1
|
Opperdoes FR, Záhonová K, Škodová-Sveráková I, Bučková B, Chmelová Ľ, Lukeš J, Yurchenko V. In silico prediction of the metabolism of Blastocrithidia nonstop, a trypanosomatid with non-canonical genetic code. BMC Genomics 2024; 25:184. [PMID: 38365628 PMCID: PMC10874023 DOI: 10.1186/s12864-024-10094-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Almost all extant organisms use the same, so-called canonical, genetic code with departures from it being very rare. Even more exceptional are the instances when a eukaryote with non-canonical code can be easily cultivated and has its whole genome and transcriptome sequenced. This is the case of Blastocrithidia nonstop, a trypanosomatid flagellate that reassigned all three stop codons to encode amino acids. RESULTS We in silico predicted the metabolism of B. nonstop and compared it with that of the well-studied human parasites Trypanosoma brucei and Leishmania major. The mapped mitochondrial, glycosomal and cytosolic metabolism contains all typical features of these diverse and important parasites. We also provided experimental validation for some of the predicted observations, concerning, specifically presence of glycosomes, cellular respiration, and assembly of the respiratory complexes. CONCLUSIONS In an unusual comparison of metabolism between a parasitic protist with a massively altered genetic code and its close relatives that rely on a canonical code we showed that the dramatic differences on the level of nucleic acids do not seem to be reflected in the metabolisms. Moreover, although the genome of B. nonstop is extremely AT-rich, we could not find any alterations of its pyrimidine synthesis pathway when compared to other trypanosomatids. Hence, we conclude that the dramatic alteration of the genetic code of B. nonstop has no significant repercussions on the metabolism of this flagellate.
Collapse
Affiliation(s)
- Fred R Opperdoes
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Kristína Záhonová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Ingrid Škodová-Sveráková
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Barbora Bučková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Ľubomíra Chmelová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia.
| |
Collapse
|
2
|
Andrade-Alviárez D, Bonive-Boscan AD, Cáceres AJ, Quiñones W, Gualdrón-López M, Ginger ML, Michels PAM. Delineating transitions during the evolution of specialised peroxisomes: Glycosome formation in kinetoplastid and diplonemid protists. Front Cell Dev Biol 2022; 10:979269. [PMID: 36172271 PMCID: PMC9512073 DOI: 10.3389/fcell.2022.979269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022] Open
Abstract
One peculiarity of protists belonging to classes Kinetoplastea and Diplonemea within the phylum Euglenozoa is compartmentalisation of most glycolytic enzymes within peroxisomes that are hence called glycosomes. This pathway is not sequestered in peroxisomes of the third Euglenozoan class, Euglenida. Previous analysis of well-studied kinetoplastids, the ‘TriTryps’ parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp., identified within glycosomes other metabolic processes usually not present in peroxisomes. In addition, trypanosomatid peroxins, i.e. proteins involved in biogenesis of these organelles, are divergent from human and yeast orthologues. In recent years, genomes, transcriptomes and proteomes for a variety of euglenozoans have become available. Here, we track the possible evolution of glycosomes by querying these databases, as well as the genome of Naegleria gruberi, a non-euglenozoan, which belongs to the same protist supergroup Discoba. We searched for orthologues of TriTryps proteins involved in glycosomal metabolism and biogenesis. Predicted cellular location(s) of each metabolic enzyme identified was inferred from presence or absence of peroxisomal-targeting signals. Combined with a survey of relevant literature, we refine extensively our previously postulated hypothesis about glycosome evolution. The data agree glycolysis was compartmentalised in a common ancestor of the kinetoplastids and diplonemids, yet additionally indicates most other processes found in glycosomes of extant trypanosomatids, but not in peroxisomes of other eukaryotes were either sequestered in this ancestor or shortly after separation of the two lineages. In contrast, peroxin divergence is evident in all euglenozoans. Following their gain of pathway complexity, subsequent evolution of peroxisome/glycosome function is complex. We hypothesize compartmentalisation in glycosomes of glycolytic enzymes, their cofactors and subsequently other metabolic enzymes provided selective advantage to kinetoplastids and diplonemids during their evolution in changing marine environments. We contend two specific properties derived from the ancestral peroxisomes were key: existence of nonselective pores for small solutes and the possibility of high turnover by pexophagy. Critically, such pores and pexophagy are characterised in extant trypanosomatids. Increasing amenability of free-living kinetoplastids and recently isolated diplonemids to experimental study means our hypothesis and interpretation of bioinformatic data are suited to experimental interrogation.
Collapse
Affiliation(s)
- Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Alejandro D. Bonive-Boscan
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Ana J. Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | | | - Michael L. Ginger
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Paul A. M. Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Paul A. M. Michels,
| |
Collapse
|
3
|
Zakharova A, Albanaz ATS, Opperdoes FR, Škodová-Sveráková I, Zagirova D, Saura A, Chmelová L, Gerasimov ES, Leštinová T, Bečvář T, Sádlová J, Volf P, Lukeš J, Horváth A, Butenko A, Yurchenko V. Leishmania guyanensis M4147 as a new LRV1-bearing model parasite: Phosphatidate phosphatase 2-like protein controls cell cycle progression and intracellular lipid content. PLoS Negl Trop Dis 2022; 16:e0010510. [PMID: 35749562 PMCID: PMC9232130 DOI: 10.1371/journal.pntd.0010510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Leishmaniasis is a parasitic vector-borne disease caused by the protistan flagellates of the genus Leishmania. Leishmania (Viannia) guyanensis is one of the most common causative agents of the American tegumentary leishmaniasis. It has previously been shown that L. guyanensis strains that carry the endosymbiotic Leishmania RNA virus 1 (LRV1) cause more severe form of the disease in a mouse model than those that do not. The presence of the virus was implicated into the parasite's replication and spreading. In this respect, studying the molecular mechanisms of cellular control of viral infection is of great medical importance. Here, we report ~30.5 Mb high-quality genome assembly of the LRV1-positive L. guyanensis M4147. This strain was turned into a model by establishing the CRISPR-Cas9 system and ablating the gene encoding phosphatidate phosphatase 2-like (PAP2L) protein. The orthologue of this gene is conspicuously absent from the genome of an unusual member of the family Trypanosomatidae, Vickermania ingenoplastis, a species with mostly bi-flagellated cells. Our analysis of the PAP2L-null L. guyanensis showed an increase in the number of cells strikingly resembling the bi-flagellated V. ingenoplastis, likely as a result of the disruption of the cell cycle, significant accumulation of phosphatidic acid, and increased virulence compared to the wild type cells.
