1
|
Cortés E, Pak JS, Özkan E. Structure and evolution of neuronal wiring receptors and ligands. Dev Dyn 2023; 252:27-60. [PMID: 35727136 PMCID: PMC10084454 DOI: 10.1002/dvdy.512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/04/2023] Open
Abstract
One of the fundamental properties of a neuronal circuit is the map of its connections. The cellular and developmental processes that allow for the growth of axons and dendrites, selection of synaptic targets, and formation of functional synapses use neuronal surface receptors and their interactions with other surface receptors, secreted ligands, and matrix molecules. Spatiotemporal regulation of the expression of these receptors and cues allows for specificity in the developmental pathways that wire stereotyped circuits. The families of molecules controlling axon guidance and synapse formation are generally conserved across animals, with some important exceptions, which have consequences for neuronal connectivity. Here, we summarize the distribution of such molecules across multiple taxa, with a focus on model organisms, evolutionary processes that led to the multitude of such molecules, and functional consequences for the diversification or loss of these receptors.
Collapse
Affiliation(s)
- Elena Cortés
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Joseph S Pak
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Mukaigasa K, Sakuma C, Yaginuma H. The developmental hourglass model is applicable to the spinal cord based on single-cell transcriptomes and non-conserved cis-regulatory elements. Dev Growth Differ 2021; 63:372-391. [PMID: 34473348 PMCID: PMC9293469 DOI: 10.1111/dgd.12750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/27/2022]
Abstract
The developmental hourglass model predicts that embryonic morphology is most conserved at the mid-embryonic stage and diverges at the early and late stages. To date, this model has been verified by examining the anatomical features or gene expression profiles at the whole embryonic level. Here, by data mining approach utilizing multiple genomic and transcriptomic datasets from different species in combination, and by experimental validation, we demonstrate that the hourglass model is also applicable to a reduced element, the spinal cord. In the middle of spinal cord development, dorsoventrally arrayed neuronal progenitor domains are established, which are conserved among vertebrates. By comparing the publicly available single-cell transcriptome datasets of mice and zebrafish, we found that ventral subpopulations of post-mitotic spinal neurons display divergent molecular profiles. We also detected the non-conservation of cis-regulatory elements located around the progenitor fate determinants, indicating that the cis-regulatory elements contributing to the progenitor specification are evolvable. These results demonstrate that, despite the conservation of the progenitor domains, the processes before and after the progenitor domain specification diverged. This study will be helpful to understand the molecular basis of the developmental hourglass model.
Collapse
Affiliation(s)
- Katsuki Mukaigasa
- Department of Neuroanatomy and EmbryologySchool of MedicineFukushima Medical UniversityFukushimaJapan
| | - Chie Sakuma
- Department of Neuroanatomy and EmbryologySchool of MedicineFukushima Medical UniversityFukushimaJapan
| | - Hiroyuki Yaginuma
- Department of Neuroanatomy and EmbryologySchool of MedicineFukushima Medical UniversityFukushimaJapan
| |
Collapse
|
3
|
Friocourt F, Kozulin P, Belle M, Suárez R, Di‐Poï N, Richards LJ, Giacobini P, Chédotal A. Shared and differential features of Robo3 expression pattern in amniotes. J Comp Neurol 2019; 527:2009-2029. [DOI: 10.1002/cne.24648] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
Affiliation(s)
| | - Peter Kozulin
- The Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
| | - Morgane Belle
- Sorbonne Université, INSERM, CNRS Institut de la Vision Paris France
| | - Rodrigo Suárez
- The Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
| | - Nicolas Di‐Poï
- Research Program in Developmental Biology, Institute of Biotechnology University of Helsinki Helsinki Finland
| | - Linda J. Richards
- The Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
- The School of Biomedical Sciences The University of Queensland Brisbane Queensland Australia
| | - Paolo Giacobini
- University of Lille, UMR‐S 1172, Centre de Recherche Jean‐Pierre AUBERT Lille France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain INSERM, UMR‐S 1172 Lille France
- FHU 1,000 Days for Health School of Medicine Lille France
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS Institut de la Vision Paris France
| |
Collapse
|
4
|
Friocourt F, Chédotal A. The Robo3 receptor, a key player in the development, evolution, and function of commissural systems. Dev Neurobiol 2017; 77:876-890. [DOI: 10.1002/dneu.22478] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/04/2016] [Accepted: 12/06/2016] [Indexed: 12/15/2022]
Affiliation(s)
- François Friocourt
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision; 17 Rue Moreau Paris 75012 France
| | - Alain Chédotal
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision; 17 Rue Moreau Paris 75012 France
| |
Collapse
|
5
|
Ruedel A, Schott M, Schubert T, Bosserhoff AK. Robo3A and Robo3B expression is regulated via alternative promoters and mRNA stability. Cancer Cell Int 2016; 16:71. [PMID: 27660555 PMCID: PMC5028924 DOI: 10.1186/s12935-016-0347-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/14/2016] [Indexed: 11/28/2022] Open
