1
|
Li H, Kurtzeborn K, Kupari J, Gui Y, Siefker E, Lu B, Mätlik K, Olfat S, Montaño-Rodríguez AR, Huh SH, Costantini F, Andressoo JO, Kuure S. Postnatal prolongation of mammalian nephrogenesis by excess fetal GDNF. Development 2021; 148:268366. [PMID: 34032268 PMCID: PMC8180252 DOI: 10.1242/dev.197475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/26/2021] [Indexed: 01/21/2023]
Abstract
Nephron endowment, defined during the fetal period, dictates renal and related cardiovascular health throughout life. We show here that, despite its negative effects on kidney growth, genetic increase of GDNF prolongs the nephrogenic program beyond its normal cessation. Multi-stage mechanistic analysis revealed that excess GDNF maintains nephron progenitors and nephrogenesis through increased expression of its secreted targets and augmented WNT signaling, leading to a two-part effect on nephron progenitor maintenance. Abnormally high GDNF in embryonic kidneys upregulates its known targets but also Wnt9b and Axin2, with concomitant deceleration of nephron progenitor proliferation. Decline of GDNF levels in postnatal kidneys normalizes the ureteric bud and creates a permissive environment for continuation of the nephrogenic program, as demonstrated by morphologically and molecularly normal postnatal nephron progenitor self-renewal and differentiation. These results establish that excess GDNF has a bi-phasic effect on nephron progenitors in mice, which can faithfully respond to GDNF dosage manipulation during the fetal and postnatal period. Our results suggest that sensing the signaling activity level is an important mechanism through which GDNF and other molecules contribute to nephron progenitor lifespan specification. Summary: Dosage of neurotropic factor GDNF regulates nephron progenitors and in utero growth factor augmentation can extend postnatal lifespan and differentiation of nephron progenitors.
Collapse
Affiliation(s)
- Hao Li
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.,Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Kristen Kurtzeborn
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.,Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Jussi Kupari
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Yujuan Gui
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Edward Siefker
- Department of Developmental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Benson Lu
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Kärt Mätlik
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland.,Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Soophie Olfat
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland.,Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Ana R Montaño-Rodríguez
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland.,Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Sung-Ho Huh
- Department of Developmental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Franklin Costantini
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Jaan-Olle Andressoo
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland.,Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.,Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Satu Kuure
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.,GM-unit, Laboratory Animal Centre, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
2
|
Rudman-Melnick V, Adam M, Potter A, Chokshi SM, Ma Q, Drake KA, Schuh MP, Kofron JM, Devarajan P, Potter SS. Single-Cell Profiling of AKI in a Murine Model Reveals Novel Transcriptional Signatures, Profibrotic Phenotype, and Epithelial-to-Stromal Crosstalk. J Am Soc Nephrol 2020; 31:2793-2814. [PMID: 33115917 DOI: 10.1681/asn.2020010052] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Current management of AKI, a potentially fatal disorder that can also initiate or exacerbate CKD, is merely supportive. Therefore, deeper understanding of the molecular pathways perturbed in AKI is needed to identify targets with potential to lead to improved treatment. METHODS We performed single-cell RNA sequencing (scRNA-seq) with the clinically relevant unilateral ischemia-reperfusion murine model of AKI at days 1, 2, 4, 7, 11, and 14 after AKI onset. Using real-time quantitative PCR, immunofluorescence, Western blotting, and both chromogenic and single-molecule in situ hybridizations, we validated AKI signatures in multiple experiments. RESULTS Our findings show the time course of changing gene expression patterns for multiple AKI stages and all renal cell types. We observed elevated expression of crucial injury response factors-including kidney injury molecule-1 (Kim1), lipocalin 2 (Lcn2), and keratin 8 (Krt8)-and of several novel genes (Ahnak, Sh3bgrl3, and Col18a1) not previously examined in kidney pathologies. AKI induced proximal tubule dedifferentiation, with a pronounced nephrogenic signature represented by Sox4 and Cd24a. Moreover, AKI caused the formation of "mixed-identity cells" (expressing markers of different renal cell types) that are normally seen only during early kidney development. The injured tubules acquired a proinflammatory and profibrotic phenotype; moreover, AKI dramatically modified ligand-receptor crosstalk, with potential pathologic epithelial-to-stromal interactions. Advancing age in AKI onset was associated with maladaptive response and kidney fibrosis. CONCLUSIONS The scRNA-seq, comprehensive, cell-specific profiles provide a valuable resource for examining molecular pathways that are perturbed in AKI. The results fully define AKI-associated dedifferentiation programs, potential pathologic ligand-receptor crosstalk, novel genes, and the improved injury response in younger mice, and highlight potential targets of kidney injury.
Collapse
Affiliation(s)
- Valeria Rudman-Melnick
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Andrew Potter
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Saagar M Chokshi
- Division of Nephrology and Hypertension, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Qing Ma
- Division of Nephrology and Hypertension, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Keri A Drake
- Division of Pediatric Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Meredith P Schuh
- Division of Nephrology and Hypertension, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - J Matthew Kofron
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Prasad Devarajan
- Division of Nephrology and Hypertension, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| |
Collapse
|
3
|
Kuure S, Sariola H. Mouse Models of Congenital Kidney Anomalies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:109-136. [PMID: 32304071 DOI: 10.1007/978-981-15-2389-2_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are common birth defects, which cause the majority of chronic kidney diseases in children. CAKUT covers a wide range of malformations that derive from deficiencies in embryonic kidney and lower urinary tract development, including renal aplasia, hypodysplasia, hypoplasia, ectopia, and different forms of ureter abnormalities. The majority of the genetic causes of CAKUT remain unknown. Research on mutant mice has identified multiple genes that critically regulate renal differentiation. The data generated from this research have served as an excellent resource to identify the genetic bases of human kidney defects and have led to significantly improved diagnostics. Furthermore, genetic data from human CAKUT studies have also revealed novel genes regulating kidney differentiation.