Collapse
Affiliation(s)
- Alexandra Zakharova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Amanda T. S. Albanaz
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Fred R. Opperdoes
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Ingrid Škodová-Sveráková
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Diana Zagirova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Andreu Saura
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Lˇubomíra Chmelová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Evgeny S. Gerasimov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Tereza Leštinová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Bečvář
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jovana Sádlová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Anton Horváth
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
4
|
Neofunctionalization of Glycolytic Enzymes: An Evolutionary Route to Plant Parasitism in the Oomycete Phytophthora nicotianae. Microorganisms 2022; 10:microorganisms10020281. [PMID: 35208735 PMCID: PMC8879444 DOI: 10.3390/microorganisms10020281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/12/2022] [Accepted: 01/23/2022] [Indexed: 02/04/2023] Open
Abstract
Oomycetes, of the genus Phytophthora, comprise of some of the most devastating plant pathogens. Parasitism of Phytophthora results from evolution from an autotrophic ancestor and adaptation to a wide range of environments, involving metabolic adaptation. Sequence mining showed that Phytophthora spp. display an unusual repertoire of glycolytic enzymes, made of multigene families and enzyme replacements. To investigate the impact of these gene duplications on the biology of Phytophthora and, eventually, identify novel functions associated to gene expansion, we focused our study on the first glycolytic step on P. nicotianae, a broad host range pathogen. We reveal that this step is committed by a set of three glucokinase types that differ by their structure, enzymatic properties, and evolutionary histories. In addition, they are expressed differentially during the P. nicotianae life cycle, including plant infection. Last, we show that there is a strong association between the expression of a glucokinase member in planta and extent of plant infection. Together, these results suggest that metabolic adaptation is a component of the processes underlying evolution of parasitism in Phytophthora, which may possibly involve the neofunctionalization of metabolic enzymes.
Collapse
|
5
|
Škodová-Sveráková I, Záhonová K, Juricová V, Danchenko M, Moos M, Baráth P, Prokopchuk G, Butenko A, Lukáčová V, Kohútová L, Bučková B, Horák A, Faktorová D, Horváth A, Šimek P, Lukeš J. Highly flexible metabolism of the marine euglenozoan protist Diplonema papillatum. BMC Biol 2021; 19:251. [PMID: 34819072 PMCID: PMC8611851 DOI: 10.1186/s12915-021-01186-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The phylum Euglenozoa is a group of flagellated protists comprising the diplonemids, euglenids, symbiontids, and kinetoplastids. The diplonemids are highly abundant and speciose, and recent tools have rendered the best studied representative, Diplonema papillatum, genetically tractable. However, despite the high diversity of diplonemids, their lifestyles, ecological functions, and even primary energy source are mostly unknown. RESULTS We designed a metabolic map of D. papillatum cellular bioenergetic pathways based on the alterations of transcriptomic, proteomic, and metabolomic profiles obtained from cells grown under different conditions. Comparative analysis in the nutrient-rich and nutrient-poor media, as well as the absence and presence of oxygen, revealed its capacity for extensive metabolic reprogramming that occurs predominantly on the proteomic rather than the transcriptomic level. D. papillatum is equipped with fundamental metabolic routes such as glycolysis, gluconeogenesis, TCA cycle, pentose phosphate pathway, respiratory complexes, β-oxidation, and synthesis of fatty acids. Gluconeogenesis is uniquely dominant over glycolysis under all surveyed conditions, while the TCA cycle represents an eclectic combination of standard and unusual enzymes. CONCLUSIONS The identification of conventional anaerobic enzymes reflects the ability of this protist to survive in low-oxygen environments. Furthermore, its metabolism quickly reacts to restricted carbon availability, suggesting a high metabolic flexibility of diplonemids, which is further reflected in cell morphology and motility, correlating well with their extreme ecological valence.
Collapse
Affiliation(s)
- Ingrid Škodová-Sveráková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.
