formation, arrhythmias, cardiomyopathy, multiorgan failure, and more. The disease has caused a worldwide pandemic, and despite various measures such as social distancing, various preventive strategies, and therapeutic approaches, and the creation of vaccines, the novel coronavirus infection (COVID-19) still hides many mysteries for the scientific community. Oxidative stress has been suggested to play an essential role in the pathogenesis of COVID-19, and determining free radical levels in patients with coronavirus infection may provide an insight into disease severity. The generation of abnormal levels of oxidants under a COVID-19-induced cytokine storm causes the irreversible oxidation of a wide range of macromolecules and subsequent damage to cells, tissues, and organs. Clinical studies have shown that oxidative stress initiates endothelial damage, which increases the risk of complications in COVID-19 and post-COVID-19 or long-COVID-19 cases. This review describes the role of oxidative stress and free radicals in the mediation of COVID-19-induced mitochondrial and endothelial dysfunction.
Collapse
Affiliation(s)
- Ekaterina Georgieva
- Department of General and Clinical Pathology, Forensic Medicine, Deontology and Dermatovenerology, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria;
| | - Julian Ananiev
- Department of General and Clinical Pathology, Forensic Medicine, Deontology and Dermatovenerology, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria;
| | - Yovcho Yovchev
- Department of Surgery and Anesthesiology, University Hospital “Prof. Dr. St. Kirkovich”, 6000 Stara Zagora, Bulgaria; (Y.Y.); (G.A.)
| | - Georgi Arabadzhiev
- Department of Surgery and Anesthesiology, University Hospital “Prof. Dr. St. Kirkovich”, 6000 Stara Zagora, Bulgaria; (Y.Y.); (G.A.)
| | - Hristo Abrashev
- Department of Vascular Surgery, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria;
| | - Despina Abrasheva
- II Department of Internal Medicine Therapy: Cardiology, Rheumatology, Hematology and Gastroenterology, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Vasil Atanasov
- Forensic Toxicology Laboratory, Military Medical Academy, 3 G. Sofiiski, 1606 Sofia, Bulgaria; (V.A.); (R.K.)
| | - Rositsa Kostandieva
- Forensic Toxicology Laboratory, Military Medical Academy, 3 G. Sofiiski, 1606 Sofia, Bulgaria; (V.A.); (R.K.)
| | - Mitko Mitev
- Department of Diagnostic Imaging, University Hospital “Prof. Dr. St. Kirkovich”, 6000 Stara Zagora, Bulgaria;
| | - Kamelia Petkova-Parlapanska
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (K.P.-P.); (Y.K.)
| | - Yanka Karamalakova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (K.P.-P.); (Y.K.)
| | - Iliana Koleva-Korkelia
- Department of Obstetrics and Gynaecology Clinic, University Hospital “Prof. St. Kirkovich”, 6000 Stara Zagora, Bulgaria;
| | - Vanya Tsoneva
- Department of Propaedeutics of Internal Medicine and Clinical Laboratory, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria;
| | - Galina Nikolova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (K.P.-P.); (Y.K.)
| |
Collapse
|
43
|
Knebusch N, Mansour M, Vazquez S, Coss-Bu JA. Macronutrient and Micronutrient Intake in Children with Lung Disease. Nutrients 2023; 15:4142. [PMID: 37836425 PMCID: PMC10574027 DOI: 10.3390/nu15194142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
This review article aims to summarize the literature findings regarding the role of micronutrients in children with lung disease. The nutritional and respiratory statuses of critically ill children are interrelated, and malnutrition is commonly associated with respiratory failure. The most recent nutrition support guidelines for critically ill children have recommended an adequate macronutrient intake in the first week of admission due to its association with good outcomes. In children with lung disease, it is important not to exceed the proportion of carbohydrates in the diet to avoid increased carbon dioxide production and increased work of breathing, which potentially could delay the weaning of the ventilator. Indirect calorimetry can guide the process of estimating adequate caloric intake and adjusting the proportion of carbohydrates in the diet based on the results of the respiratory quotient. Micronutrients, including vitamins, trace elements, and others, have been shown to play a role in the structure and function of the immune system, antioxidant properties, and the production of antimicrobial proteins supporting the defense mechanisms against infections. Sufficient levels of micronutrients and adequate supplementation have been associated with better outcomes in children with lung diseases, including pneumonia, cystic fibrosis, asthma, bronchiolitis, and acute respiratory failure.
Collapse
Affiliation(s)
- Nicole Knebusch
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; (N.K.); (M.M.); (S.V.)