Collapse
Affiliation(s)
- Satu Kuure
- GM-Unit, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland. .,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Hannu Sariola
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Paediatric Pathology, HUSLAB, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
4
|
Mukherjee M, Fogarty E, Janga M, Surendran K. Notch Signaling in Kidney Development, Maintenance, and Disease. Biomolecules 2019; 9:E692. [PMID: 31690016 PMCID: PMC6920979 DOI: 10.3390/biom9110692] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 02/06/2023] Open
Abstract
Kidney development involves formation of nephrons intricately aligned with the vasculature and connected to a branched network of collecting ducts. Notch signaling plays multiple roles during kidney development involving the formation of nephrons composed of diverse epithelial cell types arranged into tubular segments, all the while maintaining a nephron progenitor niche. Here, we review the roles of Notch signaling identified from rodent kidney development and injury studies, while discussing human kidney diseases associated with aberrant Notch signaling. We also review Notch signaling requirement in maintenance of mature kidney epithelial cell states and speculate that Notch activity regulation mediates certain renal physiologic adaptations.
Collapse
Affiliation(s)
- Malini Mukherjee
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA.
| | - Eric Fogarty
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.
| | - Madhusudhana Janga
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA.
| | - Kameswaran Surendran
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA.
| |
Collapse
|
5
|
Zhang J, Li K, Kong F, Sun C, Zhang D, Yu X, Wang X, Li X, Liu T, Shao G, Guan Y, Zhao S. Induced Intermediate Mesoderm Combined with Decellularized Kidney Scaffolds for Functional Engineering Kidney. Tissue Eng Regen Med 2019; 16:501-512. [PMID: 31624705 DOI: 10.1007/s13770-019-00197-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/17/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022] Open
Abstract
Background Chronic kidney disease is a severe threat to human health with no ideal treatment strategy. Mature mammalian kidneys have a fixed number of nephrons, and regeneration is difficult once they are damaged. For this reason, developing an efficient approach to achieve kidney regeneration is necessary. The technology of the combination of decellularized kidney scaffolds with stem cells has emerged as a new strategy; however, in previous studies, the differentiation of stem cells in decellularized scaffolds was insufficient for functional kidney regeneration, and many problems remain. Methods We used 0.5% sodium dodecyl sulfate (SDS) to produce rat kidney decellularized scaffolds, and induce adipose-derived stem cells (ADSCs) into intermediate mesoderm by adding Wnt agonist CHIR99021 and FGF9 in vitro. The characteristics of decellularized scaffolds and intermediate mesoderm induced from adipose-derived stem cells were identified. The scaffolds were recellularized with ADSCs and intermediate mesoderm cells through the renal artery and ureter. After cocultured for 10 days, cells adhesion and differentiation was evaluated. Results Intermediate mesoderm cells were successfully induced from ADSCs and identified by immunofluorescence and Western blotting assays (OSR1 + , PAX2 +). Immunofluorescence showed that intermediate mesoderm cells differentiated into tubular-like (E-CAD + , GATA3 +) and podocyte-like (WT1 +) cells with higher differentiation efficiency than ADSCs in the decellularized scaffolds. Comparatively, this phenomenon was not observed in induced intermediate mesoderm cells cultured in vitro. Conclusion In this study, we demonstrated that intermediate mesoderm cells could be induced from ADSCs and that they could differentiate well after cocultured with decellularized scaffolds.
Collapse
Affiliation(s)
- Jianye Zhang
- 1Department of Urology, The Second Hospital, Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China
| | - Kailin Li
- 2Department of Central Research Lab, The Second Hospital, Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China
| | - Feng Kong
- 2Department of Central Research Lab, The Second Hospital, Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China.,Key Laboratory for Kidney Regeneration of Shandong Province, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China.,4Shandong University- Karolinska Institutet Collaborative Laboratory for Stem Cell Research, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China
| | - Chao Sun
- 2Department of Central Research Lab, The Second Hospital, Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China
| | - Denglu Zhang
- 5The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Jinan, 250011 Shandong People's Republic of China
| | - Xin Yu
- 1Department of Urology, The Second Hospital, Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China
| | - Xuesheng Wang
- 1Department of Urology, The Second Hospital, Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China
| | - Xian Li
- 6The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China
| | - Tongyan Liu
- 6The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China
| | - Guangfeng Shao
- 1Department of Urology, The Second Hospital, Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China
| | - Yong Guan
- 1Department of Urology, The Second Hospital, Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China.,7Shandong Provincial Hospital of Shandong University, 324 Jingwuweiqi Road, Jinan, 250021 Shandong People's Republic of China
| | - Shengtian Zhao
- 1Department of Urology, The Second Hospital, Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China.,Key Laboratory for Kidney Regeneration of Shandong Province, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China.,4Shandong University- Karolinska Institutet Collaborative Laboratory for Stem Cell Research, 247 Beiyuan Street, Jinan, 250033 Shandong People's Republic of China.,7Shandong Provincial Hospital of Shandong University, 324 Jingwuweiqi Road, Jinan, 250021 Shandong People's Republic of China
| |
Collapse
|
6
|
Development of the urogenital system is regulated via the 3'UTR of GDNF. Sci Rep 2019; 9:5302. [PMID: 30923332 PMCID: PMC6438985 DOI: 10.1038/s41598-019-40457-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/13/2019] [Indexed: 12/30/2022] Open
Abstract
Mechanisms controlling ureter lenght and the position of the kidney are poorly understood. Glial cell-line derived neurotrophic factor (GDNF) induced RET signaling is critical for ureteric bud outgrowth, but the function of endogenous GDNF in further renal differentiation and urogenital system development remains discursive. Here we analyzed mice where 3′ untranslated region (UTR) of GDNF is replaced with sequence less responsive to microRNA-mediated regulation, leading to increased GDNF expression specifically in cells naturally transcribing Gdnf. We demonstrate that increased Gdnf leads to short ureters in kidneys located in an abnormally caudal position thus resembling human pelvic kidneys. High GDNF levels expand collecting ductal progenitors at the expense of ureteric trunk elongation and result in expanded tip and short trunk phenotype due to changes in cell cycle length and progenitor motility. MEK-inhibition rescues these defects suggesting that MAPK-activity mediates GDNF’s effects on progenitors. Moreover, Gdnf hyper mice are infertile likely due to effects of excess GDNF on distal ureter remodeling. Our findings suggest that dysregulation of GDNF levels, for example via alterations in 3′UTR, may account for a subset of congenital anomalies of the kidney and urinary tract (CAKUT) and/or congenital infertility cases in humans and pave way to future studies.