Abstract
Background The transmembrane receptor family Roundabout (Robo) was described to have an essential role in the developing nervous system. Recent studies demonstrated that Robo3 shows an altered expression in rheumatoid arthritis as well as in melanoma. Context and purpose of the study Until today no detailed studies of the two Robo3 isoforms (Robo3A and Robo3B) and their roles in rheumatoid arthritis synovial fibroblasts, respectively malignant melanoma are available. To get a better understanding regarding the role of Robo3A and Robo3B in the molecular process of rheumatoid arthritis and melanoma the exact characterization of expression and regulation is object of this study. Results mRNA and protein expression of the transcriptional variants were analyzed by quantitative RT-PCR respectively western blotting and revealed particularly enhanced expression of Robo3B in rheumatoid arthritis and melanoma. Promoter assays and inhibitor studies also disclosed that there is apparently a cell- and isoform-specific regulation of the Robo3 expression. Finally, dissimilar mRNA stabilities of Robo3A and Robo3B are identified as decisive posttranscriptional gene expression control. Conclusion In summary, this study supported an isotype specific role of Robo3B in disease hinting to different functional roles of each isoform.
Collapse
Affiliation(s)
- Anke Ruedel
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander University of Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany
| | - Mandy Schott
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander University of Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany
| | - Thomas Schubert
- Institute of Pathology, Friedrich-Alexander University of Erlangen-Nürnberg, Universitätsstrasse, 91054 Erlangen, Germany
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander University of Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany
| |
Collapse
|
6
|
Takeuchi M, Yamaguchi S, Yonemura S, Kakiguchi K, Sato Y, Higashiyama T, Shimizu T, Hibi M. Type IV Collagen Controls the Axogenesis of Cerebellar Granule Cells by Regulating Basement Membrane Integrity in Zebrafish. PLoS Genet 2015; 11:e1005587. [PMID: 26451951 PMCID: PMC4599943 DOI: 10.1371/journal.pgen.1005587] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/17/2015] [Indexed: 01/08/2023] Open
Abstract
Granule cells (GCs) are the major glutamatergic neurons in the cerebellum, and GC axon formation is an initial step in establishing functional cerebellar circuits. In the zebrafish cerebellum, GCs can be classified into rostromedial and caudolateral groups, according to the locations of their somata in the corresponding cerebellar lobes. The axons of the GCs in the caudolateral lobes terminate on crest cells in the dorsal hindbrain, as well as forming en passant synapses with Purkinje cells in the cerebellum. In the zebrafish mutant shiomaneki, the caudolateral GCs extend aberrant axons. Positional cloning revealed that the shiomaneki (sio) gene locus encodes Col4a6, a subunit of type IV collagen, which, in a complex with Col4a5, is a basement membrane (BM) component. Both col4a5 and col4a6 mutants displayed similar abnormalities in the axogenesis of GCs and retinal ganglion cells (RGCs). Although type IV collagen is reported to control axon targeting by regulating the concentration gradient of an axonal guidance molecule Slit, Slit overexpression did not affect the GC axons. The structure of the BM surrounding the tectum and dorsal hindbrain was disorganized in the col4a5 and col4a6 mutants. Moreover, the abnormal axogenesis of the caudolateral GCs and the RGCs was coupled with aberrant BM structures in the type IV collagen mutants. The regrowth of GC axons after experimental ablation revealed that the original and newly formed axons displayed similar branching and extension abnormalities in the col4a6 mutants. These results collectively suggest that type IV collagen controls GC axon formation by regulating the integrity of the BM, which provides axons with the correct path to their targets. The cerebellum is involved in motor coordination and motor learning. Granule cells are the major excitatory neurons in the cerebellum. It is largely unknown how the formation of cerebellar neural circuits, including the elaboration of granule cell axons, is controlled. We investigated a zebrafish mutant shiomaneki, in which some of the granule cells have abnormal axons. We identified collagen (col) 4a6 as the gene responsible for the mutant phenotype. Col4a6 forms a complex with Col4a5, which is a component of the basement membrane. We found that mutants of both col4a5 and col4a6 showed similar axonal abnormalities in both the granule cells and the retinal ganglion cells, and that the basement membrane structure surrounding the central nervous system was disrupted in these mutants. Furthermore, the abnormalities in granule cell axon formation were coupled with aberrant basement membrane structures in the col4a6 mutants. These data suggest that type IV collagen controls the axon formation of some types of neurons by establishing and/or maintaining the integrity of the basement membrane, which provides axons with the correct path to their targets. These findings may explain some aspects of a human disorder, Alport syndrome, which is caused by mutations in type IV collagen genes.
