1
|
Mulder T, Johnson J, González-Morales N. The filamins of Drosophila. Genome 2025; 68:1-11. [PMID: 39869855 DOI: 10.1139/gen-2024-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The actin cytoskeleton is a dynamic mesh of filaments that provide structural support for cells and respond to external deformation forces. Active sensing of these forces is crucial for the function of the actin cytoskeleton, and some actin crosslinkers accomplish it. One such crosslinker is filamin, a highly conserved actin crosslinker dimeric protein with an elastic region capable of responding to mechanical changes in the actin cytoskeleton. Filamins are required across various cells and tissues. In Drosophila early and recent studies have provided many details about filamin functions. This review centers on the two Drosophila filamins encoded by the cheerio and jitterbu g genes. We examine the structural and evolutionary aspects of filamin genes in flies, contrasting them with those of other model organisms. Then, we synthesize phenotypic data across diverse cell types. Additionally, we outline the genetic tools available for both genes. We also propose to divide filamins into typical and atypical based on the number of actin-binding domains and their relationship with other filamins.
Collapse
Affiliation(s)
- Tiara Mulder
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Jennifer Johnson
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | | |
Collapse
|
2
|
Sinenko SA. Molecular Mechanisms of Drosophila Hematopoiesis. Acta Naturae 2024; 16:4-21. [PMID: 39188265 PMCID: PMC11345091 DOI: 10.32607/actanaturae.27410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/31/2024] [Indexed: 08/28/2024] Open
Abstract
As a model organism, the fruit fly (Drosophila melanogaster) has assumed a leading position in modern biological research. The Drosophila genetic system has a number of advantages making it a key model in investigating the molecular mechanisms of metazoan developmental processes. Over the past two decades, significant progress has been made in understanding the molecular mechanisms regulating Drosophila hematopoiesis. This review discusses the major advances in investigating the molecular mechanisms involved in maintaining the population of multipotent progenitor cells and their differentiation into mature hemocytes in the hematopoietic organ of the Drosophila larva. The use of the Drosophila hematopoietic organ as a model system for hematopoiesis has allowed to characterize the complex interactions between signaling pathways and transcription factors in regulating the maintenance and differentiation of progenitor cells through the signals from the hematopoietic niche, autocrine and paracrine signals, and the signals emanated by differentiated cells.
Collapse
Affiliation(s)
- S. A. Sinenko
- Institute of Cytology Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
| |
Collapse
|
3
|
Wan B, Belghazi M, Lemauf S, Poirié M, Gatti JL. Proteomics of purified lamellocytes from Drosophila melanogaster HopT um-l identifies new membrane proteins and networks involved in their functions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 134:103584. [PMID: 34033897 DOI: 10.1016/j.ibmb.2021.103584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
In healthy Drosophila melanogaster larvae, plasmatocytes and crystal cells account for 95% and 5% of the hemocytes, respectively. A third type of hemocytes, lamellocytes, are rare, but their number increases after oviposition by parasitoid wasps. The lamellocytes form successive layers around the parasitoid egg, leading to its encapsulation and melanization, and finally the death of this intruder. However, the total number of lamellocytes per larva remains quite low even after parasitoid infestation, making direct biochemical studies difficult. Here, we used the HopTum-l mutant strain that constitutively produces large numbers of lamellocytes to set up a purification method and analyzed their major proteins by 2D gel electrophoresis and their plasma membrane surface proteins by 1D SDS-PAGE after affinity purification. Mass spectrometry identified 430 proteins from 2D spots and 344 affinity-purified proteins from 1D bands, for a total of 639 unique proteins. Known lamellocyte markers such as PPO3 and the myospheroid integrin were among the components identified with specific chaperone proteins. Affinity purification detected other integrins, as well as a wide range of integrin-associated proteins involved in the formation and function of cell-cell junctions. Overall, the newly identified proteins indicate that these cells are highly adapted to the encapsulation process (recognition, motility, adhesion, signaling), but may also have several other physiological functions (such as secretion and internalization of vesicles) under different signaling pathways. These results provide the basis for further in vivo and in vitro studies of lamellocytes, including the development of new markers to identify coexisting populations and their respective origins and functions in Drosophila immunity.