| | - Kristína Záhonová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Valéria Juricová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Maksym Danchenko
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martin Moos
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Peter Baráth
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
- Medirex Group Academy n.o., Trnava, Slovakia
| | - Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | | | - Lenka Kohútová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbora Bučková
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Anton Horváth
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Petr Šimek
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| |
Collapse
|
6
|
Pex7 selectively imports PTS2 target proteins to peroxisomes and is required for anthracnose disease development in Colletotrichum scovillei. Fungal Genet Biol 2021; 157:103636. [PMID: 34742890 DOI: 10.1016/j.fgb.2021.103636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 11/22/2022]
Abstract
Pex7 is a shuttling receptor that imports matrix proteins with a type 2 peroxisomal targeting signal (PTS2) to peroxisomes. The Pex7-mediated PTS2 protein import contributes to crucial metabolic processes such as the fatty acid β-oxidation and glucose metabolism in a number of fungi, but cellular roles of Pex7 between the import of PTS2 target proteins and metabolic processes have not been fully understood. In this study, we investigated the functional roles of CsPex7, a homolog of the yeast Pex7, by targeted gene deletion in the pepper anthracnose fungus Colletotrichum scovillei. CsPex7 was required for carbon source utilization, scavenging of reactive oxygen species, conidial production, and disease development in C. scovillei. The expression of fluorescently tagged PTS2 signal of hexokinases and 3-ketoacyl-CoA thiolases showed that peroxisomal localization of the hexokinase CsGlk1 PTS2 is dependent on CsPex7, but those of the 3-ketoacyl-CoA thiolases are independent on CsPex7. In addition, GFP-tagged CsPex7 proteins were intensely localized to the peroxisomes on glucose-containing media, indicating a role of CsPex7 in glucose utilization. Collectively, these findings indicate that CsPex7 selectively recognizes specific PTS2 signal for import of PTS2-containing proteins to peroxisomes, thereby mediating peroxisomal targeting efficiency of PTS2-containing proteins in C. scovillei. On pepper fruits, the ΔCspex7 mutant exhibited significantly reduced virulence, in which excessive accumulation of hydrogen peroxide was observed in the pepper cells. We think the reduced virulence results from the abnormality in hydrogen peroxide metabolism of the ΔCspex7 mutant. Our findings provide insight into the cellular roles of CsPex7 in PTS2 protein import system.
Collapse
|
7
|
The Trypanosome UDP-Glucose Pyrophosphorylase Is Imported by Piggybacking into Glycosomes, Where Unconventional Sugar Nucleotide Synthesis Takes Place. mBio 2021; 12:e0037521. [PMID: 34044588 PMCID: PMC8262884 DOI: 10.1128/mbio.00375-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Glycosomes are peroxisome-related organelles of trypanosomatid parasites containing metabolic pathways, such as glycolysis and biosynthesis of sugar nucleotides, usually present in the cytosol of other eukaryotes. UDP-glucose pyrophosphorylase (UGP), the enzyme responsible for the synthesis of the sugar nucleotide UDP-glucose, is localized in the cytosol and glycosomes of the bloodstream and procyclic trypanosomes, despite the absence of any known peroxisome-targeting signal (PTS1 and PTS2). The questions that we address here are (i) is the unusual glycosomal biosynthetic pathway of sugar nucleotides functional and (ii) how is the PTS-free UGP imported into glycosomes? We showed that UGP is imported into glycosomes by piggybacking on the glycosomal PTS1-containing phosphoenolpyruvate carboxykinase (PEPCK) and identified the domains involved in the UGP/PEPCK interaction. Proximity ligation assays revealed that this interaction occurs in 3 to 10% of glycosomes, suggesting that these correspond to organelles competent for protein import. We also showed that UGP is essential for the growth of trypanosomes and that both the glycosomal and cytosolic metabolic pathways involving UGP are functional, since the lethality of the knockdown UGP mutant cell line (RNAiUGP, where RNAi indicates RNA interference) was rescued by expressing a recoded UGP (rUGP) in the organelle (RNAiUGP/EXPrUGP-GPDH, where GPDH is glycerol-3-phosphate dehydrogenase). Our conclusion was supported by targeted metabolomic analyses (ion chromatography–high-resolution mass spectrometry [IC-HRMS]) showing that UDP-glucose is no longer detectable in the RNAiUGP mutant, while it is still produced in cells expressing UGP exclusively in the cytosol (PEPCK null mutant) or glycosomes (RNAiUGP/EXPrUGP-GPDH). Trypanosomatids are the only known organisms to have selected functional peroxisomal (glycosomal) sugar nucleotide biosynthetic pathways in addition to the canonical cytosolic ones.
Collapse
|
8
|
Mondal DK, Pal DS, Abbasi M, Datta R. Functional partnership between carbonic anhydrase and malic enzyme in promoting gluconeogenesis in
Leishmania major. FEBS J 2021; 288:4129-4152. [DOI: 10.1111/febs.15720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/29/2020] [Accepted: 01/15/2021] [Indexed: 12/24/2022]
Affiliation(s)
- Dipon Kumar Mondal
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur India
| | - Dhiman Sankar Pal
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur India
| | - Mazharul Abbasi
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur India
| | - Rupak Datta
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur India
| |
Collapse
|
9
|
Glycosome heterogeneity in kinetoplastids. Biochem Soc Trans 2021; 49:29-39. [PMID: 33439256 PMCID: PMC7925000 DOI: 10.1042/bst20190517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/18/2020] [Accepted: 11/26/2020] [Indexed: 01/05/2023]
Abstract
Kinetoplastid parasites have essential organelles called glycosomes that are analogous to peroxisomes present in other eukaryotes. While many of the processes that regulate glycosomes are conserved, there are several unique aspects of their biology that are divergent from other systems and may be leveraged as therapeutic targets for the treatment of kinetoplastid diseases. Glycosomes are heterogeneous organelles that likely exist as sub-populations with different protein composition and function in a given cell, between individual cells, and between species. However, the limitations posed by the small size of these organelles makes the study of this heterogeneity difficult. Recent advances in the analysis of small vesicles by flow-cytometry provide an opportunity to overcome these limitations. In this review, we describe studies that document the diverse nature of glycosomes and propose an approach to using flow cytometry and organelle sorting to study the diverse composition and function of these organelles. Because the cellular machinery that regulates glycosome protein import and biogenesis is likely to contribute, at least in part, to glycosome heterogeneity we highlight some ways in which the glycosome protein import machinery differs from that of peroxisomes in other eukaryotes.