- Texas Children’s Hospital, Houston, TX 77030, USA
| | - Marwa Mansour
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; (N.K.); (M.M.); (S.V.)
- Texas Children’s Hospital, Houston, TX 77030, USA
| | - Stephanie Vazquez
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; (N.K.); (M.M.); (S.V.)
- Texas Children’s Hospital, Houston, TX 77030, USA
| | - Jorge A. Coss-Bu
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; (N.K.); (M.M.); (S.V.)
- Texas Children’s Hospital, Houston, TX 77030, USA
| |
Collapse
|
44
|
Hovhannisyan G, Harutyunyan T, Aroutiounian R, Liehr T. The Diagnostic, Prognostic, and Therapeutic Potential of Cell-Free DNA with a Special Focus on COVID-19 and Other Viral Infections. Int J Mol Sci 2023; 24:14163. [PMID: 37762464 PMCID: PMC10532175 DOI: 10.3390/ijms241814163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cell-free DNA (cfDNA) in human blood serum, urine, and other body fluids recently became a commonly used diagnostic marker associated with various pathologies. This is because cfDNA enables a much higher sensitivity than standard biochemical parameters. The presence of and/or increased level of cfDNA has been reported for various diseases, including viral infections, including COVID-19. Here, we review cfDNA in general, how it has been identified, where it can derive from, its molecular features, and mechanisms of release and clearance. General suitability of cfDNA for diagnostic questions, possible shortcomings and future directions are discussed, with a special focus on coronavirus infection.
Collapse
Affiliation(s)
- Galina Hovhannisyan
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Tigran Harutyunyan
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Rouben Aroutiounian
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
45
|
Thakur A, Sharma V, Averbek S, Liang L, Pandya N, Kumar G, Cili A, Zhang K. Immune landscape and redox imbalance during neurological disorders in COVID-19. Cell Death Dis 2023; 14:593. [PMID: 37673862 PMCID: PMC10482955 DOI: 10.1038/s41419-023-06102-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
The outbreak of Coronavirus Disease 2019 (COVID-19) has prompted the scientific community to explore potential treatments or vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes the illness. While SARS-CoV-2 is mostly considered a respiratory pathogen, several neurological complications have been reported, raising questions about how it may enter the Central Nervous System (CNS). Receptors such as ACE2, CD147, TMPRSS2, and NRP1 have been identified in brain cells and may be involved in facilitating SARS-CoV-2 entry into the CNS. Moreover, proteins like P2X7 and Panx-1 may contribute to the pathogenesis of COVID-19. Additionally, the role of the immune system in the gravity of COVID-19 has been investigated with respect to both innate and adaptive immune responses caused by SARS-CoV-2 infection, which can lead to a cytokine storm, tissue damage, and neurological manifestations. A redox imbalance has also been linked to the pathogenesis of COVID-19, potentially causing mitochondrial dysfunction, and generating proinflammatory cytokines. This review summarizes different mechanisms of reactive oxygen species and neuro-inflammation that may contribute to the development of severe COVID-19, and recent progress in the study of immunological events and redox imbalance in neurological complications of COVID-19, and the role of bioinformatics in the study of neurological implications of COVID-19.
Collapse
Affiliation(s)
- Abhimanyu Thakur
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation-CAS Limited, Hong Kong SAR, Hong Kong.
| | - Vartika Sharma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sera Averbek
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Technische Universität Darmstadt, Darmstadt, Germany
| | - Lifan Liang
- University of Pittsburgh, Pittsburgh, PA, USA
| | - Nirali Pandya
- Department of Chemistry, Faculty of Sciences, National University of Singapore, Singapore, Singapore
| | - Gaurav Kumar
- School of Biosciences and Biomedical Engineering, Department of Clinical Research, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Alma Cili
- Clinic of Hematology, University of Medicine, University Hospital center "Mother Teresa", Tirane, Albania
| | - Kui Zhang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass sciences, Southwest University, Chongqing, China.