Collapse
Affiliation(s)
- Bin Wan
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Maya Belghazi
- Institute of NeuroPhysiopathology (INP), UMR7051, CNRS, Aix-Marseille Université, Marseille, 13015, France
| | - Séverine Lemauf
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Marylène Poirié
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Jean-Luc Gatti
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France.
| |
Collapse
|
4
|
Cattenoz PB, Monticelli S, Pavlidaki A, Giangrande A. Toward a Consensus in the Repertoire of Hemocytes Identified in Drosophila. Front Cell Dev Biol 2021; 9:643712. [PMID: 33748138 PMCID: PMC7969988 DOI: 10.3389/fcell.2021.643712] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/12/2021] [Indexed: 01/16/2023] Open
Abstract
The catalog of the Drosophila immune cells was until recently limited to three major cell types, based on morphology, function and few molecular markers. Three recent single cell studies highlight the presence of several subgroups, revealing a large diversity in the molecular signature of the larval immune cells. Since these studies rely on somewhat different experimental and analytical approaches, we here compare the datasets and identify eight common, robust subgroups associated to distinct functions such as proliferation, immune response, phagocytosis or secretion. Similar comparative analyses with datasets from different stages and tissues disclose the presence of larval immune cells resembling embryonic hemocyte progenitors and the expression of specific properties in larval immune cells associated with peripheral tissues.
Collapse
Affiliation(s)
- Pierre B. Cattenoz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Sara Monticelli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Alexia Pavlidaki
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Angela Giangrande
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| |
Collapse
|
5
|
Cattenoz PB, Sakr R, Pavlidaki A, Delaporte C, Riba A, Molina N, Hariharan N, Mukherjee T, Giangrande A. Temporal specificity and heterogeneity of Drosophila immune cells. EMBO J 2020; 39:e104486. [PMID: 32162708 PMCID: PMC7298292 DOI: 10.15252/embj.2020104486] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
Immune cells provide defense against non-self and have recently been shown to also play key roles in diverse processes such as development, metabolism, and tumor progression. The heterogeneity of Drosophila immune cells (hemocytes) remains an open question. Using bulk RNA sequencing, we find that the hemocytes display distinct features in the embryo, a closed and rapidly developing system, compared to the larva, which is exposed to environmental and metabolic challenges. Through single-cell RNA sequencing, we identify fourteen hemocyte clusters present in unchallenged larvae and associated with distinct processes, e.g., proliferation, phagocytosis, metabolic homeostasis, and humoral response. Finally, we characterize the changes occurring in the hemocyte clusters upon wasp infestation, which triggers the differentiation of a novel hemocyte type, the lamellocyte. This first molecular atlas of hemocytes provides insights and paves the way to study the biology of the Drosophila immune cells in physiological and pathological conditions.
Collapse
Affiliation(s)
- Pierre B Cattenoz
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche ScientifiqueUMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U1258IllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Rosy Sakr
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche ScientifiqueUMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U1258IllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Alexia Pavlidaki
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche ScientifiqueUMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U1258IllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Claude Delaporte
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche ScientifiqueUMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U1258IllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Andrea Riba
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche ScientifiqueUMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U1258IllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Nacho Molina
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche ScientifiqueUMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U1258IllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Nivedita Hariharan
- Institute for Stem Cell Science and Regenerative Medicine (inStem)BangaloreIndia
- The University of Trans‐disciplinary Health Sciences and TechnologyBangaloreIndia
| | - Tina Mukherjee
- Institute for Stem Cell Science and Regenerative Medicine (inStem)BangaloreIndia
| | - Angela Giangrande
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche ScientifiqueUMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U1258IllkirchFrance
- Université de StrasbourgIllkirchFrance
| |
Collapse
|
6
|
Hiroyasu A, DeWitt DC, Goodman AG. Extraction of Hemocytes from Drosophila melanogaster Larvae for Microbial Infection and Analysis. J Vis Exp 2018. [PMID: 29889203 DOI: 10.3791/57077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
During the pathogenic infection of Drosophila melanogaster, hemocytes play an important role in the immune response throughout the infection. Thus, the goal of this protocol is to develop a method to visualize the pathogen invasion in a specific immune compartment of flies, namely hemocytes. Using the method presented here, up to 3 × 106 live hemocytes can be obtained from 200 Drosophila 3rd instar larvae in 30 min for ex vivo infection. Alternatively, hemocytes can be infected in vivo through injection of 3rd instar larvae followed by hemocyte extraction up to 24 h post-infection. These infected primary cells were fixed, stained, and imaged using confocal microscopy. Then, 3D representations were generated from the images to definitively show pathogen invasion. Additionally, high-quality RNA for qRT-PCR can be obtained for the detection of pathogen mRNA following infection, and sufficient protein can be extracted from these cells for Western blot analysis. Taken together, we present a method for definite reconciliation of pathogen invasion and confirmation of infection using bacterial and viral pathogen types and an efficient method for hemocyte extraction to obtain enough live hemocytes from Drosophila larvae for ex vivo and in vivo infection experiments.