Collapse
|
7
|
Abstract
Kidney organogenesis has been a widely used classical model system to study inductive tissue interactions that guide differentiation of many organs. The basis for this is in the pioneering work done during the early 1950s when the conditions of how to support ex vivo growth and differentiation of developing kidneys were revealed. Importantly, culturing developing kidneys remains as an essential instrument to advance our understanding of molecular and cellular regulation of morphogenesis even today. Despite the fact that embryonic kidneys have been cultured for decades, it is not a trivial method and requires specific anatomical and developmental biology knowledge. This chapter outlines the general steps in organ culture and details the requirements for successful kidney explant differentiation.
Collapse
|
8
|
Fielder GC, Yang TWS, Razdan M, Li Y, Lu J, Perry JK, Lobie PE, Liu DX. The GDNF Family: A Role in Cancer? Neoplasia 2018; 20:99-117. [PMID: 29245123 PMCID: PMC5730419 DOI: 10.1016/j.neo.2017.10.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
Abstract
The glial cell line-derived neurotrophic factor (GDNF) family of ligands (GFLs) comprising of GDNF, neurturin, artemin, and persephin plays an important role in the development and maintenance of the central and peripheral nervous system, renal morphogenesis, and spermatogenesis. Here we review our current understanding of GFL biology, and supported by recent progress in the area, we examine their emerging role in endocrine-related and other non-hormone-dependent solid neoplasms. The ability of GFLs to elicit actions that resemble those perturbed in an oncogenic phenotype, alongside mounting evidence of GFL involvement in tumor progression, presents novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Mahalakshmi Razdan
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Yan Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Jun Lu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Jo K Perry
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Peter E Lobie
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore; Tsinghua Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, Guangdong, P. R. China
| | - Dong-Xu Liu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand.
| |
Collapse
|
9
|
Akchurin O, Du Z, Ramkellawan N, Dalal V, Han SH, Pullman J, Müsch A, Susztak K, Reidy KJ. Partitioning-Defective 1a/b Depletion Impairs Glomerular and Proximal Tubule Development. J Am Soc Nephrol 2016; 27:3725-3737. [PMID: 27185860 DOI: 10.1681/asn.2014111124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/30/2016] [Indexed: 12/21/2022] Open
Abstract
The kidney is a highly polarized epithelial organ that develops from undifferentiated mesenchyme, although the mechanisms that regulate the development of renal epithelial polarity are incompletely understood. Partitioning-defective 1 (Par1) proteins have been implicated in cell polarity and epithelial morphogenesis; however, the role of these proteins in the developing kidney has not been established. Therefore, we studied the contribution of Par1a/b to renal epithelial development. We examined the renal phenotype of newborn compound mutant mice carrying only one allele of Par1a or Par1b. Loss of three out of four Par1a/b alleles resulted in severe renal hypoplasia, associated with impaired ureteric bud branching. Compared with kidneys of newborn control littermates, kidneys of newborn mutant mice exhibited dilated proximal tubules and immature glomeruli, and the renal proximal tubular epithelia lacked proper localization of adhesion complexes. Furthermore, Par1a/b mutants expressed low levels of renal Notch ligand Jag1, activated Notch2, and Notch effecter Hes1. Together, these data demonstrate that Par1a/b has a key role in glomerular and proximal tubule development, likely via modulation of Notch signaling.
Collapse
Affiliation(s)
- Oleh Akchurin
- Division of Pediatric Nephrology, Children's Hospital at Montefiore, Bronx, New York
| | - Zhongfang Du
- Division of Pediatric Nephrology, Children's Hospital at Montefiore, Bronx, New York
| | - Nadira Ramkellawan
- Division of Pediatric Nephrology, Children's Hospital at Montefiore, Bronx, New York
| | - Vidhi Dalal
- Division of Pediatric Nephrology, Children's Hospital at Montefiore, Bronx, New York
| | - Seung Hyeok Han
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - James Pullman
- Department of Pathology, Montefiore Medical Center, Bronx, New York; and
| | - Anne Müsch
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kimberly J Reidy
- Division of Pediatric Nephrology, Children's Hospital at Montefiore, Bronx, New York; .,Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Zhang L, Li K, Yan X, Liang X, Wang S, Han Q, Zhao RC. MicroRNA-498 Inhibition Enhances the Differentiation of Human Adipose-Derived Mesenchymal Stem Cells into Podocyte-Like Cells. Stem Cells Dev 2015; 24:2841-52. [DOI: 10.1089/scd.2015.0027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Lina Zhang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, People's Republic of China
| | - Kanghua Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, People's Republic of China
| | - Xi Yan
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, People's Republic of China
| | - Xiaolei Liang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, People's Republic of China
| | - Shihua Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, People's Republic of China
| | - Qin Han
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, People's Republic of China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, People's Republic of China
- Peking Union Medical College Hospital, Beijing, People's Republic of China
| |
Collapse
|
11
|