- Cancer Centre, Medical Research Institute, Southwest University, Chongqing, China.
| |
Collapse
|
46
|
Wang R, Chen X, Li X, Wang K. Molecular therapy of cardiac ischemia-reperfusion injury based on mitochondria and ferroptosis. J Mol Med (Berl) 2023; 101:1059-1071. [PMID: 37505243 DOI: 10.1007/s00109-023-02346-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/05/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Excessive death of myocardial cells can lead to various cardiovascular diseases and even develop into heart failure, so developing ideal treatment plans based on pathogenesis is of great significance for cardiopathy. After the heart undergoes ischemia‒reperfusion (I/R), myocardial cells accumulate a large amount of peroxides, leading to mitochondrial dysfunction and inducing ferroptosis. Ferroptosis is a form of iron-dependent regulatory cell death (RCD) caused by imbalanced redox and iron metabolism that leads to severe cell damage through the accumulation of peroxides. The mechanism of ferroptosis is highly correlated with mitochondrial metabolism. Myocardial cells are rich in a large number of mitochondria, which serve as energy supply centers and are prone to producing reactive oxygen species (ROS), providing opportunities for oxidative stress caused by ferroptosis. Ferroptosis is related to various cardiovascular diseases, and potential treatment methods designed around ferroptosis may alter the pathological progression of cardiovascular diseases. Therefore, this review investigates the regulatory mechanisms of ferroptosis, exploring the close pathological and physiological connections between ferroptosis and mitochondrial and cardiac I/R injury. Targeting ferroptosis and mitochondria for intervention may be an effective plan for preventing and treating cardiac I/R injury.
Collapse
Affiliation(s)
- Ruiquan Wang
- Key Laboratory of Birth Regulation and Control Technologyof , National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Xinzhe Chen
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Xinmin Li
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China.
| | - Kun Wang
- Key Laboratory of Birth Regulation and Control Technologyof , National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
47
|
Ma Y, Jiang Q, Yang B, Hu X, Shen G, Shen W, Xu J. Platelet mitochondria, a potent immune mediator in neurological diseases. Front Physiol 2023; 14:1210509. [PMID: 37719457 PMCID: PMC10502307 DOI: 10.3389/fphys.2023.1210509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Dysfunction of the immune response is regarded as a prominent feature of neurological diseases, including neurodegenerative diseases, malignant tumors, acute neurotraumatic insult, and cerebral ischemic/hemorrhagic diseases. Platelets play a fundamental role in normal hemostasis and thrombosis. Beyond those normal functions, platelets are hyperactivated and contribute crucially to inflammation and immune responses in the central nervous system (CNS). Mitochondria are pivotal organelles in platelets and are responsible for generating most of the ATP that is used for platelet activation and aggregation (clumping). Notably, platelet mitochondria show marked morphological and functional alterations under heightened inflammatory/oxidative stimulation. Mitochondrial dysfunction not only leads to platelet damage and apoptosis but also further aggravates immune responses. Improving mitochondrial function is hopefully an effective strategy for treating neurological diseases. In this review, the authors discuss the immunomodulatory roles of platelet-derived mitochondria (PLT-mitos) in neurological diseases and summarize the neuroprotective effects of platelet mitochondria transplantation.
Collapse
Affiliation(s)
- Yan Ma
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Jiang
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Bingxin Yang
- Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyu Hu
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Shen
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
| | - Wei Shen
- Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Xu
- Wuhan Blood Center, Wuhan, Hubei, China
| |
Collapse
|
48
|
Schwartz L, Aparicio-Alonso M, Henry M, Radman M, Attal R, Bakkar A. Toxicity of the spike protein of COVID-19 is a redox shift phenomenon: A novel therapeutic approach. Free Radic Biol Med 2023; 206:106-110. [PMID: 37392949 DOI: 10.1016/j.freeradbiomed.2023.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/27/2023] [Accepted: 05/12/2023] [Indexed: 07/03/2023]
Abstract
We previously demonstrated that most diseases display a form of anabolism due to mitochondrial impairment: in cancer, a daughter cell is formed; in Alzheimer's disease, amyloid plaques; in inflammation cytokines and lymphokines. The infection by Covid-19 follows a similar pattern. Long-term effects include redox shift and cellular anabolism as a result of the Warburg effect and mitochondrial dysfunction. This unrelenting anabolism leads to the cytokine storm, chronic fatigue, chronic inflammation or neurodegenerative diseases. Drugs such as Lipoic acid and Methylene Blue have been shown to enhance the mitochondrial activity, relieve the Warburg effect and increase catabolism. Similarly, coMeBining Methylene Blue, Chlorine dioxide and Lipoic acid may help reduce long-term Covid-19 effects by stimulating the catabolism.