Collapse
Affiliation(s)
- Aoi Hiroyasu
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University
| | - David C DeWitt
- Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University
| | - Alan G Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University;
| |
Collapse
|
7
|
Huang J, Li S, Liu Y, Liu C, Xie L, Zhang R. Hemocytes in the extrapallial space of Pinctada fucata are involved in immunity and biomineralization. Sci Rep 2018; 8:4657. [PMID: 29545643 PMCID: PMC5854705 DOI: 10.1038/s41598-018-22961-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/01/2018] [Indexed: 01/04/2023] Open
Abstract
In bivalves, the mantle tissue secretes organic matrix and inorganic ions into the extrapallial space (EPS) to form the shells. In addition, more and more evidences indicate the participation of hemocytes in shell mineralization, but no direct evidence has been reported that verifies the presence of hemocytes in the EPS, and their exact roles in biomineralization remain uncertain. Here, we identified hemocytes from the EPS of Pinctada fucata. Numerous components involved in cellular and humoral immunity were identified by proteome analysis, together with several proteins involved in calcium metabolism. The hemocytes exerted active phagocytosis and significantly upregulated the expression of immune genes after immune stimulation. A group of granulocytes were found to contain numerous calcium-rich vesicles and crystals, which serve as a calcium pool. During shell regeneration, some genes involved in calcium metabolism are upregulated. Strikingly, most of the shell matrix proteins were absent in the hemocytes, suggesting that they might not be solely responsible for directing the growth of the shell. Taken together, our results provided comprehensive information about the function of hemocytes in immunity and shell formation.
Collapse
Affiliation(s)
- Jingliang Huang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shiguo Li
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yangjia Liu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuang Liu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Liping Xie
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Rongqing Zhang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, 314000, China.
| |
Collapse
|
8
|
Gábor E, Cinege G, Csordás G, Török T, Folkl-Medzihradszky K, Darula Z, Andó I, Kurucz É. Hemolectin expression reveals functional heterogeneity in honey bee (Apis mellifera) hemocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:403-411. [PMID: 28713010 DOI: 10.1016/j.dci.2017.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
The identification of molecular markers considerably facilitated the classification and functional analysis of blood cell types. Apis mellifera hemocytes have been classified by morphological criteria and lectin binding properties; however, the use of molecular markers has been minimal. Here we describe a monoclonal antibody to a non-phagocytic subpopulation of A. mellifera hemocytes and to a constituent of the hemolymph clot. We demonstrate that the antibody identifies the A. mellifera hemolectin, a protein carrying human von Willebrand factor homology domains, characteristic of proteins involved in blood coagulation and platelet aggregation in mammals. Hemolectin expressing A. mellifera hemocytes contain the protein as cytoplasmic granules and contribute to the formation of a protein matrix, building up around foreign particles. Consequently, hemolectin as a marker molecule reveals a clear functional heterogeneity of hemocytes, allowing for the analytical separation of hemocyte classes, and could promote the molecular identification of hemocyte lineages in A. mellifera.