Collapse
|
10
|
Sampaio Guther ML, Prescott AR, Kuettel S, Tinti M, Ferguson MAJ. Nucleotide sugar biosynthesis occurs in the glycosomes of procyclic and bloodstream form Trypanosoma brucei. PLoS Negl Trop Dis 2021; 15:e0009132. [PMID: 33592041 PMCID: PMC7909634 DOI: 10.1371/journal.pntd.0009132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 02/26/2021] [Accepted: 01/12/2021] [Indexed: 11/19/2022] Open
Abstract
In Trypanosoma brucei, there are fourteen enzymatic biotransformations that collectively convert glucose into five essential nucleotide sugars: UDP-Glc, UDP-Gal, UDP-GlcNAc, GDP-Man and GDP-Fuc. These biotransformations are catalyzed by thirteen discrete enzymes, five of which possess putative peroxisome targeting sequences. Published experimental analyses using immunofluorescence microscopy and/or digitonin latency and/or subcellular fractionation and/or organelle proteomics have localized eight and six of these enzymes to the glycosomes of bloodstream form and procyclic form T. brucei, respectively. Here we increase these glycosome localizations to eleven in both lifecycle stages while noting that one, phospho-N-acetylglucosamine mutase, also localizes to the cytoplasm. In the course of these studies, the heterogeneity of glycosome contents was also noted. These data suggest that, unlike other eukaryotes, all of nucleotide sugar biosynthesis in T. brucei is compartmentalized to the glycosomes in both lifecycle stages. The implications are discussed.
Collapse
Affiliation(s)
- Maria Lucia Sampaio Guther
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Alan R. Prescott
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sabine Kuettel
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michele Tinti
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michael A. J. Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Abstract
The association of leishmaniasis and malignancies in human and animal models has been highlighted in recent years. The misdiagnosis of coexistence of leishmaniasis and cancer and the use of common drugs in the treatment of such diseases prompt us to further survey the molecular biology of Leishmania parasites and cancer cells. The information regarding common expressed proteins, as possible therapeutic targets, in Leishmania parasites and cancer cells is scarce. Therefore, the current study reviews proteins, and investigates the regulation and functions of several key proteins in Leishmania parasites and cancer cells. The up- and down-regulations of such proteins were mostly related to survival, development, pathogenicity, metabolic pathways and vital signalling in Leishmania parasites and cancer cells. The presence of common expressed proteins in Leishmania parasites and cancer cells reveals valuable information regarding the possible shared mechanisms of pathogenicity and opportunities for therapeutic targeting in leishmaniasis and cancers in the future.
Collapse
|
12
|
Leishmania Encodes a Bacterium-like 2,4-Dienoyl-Coenzyme A Reductase That Is Required for Fatty Acid β-Oxidation and Intracellular Parasite Survival. mBio 2020; 11:mBio.01057-20. [PMID: 32487758 PMCID: PMC7267886 DOI: 10.1128/mbio.01057-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Leishmania spp. are protozoan parasites that cause a spectrum of important diseases in humans. These parasites develop as extracellular promastigotes in the digestive tract of their insect vectors and as obligate intracellular amastigotes that infect macrophages and other phagocytic cells in their vertebrate hosts. Promastigote-to-amastigote differentiation is associated with marked changes in metabolism, including the upregulation of enzymes involved in fatty acid β-oxidation, which may reflect adaptation to the intracellular niche. Here, we have investigated the function of one of these enzymes, a putative 2,4-dienoyl-coenzyme A (CoA) reductase (DECR), which is specifically required for the β-oxidation of polyunsaturated fatty acids. The Leishmania DECR shows close homology to bacterial DECR proteins, suggesting that it was acquired by lateral gene transfer. It is present in other trypanosomatids that have obligate intracellular stages (i.e., Trypanosoma cruzi and Angomonas) but is absent from dixenous parasites with an exclusively extracellular lifestyle (i.e., Trypanosoma brucei). A DECR-green fluorescent protein (GFP) fusion protein was localized to the mitochondrion in both promastigote and amastigote stages, and the levels of expression increased in the latter stages. A Leishmania major Δdecr null mutant was unable to catabolize unsaturated fatty acids and accumulated the intermediate 2,4-decadienoyl-CoA, confirming DECR's role in β-oxidation. Strikingly, the L. major Δdecr mutant was unable to survive in macrophages and was avirulent in BALB/c mice. These findings suggest that β-oxidation of polyunsaturated fatty acids is essential for intracellular parasite survival and that the bacterial origin of key enzymes in this pathway could be exploited in developing new therapies.IMPORTANCE The Trypanosomatidae are protozoan parasites that infect insects, plants, and animals and have evolved complex monoxenous (single host) and dixenous (two hosts) lifestyles. A number of species of Trypanosomatidae, including Leishmania spp., have evolved the capacity to survive within intracellular niches in vertebrate hosts. The adaptations, metabolic and other, that are associated with development of intracellular lifestyles remain poorly defined. We show that genomes of Leishmania and Trypanosomatidae that can survive intracellularly encode a 2,4-dienoyl-CoA reductase that is involved in catabolism of a subclass of fatty acids. The trypanosomatid enzyme shows closest similarity to the corresponding bacterial enzymes and is located in the mitochondrion and essential for intracellular growth of Leishmania The findings suggest that acquisition of this gene by lateral gene transfer from bacteria by ancestral monoxenous Trypanosomatidae likely contributed to the development of a dixenous lifestyle of these parasites.
Collapse
|
13
|
Škodová-Sveráková I, Záhonová K, Bučková B, Füssy Z, Yurchenko V, Lukeš J. Catalase and Ascorbate Peroxidase in Euglenozoan Protists. Pathogens 2020; 9:pathogens9040317. [PMID: 32344595 PMCID: PMC7237987 DOI: 10.3390/pathogens9040317] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 11/16/2022] Open
Abstract
In this work, we studied the biochemical properties and evolutionary histories of catalase (CAT) and ascorbate peroxidase (APX), two central enzymes of reactive oxygen species detoxification, across the highly diverse clade Eugenozoa. This clade encompasses free-living phototrophic and heterotrophic flagellates, as well as obligate parasites of insects, vertebrates, and plants. We present evidence of several independent acquisitions of CAT by horizontal gene transfers and evolutionary novelties associated with the APX presence. We posit that Euglenozoa recruit these detoxifying enzymes for specific molecular tasks, such as photosynthesis in euglenids and membrane-bound peroxidase activity in kinetoplastids and some diplonemids.