Ihermann-Hella A, Lume M, Miinalainen IJ, Pirttiniemi A, Gui Y, Peränen J, Charron J, Saarma M, Costantini F, Kuure S. Mitogen-activated protein kinase (MAPK) pathway regulates branching by remodeling epithelial cell adhesion. PLoS Genet 2014; 10:e1004193. [PMID: 24603431 PMCID: PMC3945187 DOI: 10.1371/journal.pgen.1004193] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 01/06/2014] [Indexed: 12/30/2022] Open
Abstract
Although the growth factor (GF) signaling guiding renal branching is well characterized, the intracellular cascades mediating GF functions are poorly understood. We studied mitogen-activated protein kinase (MAPK) pathway specifically in the branching epithelia of developing kidney by genetically abrogating the pathway activity in mice lacking simultaneously dual-specificity protein kinases Mek1 and Mek2. Our data show that MAPK pathway is heterogeneously activated in the subset of G1- and S-phase epithelial cells, and its tissue-specific deletion results in severe renal hypodysplasia. Consequently to the deletion of Mek1/2, the activation of ERK1/2 in the epithelium is lost and normal branching pattern in mutant kidneys is substituted with elongation-only phenotype, in which the epithelium is largely unable to form novel branches and complex three-dimensional patterns, but able to grow without primary defects in mitosis. Cellular characterization of double mutant epithelium showed increased E-cadherin at the cell surfaces with its particular accumulation at baso-lateral locations. This indicates changes in cellular adhesion, which were revealed by electron microscopic analysis demonstrating intercellular gaps and increased extracellular space in double mutant epithelium. When challenged to form monolayer cultures, the mutant epithelial cells were impaired in spreading and displayed strong focal adhesions in addition to spiky E-cadherin. Inhibition of MAPK activity reduced paxillin phosphorylation on serine 83 while remnants of phospho-paxillin, together with another focal adhesion (FA) protein vinculin, were augmented at cell surface contacts. We show that MAPK activity is required for branching morphogenesis, and propose that it promotes cell cycle progression and higher cellular motility through remodeling of cellular adhesions.
Collapse
Affiliation(s)
| | - Maria Lume
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | - Yujuan Gui
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Johan Peränen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jean Charron
- Centre de Recherche en Cancérologie de l'Université Laval, CRCHUQ, Hôtel-Dieu de Québec, Québec, Canada
| | - Mart Saarma
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Frank Costantini
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
| | - Satu Kuure
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
12
|
Xia Y, Nivet E, Sancho-Martinez I, Gallegos T, Suzuki K, Okamura D, Wu MZ, Dubova I, Esteban CR, Montserrat N, Campistol JM, Izpisua Belmonte JC. Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells. Nat Cell Biol 2013; 15:1507-15. [PMID: 24240476 DOI: 10.1038/ncb2872] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 10/04/2013] [Indexed: 02/06/2023]
Abstract
Diseases affecting the kidney constitute a major health issue worldwide. Their incidence and poor prognosis affirm the urgent need for the development of new therapeutic strategies. Recently, differentiation of pluripotent cells to somatic lineages has emerged as a promising approach for disease modelling and cell transplantation. Unfortunately, differentiation of pluripotent cells into renal lineages has demonstrated limited success. Here we report on the differentiation of human pluripotent cells into ureteric-bud-committed renal progenitor-like cells. The generated cells demonstrated rapid and specific expression of renal progenitor markers on 4-day exposure to defined media conditions. Further maturation into ureteric bud structures was accomplished on establishment of a three-dimensional culture system in which differentiated human cells assembled and integrated alongside murine cells for the formation of chimeric ureteric buds. Altogether, our results provide a new platform for the study of kidney diseases and lineage commitment, and open new avenues for the future application of regenerative strategies in the clinic.
Collapse
Affiliation(s)
- Yun Xia
- 1] Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA [2]
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Li L, Chen H, Chen F, Li F, Wang M, Wang L, Li Y, Gao D. Effects of glial cell line-derived neurotrophic factor on microRNA expression in a 6-hydroxydopamine-injured dopaminergic cell line. J Neural Transm (Vienna) 2013; 120:1511-23. [PMID: 23771700 DOI: 10.1007/s00702-013-1031-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/25/2013] [Indexed: 12/28/2022]
Abstract
Parkinson's disease (PD) is the second most prevalent, progressive neurodegenerative disease and is characterized by the irreversible and selective loss of nigrostriatal dopaminergic (DA) neurons. Glial cell line-derived neurotrophic factor (GDNF), which is a potent protective factor for DA neurons, is considered a promising neuroprotective candidate for PD. microRNAs (miRNAs) have been shown to be involved in a number of neurodegenerative diseases. Both miRNAs and GDNF affect DA neuronal processes, but the molecular crosstalk between these molecules remains unclear. The present study aimed to evaluate whether GDNF modulates miRNA expression. We used microarray analysis and real-time polymerase chain reaction (RT-PCR) to investigate miRNAs expression in 6-hydroxydopamine (6-OHDA)-injured MN9D cells treated with GDNF for 30 min, 1 h, or 3 h. Our results showed that GDNF treatment led to differential expression of 143 miRNAs. To further identify mechanisms by which GDNF exerts its effects, we compared miRNAs and mRNAs microarray data at the 1-h time point. We found that various biological processes and pathways were regulated at the miRNA level following GDNF treatment. Collectively, these results provide evidence of the capacity of GDNF to influence miRNAs expression, suggesting a new mechanism of GDNF action.