Collapse
Affiliation(s)
- Erika Gábor
- Immunology Unit, Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, P.O.Box 521, H-6701 Szeged, Hungary.
| | - Gyöngyi Cinege
- Immunology Unit, Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, P.O.Box 521, H-6701 Szeged, Hungary.
| | - Gábor Csordás
- Immunology Unit, Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, P.O.Box 521, H-6701 Szeged, Hungary.
| | - Tibor Török
- Department of Genetics, University of Szeged, Közép Fasor 52, 6726 Szeged, Hungary.
| | - Katalin Folkl-Medzihradszky
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, P.O.Box 521, H-6701 Szeged, Hungary.
| | - Zsuzsanna Darula
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, P.O.Box 521, H-6701 Szeged, Hungary.
| | - István Andó
- Immunology Unit, Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, P.O.Box 521, H-6701 Szeged, Hungary.
| | - Éva Kurucz
- Immunology Unit, Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, P.O.Box 521, H-6701 Szeged, Hungary.
| |
Collapse
|
9
|
Anderl I, Vesala L, Ihalainen TO, Vanha-aho LM, Andó I, Rämet M, Hultmark D. Transdifferentiation and Proliferation in Two Distinct Hemocyte Lineages in Drosophila melanogaster Larvae after Wasp Infection. PLoS Pathog 2016; 12:e1005746. [PMID: 27414410 PMCID: PMC4945071 DOI: 10.1371/journal.ppat.1005746] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/16/2016] [Indexed: 12/18/2022] Open
Abstract
Cellular immune responses require the generation and recruitment of diverse blood cell types that recognize and kill pathogens. In Drosophila melanogaster larvae, immune-inducible lamellocytes participate in recognizing and killing parasitoid wasp eggs. However, the sequence of events required for lamellocyte generation remains controversial. To study the cellular immune system, we developed a flow cytometry approach using in vivo reporters for lamellocytes as well as for plasmatocytes, the main hemocyte type in healthy larvae. We found that two different blood cell lineages, the plasmatocyte and lamellocyte lineages, contribute to the generation of lamellocytes in a demand-adapted hematopoietic process. Plasmatocytes transdifferentiate into lamellocyte-like cells in situ directly on the wasp egg. In parallel, a novel population of infection-induced cells, which we named lamelloblasts, appears in the circulation. Lamelloblasts proliferate vigorously and develop into the major class of circulating lamellocytes. Our data indicate that lamellocyte differentiation upon wasp parasitism is a plastic and dynamic process. Flow cytometry with in vivo hemocyte reporters can be used to study this phenomenon in detail.
Collapse
Affiliation(s)
- Ines Anderl
- Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere, Tampere, Finland
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Laura Vesala
- Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere, Tampere, Finland
| | - Teemu O. Ihalainen
- Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere, Tampere, Finland
| | - Leena-Maija Vanha-aho
- Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere, Tampere, Finland
| | - István Andó
- Institute of Genetics Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Mika Rämet
- Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere, Tampere, Finland
- PEDEGO Research Unit, and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Dan Hultmark
- Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere, Tampere, Finland
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
10
|
Jemaà M, Morin N, Cavelier P, Cau J, Strub JM, Delsert C. Adult somatic progenitor cells and hematopoiesis in oysters. ACTA ACUST UNITED AC 2014; 217:3067-77. [PMID: 24948634 DOI: 10.1242/jeb.106575] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Long-lived animals show a non-observable age-related decline in immune defense, which is provided by blood cells that derive from self-renewing stem cells. The oldest living animals are bivalves. Yet, the origin of hemocytes, the cells involved in innate immunity, is unknown in bivalves and current knowledge about mollusk adult somatic stem cells is scarce. Here we identify a population of adult somatic precursor cells and show their differentiation into hemocytes. Oyster gill contains an as yet unreported irregularly folded structure (IFS) with stem-like cells bathing into the hemolymph. BrdU labeling revealed that the stem-like cells in the gill epithelium and in the nearby hemolymph replicate DNA. Proliferation of this cell population was further evidenced by phosphorylated-histone H3 mitotic staining. Finally, these small cells, most abundant in the IFS epithelium, were found to be positive for the stemness marker Sox2. We provide evidence for hematopoiesis by showing that co-expression of Sox2 and Cu/Zn superoxide dismutase, a hemocyte-specific enzyme, does not occur in the gill epithelial cells but rather in the underlying tissues and vessels. We further confirm the hematopoietic features of these cells by the detection of Filamin, a protein specific for a sub-population of hemocytes, in large BrdU-labeled cells bathing into gill vessels. Altogether, our data show that progenitor cells differentiate into hemocytes in the gill, which suggests that hematopoiesis occurs in oyster gills.
