1
|
Gruss MJ, O’Callaghan C, Donnellan M, Corsi AK. A Twist-Box domain of the C. elegans Twist homolog, HLH-8, plays a complex role in transcriptional regulation. Genetics 2023; 224:iyad066. [PMID: 37067863 PMCID: PMC10411555 DOI: 10.1093/genetics/iyad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/04/2022] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
TWIST1 is a basic helix-loop-helix (bHLH) transcription factor in humans that functions in mesoderm differentiation. TWIST1 primarily regulates genes as a transcriptional repressor often through TWIST-Box domain-mediated protein-protein interactions. The TWIST-Box also can function as an activation domain requiring 3 conserved, equidistant amino acids (LXXXFXXXR). Autosomal dominant mutations in TWIST1, including 2 reported in these conserved amino acids (F187L and R191M), lead to craniofacial defects in Saethre-Chotzen syndrome (SCS). Caenorhabditis elegans has a single TWIST1 homolog, HLH-8, that functions in the differentiation of the muscles responsible for egg laying and defecation. Null alleles in hlh-8 lead to severely egg-laying defective and constipated animals due to defects in the corresponding muscles. TWIST1 and HLH-8 share sequence identity in their bHLH regions; however, the domain responsible for the transcriptional activity of HLH-8 is unknown. Sequence alignment suggests that HLH-8 has a TWIST-Box LXXXFXXXR motif; however, its function also is unknown. CRISPR/Cas9 genome editing was utilized to generate a domain deletion and several missense mutations, including those analogous to SCS patients, in the 3 conserved HLH-8 amino acids to investigate their functional role. The TWIST-Box alleles did not phenocopy hlh-8 null mutants. The strongest phenotype detected was a retentive (Ret) phenotype with late-stage embryos in the hermaphrodite uterus. Further, GFP reporters of HLH-8 downstream target genes (arg-1::gfp and egl-15::gfp) revealed tissue-specific, target-specific, and allele-specific defects. Overall, the TWIST-Box in HLH-8 is partially required for the protein's transcriptional activity, and the conserved amino acids contribute unequally to the domain's function.
Collapse
Affiliation(s)
- Michael J Gruss
- Department of Biology, The Catholic University of America, 620 Michigan Ave., NE, Washington, D.C. 20064USA
| | - Colleen O’Callaghan
- Department of Biology, The Catholic University of America, 620 Michigan Ave., NE, Washington, D.C. 20064USA
| | - Molly Donnellan
- Department of Biology, The Catholic University of America, 620 Michigan Ave., NE, Washington, D.C. 20064USA
| | - Ann K Corsi
- Department of Biology, The Catholic University of America, 620 Michigan Ave., NE, Washington, D.C. 20064USA
| |
Collapse
|
2
|
Choi U, Hu M, Zhang Q, Sieburth D. The head mesodermal cell couples FMRFamide neuropeptide signaling with rhythmic muscle contraction in C. elegans. Nat Commun 2023; 14:4218. [PMID: 37452027 PMCID: PMC10349088 DOI: 10.1038/s41467-023-39955-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
FMRFamides are evolutionarily conserved neuropeptides that play critical roles in behavior, energy balance, and reproduction. Here, we show that FMRFamide signaling from the nervous system is critical for the rhythmic activation of a single cell of previously unknown function, the head mesodermal cell (hmc) in C. elegans. Behavioral, calcium imaging, and genetic studies reveal that release of the FLP-22 neuropeptide from the AVL neuron in response to pacemaker signaling activates hmc every 50 s through an frpr-17 G protein-coupled receptor (GPCR) and a protein kinase A signaling cascade in hmc. hmc activation results in muscle contraction through coupling by gap junctions composed of UNC-9/Innexin. hmc activation is inhibited by the neuronal release of a second FMRFamide-like neuropeptide, FLP-9, which functions through its GPCR, frpr-21, in hmc. This study reveals a function for two opposing FMRFamide signaling pathways in controlling the rhythmic activation of a target cell through volume transmission.