Collapse
Affiliation(s)
- Li Li
- Department of Human Anatomy, Histology and Embryology, School of the Basic Medicine, The Fourth Military Medical University, No.17, Changle West Road, Xian, 710032, Shanxi, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Afelik S, Qu X, Hasrouni E, Bukys MA, Deering T, Nieuwoudt S, Rogers W, Macdonald RJ, Jensen J. Notch-mediated patterning and cell fate allocation of pancreatic progenitor cells. Development 2012; 139:1744-53. [PMID: 22461559 DOI: 10.1242/dev.075804] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Early pancreatic morphogenesis is characterized by the transformation of an uncommitted pool of pancreatic progenitor cells into a branched pancreatic epithelium that consists of 'tip' and 'trunk' domains. These domains have distinct molecular signatures and differentiate into distinct pancreatic cell lineages. Cells at the branched tips of the epithelium develop into acinar cells, whereas cells in the trunk subcompartment differentiate into endocrine and duct cells. Recent genetic analyses have highlighted the role of key transcriptional regulators in the specification of these subcompartments. Here, we analyzed in mice the role of Notch signaling in the patterning of multipotent pancreatic progenitor cells through mosaic overexpression of a Notch signaling antagonist, dominant-negative mastermind-like 1, resulting in a mixture of wild-type and Notch-suppressed pancreatic progenitor cells. We find that attenuation of Notch signaling has pronounced patterning effects on multipotent pancreatic progenitor cells prior to terminal differentiation. Relative to the wild-type cells, the Notch-suppressed cells lose trunk marker genes and gain expression of tip marker genes. The Notch-suppressed cells subsequently differentiate into acinar cells, whereas duct and endocrine populations are formed predominantly from the wild-type cells. Mechanistically, these observations could be explained by a requirement of Notch for the expression of the trunk determination gene Nkx6.1. This was supported by the finding of direct binding of RBP-jκ to the Nkx6.1 proximal promoter.
Collapse
Affiliation(s)
- Solomon Afelik
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gerber SD, Amann R, Wyder S, Trueb B. Comparison of the gene expression profiles from normal and Fgfrl1 deficient mouse kidneys reveals downstream targets of Fgfrl1 signaling. PLoS One 2012; 7:e33457. [PMID: 22432025 PMCID: PMC3303837 DOI: 10.1371/journal.pone.0033457] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 02/14/2012] [Indexed: 01/16/2023] Open
Abstract
Fgfrl1 (fibroblast growth factor receptor-like 1) is a transmembrane receptor that is essential for the development of the metanephric kidney. It is expressed in all nascent nephrogenic structures and in the ureteric bud. Fgfrl1 null mice fail to develop the metanephric kidneys. Mutant kidney rudiments show a dramatic reduction of ureteric branching and a lack of mesenchymal-to-epithelial transition. Here, we compared the expression profiles of wildtype and Fgfrl1 mutant kidneys to identify genes that act downstream of Fgfrl1 signaling during the early steps of nephron formation. We detected 56 differentially expressed transcripts with 2-fold or greater reduction, among them many genes involved in Fgf, Wnt, Bmp, Notch, and Six/Eya/Dach signaling. We validated the microarray data by qPCR and whole-mount in situ hybridization and showed the expression pattern of candidate genes in normal kidneys. Some of these genes might play an important role during early nephron formation. Our study should help to define the minimal set of genes that is required to form a functional nephron.
Collapse
MESH Headings
- Animals
- Biomarkers/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- In Situ Hybridization
- Kidney/embryology
- Kidney/metabolism
- Mice
- Polymerase Chain Reaction
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Fibroblast Growth Factor, Type 5/deficiency
- Receptor, Fibroblast Growth Factor, Type 5/genetics
- Receptor, Fibroblast Growth Factor, Type 5/metabolism
- Reproducibility of Results
- Signal Transduction/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Simon D. Gerber
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Ruth Amann
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Stefan Wyder
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Beat Trueb
- Department of Clinical Research, University of Bern, Bern, Switzerland
- Department of Rheumatology, University Hospital, Bern, Switzerland
- * E-mail:
| |
Collapse
|
16
|
Ye X, Wang Y, Rattner A, Nathans J. Genetic mosaic analysis reveals a major role for frizzled 4 and frizzled 8 in controlling ureteric growth in the developing kidney. Development 2011; 138:1161-72. [PMID: 21343368 DOI: 10.1242/dev.057620] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The developing mammalian kidney is an attractive system in which to study the control of organ growth. Targeted mutations in the Wnt receptors frizzled (Fz) 4 and Fz8 lead to reduced ureteric bud growth and a reduction in kidney size, a phenotype previously reported for loss of Wnt11. In cell culture, Fz4 and Fz8 can mediate noncanonical signaling stimulated by Wnt11, but only Fz4 mediates Wnt11-stimulated canonical signaling. In genetically mosaic mouse ureteric buds, competition between phenotypically mutant Fz4(-/-) or Fz4(-/-);Fz8(-/-) cells and adjacent phenotypically wild-type Fz4(+/-) or Fz4(+/-);Fz8(-/-) cells results in under-representation of the mutant cells to an extent far greater than would be predicted from the size reduction of homogeneously mutant kidneys. This discrepancy presumably reflects the compensatory action of a network of growth regulatory systems that minimize developmental perturbations. The present work represents the first description of a kidney phenotype referable to one or more Wnt receptors and demonstrates a general strategy for revealing the contribution of an individual growth regulatory pathway when it is part of a larger homeostatic network.
Collapse
Affiliation(s)
- Xin Ye
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
17
|
Bridgewater D, Di Giovanni V, Cain JE, Cox B, Jakobson M, Sainio K, Rosenblum ND. β-catenin causes renal dysplasia via upregulation of Tgfβ2 and Dkk1. J Am Soc Nephrol 2011; 22:718-31. [PMID: 21436291 DOI: 10.1681/asn.2010050562] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Renal dysplasia, defined by defective ureteric branching morphogenesis and nephrogenesis, is the major cause of renal failure in infants and children. Here, we define a pathogenic role for a β-catenin-activated genetic pathway in murine renal dysplasia. Stabilization of β-catenin in the ureteric cell lineage before the onset of kidney development increased β-catenin levels and caused renal aplasia or severe hypodysplasia. Analysis of gene expression in the dysplastic tissue identified downregulation of genes required for ureteric branching and upregulation of Tgfβ2 and Dkk1. Treatment of wild-type kidney explants with TGFβ2 or DKK1 generated morphogenetic phenotypes strikingly similar to those observed in mutant kidney tissue. Stabilization of β-catenin after the onset of kidney development also caused dysplasia and upregulation of Tgfβ2 and Dkk1 in the epithelium. Together, these results demonstrate that elevation of β-catenin levels during kidney development causes dysplasia.
