1
|
Wang Z, He Z, Chang X, Xie L, Song Y, Wu H, Zhang H, Wang S, Zhang X, Bai Y. Mitochondrial damage-associated molecular patterns: New perspectives for mitochondria and inflammatory bowel diseases. Mucosal Immunol 2025; 18:290-298. [PMID: 39920995 DOI: 10.1016/j.mucimm.2025.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/17/2024] [Accepted: 01/30/2025] [Indexed: 02/10/2025]
Abstract
Mitochondria are key regulators of inflammatory responses and mitochondrial dysfunction is closely linked to various inflammatory diseases. Increasing genetic and experimental evidence suggests that mitochondria play a critical role in inflammatory bowel disease (IBD). In the complex environment of the intestinal tract, intestinal epithelial cells (IECs) and their mitochondria possess unique phenotypic features, shaping each other and regulating intestinal homeostasis and inflammation through diverse mechanisms. Here, we focus on intestinal inflammation in IBD induced by mitochondrial damage-associated molecular patterns (mtDAMPs), which comprise mitochondrial components and metabolic products. The pathogenic mechanisms of mtDAMP signaling pathways mediated by two major mtDAMPs, mitochondrial DNA (mtDNA) and mitochondrial reactive oxygen species (mtROS), are discussed.
Collapse
Affiliation(s)
- Zhijie Wang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang, China; National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Zixuan He
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Xin Chang
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Lu Xie
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang, China
| | - Yihang Song
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Haicong Wu
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Hao Zhang
- The Sixth Student Team, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China
| | - Shuling Wang
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang, China.
| | - Yu Bai
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
2
|
Popli P, Oestreich AK, Maurya VK, Rowen MN, Zhang Y, Holtzman MJ, Masand R, Lydon JP, Akira S, Moley K, Kommagani R. The autophagy protein ATG14 safeguards against unscheduled pyroptosis activation to enable embryo transport during early pregnancy. eLife 2025; 13:RP97325. [PMID: 40100261 PMCID: PMC11919251 DOI: 10.7554/elife.97325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Recurrent pregnancy loss, characterized by two or more failed clinical pregnancies, poses a significant challenge to reproductive health. In addition to embryo quality and endometrial function, proper oviduct function is also essential for successful pregnancy establishment. Therefore, structural abnormalities or inflammation resulting from infection in the oviduct may impede the transport of embryos to the endometrium, thereby increasing the risk of miscarriage. However, our understanding of the biological processes that preserve the oviductal cellular structure and functional integrity is limited. Here, we report that autophagy-related protein ATG14 plays a crucial role in maintaining the cellular integrity of the oviduct by controlling inflammatory responses, thereby supporting efficient embryo transport. Specifically, the conditional depletion of the autophagy-related gene Atg14 in the oviduct causes severe structural abnormalities compromising its cellular integrity, leading to the abnormal retention of embryos. Interestingly, the selective loss of Atg14 in oviduct ciliary epithelial cells did not impact female fertility, highlighting the specificity of ATG14 function in distinct cell types within the oviduct. Mechanistically, loss of Atg14 triggered unscheduled pyroptosis via altering the mitochondrial integrity, leading to inappropriate embryo retention and impeded embryo transport in the oviduct. Finally, pharmacological activation of pyroptosis in pregnant mice phenocopied the genetically induced defect and caused impairment in embryo transport. Together, we found that ATG14 safeguards against unscheduled pyroptosis activation to enable embryo transport from the oviduct to uterus for the successful implantation. Of clinical significance, these findings provide possible insights into the underlying mechanism(s) of early pregnancy loss and might aid in developing novel prevention strategies using autophagy modulators.