Collapse
Affiliation(s)
- Ingrid Škodová-Sveráková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic;
- Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia;
- Correspondence: (I.Š.-S.); (J.L.)
| | - Kristína Záhonová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic;
- Faculty of Science, Charles University, BIOCEV, 128 00 Prague, Czech Republic;
| | - Barbora Bučková
- Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia;
| | - Zoltán Füssy
- Faculty of Science, Charles University, BIOCEV, 128 00 Prague, Czech Republic;
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic;
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
- Correspondence: (I.Š.-S.); (J.L.)
| |
Collapse
|
14
|
A Global Analysis of Enzyme Compartmentalization to Glycosomes. Pathogens 2020; 9:pathogens9040281. [PMID: 32290588 PMCID: PMC7237986 DOI: 10.3390/pathogens9040281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/28/2022] Open
Abstract
In kinetoplastids, the first seven steps of glycolysis are compartmentalized into a glycosome along with parts of other metabolic pathways. This organelle shares a common ancestor with the better-understood eukaryotic peroxisome. Much of our understanding of the emergence, evolution, and maintenance of glycosomes is limited to explorations of the dixenous parasites, including the enzymatic contents of the organelle. Our objective was to determine the extent that we could leverage existing studies in model kinetoplastids to determine the composition of glycosomes in species lacking evidence of experimental localization. These include diverse monoxenous species and dixenous species with very different hosts. For many of these, genome or transcriptome sequences are available. Our approach initiated with a meta-analysis of existing studies to generate a subset of enzymes with highest evidence of glycosome localization. From this dataset we extracted the best possible glycosome signal peptide identification scheme for in silico identification of glycosomal proteins from any kinetoplastid species. Validation suggested that a high glycosome localization score from our algorithm would be indicative of a glycosomal protein. We found that while metabolic pathways were consistently represented across kinetoplastids, individual proteins within those pathways may not universally exhibit evidence of glycosome localization.
Collapse
|
15
|
Le T, Žárský V, Nývltová E, Rada P, Harant K, Vancová M, Verner Z, Hrdý I, Tachezy J. Anaerobic peroxisomes in Mastigamoeba balamuthi. Proc Natl Acad Sci U S A 2020; 117:2065-2075. [PMID: 31932444 PMCID: PMC6994998 DOI: 10.1073/pnas.1909755117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The adaptation of eukaryotic cells to anaerobic conditions is reflected by substantial changes to mitochondrial metabolism and functional reduction. Hydrogenosomes belong among the most modified mitochondrial derivative and generate molecular hydrogen concomitant with ATP synthesis. The reduction of mitochondria is frequently associated with loss of peroxisomes, which compartmentalize pathways that generate reactive oxygen species (ROS) and thus protect against cellular damage. The biogenesis and function of peroxisomes are tightly coupled with mitochondria. These organelles share fission machinery components, oxidative metabolism pathways, ROS scavenging activities, and some metabolites. The loss of peroxisomes in eukaryotes with reduced mitochondria is thus not unexpected. Surprisingly, we identified peroxisomes in the anaerobic, hydrogenosome-bearing protist Mastigamoeba balamuthi We found a conserved set of peroxin (Pex) proteins that are required for protein import, peroxisomal growth, and division. Key membrane-associated Pexs (MbPex3, MbPex11, and MbPex14) were visualized in numerous vesicles distinct from hydrogenosomes, the endoplasmic reticulum (ER), and Golgi complex. Proteomic analysis of cellular fractions and prediction of peroxisomal targeting signals (PTS1/PTS2) identified 51 putative peroxisomal matrix proteins. Expression of selected proteins in Saccharomyces cerevisiae revealed specific targeting to peroxisomes. The matrix proteins identified included components of acyl-CoA and carbohydrate metabolism and pyrimidine and CoA biosynthesis, whereas no components related to either β-oxidation or catalase were present. In conclusion, we identified a subclass of peroxisomes, named "anaerobic" peroxisomes that shift the current paradigm and turn attention to the reductive evolution of peroxisomes in anaerobic organisms.
Collapse
Affiliation(s)
- Tien Le
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic
| | - Vojtěch Žárský
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic
| | - Eva Nývltová
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic
| | - Petr Rada
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic
| | - Karel Harant
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic
| | - Marie Vancová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Zdeněk Verner
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic
| | - Ivan Hrdý
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic;
| |
Collapse
|
16
|
Castro H, Rocha MI, Silva R, Oliveira F, Gomes-Alves AG, Cruz T, Duarte M, Tomás AM. Functional insight into the glycosomal peroxiredoxin of Leishmania. Acta Trop 2020; 201:105217. [PMID: 31605692 DOI: 10.1016/j.actatropica.2019.105217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/11/2019] [Accepted: 10/08/2019] [Indexed: 01/22/2023]
Abstract
Glycosomes of trypanosomatids are peroxisome-like organelles comprising unique metabolic features, among which the lack of the hallmark peroxisomal enzyme catalase. The absence of this highly efficient peroxidase from glycosomes is presumably compensated by other antioxidants, peroxidases of the peroxiredoxin (PRX) family being the most promising candidates for this function. Here, we follow on this premise and investigate the product of a Leishmania infantum gene coding for a putative glycosomal PRX (LigPRX). First, we demonstrate that LigPRX localizes to glycosomes, resorting to indirect immunofluorescence analysis. Second, we prove that purified recombinant LigPRX is an active peroxidase in vitro. Third, we generate viable LigPRX-depleted L. infantum promastigotes by classical homologous recombination. Surprisingly, phenotypic analysis of these knockout parasites revealed that promastigote survival, replication, and protection from oxidative and nitrosative insults can proceed normally in the absence of LigPRX. Noticeably, we also witness that LigPRX-depleted parasites can infect and thrive in mice to the same extent as wild type parasites. Overall, by disclosing the dispensable character of the glycosomal peroxiredoxin in L. infantum, this work excludes this enzyme from being a key component of the glycosomal hydroperoxide metabolism and contemplates alternative players for this function.