Collapse
Affiliation(s)
- Ukjin Choi
- DSR graduate program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Mingxi Hu
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Qixin Zhang
- MPHY program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Derek Sieburth
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
3
|
Soukup EM, Bettinger JC, Mathies LD. Transcription factors regulating the fate and developmental potential of a multipotent progenitor in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2022; 12:jkac232. [PMID: 36063055 PMCID: PMC9635636 DOI: 10.1093/g3journal/jkac232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Multipotent stem and progenitor cells have the capacity to generate a limited array of related cell types. The Caenorhabditis elegans somatic gonadal precursors are multipotent progenitors that generate all 143 cells of the somatic gonad, including complex tissues and specialized signaling cells. To screen for candidate regulators of cell fate and multipotency, we identified transcription factor genes with higher expression in somatic gonadal precursors than in their differentiated sister, the head mesodermal cell. We used RNA interference or genetic mutants to reduce the function of 183 of these genes and examined the worms for defects in the somatic gonadal precursor cell fate or the ability to generate gonadal tissue types. We identify 8 genes that regulate somatic gonadal precursor fate, including the SWI/SNF chromatin remodeling complex gene swsn-3 and the Ci/GLI homolog tra-1, which is the terminal regulator of sex determination. Four genes are necessary for somatic gonadal precursors to generate the correct number and type of descendant cells. We show that the E2F homolog, efl-3, regulates the cell fate decision between distal tip cells and the sheath/spermathecal precursor. We find that the FACT complex gene hmg-4 is required for the generation of the correct number of somatic gonadal precursor descendants, and we define an earlier role for the nhr-25 nuclear hormone receptor-encoding gene, in addition to its previously described role in regulating the asymmetric division of somatic gonadal precursors. Overall, our data show that genes regulating cell fate are largely different from genes regulating developmental potential, demonstrating that these processes are genetically separable.
Collapse
Affiliation(s)
- Evan M Soukup
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Jill C Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Laura D Mathies
- Corresponding author: Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980613, Richmond, VA 23298-0613, USA.
| |
Collapse
|
4
|
Crittenden SL, Lee C, Mohanty I, Battula S, Knobel K, Kimble J. Sexual dimorphism of niche architecture and regulation of the Caenorhabditis elegans germline stem cell pool. Mol Biol Cell 2019; 30:1757-1769. [PMID: 31067147 PMCID: PMC6727753 DOI: 10.1091/mbc.e19-03-0164] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 01/08/2023] Open
Abstract
Stem cell maintenance by niche signaling is a common theme across phylogeny. In the Caenorhabditis elegans gonad, the broad outlines of germline stem cell (GSC) regulation are the same for both sexes: GLP-1/Notch signaling from the mesenchymal distal tip cell niche maintains GSCs in the distal gonad of both sexes and does so via two key stem cell regulators, SYGL-1 and LST-1. Yet most recent analyses of niche signaling and GSC regulation have focused on XX hermaphrodites, an essentially female sex making sperm in larvae and oocytes in adults. Here we focus on GSC regulation in XO males. Sexual dimorphism of niche architecture, reported previously, suggested that the molecular responses to niche signaling or numbers of GSCs might also be sexually distinct. Remarkably, this is not the case. This work extends our understanding of the sexually dimorphic niche architecture, but also demonstrates that the dimorphic niches drive a similar molecular response and maintain a similar number of GSCs in their stem cell pools.
Collapse
Affiliation(s)
- Sarah L. Crittenden
- Howard Hughes Medical Institute, University of Wisconsin–Madison, Madison, WI 53706
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706
| | - ChangHwan Lee
- Howard Hughes Medical Institute, University of Wisconsin–Madison, Madison, WI 53706
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706
| | - Ipsita Mohanty
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706
| | - Sindhu Battula
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706
| | - Karla Knobel
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706
| | - Judith Kimble
- Howard Hughes Medical Institute, University of Wisconsin–Madison, Madison, WI 53706
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706
| |
Collapse
|
5
|
Mathies LD, Ray S, Lopez-Alvillar K, Arbeitman MN, Davies AG, Bettinger JC. mRNA profiling reveals significant transcriptional differences between a multipotent progenitor and its differentiated sister. BMC Genomics 2019; 20:427. [PMID: 31138122 PMCID: PMC6540470 DOI: 10.1186/s12864-019-5821-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/21/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The two Caenorhabditis elegans somatic gonadal precursors (SGPs) are multipotent progenitors that generate all somatic tissues of the adult reproductive system. The sister cells of the SGPs are two head mesodermal cells (hmcs); one hmc dies by programmed cell death and the other terminally differentiates. Thus, a single cell division gives rise to one multipotent progenitor and one differentiated cell with identical lineage histories. We compared the transcriptomes of SGPs and hmcs in order to learn the determinants of multipotency and differentiation in this lineage. RESULTS We generated a strain that expressed fluorescent markers specifically in SGPs (ehn-3A::tdTomato) and hmcs (bgal-1::GFP). We dissociated cells from animals after the SGP/hmc cell division, but before the SGPs had further divided, and subjected the dissociated cells to fluorescence-activated cell sorting to collect isolated SGPs and hmcs. We analyzed the transcriptomes of these cells and found that 5912 transcripts were significantly differentially expressed, with at least two-fold change in expression, between the two cell types. The hmc-biased genes were enriched with those that are characteristic of neurons. The SGP-biased genes were enriched with those indicative of cell proliferation and development. We assessed the validity of our differentially expressed genes by examining existing reporters for five of the 10 genes with the most significantly biased expression in SGPs and found that two showed expression in SGPs. For one reporter that did not show expression in SGPs, we generated a GFP knock-in using CRISPR/Cas9. This reporter, in the native genomic context, was expressed in SGPs. CONCLUSIONS We found that the transcriptional profiles of SGPs and hmcs are strikingly different. The hmc-biased genes are enriched with those that encode synaptic transmission machinery, which strongly suggests that it has neuron-like signaling properties. In contrast, the SGP-biased genes are enriched with genes that encode factors involved in transcription and translation, as would be expected from a cell preparing to undergo proliferative divisions. Mediators of multipotency are likely to be among the genes differentially expressed in SGPs.