Collapse
Affiliation(s)
- Miki Takeuchi
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, Japan
| | - Shingo Yamaguchi
- Devision of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Shigenobu Yonemura
- Ultrastructural Research Team, RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan
| | - Kisa Kakiguchi
- Ultrastructural Research Team, RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi, Japan
| | - Takashi Shimizu
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, Japan
- Devision of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Masahiko Hibi
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, Japan
- Devision of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
- * E-mail:
| |
Collapse
|
7
|
Steiner AB, Kim T, Cabot V, Hudspeth AJ. Dynamic gene expression by putative hair-cell progenitors during regeneration in the zebrafish lateral line. Proc Natl Acad Sci U S A 2014; 111:E1393-401. [PMID: 24706895 PMCID: PMC3986164 DOI: 10.1073/pnas.1318692111] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hearing loss is most commonly caused by the destruction of mechanosensory hair cells in the ear. This condition is usually permanent: Despite the presence of putative hair-cell progenitors in the cochlea, hair cells are not naturally replenished in adult mammals. Unlike those of the mammalian ear, the progenitor cells of nonmammalian vertebrates can regenerate hair cells throughout life. The basis of this difference remains largely unexplored but may lie in molecular dissimilarities that affect how progenitors respond to hair-cell death. To approach this issue, we analyzed gene expression in hair-cell progenitors of the lateral-line system. We developed a transgenic line of zebrafish that expresses a red fluorescent protein in the presumptive hair-cell progenitors known as mantle cells. Fluorescence-activated cell sorting from the skins of transgenic larvae, followed by microarray-based expression analysis, revealed a constellation of transcripts that are specifically enriched in these cells. Gene expression analysis after hair-cell ablation uncovered a cohort of genes that are differentially regulated early in regeneration, suggesting possible roles in the response of progenitors to hair-cell death. These results provide a resource for studying hair-cell regeneration and the biology of sensory progenitor cells.
Collapse
Affiliation(s)
- Aaron B Steiner
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY 10065
| | | | | | | |
Collapse
|
8
|
Schweitzer J, Löhr H, Bonkowsky JL, Hübscher K, Driever W. Sim1a and Arnt2 contribute to hypothalamo-spinal axon guidance by regulating Robo2 activity via a Robo3-dependent mechanism. Development 2013; 140:93-106. [PMID: 23222439 DOI: 10.1242/dev.087825] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Precise spatiotemporal control of axon guidance factor expression is a prerequisite for formation of functional neuronal connections. Although Netrin/Dcc- and Robo/Slit-mediated attractive and repulsive guidance of commissural axons have been extensively studied, little is known about mechanisms controlling mediolateral positioning of longitudinal axons in vertebrates. Here, we use a genetic approach in zebrafish embryos to study pathfinding mechanisms of dopaminergic and neuroendocrine longitudinal axons projecting from the hypothalamus into hindbrain and spinal cord. The transcription factors Sim1a and Arnt2 contribute to differentiation of a defined population of dopaminergic and neuroendocrine neurons. We show that both factors also control aspects of axon guidance: Sim1a or Arnt2 depletion results in displacement of hypothalamo-spinal longitudinal axons towards the midline. This phenotype is suppressed in robo3 guidance receptor mutant embryos. In the absence of Sim1a and Arnt2, expression of the robo3 splice isoform robo3a.1 is increased in the hypothalamus, indicating negative control of robo3a.1 transcription by these factors. We further provide evidence that increased Robo3a.1 levels interfere with Robo2-mediated repulsive axon guidance. Finally, we show that the N-terminal domain unique to Robo3a.1 mediates the block of Robo2 repulsive activity. Therefore, Sim1a and Arnt2 contribute to control of lateral positioning of longitudinal hypothalamic-spinal axons by negative regulation of robo3a.1 expression, which in turn attenuates the repulsive activity of Robo2.