Collapse
Affiliation(s)
| | | | - Marc Henry
- Institut Lebel, Faculté de chimie, Université de Strasbourg, 67000, Strasbourg, France
| | - Miroslav Radman
- Mediterranean Institute for Life Sciences (MedILS), 21000, Split, Croatia
| | - Romain Attal
- Cité des Sciences et de l'Industrie, 30 avenue Corentin-Cariou, 75019, Paris, France
| | - Ashraf Bakkar
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
| |
Collapse
|
49
|
Vishwakarma N, Goud RB, Tirupattur MP, Katwa LC. The Eye of the Storm: Investigating the Long-Term Cardiovascular Effects of COVID-19 and Variants. Cells 2023; 12:2154. [PMID: 37681886 PMCID: PMC10486388 DOI: 10.3390/cells12172154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
COVID-19 had stormed through the world in early March of 2019, and on 5 May 2023, SARS-CoV-2 was officially declared to no longer be a global health emergency. The rise of new COVID-19 variants XBB.1.5 and XBB.1.16, a product of recombinant variants and sub-strains, has fueled a need for continued surveillance of the pandemic as they have been deemed increasingly infectious. Regardless of the severity of the variant, this has caused an increase in hospitalizations, a strain in resources, and a rise of concern for public health. In addition, there is a growing population of patients experiencing cardiovascular complications as a result of post-acute sequelae of COVID-19. This review aims to focus on what was known about SARS-CoV-2 and its past variants (Alpha, Delta, Omicron) and how the knowledge has grown today with new emerging variants, with an emphasis on cardiovascular complexities. We focus on the possible mechanisms that cause the observations of chronic cardiac conditions seen even after patients have recovered from the infection. Further understanding of these mechanisms will help to close the gap in knowledge on post-acute sequelae of COVID-19 and the differences between the effects of variants.
Collapse
Affiliation(s)
| | | | | | - Laxmansa C. Katwa
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA; (N.V.); (R.B.G.); (M.P.T.)
| |
Collapse
|
50
|
Vollrath S, Matits L, Schellenberg J, Kirsten J, Steinacker JM, Bizjak DA. Decreased physical performance despite objective and subjective maximal exhaustion in post-COVID-19 individuals with fatigue. Eur J Med Res 2023; 28:298. [PMID: 37633931 PMCID: PMC10464445 DOI: 10.1186/s40001-023-01274-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/08/2023] [Indexed: 08/28/2023] Open
Abstract
INTRODUCTION Fatigue is a common symptom in post-COVID-19 patients. Individuals with fatigue often perform less well compared to healthy peers or without fatigue. It is not yet clear to what extent fatigue is related to the inability to reach maximum exhaustion during physical exercise. METHODS A symptom-based questionnaire based on the Carruthers guidelines (2003) was used for reporting the presence of fatigue and further symptoms related to COVID-19 from 85 participants (60.0% male, 33.5 ± 11.9 years). Cardiopulmonary exercise testing (CPET) and lactate measurement at the end of the test were conducted. Objective and subjective exhaustion criteria according to Wasserman of physically active individuals with fatigue (FS) were compared to those without fatigue (NFS). RESULTS Differences between FS and NFS were found in Peak V̇O2/BM (p < 0.001) and Max Power/BM (p < 0.001). FS were more likely to suffer from further persistent symptoms (p < 0.05). The exhaustion criterion Max. lactate was reached significantly more often by NFS individuals. CONCLUSION Although the aerobic performance (Max Power/BM) and the metabolic rate (Peak V̇O2/BM and Max. lactate) of FS were lower compared to NFS, they were equally able to reach objective exhaustion criteria. The decreased number of FS who reached the lactate criteria and the decreased V̇O2 peak indicates a change in metabolism. Other persistent post-COVID-19 symptoms besides fatigue may also impair performance, trainability and the ability to reach objective exhaustion. Trial registration Trial registration: DRKS00023717; date of registration: 15.06.2021 (retrospectively registered).
Collapse
Affiliation(s)
- Shirin Vollrath
- Division of Sports and Rehabilitation Medicine, Department of Medicine, Ulm University Hospital, Ulm, Germany.
| | - Lynn Matits
- Division of Sports and Rehabilitation Medicine, Department of Medicine, Ulm University Hospital, Ulm, Germany
- Division of Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Jana Schellenberg
- Division of Sports and Rehabilitation Medicine, Department of Medicine, Ulm University Hospital, Ulm, Germany
| | - Johannes Kirsten
- Division of Sports and Rehabilitation Medicine, Department of Medicine, Ulm University Hospital, Ulm, Germany
| | - Jürgen M Steinacker
- Division of Sports and Rehabilitation Medicine, Department of Medicine, Ulm University Hospital, Ulm, Germany
| | - Daniel A Bizjak
- Division of Sports and Rehabilitation Medicine, Department of Medicine, Ulm University Hospital, Ulm, Germany
| |
Collapse
|