Collapse
Affiliation(s)
- Helena Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
| | - Maria Inês Rocha
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ricardo Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Filipe Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana Georgina Gomes-Alves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Tânia Cruz
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Margarida Duarte
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana Maria Tomás
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
17
|
Lipids Are the Preferred Substrate of the Protist Naegleria gruberi, Relative of a Human Brain Pathogen. Cell Rep 2019; 25:537-543.e3. [PMID: 30332635 PMCID: PMC6205838 DOI: 10.1016/j.celrep.2018.09.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 08/22/2018] [Accepted: 09/16/2018] [Indexed: 11/24/2022] Open
Abstract
Naegleria gruberi is a free-living non-pathogenic amoeboflagellate and relative of Naegleria fowleri, a deadly pathogen causing primary amoebic meningoencephalitis (PAM). A genomic analysis of N. gruberi exists, but physiological evidence for its core energy metabolism or in vivo growth substrates is lacking. Here, we show that N. gruberi trophozoites need oxygen for normal functioning and growth and that they shun both glucose and amino acids as growth substrates. Trophozoite growth depends mainly upon lipid oxidation via a mitochondrial branched respiratory chain, both ends of which require oxygen as final electron acceptor. Growing N. gruberi trophozoites thus have a strictly aerobic energy metabolism with a marked substrate preference for the oxidation of fatty acids. Analyses of N. fowleri genome data and comparison with those of N. gruberi indicate that N. fowleri has the same type of metabolism. Specialization to oxygen-dependent lipid breakdown represents an additional metabolic strategy in protists. Naegleria gruberi is a strict aerobe and needs oxygen for normal functioning and growth Unique among protists, N. gruberi prefers lipids over glucose as an energy source Lipid breakdown proceeds via a branched respiratory chain, both ends using oxygen N. fowleri, the fatal human brain amoeba, is predicted to have the same food preference
Collapse
|
18
|
Kunze M. The type-2 peroxisomal targeting signal. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118609. [PMID: 31751594 DOI: 10.1016/j.bbamcr.2019.118609] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
The type-2 peroxisomal targeting signal (PTS2) is one of two peptide motifs destining soluble proteins for peroxisomes. This signal acts as amphiphilic α-helix exposing the side chains of all conserved residues to the same side. PTS2 motifs are recognized by a bipartite protein complex consisting of the receptor PEX7 and a co-receptor. Cargo-loaded receptor complexes are translocated across the peroxisomal membrane by a transient pore and inside peroxisomes, cargo proteins are released and processed in many, but not all species. The components of the bipartite receptor are re-exported into the cytosol by a ubiquitin-mediated and ATP-driven export mechanism. Structurally, PTS2 motifs resemble other N-terminal targeting signals, whereas the functional relation to the second peroxisomal targeting signal (PTS1) is unclear. Although only a few PTS2-carrying proteins are known in humans, subjects lacking a functional import mechanism for these proteins suffer from the severe inherited disease rhizomelic chondrodysplasia punctata.
Collapse
Affiliation(s)
- Markus Kunze
- Medical University of Vienna, Center for Brain Research, Department of Pathobiology of the Nervous System, Spitalgasse 4, 1090 Vienna, Austria.
| |
Collapse
|
19
|
Demarta‐Gatsi C, Rivkin A, Di Bartolo V, Peronet R, Ding S, Commere P, Guillonneau F, Bellalou J, Brûlé S, Abou Karam P, Cohen SR, Lagache T, Janse CJ, Regev‐Rudzki N, Mécheri S. Histamine releasing factor and elongation factor 1 alpha secreted via malaria parasites extracellular vesicles promote immune evasion by inhibiting specific T cell responses. Cell Microbiol 2019; 21:e13021. [DOI: 10.1111/cmi.13021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Claudia Demarta‐Gatsi
- Institut PasteurUnité de Biologie des Interactions Hôte Parasites Paris France
- Department of Parasites and Insect vectors, Institut PasteurCNRS ERL9195 Paris France
- Department of Parasites and Insect vectors, Institut PasteurINSERM U1201 Paris France
| | - Anna Rivkin
- Department of Biomolecular SciencesWeizmann Institute of Science Rehovot Israel
| | - Vincenzo Di Bartolo
- Institut Pasteur, Lymphocyte Cell Biology Unit, Department of ImmunologyINSERM U1221 Paris France
| | - Roger Peronet
- Institut PasteurUnité de Biologie des Interactions Hôte Parasites Paris France
- Department of Parasites and Insect vectors, Institut PasteurCNRS ERL9195 Paris France
- Department of Parasites and Insect vectors, Institut PasteurINSERM U1201 Paris France
| | - Shuai Ding
- Institut PasteurUnité de Biologie des Interactions Hôte Parasites Paris France
- Department of Parasites and Insect vectors, Institut PasteurCNRS ERL9195 Paris France
- Department of Parasites and Insect vectors, Institut PasteurINSERM U1201 Paris France
| | | | - François Guillonneau
- 3P5 proteomics Facility of the Université Paris DescartesInstitut Cochin Paris France
| | - Jacques Bellalou
- Platform of Recombinant ProteinsC2RT—Institut Pasteur Paris France
| | - Sébastien Brûlé
- Platform of Molecular BiophysicsInstitut Pasteur Paris France
| | - Paula Abou Karam
- Department of Biomolecular SciencesWeizmann Institute of Science Rehovot Israel
| | - Sidney R. Cohen
- Department of Chemical Research SupportWeizmann Institute of Science Rehovot Israel
| | - Thibault Lagache
- Department of Biological SciencesColumbia University New York New York
| | - Chris J. Janse
- Leiden Malaria Research Group, ParasitologyLeiden University Medical Center (LUMC) Leiden The Netherlands
| | - Neta Regev‐Rudzki
- Department of Biomolecular SciencesWeizmann Institute of Science Rehovot Israel