Collapse
Affiliation(s)
- Jörn Schweitzer
- Developmental Biology, Institute Biology 1, Faculty of Biology, University of Freiburg, Hauptstrasse 1, D-79104 Freiburg, Germany.
| | | | | | | | | |
Collapse
|
9
|
Weigand JE, Boeckel JN, Gellert P, Dimmeler S. Hypoxia-induced alternative splicing in endothelial cells. PLoS One 2012; 7:e42697. [PMID: 22876330 PMCID: PMC3411717 DOI: 10.1371/journal.pone.0042697] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/11/2012] [Indexed: 01/12/2023] Open
Abstract
Background Adaptation to low oxygen by changing gene expression is vitally important for cell survival and tissue development. The sprouting of new blood vessels, initiated from endothelial cells, restores the oxygen supply of ischemic tissues. In contrast to the transcriptional response induced by hypoxia, which is mainly mediated by members of the HIF family, there are only few studies investigating alternative splicing events. Therefore, we performed an exon array for the genome-wide analysis of hypoxia-related changes of alternative splicing in endothelial cells. Methodology/Principal findings Human umbilical vein endothelial cells (HUVECs) were incubated under hypoxic conditions (1% O2) for 48 h. Genome-wide transcript and exon expression levels were assessed using the Affymetrix GeneChip Human Exon 1.0 ST Array. We found altered expression of 294 genes after hypoxia treatment. Upregulated genes are highly enriched in glucose metabolism and angiogenesis related processes, whereas downregulated genes are mainly connected to cell cycle and DNA repair. Thus, gene expression patterns recapitulate known adaptations to low oxygen supply. Alternative splicing events, until now not related to hypoxia, are shown for nine genes: six which are implicated in angiogenesis-mediated cytoskeleton remodeling (cask, itsn1, larp6, sptan1, tpm1 and robo1); one, which is involved in the synthesis of membrane-anchors (pign) and two universal regulators of gene expression (cugbp1 and max). Conclusions/Significance For the first time, this study investigates changes in splicing in the physiological response to hypoxia on a genome-wide scale. Nine alternative splicing events, until now not related to hypoxia, are reported, considerably expanding the information on splicing changes due to low oxygen supply. Therefore, this study provides further knowledge on hypoxia induced gene expression changes and presents new starting points to study the hypoxia adaptation of endothelial cells.
Collapse
Affiliation(s)
- Julia E Weigand
- Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Johann Wolfgang Goethe University Frankfurt, Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
10
|
Bonner J, Letko M, Nikolaus OB, Krug L, Cooper A, Chadwick B, Conklin P, Lim A, Chien CB, Dorsky RI. Midline crossing is not required for subsequent pathfinding decisions in commissural neurons. Neural Dev 2012; 7:18. [PMID: 22672767 PMCID: PMC3507651 DOI: 10.1186/1749-8104-7-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/03/2012] [Indexed: 11/16/2022] Open
Abstract
Background Growth cone navigation across the vertebrate midline is critical in the establishment of nervous system connectivity. While midline crossing is achieved through coordinated signaling of attractive and repulsive cues, this has never been demonstrated at the single cell level. Further, though growth cone responsiveness to guidance cues changes after crossing the midline, it is unclear whether midline crossing itself is required for subsequent guidance decisions in vivo. In the zebrafish, spinal commissures are initially formed by a pioneer neuron called CoPA (Commissural Primary Ascending). Unlike in other vertebrate models, CoPA navigates the midline alone, allowing for single-cell analysis of axon guidance mechanisms. Results We provide evidence that CoPA expresses the known axon guidance receptors dcc, robo3 and robo2. Using loss of function mutants and gene knockdown, we show that the functions of these genes are evolutionarily conserved in teleosts and that they are used consecutively by CoPA neurons. We also reveal novel roles for robo2 and robo3 in maintaining commissure structure. When midline crossing is prevented in robo3 mutants and dcc gene knockdown, ipsilaterally projecting neurons respond to postcrossing guidance cues. Furthermore, DCC inhibits Robo2 function before midline crossing to allow a midline approach and crossing. Conclusions Our results demonstrate that midline crossing is not required for subsequent guidance decisions by pioneer axons and that this is due, in part, to DCC inhibition of Robo2 function prior to midline crossing.