Collapse
Affiliation(s)
- Pooja Popli
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
| | - Arin K Oestreich
- Department Obstetrics and Gynecology, Washington University School of MedicineSt. LouisUnited States
- Center for Reproductive Health Sciences, Washington University School of MedicineSt. LouisUnited States
| | - Vineet K Maurya
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Marina N Rowen
- Department Obstetrics and Gynecology, Washington University School of MedicineSt. LouisUnited States
- Center for Reproductive Health Sciences, Washington University School of MedicineSt. LouisUnited States
| | - Yong Zhang
- Department of Medicine and Department of Cell Biology, Washington University School of MedicineSt. LouisUnited States
| | - Michael J Holtzman
- Department of Medicine and Department of Cell Biology, Washington University School of MedicineSt. LouisUnited States
| | - Ramya Masand
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD)OsakaJapan
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center (WPI-IFReC), Osaka UniversityOsakaJapan
| | - Kelle Moley
- Department Obstetrics and Gynecology, Washington University School of MedicineSt. LouisUnited States
- Center for Reproductive Health Sciences, Washington University School of MedicineSt. LouisUnited States
| | - Ramakrishna Kommagani
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Department of Molecular Virology and Microbiology, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
3
|
Wang Z, Wu H, Chang X, Song Y, Chen Y, Yan Z, Gu L, Pang R, Xia T, He Z, Li Z, Wang S, Bai Y. CKMT1 deficiency contributes to mitochondrial dysfunction and promotes intestinal epithelial cell apoptosis via reverse electron transfer-derived ROS in colitis. Cell Death Dis 2025; 16:177. [PMID: 40089459 PMCID: PMC11910573 DOI: 10.1038/s41419-025-07504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 02/15/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
Mitochondrial dysfunction contributes to the pathogenesis of ulcerative colitis (UC). As a mitochondrial isozyme of creatine kinases, which control energy metabolism, CKMT1 is thought to be a critical molecule in biological processes. However, the specific role of CKMT1 in intestinal inflammation remains largely unknown. Here, we observed markedly decreased CKMT1 expression in the colon tissues of UC patients and dextran sodium sulfate (DSS)-induced colitis mice. We generated intestinal epithelial-specific CKMT1 knockout mice and demonstrated the key role of CKMT1 in mitochondrial homeostasis, intestinal epithelial barrier function, oxidative stress, and apoptosis. In the in vitro experiments, CKMT1 expression limited the activation of the intrinsic and extrinsic apoptotic pathways in IECs. Mechanistically, the loss of CKMT1 expression in IECs increased TNF-α-induced mitochondrial reactive oxygen species (ROS) generation via reverse electron transfer (RET). RET-ROS promoted mitochondrial permeability transition pore (mPTP) opening, ultimately resulting in cell apoptosis during intestinal inflammation. In conclusion, our data demonstrated that CKMT1 is important in maintaining intestinal homeostasis and mitochondrial function. This study provides a promising basis for future research and a potential therapeutic target for inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Zhijie Wang
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
- National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai, China
- Changhai Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Haicong Wu
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai, China
- Department of Gastroenterology, The Seventh Affiliated Hospital of Southern Medical University, Foshan, China
| | - Xin Chang
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai, China
- Changhai Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yihang Song
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai, China
- Changhai Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yan Chen
- National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai, China
- Changhai Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ziwei Yan
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai, China
- Changhai Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lun Gu
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Changhai Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ruxi Pang
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Changhai Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tian Xia
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai, China
- Changhai Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zixuan He
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Changhai Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhaoshen Li
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China.
- National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai, China.
- Changhai Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, China.
- Department of Gastroenterology, The Seventh Affiliated Hospital of Southern Medical University, Foshan, China.
| | - Shuling Wang
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China.
- National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai, China.
- Changhai Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, China.
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Yu Bai
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China.
- National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai, China.
- Changhai Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
4
|
Hemel IMGM, Arts ICW, Moerel M, Gerards M. The Matrix of Mitochondrial Imaging: Exploring Spatial Dimensions. Biomolecules 2025; 15:229. [PMID: 40001532 PMCID: PMC11853629 DOI: 10.3390/biom15020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Mitochondria play a crucial role in human biology, affecting cellular processes at the smallest spatial scale as well as those involved in the functionality of the whole system. Imaging is the most important research tool for studying the fundamental role of mitochondria across these diverse spatial scales. A wide array of available imaging techniques have enabled us to visualize mitochondrial structure and behavior, as well as their effect on cells and tissues in a range from micrometers to centimeters. Each of the various imaging techniques that are available offers unique advantages tailored to specific research needs. Selecting an appropriate technique suitable for the scale and application of interest is therefore crucial, but can be challenging due to the large range of possibilities. The aim of this review is two-fold. First, we provide an overview of the available imaging techniques and discuss their strengths and limitations for applications across the sub-mitochondrial, cellular, tissue and organ levels for the imaging of mitochondria. Second, we identify opportunities for novel applications and advancement in the field. We emphasize the importance of integration across scales in mitochondrial imaging studies, particularly to bridge the gap between microscopic and non-invasive techniques. While integrating these diverse scales is challenging, primarily because such multi-scale approaches require expertise that spans different imaging modalities, we argue that integration has the potential to provide groundbreaking insights into mitochondrial biology. By providing a comprehensive overview of imaging techniques, this review paves the way for multi-scale imaging initiatives in mitochondrial research.