Collapse
Affiliation(s)
- Laura D. Mathies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA 23298 USA
| | - Surjyendu Ray
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306 USA
| | - Kayla Lopez-Alvillar
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA 23298 USA
| | - Michelle N. Arbeitman
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306 USA
| | - Andrew G. Davies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA 23298 USA
| | - Jill C. Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA 23298 USA
| |
Collapse
|
6
|
Structural and developmental expression of Ss-riok-2, an RIO protein kinase encoding gene of Strongyloides stercoralis. Sci Rep 2017; 7:8693. [PMID: 28821723 PMCID: PMC5562798 DOI: 10.1038/s41598-017-07991-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/03/2017] [Indexed: 01/29/2023] Open
Abstract
RIO kinases are essential atypical protein kinases in diverse prokaryotic and eukaryotic organisms, playing significant roles in yeast and humans. However, little is known about their functions in parasitic nematodes. In the present study, we have isolated and characterized the full-length cDNA, gDNA and a putative promoter of a RIOK-2 protein kinase (Ss-RIOK-2) encoding gene (Ss-riok-2) from Strongyloides stercoralis, a medically important parasitic nematode (Order Rhabditida). A three-dimensional structure (3D) model of Ss-RIOK-2 was generated using the Chaetomium thermophilum RIOK-2 protein kinase (Ct-RIOK-2) crystal structure 4GYG as a template. A docking study revealed some critical sites for ATP binding and metal binding. The putative promoter of Ss-riok-2 contains a number of conserved elements. RNAseq analysis revealed the highest levels of the Ss-riok-2 transcript in free-living females and parasitic females. To identify anatomical patterns of Ss-riok-2 expression in S. stercoralis, we observed expression patterns of a transgene construct encoding green fluorescent protein under the Ss-riok-2 promoter in post free-living S. stercoralis. Expression driven by this promoter predominated in intestinal cells. This study demonstrates significant advancement in molecular and cellular biological study of S. stercoralis and of parasitic nematodes generally, and provides a foundation for further functional genomic studies.
Collapse
|
7
|
Kim S, Twigg SR, Scanlon VA, Chandra A, Hansen TJ, Alsubait A, Fenwick AL, McGowan SJ, Lord H, Lester T, Sweeney E, Weber A, Cox H, Wilkie AO, Golden A, Corsi AK. Localized TWIST1 and TWIST2 basic domain substitutions cause four distinct human diseases that can be modeled in Caenorhabditis elegans. Hum Mol Genet 2017; 26:2118-2132. [PMID: 28369379 PMCID: PMC5438873 DOI: 10.1093/hmg/ddx107] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/24/2017] [Accepted: 03/14/2017] [Indexed: 12/17/2022] Open
Abstract
Twist transcription factors, members of the basic helix-loop-helix family, play crucial roles in mesoderm development in all animals. Humans have two paralogous genes, TWIST1 and TWIST2, and mutations in each gene have been identified in specific craniofacial disorders. Here, we describe a new clinical entity, Sweeney-Cox syndrome, associated with distinct de novo amino acid substitutions (p.Glu117Val and p.Glu117Gly) at a highly conserved glutamic acid residue located in the basic DNA binding domain of TWIST1, in two subjects with frontonasal dysplasia and additional malformations. Although about one hundred different TWIST1 mutations have been reported in patients with the dominant haploinsufficiency Saethre-Chotzen syndrome (typically associated with craniosynostosis), substitutions uniquely affecting the Glu117 codon were not observed previously. Recently, subjects with Barber-Say and Ablepharon-Macrostomia syndromes were found to harbor heterozygous missense substitutions in the paralogous glutamic acid residue in TWIST2 (p.Glu75Ala, p.Glu75Gln and p.Glu75Lys). To study systematically the effects of these substitutions in individual cells of the developing mesoderm, we engineered all five disease-associated alleles into the equivalent Glu29 residue encoded by hlh-8, the single Twist homolog present in Caenorhabditis elegans. This allelic series revealed that different substitutions exhibit graded severity, in terms of both gene expression and cellular phenotype, which we incorporate into a model explaining the various human disease phenotypes. The genetic analysis favors a predominantly dominant-negative mechanism for the action of amino acid substitutions at this highly conserved glutamic acid residue and illustrates the value of systematic mutagenesis of C. elegans for focused investigation of human disease processes.