Collapse
Affiliation(s)
- Jennifer Bonner
- Biology Department, Skidmore College, Saratoga Springs, NY 12866, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Slit1b-Robo3 signaling and N-cadherin regulate apical process retraction in developing retinal ganglion cells. J Neurosci 2012; 32:223-8. [PMID: 22219284 DOI: 10.1523/jneurosci.2596-11.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
When neurons exit the cell cycle after their terminal mitosis, they detach from the apical surface of the neuroepithelium. Despite the fact that this detachment is crucial for further neurogenesis and neuronal migration, the underlying mechanisms are still not understood. Here, taking advantage of the genetics and imaging possibilities of the zebrafish retina as a model system, we show by knockdown experiments that the guidance molecule Slit1b and its receptor Robo3 are required for apical retraction of retinal ganglion cells (RGCs). In contrast, N-cadherin seems to be responsible for maintenance of apical attachment, as expression of dominant-negative N-cadherin causes RGCs to lose apical attachments prematurely and rescues retraction in slit1b morphants. These results suggest that Slit-Robo signaling downregulates N-cadherin activity to allow apical retraction in newly generated RGCs.
Collapse
|
12
|
Netrin-DCC, Robo-Slit, and heparan sulfate proteoglycans coordinate lateral positioning of longitudinal dopaminergic diencephalospinal axons. J Neurosci 2009; 29:8914-26. [PMID: 19605629 DOI: 10.1523/jneurosci.0568-09.2009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Longitudinal axons provide connectivity between remote areas of the nervous system. Although the molecular determinants driving commissural pathway formation have been well characterized, mechanisms specifying the formation of longitudinal axon tracts in the vertebrate nervous system are largely unknown. Here, we study axon guidance mechanisms of the longitudinal dopaminergic (DA) diencephalospinal tract. This tract is established by DA neurons located in the ventral diencephalon and is thought to be involved in modulating locomotor activity. Using mutant analysis as well as gain of function and loss of function experiments, we demonstrate that longitudinal DA axons navigate by integrating long-range signaling of midline-derived cues. Repulsive Robo2/Slit signaling keeps longitudinal DA axons away from the midline. In the absence of repulsive Robo2/Slit function, DA axons are attracted toward the midline by DCC (deleted in colorectal cancer)/Netrin1 signaling. Thus, Slit-based repulsion counteracts Netrin-mediated attraction to specify lateral positions of the DA diencephalospinal tract. We further identified heparan sulfate proteglycans as essential modulators of DA diencephalospinal guidance mechanisms. Our findings provide insight into the complexity of positioning far-projecting longitudinal axons and allow us to provide a model for DA diencephalospinal pathfinding. Simultaneous integrations of repulsive and attractive long-range cues from the midline act in a concerted manner to define lateral positions of DA longitudinal axon tracts.
Collapse
|
13
|
Burgess HA, Johnson SL, Granato M. Unidirectional startle responses and disrupted left-right co-ordination of motor behaviors in robo3 mutant zebrafish. GENES BRAIN AND BEHAVIOR 2009; 8:500-11. [PMID: 19496826 DOI: 10.1111/j.1601-183x.2009.00499.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Roundabout (Robo) family of receptors and their Slit ligands play well-established roles in axonal guidance, including in humans where horizontal gaze palsy with progressive scoliosis (HGPPS) is caused by mutations in the robo3 gene. Although significant progress has been made toward understanding the mechanism by which Robo receptors establish commissural projections in the central nervous system, less is known about how these projections contribute to neural circuits mediating behavior. In this study, we report cloning of the zebrafish behavioral mutant twitch twice and show that twitch twice encodes robo3. We show that in mutant hindbrains the axons of an identified pair of neurons, the Mauthner cells, fail to cross the midline. The Mauthner neurons are essential for the startle response, and in twitch twice/robo3 mutants misguidance of the Mauthner axons results in a unidirectional startle response. Moreover, we show that twitch twice mutants exhibit normal visual acuity but display defects in horizontal eye movements, suggesting a specific and critical role for twitch twice/robo3 in sensory-guided behavior.