Collapse
Affiliation(s)
- Darren Bridgewater
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | | | |
Collapse
|
18
|
Ola R, Jakobson M, Kvist J, Perälä N, Kuure S, Braunewell KH, Bridgewater D, Rosenblum ND, Chilov D, Immonen T, Sainio K, Sariola H. The GDNF target Vsnl1 marks the ureteric tip. J Am Soc Nephrol 2011; 22:274-84. [PMID: 21289216 DOI: 10.1681/asn.2010030316] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is indispensable for ureteric budding and branching. If applied exogenously, GDNF promotes ectopic ureteric buds from the Wolffian duct. Although several downstream effectors of GDNF are known, the identification of early response genes is incomplete. Here, microarray screening detected several GDNF-regulated genes in the Wolffian duct, including Visinin like 1 (Vsnl1), which encodes a neuronal calcium-sensor protein. We observed renal Vsnl1 expression exclusively in the ureteric epithelium, but not in Gdnf-null kidneys. In the tissue culture of Gdnf-deficient kidney primordium, exogenous GDNF and alternative bud inducers (FGF7 and follistatin) restored Vsnl1 expression. Hence, Vsnl1 characterizes the tip of the ureteric bud epithelium regardless of the inducer. In the tips, Vsnl1 showed a mosaic expression pattern that was mutually exclusive with β-catenin transcriptional activation. Vsnl1 was downregulated in both β-catenin-stabilized and β-catenin-deficient kidneys. Moreover, in a mouse collecting duct cell line, Vsnl1 compromised β-catenin stability, suggesting a counteracting relationship between Vsnl1 and β-catenin. In summary, Vsnl1 marks ureteric bud tips in embryonic kidneys, and its mosaic pattern demonstrates a heterogeneity of cell types that may be critical for normal ureteric branching.
Collapse
Affiliation(s)
- Roxana Ola
- Biochemistry and Developmental Biology, Institute of Biomedicine, P.O. Box 63, Haartmaninkatu 8, University of Helsinki, FIN-00014, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kuure S, Cebrian C, Machingo Q, Lu BC, Chi X, Hyink D, D'Agati V, Gurniak C, Witke W, Costantini F. Actin depolymerizing factors cofilin1 and destrin are required for ureteric bud branching morphogenesis. PLoS Genet 2010; 6:e1001176. [PMID: 21060807 PMCID: PMC2965756 DOI: 10.1371/journal.pgen.1001176] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 09/22/2010] [Indexed: 01/10/2023] Open
Abstract
The actin depolymerizing factors (ADFs) play important roles in several cellular processes that require cytoskeletal rearrangements, such as cell migration, but little is known about the in vivo functions of ADFs in developmental events like branching morphogenesis. While the molecular control of ureteric bud (UB) branching during kidney development has been extensively studied, the detailed cellular events underlying this process remain poorly understood. To gain insight into the role of actin cytoskeletal dynamics during renal branching morphogenesis, we studied the functional requirements for the closely related ADFs cofilin1 (Cfl1) and destrin (Dstn) during mouse development. Either deletion of Cfl1 in UB epithelium or an inactivating mutation in Dstn has no effect on renal morphogenesis, but simultaneous lack of both genes arrests branching morphogenesis at an early stage, revealing considerable functional overlap between cofilin1 and destrin. Lack of Cfl1 and Dstn in the UB causes accumulation of filamentous actin, disruption of normal epithelial organization, and defects in cell migration. Animals with less severe combinations of mutant Cfl1 and Dstn alleles, which retain one wild-type Cfl1 or Dstn allele, display abnormalities including ureter duplication, renal hypoplasia, and abnormal kidney shape. The results indicate that ADF activity, provided by either cofilin1 or destrin, is essential in UB epithelial cells for normal growth and branching. Development of the ureter and collecting ducts of the kidney requires extensive growth and branching of an epithelial tube, the ureteric bud. While many genes that control this process are known, the cellular events that underlie renal morphogenesis remain poorly understood. Many cellular changes that might contribute to ureteric bud morphogenesis, such as migration and changes in shape, involve the actin cytoskeleton. Actin depolymerizing factors (ADFs) are important for changes in the organization of the cytoskeleton in cultured cells, but the roles of the ADF genes in vivo remain to be fully elucidated. Here, we examine the importance of the ADFs cofilin1 and destrin in ureteric bud branching and find that lack of both genes arrests this process at an early stage, while lesser reductions in ADF gene dosage cause more subtle defects in kidney development. This finding may help us to understand the origins of certain congenital malformations in humans.
Collapse
Affiliation(s)
- Satu Kuure
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
| | - Cristina Cebrian
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
| | - Quentin Machingo
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
| | - Benson C. Lu
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
| | - Xuan Chi
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
| | - Deborah Hyink
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Vivette D'Agati
- Department of Pathology, Columbia University Medical Center, New York, New York, United States of America
| | | | - Walter Witke
- Institute of Genetics, University of Bonn, Bonn, Germany
| | - Frank Costantini
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
20
|
Perälä N, Peitsaro N, Sundvik M, Koivula H, Sainio K, Sariola H, Panula P, Immonen T. Conservation, expression, and knockdown of zebrafish plxnb2a and plxnb2b. Dev Dyn 2010; 239:2722-34. [DOI: 10.1002/dvdy.22397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
21
|
Kuure S, Chi X, Lu B, Costantini F. The transcription factors Etv4 and Etv5 mediate formation of the ureteric bud tip domain during kidney development. Development 2010; 137:1975-9. [PMID: 20463033 DOI: 10.1242/dev.051656] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Signaling by the Ret receptor tyrosine kinase promotes cell movements in the Wolffian duct that give rise to the first ureteric bud tip, initiating kidney development. Although the ETS transcription factors Etv4 and Etv5 are known to be required for mouse kidney development and to act downstream of Ret, their specific functions are unclear. Here, we examine their role by analyzing the ability of Etv4 Etv5 compound mutant cells to contribute to chimeric kidneys. Etv4(-/-);Etv5(+/-) cells show a limited distribution in the caudal Wolffian duct and ureteric bud, similar to Ret(-/-) cells, revealing a cell-autonomous role for Etv4 and Etv5 in the cell rearrangements promoted by Ret. By contrast, Etv4(-/-);Etv5(-/-) cells display more severe developmental limitations, suggesting a broad role for Etv4 and Etv5 downstream of multiple signals, which are together important for Wolffian duct and ureteric bud morphogenesis.