Collapse
|
5
|
Herik AI, Sinha S, Arora R, Small C, Dufour A, Biernaskie J, Cobo ER, McKay DM. In silico integrative scRNA analysis of human colonic epithelium indicates four tuft cell subtypes. Am J Physiol Gastrointest Liver Physiol 2025; 328:G96-G109. [PMID: 39589317 DOI: 10.1152/ajpgi.00182.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/04/2024] [Accepted: 11/17/2024] [Indexed: 11/27/2024]
Abstract
This study integrated and analyzed human single-cell RNA sequencing data from four publicly available datasets to enhance cellular resolution, unveiling a complex landscape of tuft cell heterogeneity within the human colon. Four tuft subtypes (TC1-TC4) emerged, as defined by unique gene expression profiles, indicating potentially novel biological functions. Tuft cell 1 (TC1) was characterized by an antimicrobial peptide signature; TC2 had an increased transcription machinery gene expression profile consistent with a progenitor-like cell; TC3 expressed genes related to ganglion (neuronal) development; and TC4 expressed genes related to tight junctions. Our analysis of subtype-specific gene expression and pathway enrichment showed variances in tuft cell subtypes between healthy individuals and those with inflammatory bowel disease (IBD). The frequency of TC1 and TC2 differed between healthy controls and IBD. Relative to healthy controls, TC1 and TC2 in IBD tissue showed an upregulation of gene expression, favoring increased metabolism and immune function. These findings provide foundational knowledge about the complexity of the human colon tuft cell population and hint at their potential contributions to gut health. They provide a basis for future studies to explore the specific roles these cells may play in gut function during homeostasis and disease. We demonstrate the value of in silico approaches for hypothesis generation in relation to the putative functions of low-frequency gut cells for subsequent physiological analyses.NEW & NOTEWORTHY This study reveals the nuanced and novel landscape of human colonic tuft cells through integrative scRNA-seq analysis. Four distinct tuft cell subtypes were identified, varying markedly between healthy and individuals with IBD. We uncovered human colonic tuft cell subtypes with unexpected antimicrobial and progenitor-like gene expression signatures. These insights into tuft cell diversity offer new avenues for understanding gut health and disease pathophysiology.
Collapse
Affiliation(s)
- Aydin I Herik
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rohit Arora
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Caleb Small
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Antoine Dufour
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Jeff Biernaskie
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Eduardo R Cobo
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Derek M McKay
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Zhou J, Xi Y, Wu T, Zeng X, Yuan J, Peng L, Fu H, Zhou C. A potential therapeutic approach for ulcerative colitis: targeted regulation of mitochondrial dynamics and mitophagy through phytochemicals. Front Immunol 2025; 15:1506292. [PMID: 39840057 PMCID: PMC11747708 DOI: 10.3389/fimmu.2024.1506292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
Mitochondria are important organelles that regulate cellular energy and biosynthesis, as well as maintain the body's response to environmental stress. Their dynamics and autophagy influence occurrence of cellular function, particularly under stressful conditions. They can generate reactive oxygen species (ROS) which is a major contributor to inflammatory diseases such as ulcerative colitis (UC). In this review, we discuss the key effects of mitochondrial dynamics and mitophagy on the pathogenesis of UC, with a particular focus on the cellular energy metabolism, oxidative stress, apoptosis, and immunoinflammatory activities. The therapeutic efficacy of existing drugs and phytochemicals targeting the mitochondrial pathway are discussed to reveal important insights for developing therapeutic strategies for treating UC. In addition, new molecular checkpoints with therapeutic potential are identified. We show that the integration of mitochondrial biology with the clinical aspects of UC may generate ideas for enhancing the clinical management of UC.