Collapse
Affiliation(s)
- H A Burgess
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | | | | |
Collapse
|
14
|
Di Meglio T, Nguyen-Ba-Charvet KT, Tessier-Lavigne M, Sotelo C, Chédotal A. Molecular mechanisms controlling midline crossing by precerebellar neurons. J Neurosci 2008; 28:6285-94. [PMID: 18562598 PMCID: PMC6670887 DOI: 10.1523/jneurosci.0078-08.2008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 04/18/2008] [Accepted: 05/07/2008] [Indexed: 11/21/2022] Open
Abstract
Precerebellar neurons of the inferior olive (IO) and lateral reticular nucleus (LRN) migrate tangentially from the rhombic lip toward the floor plate following parallel pathways. This process is thought to involve netrin-1 attraction. However, whereas the cell bodies of LRN neurons cross the midline, IO neurons are unable to do so. In many systems and species, axon guidance and cell migration at the midline are controlled by Slits and their receptor Robos. We showed previously that precerebellar axons and neurons do not cross the midline in the absence of the Robo3 receptor. To determine whether this signaling by Slits and the two other Robo receptors, Robo1 and Robo2, also regulates precerebellar neuron behavior at the floor plate, we studied the phenotype of Slit1/2 and Robo1/2/3 compound mutants. Our results showed that many IO neurons can cross the midline in absence of Slit1/2 or Robo1/2, supporting a role for midline repellents in guiding precerebellar neurons. We also show that these molecules control the development of the lamellation of the inferior olivary complex. Last, the analysis of Robo1/2/3 triple mutants suggests that Robo3 inhibits Robo1/2 repulsion in precrossing LRN axons but not in IO axons in which it has a dominant and distinct function.
Collapse
Affiliation(s)
- Thomas Di Meglio
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 7102
- Université Pierre et Marie Curie, UMR 7102, F-75005 Paris, France
| | - Kim T. Nguyen-Ba-Charvet
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 7102
- Université Pierre et Marie Curie, UMR 7102, F-75005 Paris, France
| | | | - Constantino Sotelo
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 7102
- Université Pierre et Marie Curie, UMR 7102, F-75005 Paris, France
- Cátedra de Neurobiología del Desarrollo “Remedios Caro Almela,” Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche–Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Alicante, Spain
| | - Alain Chédotal
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 7102
- Université Pierre et Marie Curie, UMR 7102, F-75005 Paris, France
| |
Collapse
|
15
|
Chen Z, Gore BB, Long H, Ma L, Tessier-Lavigne M. Alternative splicing of the Robo3 axon guidance receptor governs the midline switch from attraction to repulsion. Neuron 2008; 58:325-32. [PMID: 18466743 DOI: 10.1016/j.neuron.2008.02.016] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 01/29/2007] [Accepted: 02/15/2008] [Indexed: 11/19/2022]
Abstract
Alternative splicing provides a means to increase the complexity of gene function in numerous biological processes, including nervous system wiring. Navigating axons switch responses from attraction to repulsion at intermediate targets, allowing them to grow to each intermediate target and then to move on. The mechanisms underlying this switch remain poorly characterized. We previously showed that the Slit receptor Robo3 is required for spinal commissural axons to enter and cross the midline intermediate target. We report here the existence of two functionally antagonistic isoforms of Robo3 with distinct carboxy termini arising from alternative splicing. Robo3.1 is deployed on the precrossing and crossing portions of commissural axons and allows midline crossing by silencing Slit repulsion. Robo3.2 becomes expressed on the postcrossing portion and blocks midline recrossing, favoring Slit repulsion. The tight spatial regulation of opponent splice variants helps ensure high-fidelity transition of axonal responses from attraction to repulsion at the midline.