Collapse
Affiliation(s)
- Sharon Kim
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen R.F. Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Victoria A. Scanlon
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Aditi Chandra
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyler J. Hansen
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arwa Alsubait
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Aimee L. Fenwick
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Simon J. McGowan
- Computational Biology Research Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Helen Lord
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford OX3 7LE, UK
| | - Tracy Lester
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford OX3 7LE, UK
| | - Elizabeth Sweeney
- Department of Clinical Genetics, Liverpool Women’s NHS Foundation Trust, Liverpool L8 7SS, UK
| | - Astrid Weber
- Department of Clinical Genetics, Liverpool Women’s NHS Foundation Trust, Liverpool L8 7SS, UK
| | - Helen Cox
- Clinical Genetics Unit, Birmingham Women’s NHS Foundation Trust, Birmingham Women’s Hospital, Birmingham B15 2TG, UK
| | - Andrew O.M. Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Andy Golden
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ann K. Corsi
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| |
Collapse
|
8
|
Abstract
In this study, Sallee et al. demonstrate that E-protein dimer formation can promote C. elegans and human bHLH protein instability. By investigating HLH-2, the sole C. elegans E protein, the authors show that HLH-2 functions as a homodimer for sequential roles in AC specification and differentiation and that the functional dimer is targeted for degradation in VUs, the “opposite” fate. The findings indicate that dimerization-driven regulation of bHLH protein stability may be a conserved mechanism for differential regulation in specific cell contexts. E proteins are conserved regulators of growth and development. We show that the Caenorhabditis elegans E-protein helix–loop–helix-2 (HLH-2) functions as a homodimer in directing development and function of the anchor cell (AC) of the gonad, the critical organizer of uterine and vulval development. Our structure–function analysis of HLH-2 indicates that dimerization drives its degradation in other uterine cells (ventral uterine precursor cells [VUs]) that initially have potential to be the AC. We also provide evidence that this mode of dimerization-driven down-regulation can target other basic HLH (bHLH) dimers as well. Remarkably, human E proteins can functionally substitute for C. elegans HLH-2 in regulating AC development and also display dimerization-dependent degradation in VUs. Our results suggest that dimerization-driven regulation of bHLH protein stability may be a conserved mechanism for differential regulation in specific cell contexts.
Collapse
|
9
|
Yuan W, Lok JB, Stoltzfus JD, Gasser RB, Fang F, Lei WQ, Fang R, Zhou YQ, Zhao JL, Hu M. Toward understanding the functional role of Ss-RIOK-1, a RIO protein kinase-encoding gene of Strongyloides stercoralis. PLoS Negl Trop Dis 2014; 8:e3062. [PMID: 25101874 PMCID: PMC4125297 DOI: 10.1371/journal.pntd.0003062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/17/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Some studies of Saccharomyces cerevisiae and mammals have shown that RIO protein kinases (RIOKs) are involved in ribosome biogenesis, cell cycle progression and development. However, there is a paucity of information on their functions in parasitic nematodes. We aimed to investigate the function of RIOK-1 encoding gene from Strongyloides stercoralis, a nematode parasitizing humans and dogs. METHODOLOGY/PRINCIPAL FINDINGS The RIOK-1 protein-encoding gene Ss-riok-1 was characterized from S. stercoralis. The full-length cDNA, gDNA and putative promoter region of Ss-riok-1 were isolated and sequenced. The cDNA comprises 1,828 bp, including a 377 bp 5'-UTR, a 17 bp 3'-UTR and a 1,434 bp ORF encoding a protein of 477 amino acids containing a RIOK-1 signature motif. The genomic sequence of the Ss-riok-1 coding region is 1,636 bp in length and has three exons and two introns. The putative promoter region comprises 4,280 bp and contains conserved promoter elements, including four CAAT boxes, 12 GATA boxes, eight E-boxes (CANNTG) and 38 TATA boxes. The Ss-riok-1 gene is transcribed throughout all developmental stages with the highest transcript abundance in the infective third-stage larva (iL3). Recombinant Ss-RIOK-1 is an active kinase, capable of both phosphorylation and auto-phosphorylation. Patterns of transcriptional reporter expression in transgenic S. stercoralis larvae indicated that Ss-RIOK-1 is expressed in neurons of the head, body and tail as well as in pharynx and hypodermis. CONCLUSIONS/SIGNIFICANCE The characterization of the molecular and the temporal and spatial expression patterns of the encoding gene provide first clues as to functions of RIOKs in the biological processes of parasitic nematodes.