Collapse
Affiliation(s)
- Mohamed Jemaà
- Universités Montpellier 2 et 1, Montpellier, 34095 France CRBM CNRS UMR 5237, Montpellier, 34293 France
| | - Nathalie Morin
- Universités Montpellier 2 et 1, Montpellier, 34095 France CRBM CNRS UMR 5237, Montpellier, 34293 France
| | - Patricia Cavelier
- Universités Montpellier 2 et 1, Montpellier, 34095 France IGMM CNRS UMR 5535, Montpellier, 34293 France
| | - Julien Cau
- Universités Montpellier 2 et 1, Montpellier, 34095 France IGH CNRS UPR 1142, Montpellier, 34396, France
| | - Jean Marc Strub
- Université de Strasbourg, Strasbourg, 67081 France IPHC CNRS UMR7178, Strasbourg, 67037 France
| | - Claude Delsert
- Universités Montpellier 2 et 1, Montpellier, 34095 France CRBM CNRS UMR 5237, Montpellier, 34293 France IFREMER, LGP, La Tremblade, 17390 France
| |
Collapse
|
11
|
Evans CJ, Liu T, Banerjee U. Drosophila hematopoiesis: Markers and methods for molecular genetic analysis. Methods 2014; 68:242-51. [PMID: 24613936 PMCID: PMC4051208 DOI: 10.1016/j.ymeth.2014.02.038] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 01/09/2023] Open
Abstract
Analyses of the Drosophila hematopoietic system are becoming more and more prevalent as developmental and functional parallels with vertebrate blood cells become more evident. Investigative work on the fly blood system has, out of necessity, led to the identification of new molecular markers for blood cell types and lineages and to the refinement of useful molecular genetic tools and analytical methods. This review briefly describes the Drosophila hematopoietic system at different developmental stages, summarizes the major useful cell markers and tools for each stage, and provides basic protocols for practical analysis of circulating blood cells and of the lymph gland, the larval hematopoietic organ.
Collapse
Affiliation(s)
- Cory J Evans
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ting Liu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Utpal Banerjee
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
12
|
Honti V, Csordás G, Kurucz É, Márkus R, Andó I. The cell-mediated immunity of Drosophila melanogaster: hemocyte lineages, immune compartments, microanatomy and regulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:47-56. [PMID: 23800719 DOI: 10.1016/j.dci.2013.06.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 06/02/2023]
Abstract
In the animal kingdom, innate immunity is the first line of defense against invading pathogens. The dangers of microbial and parasitic attacks are countered by similar mechanisms, involving the prototypes of the cell-mediated immune responses, the phagocytosis and encapsulation. Work on Drosophila has played an important role in promoting an understanding of the basic mechanisms of phylogenetically conserved modules of innate immunity. The aim of this review is to survey the developments in the identification and functional definition of immune cell types and the immunological compartments of Drosophila melanogaster. We focus on the molecular and developmental aspects of the blood cell types and compartments, as well as the dynamics of blood cell development and the immune response. Further advances in the characterization of the innate immune mechanisms in Drosophila will provide basic clues to the understanding of the importance of the evolutionary conserved mechanisms of innate immune defenses in the animal kingdom.