Collapse
Affiliation(s)
- Zhe Chen
- Division of Research, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | | | | | |
Collapse
|
16
|
Recent papers on zebrafish and other aquarium fish models. Zebrafish 2008; 2:215-24. [PMID: 18248196 DOI: 10.1089/zeb.2005.2.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Devine CA, Key B. Robo-Slit interactions regulate longitudinal axon pathfinding in the embryonic vertebrate brain. Dev Biol 2008; 313:371-83. [PMID: 18061159 DOI: 10.1016/j.ydbio.2007.10.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 10/01/2007] [Accepted: 10/22/2007] [Indexed: 01/11/2023]
Abstract
The early network of axons in the embryonic brain provides connectivity between functionally distinct regions of the nervous system. While many of the molecular interactions driving commissural pathway formation have been deciphered, the mechanisms underlying the development of longitudinal tracts remain unclear. We have identified here a role for the Roundabout (Robo) family of axon guidance receptors in the positioning of longitudinally projecting axons along the dorsoventral axis in the embryonic zebrafish forebrain. Using a loss-of-function approach, we established that Robo family members exhibit complementary functions in the tract of the postoptic commissure (TPOC), the major longitudinal tract in the forebrain. Robo2 acted initially to split the TPOC into discrete fascicles upon entering a broad domain of Slit1a expression in the ventrocaudal diencephalon. In contrast, Robo1 and Robo3 restricted the extent of defasciculation of the TPOC. In this way, the complementary roles of Robo family members balance levels of fasciculation and defasciculation along this trajectory. These results demonstrate a key role for Robo-Slit signaling in vertebrate longitudinal axon guidance and highlight the importance of context-specific guidance cues during navigation within complex pathways.
Collapse
Affiliation(s)
- C A Devine
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | | |
Collapse
|
18
|
Nural HF, Todd Farmer W, Mastick GS. The Slit receptor Robo1 is predominantly expressed via the Dutt1 alternative promoter in pioneer neurons in the embryonic mouse brain and spinal cord. Gene Expr Patterns 2007; 7:837-45. [PMID: 17826360 PMCID: PMC2080859 DOI: 10.1016/j.modgep.2007.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 07/27/2007] [Accepted: 07/31/2007] [Indexed: 10/23/2022]
Abstract
Robo1 is a member of the Roundabout (Robo) family of receptors for the Slit axon guidance cues. In mice (and humans), the Robo1 locus has alternative promoters producing two transcript isoforms, Robo1 and Dutt1. These isoforms have unique 5' termini, predicted to encode distinct N-terminal amino acids, but share the rest of their 3' exons. To determine the spatial expression of the Robo1 and Dutt1 isoforms, we generated isoform-specific RNA probes, and carried out in situ hybridization on E10.5 mouse embryos, the stage in early neuron differentiation when many major axon pathways are established. The two isoforms had distinct expression patterns that partially overlapped. Dutt1 was the predominant isoform, with widespread expression in regions of post-mitotic neurons and neuroepithelial cells. The Robo1 isoform had a distinct expression pattern restricted to subsets of neurons, many of which were Dutt1-negative. Dutt1 was the main isoform expressed in spinal cord commissural neurons. For both probes, the main hybridization signal was limited to two spots in the nuclei of individual cells. This study shows distinct expression patterns for the Dutt1 and Robo1 alternative promoters in the embryonic nervous system.
Collapse
|
19
|
Dalkic E, Kuscu C, Sucularli C, Aydin IT, Akcali KC, Konu O. Alternatively spliced Robo2 isoforms in zebrafish and rat. Dev Genes Evol 2006; 216:555-63. [PMID: 16625395 DOI: 10.1007/s00427-006-0070-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 03/13/2006] [Indexed: 11/27/2022]
Abstract
Robo2, a member of the robo gene family, functions as a repulsive axon guidance receptor as well as a regulator of cell migration and tissue morphogenesis in different taxa. In this study, a novel isoform of the zebrafish robo2 (robo2_tv2), which included an otherwise alternatively spliced exon (CAE), has been characterized. Robo2_tv2 is expressed differentially in most non-neuronal tissues of adult zebrafish whereas robo2_tv1 expression to a great extent is restricted to the brain and eye. In zebrafish, robo2_tv2 exhibits a very-low-level basal expression starting from 1 day post fertilization until the mid-larval stages, at which time its expression increases dramatically and could be detected throughout adulthood. Our findings demonstrate that the amino acid sequence coded by CAE of the robo2 gene is highly conserved between zebrafish and mammals, and also contains conserved motifs shared with robo1 and robo4 but not with robo3. Furthermore, we provide an account of differential transcription of the CAE homolog in various tissues of the adult rat. These results suggest that the alternatively spliced robo2 isoforms may exhibit tissue specificity.
Collapse
Affiliation(s)
- Ertugrul Dalkic
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|