Collapse
Affiliation(s)
- Jianping Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuting Xi
- Zigong Hospital of Traditional Chinese Medicine, Zigong, China
| | - Ting Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ce Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Lee YT, Senturk M, Guan Y, Wang MC. Bacteria-organelle communication in physiology and disease. J Cell Biol 2024; 223:e202310134. [PMID: 38748249 PMCID: PMC11096858 DOI: 10.1083/jcb.202310134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/03/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Bacteria, omnipresent in our environment and coexisting within our body, exert dual beneficial and pathogenic influences. These microorganisms engage in intricate interactions with the human body, impacting both human health and disease. Simultaneously, certain organelles within our cells share an evolutionary relationship with bacteria, particularly mitochondria, best known for their energy production role and their dynamic interaction with each other and other organelles. In recent years, communication between bacteria and mitochondria has emerged as a new mechanism for regulating the host's physiology and pathology. In this review, we delve into the dynamic communications between bacteria and host mitochondria, shedding light on their collaborative regulation of host immune response, metabolism, aging, and longevity. Additionally, we discuss bacterial interactions with other organelles, including chloroplasts, lysosomes, and the endoplasmic reticulum (ER).
Collapse
Affiliation(s)
- Yi-Tang Lee
- Waisman Center, University of Wisconsin, Madison, WI, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Integrative Program of Molecular and Biochemical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Mumine Senturk
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| | - Youchen Guan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Meng C. Wang
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
8
|
Mohammed BI, Amin BK. Differential Gene Expression Profiles in Inflammatory Bowel Disease Patients from Kurdistan, Iraq. Sultan Qaboos Univ Med J 2024; 24:85-90. [PMID: 38434468 PMCID: PMC10906752 DOI: 10.18295/squmj.10.2023.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/11/2023] [Accepted: 10/11/2023] [Indexed: 03/05/2024] Open
Abstract
Objectives Inflammatory bowel disease (IBD), generally comprising Crohn's disease (CD) and ulcerative colitis (UC), has become a significant global public health concern in the last decade. This study aimed to determine the alternations in the whole genomic expression profile of patients with IBD in this geographic location for the first time, as there are very few articles in the literature addressing this specific aspect of the field. Methods The study was conducted in Erbil Governorate in the Kurdistan region of Iraq from July 2021 to July 2022. The genome expression profiles of 10 patients with IBD were compared to their matched controls. The sequences used in the design of the array were selected from GenBank®, dbEST and RefSeq. Whole blood RNA was extracted and hybridisation was conducted on the GeneChip® human genome U133A 2.0 array. The Scanner 3000 was used to scan high-resolution images and the General Comprehensive Operating System was used to read the results. Results The upregulated genes shared between patients with UC and CD were RIT2, BCL2L1, MDM2 and FKBP8, while the downregulated genes they shared were the NFKBIB, DDX24 and RASA3 genes. Conclusions Upregulated and downregulated gene expression patterns were detected in individuals with IBD, offering diagnostic potential and opportunities for treatment by targeting the associated pathways.
Collapse
Affiliation(s)
| | - Bushra K. Amin
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| |
Collapse
|
9
|
Sánchez-Quintero MJ, Rodríguez-Díaz C, Rodríguez-González FJ, Fernández-Castañer A, García-Fuentes E, López-Gómez C. Role of Mitochondria in Inflammatory Bowel Diseases: A Systematic Review. Int J Mol Sci 2023; 24:17124. [PMID: 38069446 PMCID: PMC10707203 DOI: 10.3390/ijms242317124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Mitochondria are key cellular organelles whose main function is maintaining cell bioenergetics by producing ATP through oxidative phosphorylation. However, mitochondria are involved in a much higher number of cellular processes. Mitochondria are the home of key metabolic pathways like the tricarboxylic acid cycle and β-oxidation of fatty acids, as well as biosynthetic pathways of key products like nucleotides and amino acids, the control of the redox balance of the cell and detoxifying the cell from H2S and NH3. This plethora of critical functions within the cell is the reason mitochondrial function is involved in several complex disorders (apart from pure mitochondrial disorders), among them inflammatory bowel diseases (IBD). IBD are a group of chronic, inflammatory disorders of the gut, mainly composed of ulcerative colitis and Crohn's disease. In this review, we present the current knowledge regarding the impact of mitochondrial dysfunction in the context of IBD. The role of mitochondria in both intestinal mucosa and immune cell populations are discussed, as well as the role of mitochondrial function in mechanisms like mucosal repair, the microbiota- and brain-gut axes and the development of colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- María José Sánchez-Quintero
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (M.J.S.-Q.); (C.R.-D.); (A.F.-C.)