| | - Salaheddine Mécheri
- Institut PasteurUnité de Biologie des Interactions Hôte Parasites Paris France
- Department of Parasites and Insect vectors, Institut PasteurCNRS ERL9195 Paris France
- Department of Parasites and Insect vectors, Institut PasteurINSERM U1201 Paris France
| |
Collapse
|
20
|
Acosta H, Burchmore R, Naula C, Gualdrón-López M, Quintero-Troconis E, Cáceres AJ, Michels PAM, Concepción JL, Quiñones W. Proteomic analysis of glycosomes from Trypanosoma cruzi epimastigotes. Mol Biochem Parasitol 2019; 229:62-74. [PMID: 30831156 PMCID: PMC7082770 DOI: 10.1016/j.molbiopara.2019.02.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/20/2022]
Abstract
In Trypanosoma cruzi, the causal agent of Chagas disease, the first seven steps of glycolysis are compartmentalized in glycosomes, which are authentic but specialized peroxisomes. Besides glycolysis, activity of enzymes of other metabolic processes have been reported to be present in glycosomes, such as β-oxidation of fatty acids, purine salvage, pentose-phosphate pathway, gluconeogenesis and biosynthesis of ether-lipids, isoprenoids, sterols and pyrimidines. In this study, we have purified glycosomes from T. cruzi epimastigotes, collected the soluble and membrane fractions of these organelles, and separated peripheral and integral membrane proteins by Na2CO3 treatment and osmotic shock. Proteomic analysis was performed on each of these fractions, allowing us to confirm the presence of enzymes involved in various metabolic pathways as well as identify new components of this parasite's glycosomes.
Collapse
Affiliation(s)
- Héctor Acosta
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Richard Burchmore
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Christina Naula
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Melisa Gualdrón-López
- Instituto Salud Global, Hospital Clinic-Universitat de Barcelona, and Institute for Health Sciences Trias i Pujol, Barcelona, Spain
| | - Ender Quintero-Troconis
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Paul A M Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, The University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela.
| |
Collapse
|
21
|
Ahuja K, Beg MA, Sharma R, Saxena A, Naqvi N, Puri N, Rai PK, Chaudhury A, Duncan R, Salotra P, Nakhasi H, Selvapandiyan A. A novel signal sequence negative multimeric glycosomal protein required for cell cycle progression of Leishmania donovani parasites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1148-1159. [DOI: 10.1016/j.bbamcr.2018.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/28/2018] [Accepted: 05/21/2018] [Indexed: 12/22/2022]
|
22
|
Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology 2018; 146:1-27. [PMID: 29898792 DOI: 10.1017/s0031182018000951] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Unicellular flagellates of the family Trypanosomatidae are obligatory parasites of invertebrates, vertebrates and plants. Dixenous species are aetiological agents of a number of diseases in humans, domestic animals and plants. Their monoxenous relatives are restricted to insects. Because of the high biological diversity, adaptability to dramatically different environmental conditions, and omnipresence, these protists have major impact on all biotic communities that still needs to be fully elucidated. In addition, as these organisms represent a highly divergent evolutionary lineage, they are strikingly different from the common 'model system' eukaryotes, such as some mammals, plants or fungi. A number of excellent reviews, published over the past decade, were dedicated to specialized topics from the areas of trypanosomatid molecular and cell biology, biochemistry, host-parasite relationships or other aspects of these fascinating organisms. However, there is a need for a more comprehensive review that summarizing recent advances in the studies of trypanosomatids in the last 30 years, a task, which we tried to accomplish with the current paper.
Collapse
|
23
|
Kalem MC, Gerasimov ES, Vu PK, Zimmer SL. Gene expression to mitochondrial metabolism: Variability among cultured Trypanosoma cruzi strains. PLoS One 2018; 13:e0197983. [PMID: 29847594 PMCID: PMC5976161 DOI: 10.1371/journal.pone.0197983] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/11/2018] [Indexed: 11/18/2022] Open
Abstract
The insect-transmitted protozoan parasite Trypanosoma cruzi experiences changes in nutrient availability and rate of flux through different metabolic pathways across its life cycle. The species encompasses much genetic diversity of both the nuclear and mitochondrial genomes among isolated strains. The genetic or expression variation of both genomes are likely to impact metabolic responses to environmental stimuli, and even steady state metabolic function, among strains. To begin formal characterization these differences, we compared aspects of metabolism between genetically similar strains CL Brener and Tulahuen with less similar Esmeraldo and Sylvio X10 strains in a culture environment. Epimastigotes of all strains took up glucose at similar rates. However, the degree of medium acidification that could be observed when glucose was absent from the medium varied by strain, indicating potential differences in excreted metabolic byproducts. Our main focus was differences related to electron transport chain function. We observed differences in ATP-coupled respiration and maximal respiratory capacity, mitochondrial membrane potential, and mitochondrial morphology between strains, despite the fact that abundances of two nuclear-encoded proteins of the electron transport chain are similar between strains. RNA sequencing reveals strain-specific differences in abundances of mRNAs encoding proteins of the respiratory chain but also other metabolic processes. From these differences in metabolism and mitochondrial phenotypes we have generated tentative models for the differential metabolic fluxes or differences in gene expression that may underlie these results.