Collapse
Affiliation(s)
- Wang Yuan
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - James B. Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (JBL); (MH)
| | - Jonathan D. Stoltzfus
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robin B. Gasser
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Fang Fang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wei-Qiang Lei
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yan-Qin Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jun-Long Zhao
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- * E-mail: (JBL); (MH)
| |
Collapse
|
10
|
Reinke V, Krause M, Okkema P. Transcriptional regulation of gene expression in C. elegans. ACTA ACUST UNITED AC 2013:1-34. [PMID: 23801596 DOI: 10.1895/wormbook.1.45.2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protein coding gene sequences are converted to mRNA by the highly regulated process of transcription. The precise temporal and spatial control of transcription for many genes is an essential part of development in metazoans. Thus, understanding the molecular mechanisms underlying transcriptional control is essential to understanding cell fate determination during embryogenesis, post-embryonic development, many environmental interactions, and disease-related processes. Studies of transcriptional regulation in C. elegans exploit its genomic simplicity and physical characteristics to define regulatory events with single-cell and minute-time-scale resolution. When combined with the genetics of the system, C. elegans offers a unique and powerful vantage point from which to study how chromatin-associated proteins and their modifications interact with transcription factors and their binding sites to yield precise control of gene expression through transcriptional regulation.
Collapse
Affiliation(s)
- Valerie Reinke
- Department of Genetics, Yale University, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
11
|
Kuntz SG, Williams BA, Sternberg PW, Wold BJ. Transcription factor redundancy and tissue-specific regulation: evidence from functional and physical network connectivity. Genome Res 2012; 22:1907-19. [PMID: 22730465 PMCID: PMC3460186 DOI: 10.1101/gr.133306.111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Two major transcriptional regulators of Caenorhabditis elegans bodywall muscle (BWM) differentiation, hlh-1 and unc-120, are expressed in muscle where they are known to bind and regulate several well-studied muscle-specific genes. Simultaneously mutating both factors profoundly inhibits formation of contractile BWM. These observations were consistent with a simple network model in which the muscle regulatory factors drive tissue-specific transcription by binding selectively near muscle-specific targets to activate them. We tested this model by measuring the number, identity, and tissue-specificity of functional regulatory targets for each factor. Some joint regulatory targets (218) are BWM-specific and enriched for nearby HLH-1 binding. However, contrary to the simple model, the majority of genes regulated by one or both muscle factors are also expressed significantly in non-BWM tissues. We also mapped global factor occupancy by HLH-1, and created a genetic interaction map that identifies hlh-1 collaborating transcription factors. HLH-1 binding did not predict proximate regulatory action overall, despite enrichment for binding among BWM-specific positive regulatory targets of hlh-1. We conclude that these tissue-specific factors contribute much more broadly to the transcriptional output of muscle tissue than previously thought, offering a partial explanation for widespread HLH-1 occupancy. We also identify a novel regulatory connection between the BWM-specific hlh-1 network and the hlh-8/twist nonstriated muscle network. Finally, our results suggest a molecular basis for synthetic lethality in which hlh-1 and unc-120 mutant phenotypes are mutually buffered by joint additive regulation of essential target genes, with additional buffering suggested via newly identified hlh-1 interacting factors.