Collapse
Affiliation(s)
- Satu Kuure
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | |
Collapse
|
22
|
Integrin-linked kinase is an adaptor with essential functions during mouse development. Nature 2009; 461:1002-6. [PMID: 19829382 DOI: 10.1038/nature08468] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 08/26/2009] [Indexed: 11/08/2022]
Abstract
The development of multicellular organisms requires integrin-mediated interactions between cells and their extracellular environment. Integrin binding to extracellular matrix catalyses assembly of multiprotein complexes, which transduce mechanical and chemical signals that regulate many aspects of cell physiology. Integrin-linked kinase (Ilk) is a multifunctional protein that binds beta-integrin cytoplasmic domains and regulates actin dynamics by recruiting actin binding regulatory proteins such as alpha- and beta-parvin. Ilk has also been shown to possess serine/threonine kinase activity and to phosphorylate signalling proteins such as Akt1 and glycogen synthase kinase 3beta (Gsk3beta) in mammalian cells; however, these functions have been shown by genetic studies not to occur in flies and worms. Here we show that mice carrying point mutations in the proposed autophosphorylation site of the putative kinase domain and in the pleckstrin homology domain are normal. In contrast, mice with point mutations in the conserved lysine residue of the potential ATP-binding site of the kinase domain, which mediates Ilk binding to alpha-parvin, die owing to renal agenesis. Similar renal defects occur in alpha-parvin-null mice. Thus, we provide genetic evidence that the kinase activity of Ilk is dispensable for mammalian development; however, an interaction between Ilk and alpha-parvin is critical for kidney development.
Collapse
|
23
|
Diwan BA, Timofeeva O, Rice JM, Yang Y, Sharma N, Fortini ME, Wang H, Perantoni AO. Inheritance of susceptibility to induction of nephroblastomas in the Noble rat. Differentiation 2009; 77:424-32. [PMID: 19281789 DOI: 10.1016/j.diff.2008.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 12/18/2008] [Accepted: 12/19/2008] [Indexed: 11/25/2022]
Abstract
Noble (Nb) strain rats are susceptible to nephroblastoma induction with transplacental exposure to direct-acting alkylating agent N-nitrosoethylurea (ENU), while F344 strain rats are highly resistant. To study the inheritance of susceptibility to induction of these embryonal renal tumors, fetal Nb and F344 rats and F1, F2 and reciprocal backcross hybrids were exposed transplacentally to ENU once on day 18 of gestation. Nephroblastomas developed in 53% of Nb offspring with no apparent gender difference, while no nephroblastomas developed in inbred F344 offspring. F1 and F2 hybrid offspring had intermediate responses, 28% and 30%, respectively. Nephroblastoma incidence in the offspring of F1 hybrids backcrossed to the susceptible strain Nb was 46%, while that in F1 hybrids backcrossed to resistant strain F344 was much lower (16%). Carcinogenic susceptibility is therefore consistent with the involvement of one major autosomal locus; the operation of a gene dosage effect; and a lack of simple Mendelian dominance for either susceptibility or resistance. Since established Wilms tumor-associated suppressor genes, Wt1 and Wtx, were not mutated in normal or neoplastic tissues, genomic profiling was performed on isolated Nb and F344 metanephric progenitors to identify possible predisposing factors to nephroblastoma induction. Genes preferentially elevated in expression in Nb rat progenitors included Wnt target genes Epidermal growth factor receptor, Inhibitor of DNA binding 2, and Jagged1, which were further increased in nephroblastomas. These studies demonstrate the value of this model for genetic analysis of nephroblastoma development and implicate both the Wnt and Notch pathways in its pathogenesis.
Collapse
Affiliation(s)
- Bhalchandra A Diwan
- Basic Research Program, Science Applications International Corporation-Frederick, Inc., National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Hahn KL, Beres B, Rowton MJ, Skinner MK, Chang Y, Rawls A, Wilson-Rawls J. A deficiency of lunatic fringe is associated with cystic dilation of the rete testis. Reproduction 2008; 137:79-93. [PMID: 18801836 DOI: 10.1530/rep-08-0207] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lunatic fringe belongs to a family of beta1-3 N-acetyltransferases that modulate the affinity of the Notch receptors for their ligands through the elongation of O-fucose moieties on their extracellular domain. A role for Notch signaling in vertebrate fertility has been predicted by the intricate expression of the Notch receptors and their ligands in the oocyte and granulosa cells of the ovary and the spermatozoa and Sertoli cells of the testis. It has been demonstrated that disruption of Notch signaling by inactivation of lunatic fringe led to infertility associated with pleiotropic defects in follicle development and meiotic maturation of oocytes. Lunatic fringe null males were found to be subfertile. Here, we report that gene expression data demonstrate that fringe and Notch signaling genes are expressed in the developing testis and the intratesticular ductal tract, predicting roles for this pathway during embryonic gonadogenesis and spermatogenesis. Spermatogenesis was not impaired in the majority of the lunatic fringe null males; however, spermatozoa were unilaterally absent in the epididymis of many mice. Histological and immunohistochemical analysis of these testes revealed the development of unilateral cystic dilation of the rete testis. Tracer dye experiments confirm a block in the connection between the rete testis and the efferent ducts. Further, the dye studies demonstrated that many lunatic fringe mutant males had partial blocks of the connection between the rete testis and the efferent ducts bilaterally.