Collapse
Affiliation(s)
- Viktor Honti
- Institute of Genetics Biological Research Centre of the Hungarian Academy of Sciences, P.O. Box 521, Szeged H-6701, Hungary
| | | | | | | | | |
Collapse
|
13
|
Okray Z, Hassan BA. Genetic approaches in Drosophila for the study neurodevelopmental disorders. Neuropharmacology 2012; 68:150-6. [PMID: 23067575 DOI: 10.1016/j.neuropharm.2012.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 08/31/2012] [Accepted: 09/07/2012] [Indexed: 12/16/2022]
Abstract
The fruit fly Drosophila melanogaster is one of the premier genetic model organisms used in biomedical research today owing to the extraordinary power of its genetic tool-kit. Made famous by numerous seminal discoveries of basic developmental mechanisms and behavioral genetics, the power of fruit fly genetics is becoming increasingly applied to questions directly relevant to human health. In this review we discuss how Drosophila research is applied to address major questions in neurodevelopmental disorders. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Zeynep Okray
- Laboratory of Neurogenetics, VIB Center for the Biology of Disease, VIB, Herestraat 49, Leuven, Belgium
| | | |
Collapse
|
14
|
Havard S, Doury G, Ravallec M, Brehélin M, Prévost G, Eslin P. Structural and functional characterization of pseudopodocyte, a shaggy immune cell produced by two Drosophila species of the obscura group. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:323-331. [PMID: 21663756 DOI: 10.1016/j.dci.2011.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 05/09/2011] [Accepted: 05/12/2011] [Indexed: 05/30/2023]
Abstract
We recently reported that most of the Drosophila species of the obscura group were unable to mount cellular capsules and no lamellocyte was ever found in the hemolymph of any of the tested species. Only three species were able to encapsulate, despite lacking lamellocytes. Their encapsulation ability was always associated with the presence of an unpreviously described kind of capsule-forming immunocytes designated as "atypical hemocytes". Here, we describe the ultrastructural and functional characteristics of this type of hemocyte. We show that these cells share many ultrastructural and morphological features with Drosophila melanogaster plasmatocytes, although they are involved in the formation of the external layers of the cellular capsule, a functional property exhibited by lamellocytes in D. melanogaster. Due to the high number of pseudopodes in these cells, we suggest to name them "pseudopodocytes". After structural and functional characterization of these atypical hemocytes, their ambiguous status between plasmatocytes and lamellocytes is discussed.
Collapse
Affiliation(s)
- Sébastien Havard
- Laboratoire de Biologie des Entomophages, Université de Picardie Jules Verne, Amiens, France.
| | | | | | | | | | | |
Collapse
|
15
|
Lineage tracing of lamellocytes demonstrates Drosophila macrophage plasticity. PLoS One 2010; 5:e14051. [PMID: 21124962 PMCID: PMC2988793 DOI: 10.1371/journal.pone.0014051] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 10/26/2010] [Indexed: 11/19/2022] Open
Abstract
Leukocyte-like cells called hemocytes have key functions in Drosophila innate immunity. Three hemocyte types occur: plasmatocytes, crystal cells, and lamellocytes. In the absence of qimmune challenge, plasmatocytes are the predominant hemocyte type detected, while crystal cells and lamellocytes are rare. However, upon infestation by parasitic wasps, or in melanotic mutant strains, large numbers of lamellocytes differentiate and encapsulate material recognized as "non-self". Current models speculate that lamellocytes, plasmatocytes and crystal cells are distinct lineages that arise from a common prohemocyte progenitor. We show here that over-expression of the CoREST-interacting transcription factor Chn in plasmatocytes induces lamellocyte differentiation, both in circulation and in lymph glands. Lamellocyte increases are accompanied by the extinction of plasmatocyte markers suggesting that plasmatocytes are transformed into lamellocytes. Consistent with this, timed induction of Chn over-expression induces rapid lamellocyte differentiation within 18 hours. We detect double-positive intermediates between plasmatocytes and lamellocytes, and show that isolated plasmatocytes can be triggered to differentiate into lamellocytes in vitro, either in response to Chn over-expression, or following activation of the JAK/STAT pathway. Finally, we have marked plasmatocytes and show by lineage tracing that these differentiate into lamellocytes in response to the Drosophila parasite model Leptopilina boulardi. Taken together, our data suggest that lamellocytes arise from plasmatocytes and that plasmatocytes may be inherently plastic, possessing the ability to differentiate further into lamellocytes upon appropriate challenge.