Collapse
Affiliation(s)
- Steven G Kuntz
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
12
|
Philogene MC, Small SGM, Wang P, Corsi AK. Distinct Caenorhabditis elegans HLH-8/twist-containing dimers function in the mesoderm. Dev Dyn 2012; 241:481-92. [PMID: 22275075 DOI: 10.1002/dvdy.23734] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The Caenorhabditis elegans basic helix-loop-helix (bHLH) factor HLH-8, the single Twist ortholog in the nematode genome, plays important roles in mesoderm development, including M lineage patterning and differentiation of vulval and enteric muscles. HLH-8 cooperates with HLH-2, the bHLH E/Daughterless ortholog, to regulate downstream target genes, but it is not known whether HLH-2 is an obligate partner for all HLH-8 functions. RESULTS Using hlh-2 loss-of-function alleles and RNAi, we discovered that HLH-2 is required in the vulval muscles but not in M patterning or enteric muscle development. Additionally, we found that expressing tethered HLH-8/HLH-8 dimers in hlh-8 null animals rescued M patterning and enteric but not vulval muscle development. CONCLUSIONS These results support a model whereby HLH-8/HLH-8 homodimers function in M lineage patterning and enteric muscles and HLH-8/HLH-2 heterodimers function in the M-derived vulval muscles. Interestingly, the different dimers function in the same M lineage cells and the switch in dimer function coincides with vulval muscle differentiation. The use of distinct Twist dimers is evolutionarily conserved, and C. elegans provides a paradigm for future dissection of differential promoter regulation by these dimers at a single cell resolution.
Collapse
Affiliation(s)
- Mary C Philogene
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | | | | | | |
Collapse
|
13
|
Meyers SG, Corsi AK. C. elegans twist gene expression in differentiated cell types is controlled by autoregulation through intron elements. Dev Biol 2010; 346:224-36. [PMID: 20691175 PMCID: PMC2945437 DOI: 10.1016/j.ydbio.2010.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 07/20/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
Abstract
The temporospatial regulation of genes encoding transcription factors is important during development. The hlh-8 gene encodes the C. elegans mesodermal transcription factor CeTwist. Elements in the hlh-8 promoter restrict gene expression to predominantly undifferentiated cells of the M lineage. We have discovered that hlh-8 expression in differentiated mesodermal cells is controlled by two well-conserved E box elements in the large first intron. Additionally, we found that these elements are bound in vitro by CeTwist and its transcription factor partner, CeE/DA. The E box driven expression is eliminated or diminished in an hlh-8 null allele or in hlh-2 (CeE/DA) RNAi, respectively. Expression of hlh-8 is also diminished in animals harboring an hlh-8 intron deletion allele. Altogether, our results support a model in which hlh-8 is initially expressed in the undifferentiated M lineage cells via promoter elements and then the CeTwist activates its own expression further (autoregulation) in differentiated cells derived from the M lineage via the intron elements. This model provides a mechanism for how a transcription factor may regulate distinct target genes in cells both before and after initiating the differentiation program. The findings could also be relevant to understanding human Twist gene regulation, which is currently not well understood.
Collapse
Affiliation(s)
- Stephany G. Meyers
- Department of Biology, The Catholic University of America, Washington, D.C. 20064
| | - Ann K. Corsi
- Department of Biology, The Catholic University of America, Washington, D.C. 20064
| |
Collapse
|
14
|
Bose S, Boockfor FR. Episodes of prolactin gene expression in GH3 cells are dependent on selective promoter binding of multiple circadian elements. Endocrinology 2010; 151:2287-96. [PMID: 20215567 PMCID: PMC2869263 DOI: 10.1210/en.2009-1252] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prolactin (PRL) gene expression in mammotropes occurs in pulses, but the mechanism(s) underlying this dynamic process remains obscure. Recent findings from our laboratory of an E-box in the rat PRL promoter (E-box133) that can interact with the circadian factors, circadian locomoter output cycles kaput (CLOCK) and brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein (BMAL)-1, and was necessary for pulse activity raised the intriguing possibility that the circadian system may be central to this oscillatory process. In this study, we used serum-shocked GH(3) cells, established previously to synchronize PRL pulses between cells in culture, to reveal that pulses of PRL mRNA are linked temporally to the expression of bmal1, cry1, per1, and per3 mRNA in these cells. Moreover, we found that each of these circadian factors binds to the rat PRL promoter by chromatin immunoprecipitation analysis. Using EMSA analysis, we observed that two sites present in the proximal promoter region, E-box133 and E-box10, bind circadian factors differentially (E-box133 interacted with BMAL1, cryptochrome-1, period (PER)-1, and PER3 but not PER2 and E-box10 bound BMAL1, cryptochrome-1, PER2, PER3 but not PER1). More importantly, down-regulation of any factor binding E-box133 significantly reduced PRL mRNA levels during pulse periods. Our results demonstrate clearly that certain circadian elements binding to the E-box133 site are required for episodes of PRL mRNA expression in serum-shocked GH(3) cultures. Moreover, our findings of binding-related differences between functionally distinct E-boxes demonstrate not only that E-boxes can bind different components but suggest that the number and type of circadian elements that bind to an E-box is central in dictating its function.