Collapse
Affiliation(s)
- K L Hahn
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Bridgewater D, Cox B, Cain J, Lau A, Athaide V, Gill PS, Kuure S, Sainio K, Rosenblum ND. Canonical WNT/β-catenin signaling is required for ureteric branching. Dev Biol 2008; 317:83-94. [DOI: 10.1016/j.ydbio.2008.02.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 01/30/2008] [Accepted: 02/05/2008] [Indexed: 12/23/2022]
|
26
|
Tufro A, Teichman J, Woda C, Villegas G. Semaphorin3a inhibits ureteric bud branching morphogenesis. Mech Dev 2007; 125:558-68. [PMID: 18249526 DOI: 10.1016/j.mod.2007.12.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 12/14/2007] [Accepted: 12/18/2007] [Indexed: 10/22/2022]
Abstract
Class 3 semaphorins are guidance proteins involved in axon pathfinding, vascular patterning and lung branching morphogenesis in the developing mouse embryo. Semaphorin3a (Sema3a) is expressed in renal epithelia throughout kidney development, including podocytes and ureteric bud cells. However, the role of Sema3a in ureteric bud branching is unknown. Here we demonstrate that Sema3a plays a role in patterning the ureteric bud tree in both metanephric organ cultures and Sema3a mutant mice. In vitro ureteric bud injection with Sema3a antisense morpholino resulted in increased branching, whereas recombinant SEMA3A inhibited ureteric bud branching and decreased the number of developing glomeruli. Additional studies revealed that SEMA3A effects on ureteric bud branching involve downregulation of glial cell-line derived neurotrophic factor (GDNF) signaling, competition with vascular endothelial growth factor A (VEGF-A) and decreased activity of Akt survival pathways. Deletion of Sema3a in mice is associated with increased ureteric bud branching, confirming its inhibitory role in vivo. Collectively, these data suggest that Sema3a is an endogenous antagonist of ureteric bud branching and hence, plays a role in patterning the renal collecting system as a negative regulator.
Collapse
Affiliation(s)
- Alda Tufro
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer Building, Room 708, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
27
|
Kuure S, Popsueva A, Jakobson M, Sainio K, Sariola H. Glycogen synthase kinase-3 inactivation and stabilization of beta-catenin induce nephron differentiation in isolated mouse and rat kidney mesenchymes. J Am Soc Nephrol 2007; 18:1130-9. [PMID: 17329570 DOI: 10.1681/asn.2006111206] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Wnt proteins are required for induction of nephrons in mouse metanephric kidneys, but the downstream pathways that mediate tubule induction and epithelial differentiation have remained obscure. The intracellular mechanisms by which Wnt signaling mediates nephron induction in embryonic kidney mesenchymes were studied. First is shown that transient exposure of isolated kidney mesenchymes to structurally different glycogen synthase kinase-3 (GSK3) inhibitors lithium or 6-bromoindirubin-3'-oxime results in abundant epithelial differentiation and full segregation of nephrons. Shown further by mice with genetically disrupted ureteric bud or Wolffian duct development is that this nephrogenic competence arises independent of the influence of Wolffian duct-derived epithelia. Analysis of the intracellular signaling cascades downstream of GSK3 inhibition revealed stabilization of beta-catenin and upregulation of Lef1 and Tcf1, both events that are associated with the active canonical Wnt signaling. Last, genetic evidence that metanephric mesenchyme-specific stabilization of beta-catenin is sufficient to induce nephron differentiation in isolated kidney mesenchymes, similar to that induced by GSK3 inhibitors, is provided. These data show that activation of canonical Wnt pathway is sufficient to induce nephrogenesis and suggest that this pathway mediates the nephron induction in murine kidney mesenchymes.
Collapse
Affiliation(s)
- Satu Kuure
- Biochemistry and Developmental Biology, Institute of Biomedicine, PO Box 63, Haartmaninkatu 8, University of Helsinki, FIN-00014, Finland
| | | | | | | | | |
Collapse
|
28
|
Liu Y, Pathak N, Kramer-Zucker A, Drummond IA. Notch signaling controls the differentiation of transporting epithelia and multiciliated cells in the zebrafish pronephros. Development 2007; 134:1111-22. [PMID: 17287248 DOI: 10.1242/dev.02806] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Epithelial tubules consist of multiple cell types that are specialized for specific aspects of organ function. In the zebrafish pronephros, multiciliated cells (MCCs) are specialized for fluid propulsion, whereas transporting epithelial cells recover filtered-blood solutes. These cell types are distributed in a ;salt-and-pepper' fashion in the pronephros, suggesting that a lateral inhibition mechanism may play a role in their differentiation. We find that the Notch ligand Jagged 2 is expressed in MCCs and that notch3 is expressed in pronephric epithelial cells. Morpholino knockdown of either jagged 2 or notch3, or mutation in mind bomb (in which Notch signaling is impaired), dramatically expands ciliogenic gene expression, whereas ion transporter expression is lost, indicating that pronephric cells are transfated to MCCs. Conversely, ectopic expression of the Notch1a intracellular domain represses MCC differentiation. Gamma-secretase inhibition using DAPT demonstrated a requirement for Notch signaling early in pronephric development, before the pattern of MCC differentiation is apparent. Strikingly, we find that jagged 2 knockdown generates extra cilia and is sufficient to rescue the kidney cilia mutant double bubble. Our results indicate that Jagged 2/Notch signaling modulates the number of multiciliated versus transporting epithelial cells in the pronephros by way of a genetic pathway involving repression of rfx2, a key transcriptional regulator of the ciliogenesis program.
Collapse
Affiliation(s)
- Yan Liu
- Nephrology Division, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|