Collapse
|
16
|
Kurucz E, Váczi B, Márkus R, Laurinyecz B, Vilmos P, Zsámboki J, Csorba K, Gateff E, Hultmark D, Andó I. Definition of Drosophila hemocyte subsets by cell-type specific antigens. ACTA BIOLOGICA HUNGARICA 2008; 58 Suppl:95-111. [PMID: 18297797 DOI: 10.1556/abiol.58.2007.suppl.8] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We analyzed the heterogeneity of Drosophila hemocytes on the basis of the expression of cell-type specific antigens. The antigens characterize distinct subsets which partially overlap with those defined by morphological criteria. On the basis of the expression or the lack of expression of blood cell antigens the following hemocyte populations have been defined: crystal cells, plasmatocytes, lamellocytes and precursor cells. The expression of the antigens and thus the different cell types are developmentally regulated. The hemocytes are arranged in four main compartments: the circulating blood cells, the sessile tissue, the lymph glands and the posterior hematopoietic tissue. Each hemocyte compartment has a specific and characteristic composition of the various cell types. The described markers represent the first successful attempt to define hemocyte lineages by immunological markers in Drosophila and help to define morphologically, functionally, spatially and developmentally distinct subsets of hemocytes.
Collapse
Affiliation(s)
- Eva Kurucz
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Schlenke TA, Morales J, Govind S, Clark AG. Contrasting infection strategies in generalist and specialist wasp parasitoids of Drosophila melanogaster. PLoS Pathog 2008; 3:1486-501. [PMID: 17967061 PMCID: PMC2042021 DOI: 10.1371/journal.ppat.0030158] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 09/14/2007] [Indexed: 11/18/2022] Open
Abstract
Although host–parasitoid interactions are becoming well characterized at the organismal and cellular levels, much remains to be understood of the molecular bases for the host immune response and the parasitoids' ability to defeat this immune response. Leptopilina boulardi and L. heterotoma, two closely related, highly infectious natural parasitoids of Drosophila melanogaster, appear to use very different infection strategies at the cellular level. Here, we further characterize cellular level differences in the infection characteristics of these two wasp species using newly derived, virulent inbred strains, and then use whole genome microarrays to compare the transcriptional response of Drosophila to each. While flies attacked by the melanogaster group specialist L. boulardi (strain Lb17) up-regulate numerous genes encoding proteolytic enzymes, components of the Toll and JAK/STAT pathways, and the melanization cascade as part of a combined cellular and humoral innate immune response, flies attacked by the generalist L. heterotoma (strain Lh14) do not appear to initiate an immune transcriptional response at the time points post-infection we assayed, perhaps due to the rapid venom-mediated lysis of host hemocytes (blood cells). Thus, the specialist parasitoid appears to invoke a full-blown immune response in the host, but suppresses and/or evades downstream components of this response. Given that activation of the host immune response likely depletes the energetic resources of the host, the specialist's infection strategy seems relatively disadvantageous. However, we uncover the mechanism for one potentially important fitness tradeoff of the generalist's highly immune suppressive infection strategy. The fruitfly Drosophila melanogaster has become a model system for the study of innate immunity, and parasitic wasps are one of the most obvious natural pathogens of Drosophila, making this a great system for studying interactions between the host immune system and pathogen virulence proteins. We have focused on two closely related wasp species, Leptopilina boulardi and L. heterotoma, that successfully parasitize D. melanogaster hosts in nature. Both wasps inject venom loaded with virus-like particles into their hosts to prevent host-mediated melanotic encapsulation and killing of their eggs. However, there are substantial differences in the effects of the venom from these two wasp species. L. heterotoma venom causes lysis of host hemocytes (blood cells) and prevents the host from mounting any substantial immune transcriptional response, while L. boulardi venom has a relatively weak and localized effect on host hemocyte survival and does not prevent immune response activation. Thus, these wasps allow us to compare the benefits and drawbacks of relatively immune suppressive versus relatively immune evasive parasite infection strategies in a natural system.
Collapse
Affiliation(s)
- Todd A Schlenke
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA.
| | | | | | | |
Collapse
|