Collapse
Affiliation(s)
- Sudeep Bose
- Laboratory of Molecular Dynamics, Department of Regenerative Medicine and Cell Biology, MedicalUniversity of South Carolina, Charleston, South Carolina 294251, USA
| | | |
Collapse
|
15
|
Large EE, Mathies LD. hunchback and Ikaros-like zinc finger genes control reproductive system development in Caenorhabditis elegans. Dev Biol 2009; 339:51-64. [PMID: 20026024 DOI: 10.1016/j.ydbio.2009.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 11/30/2009] [Accepted: 12/09/2009] [Indexed: 01/29/2023]
Abstract
Here we provide evidence for a C2H2 zinc finger gene family with similarity to Ikaros and hunchback. The founding member of this family is Caenorhabditis elegans ehn-3, which has important and poorly understood functions in somatic gonad development. We examined the expression and function of four additional hunchback/Ikaros-like (HIL) genes in C. elegans reproductive system development. Two genes, ehn-3 and R08E3.4, are expressed in somatic gonadal precursors (SGPs) and have overlapping functions in their development. In ehn-3; R08E3.4 double mutants, we find defects in the generation of distal tip cells, anchor cells, and spermatheca; three of the five tissues derived from the SGPs. We provide in vivo evidence that C. elegans HIL proteins have functionally distinct zinc finger domains, with specificity residing in the N-terminal set of four zinc fingers and a likely protein-protein interaction domain provided by the C-terminal pair of zinc fingers. In addition, we find that a chimeric human Ikaros protein containing the N-terminal zinc fingers of EHN-3 functions in C. elegans. Together, these results lend support to the idea that the C. elegans HIL genes and Ikaros have similar functional domains. We propose that hunchback, Ikaros, and the HIL genes arose from a common ancestor that was present prior to the divergence of protostomes and deuterostomes.
Collapse
Affiliation(s)
- Edward E Large
- Department of Genetics, North Carolina State University, 3510 Thomas Hall, Raleigh, NC 27695-7614, USA
| | | |
Collapse
|
16
|
Lee SU, Song HO, Lee W, Singaravelu G, Yu JR, Park WY. Identification and characterization of a putative basic helix-loop-helix (bHLH) transcription factor interacting with calcineurin in C. elegans. Mol Cells 2009; 28:455-61. [PMID: 19855932 DOI: 10.1007/s10059-009-0145-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 08/31/2009] [Indexed: 11/26/2022] Open
Abstract
Calcineurin is a Ca(2+)/Calmodulin activated Ser/Thr phosphatase that is well conserved from yeast to human. It is composed of catalytic subunit A (CnA) and regulatory subunit B (CnB). C. elegans homolog of CnA and CnB has been annotated to tax-6 and cnb-1, respectively and in vivo function of both genes has been intensively studied. In C. elegans, calcineurin play roles in various signaling pathways such as fertility, movement, body size regulation and serotonin-mediated egg laying. In order to understand additional signaling pathway(s) in which calcineurin functions, we screened for binding proteins of TAX-6 and found a novel binding protein, HLH-11. The HLH-11, a member of basic helix-loop-helix (bHLH) proteins, is a putative counterpart of human AP4 transcription factor. Previously bHLH transcription factors have been implicated to regulate many developmental processes such as cell proliferation and differentiation, sex determination and myogenesis. However, the in vivo function of hlh-11 is largely unknown. Here, we show that hlh-11 is expressed in pharynx, intestine, nerve cords, anal depressor and vuvla muscles where calcineurin is also expressed. Mutant analyses reveal that hlh-11 may have role(s) in regulating body size and reproduction. More interestingly, genetic epistasis suggests that hlh-11 may function to regulate serotonin-mediated egg laying at the downstream of tax-6.