- Unidad de Gestión Clínica Cardiología y Cirugía Cardiovascular, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina Rodríguez-Díaz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (M.J.S.-Q.); (C.R.-D.); (A.F.-C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Francisco J. Rodríguez-González
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (M.J.S.-Q.); (C.R.-D.); (A.F.-C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Alejandra Fernández-Castañer
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (M.J.S.-Q.); (C.R.-D.); (A.F.-C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Eduardo García-Fuentes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (M.J.S.-Q.); (C.R.-D.); (A.F.-C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carlos López-Gómez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (M.J.S.-Q.); (C.R.-D.); (A.F.-C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| |
Collapse
|
10
|
Hamed SA, Mohan A, Navaneetha Krishnan S, Wang A, Drikic M, Prince NL, Lewis IA, Shearer J, Keita ÅV, Söderholm JD, Shutt TE, McKay DM. Butyrate reduces adherent-invasive E. coli-evoked disruption of epithelial mitochondrial morphology and barrier function: involvement of free fatty acid receptor 3. Gut Microbes 2023; 15:2281011. [PMID: 38078655 PMCID: PMC10730202 DOI: 10.1080/19490976.2023.2281011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/05/2023] [Indexed: 12/18/2023] Open
Abstract
Gut bacteria provide benefits to the host and have been implicated in inflammatory bowel disease (IBD), where adherent-invasive E. coli (AIEC) pathobionts (e.g., strain LF82) are associated with Crohn's disease. E. coli-LF82 causes fragmentation of the epithelial mitochondrial network, leading to increased epithelial permeability. We hypothesized that butyrate would limit the epithelial mitochondrial disruption caused by E. coli-LF82. Human colonic organoids and the T84 epithelial cell line infected with E. coli-LF82 (MOI = 100, 4 h) showed a significant increase in mitochondrial network fission that was reduced by butyrate (10 mM) co-treatment. Butyrate reduced the loss of mitochondrial membrane potential caused by E. coli-LF82 and increased expression of PGC-1α mRNA, the master regulator of mitochondrial biogenesis. Metabolomics revealed that butyrate significantly altered E. coli-LF82 central carbon metabolism leading to diminished glucose uptake and increased succinate secretion. Correlating with preservation of mitochondrial network form/function, butyrate reduced E. coli-LF82 transcytosis across T84-cell monolayers. The use of the G-protein inhibitor, pertussis toxin, implicated GPCR signaling as critical to the effect of butyrate, and the free fatty acid receptor three (FFAR3, GPR41) agonist, AR420626, reproduced butyrate's effect in terms of ameliorating the loss of barrier function and reducing the mitochondrial fragmentation observed in E. coli-LF82 infected T84-cells and organoids. These data indicate that butyrate helps maintain epithelial mitochondrial form/function when challenged by E. coli-LF82 and that this occurs, at least in part, via FFAR3. Thus, loss of butyrate-producing bacteria in IBD in the context of pathobionts would contribute to loss of epithelial mitochondrial and barrier functions that could evoke disease and/or exaggerate a low-grade inflammation.
Collapse
Affiliation(s)
- Samira A. Hamed
- Gastrointestinal Research Group, Inflammation Research Network, Host-Parasite Interactions Program, Department of Physiology & Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Armaan Mohan
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, Snyder Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Saranya Navaneetha Krishnan
- Gastrointestinal Research Group, Inflammation Research Network, Host-Parasite Interactions Program, Department of Physiology & Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Arthur Wang
- Gastrointestinal Research Group, Inflammation Research Network, Host-Parasite Interactions Program, Department of Physiology & Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Marija Drikic
- Calgary Metabolomics Research Facility, Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Canada
| | - Nicole L. Prince
- Gastrointestinal Research Group, Inflammation Research Network, Host-Parasite Interactions Program, Department of Physiology & Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Ian A. Lewis
- Calgary Metabolomics Research Facility, Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Canada
| | - Jane Shearer
- Department of Biochemistry and Molecular Biology, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Åsa V. Keita
- Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology, Linköping University, Linköping, Sweden
| | - Johan D. Söderholm
- Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology, Linköping University, Linköping, Sweden
| | - Timothy E. Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, Snyder Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Derek M. McKay
- Gastrointestinal Research Group, Inflammation Research Network, Host-Parasite Interactions Program, Department of Physiology & Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|