Collapse
Affiliation(s)
- Soo-Ung Lee
- Department of Environmental and Tropical Medicine, Konkuk University School of Medicine, Seoul 143-701, Korea
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Stem cells, their niches, and their relationship to cancer are under intense investigation. Because tumors and metastases acquire self-renewing capacity, mechanisms for their establishment may involve cell-cell interactions similar to those between stem cells and stem cell niches. On the basis of our studies in Caenorhabditis elegans, we introduce the concept of a "latent niche" as a differentiated cell type that does not normally contact stem cells nor act as a niche but that can, under certain conditions, promote the ectopic self-renewal, proliferation, or survival of competent cells that it inappropriately contacts. Here, we show that ectopic germ-line stem cell proliferation in C. elegans is driven by a latent niche mechanism and that the molecular basis for this mechanism is inappropriate Notch activation. Furthermore, we show that continuous Notch signaling is required to maintain ectopic germ-line proliferation. We highlight the latent niche concept by distinguishing it from a normal stem cell niche, a premetastatic niche and an ectopic niche. One of the important distinguishing features of this mechanism for tumor initiation is that it could operate in the absence of genetic changes to the tumor cell or the tumor-promoting cell. We propose that a latent niche mechanism may underlie tumorigenesis and metastasis in humans.
Collapse
|
18
|
Jiang Y, Shi H, Amin NM, Sultan I, Liu J. Mesodermal expression of the C. elegans HMX homolog mls-2 requires the PBC homolog CEH-20. Mech Dev 2008; 125:451-61. [PMID: 18316179 DOI: 10.1016/j.mod.2008.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 01/24/2008] [Accepted: 01/24/2008] [Indexed: 11/30/2022]
Abstract
Metazoan development proceeds primarily through the regulated expression of genes encoding transcription factors and components of cell signaling pathways. One way to decipher the complex developmental programs is to assemble the underlying gene regulatory networks by dissecting the cis-regulatory modules that direct temporal-spatial expression of developmental genes and identify corresponding trans-regulatory factors. Here, we focus on the regulation of a HMX homoebox gene called mls-2, which functions at the intersection of a network that regulates cleavage orientation, cell proliferation and fate specification in the Caenorhabditis elegans postembryonic mesoderm. In addition to its transient expression in the postembryonic mesodermal lineage, the M lineage, mls-2 expression is detected in a subset of embryonic cells, in three pairs of head neurons and transiently in the somatic gonad. Through mutational analysis of the mls-2 promoter, we identified two elements (E1 and E2) involved in regulating the temporal-spatial expression of mls-2. In particular, we showed that one of the elements (E1) required for mls-2 expression in the M lineage contains two critical putative PBC-Hox binding sites that are evolutionarily conserved in C. briggsae and C. remanei. Furthermore, the C. elegans PBC homolog CEH-20 is required for mls-2 expression in the M lineage. Our data suggest that mls-2 might be a direct target of CEH-20 in the M lineage and that the regulation of CEH-20 on mls-2 is likely Hox-independent.
Collapse
Affiliation(s)
- Yuan Jiang
- Department of Molecular Biology and Genetics, Cornell University, 439 Biotechnology Building, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
19
|
Romney SJ, Thacker C, Leibold EA. An iron enhancer element in the FTN-1 gene directs iron-dependent expression in Caenorhabditis elegans intestine. J Biol Chem 2007; 283:716-25. [PMID: 18024960 DOI: 10.1074/jbc.m707043200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ferritin is a ubiquitous protein that sequesters iron and protects cells from iron toxicity. Caenorhabditis elegans express two ferritins, FTN-1 and FTN-2, which are transcriptionally regulated by iron. To identify the cis-acting sequences and proteins required for iron-dependent regulation of ftn-1 and ftn-2 expression, we generated transcriptional GFP reporters corresponding to 5 '-upstream sequences of the ftn-1 and ftn-2 genes. We identified a conserved 63-bp sequence, the iron-dependent element (IDE), that is required for iron-dependent regulation of a ftn-1 GFP reporter in intestine. The IDE contains two GATA-binding motifs and three octameric direct repeats. Site-directed mutagenesis of the GATA sequences, singly or in combination, reduces ftn-1 GFP reporter expression in the intestine. In vitro DNA mobility shift assays show that the intestine-specific GATA protein ELT-2 binds to both GATA sequences. Inhibition of ELT-2 function by RNA interference blocks ftn-1 GFP reporter expression in vivo. Insertion of the IDE into the promoter region of a heterologous reporter activates iron-dependent transcription in intestine. These data demonstrate that the activation of ftn-1 and ftn-2 transcription by iron requires ELT-2 and that the IDE functions as an iron-dependent enhancer in intestine.
Collapse
Affiliation(s)
- S Joshua Romney
- Eccles Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City 84112, USA
| | | | | |
Collapse
|