Collapse
Affiliation(s)
- Murat C. Kalem
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, United States of America
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth campus, Duluth, Minnesota, United States of America
| | | | - Pamela K. Vu
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, United States of America
| | - Sara L. Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth campus, Duluth, Minnesota, United States of America
| |
Collapse
|
24
|
Fresh insights into the pyrimidine metabolism in the trypanosomatids. Parasit Vectors 2018; 11:87. [PMID: 29422065 PMCID: PMC5803862 DOI: 10.1186/s13071-018-2660-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/18/2018] [Indexed: 11/26/2022] Open
Abstract
The trypanosomatid parasites continue their killing spree resulting in significant annual mortality due to the lack of effective treatments and the prominence of these diseases in poorer countries. These dimorphic parasites thrive unchecked in the host system, outsmarting the immune mechanisms. An understanding of biology of these parasitic forms will help in the management and elimination of these fatal diseases. Investigation of various metabolic pathways in these parasites has shed light in the understanding of the unique biology of the trypansomatids. An understanding of these pathways have helped in tracing the soft targets in the metabolic pathways, which could be used as effective drug targets which would further impact the therupeutic implications. Pyrimidine pathway is a vital metabolic pathway which yields in the formation of pyrimidines, which are then integrated in nucleic acids (DNA and RNA) in sugars (UDP sugars) and lipids (CDP lipids). A wealth of data and information has been generated in the past decades by in-depth analyses of pyrimidine pathway in the trypanosomatid parasites, which can aid in the identification of anomalies between the parasitic and host counterpart which could be further harnessed to develop therapeutic interventions for the treatment of parasitic diseases. This review presents an updated and comprehensive detailing of the pyrimidine metabolism in the trypansomatids, their uniqueness and their distinctions, and its possible outcomes that would aid in the eradication of these parasitic diseases.
Collapse
|
25
|
Muxel SM, Aoki JI, Fernandes JCR, Laranjeira-Silva MF, Zampieri RA, Acuña SM, Müller KE, Vanderlinde RH, Floeter-Winter LM. Arginine and Polyamines Fate in Leishmania Infection. Front Microbiol 2018; 8:2682. [PMID: 29379478 PMCID: PMC5775291 DOI: 10.3389/fmicb.2017.02682] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/22/2017] [Indexed: 01/22/2023] Open
Abstract
Leishmania is a protozoan parasite that alternates its life cycle between the sand fly and the mammalian host macrophages, involving several environmental changes. The parasite responds to these changes by promoting a rapid metabolic adaptation through cellular signaling modifications that lead to transcriptional and post-transcriptional gene expression regulation and morphological modifications. Molecular approaches such as gene expression regulation, next-generation sequencing (NGS), microRNA (miRNA) expression profiling, in cell Western blot analyses and enzymatic activity profiling, have been used to characterize the infection of murine BALB/c and C57BL/6 macrophages, as well as the human monocytic cell-lineage THP-1, with Leishmania amazonensis wild type (La-WT) or arginase knockout (La-arg-). These models are being used to elucidate physiological roles of arginine and polyamines pathways and the importance of arginase for the establishment of the infection. In this review, we will describe the main aspects of Leishmania-host interaction, focusing on the arginine and polyamines pathways and pointing to possible targets to be used for prognosis and/or in the control of the infection. The parasite enzymes, arginase and nitric oxide synthase-like, have essential roles in the parasite survival and in the maintenance of infection. On the other hand, in mammalian macrophages, defense mechanisms are activated inducing alterations in the mRNA, miRNA and enzymatic profiles that lead to the control of infection. Furthermore, the genetic background of both parasite and host are also important to define the fate of infection.
Collapse
Affiliation(s)
- Sandra M Muxel
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Juliana I Aoki
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Juliane C R Fernandes
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Ricardo A Zampieri
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Stephanie M Acuña
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Karl E Müller
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Rubia H Vanderlinde
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Lucile M Floeter-Winter
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Computational Techniques for a Comprehensive Understanding of Different Genotype-Phenotype Factors in Biological Systems and Their Applications. Synth Biol (Oxf) 2018. [DOI: 10.1007/978-981-10-8693-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
27
|
Kunze M. Predicting Peroxisomal Targeting Signals to Elucidate the Peroxisomal Proteome of Mammals. Subcell Biochem 2018; 89:157-199. [PMID: 30378023 DOI: 10.1007/978-981-13-2233-4_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Peroxisomes harbor a plethora of proteins, but the peroxisomal proteome as the entirety of all peroxisomal proteins is still unknown for mammalian species. Computational algorithms can be used to predict the subcellular localization of proteins based on their amino acid sequence and this method has been amply used to forecast the intracellular fate of individual proteins. However, when applying such algorithms systematically to all proteins of an organism the prediction of its peroxisomal proteome in silico should be possible. Therefore, a reliable detection of peroxisomal targeting signals (PTS ) acting as postal codes for the intracellular distribution of the encoding protein is crucial. Peroxisomal proteins can utilize different routes to reach their destination depending on the type of PTS. Accordingly, independent prediction algorithms have been developed for each type of PTS, but only those for type-1 motifs (PTS1) have so far reached a satisfying predictive performance. This is partially due to the low number of peroxisomal proteins limiting the power of statistical analyses and partially due to specific properties of peroxisomal protein import, which render functional PTS motifs inactive in specific contexts. Moreover, the prediction of the peroxisomal proteome is limited by the high number of proteins encoded in mammalian genomes, which causes numerous false positive predictions even when using reliable algorithms and buries the few yet unidentified peroxisomal proteins. Thus, the application of prediction algorithms to identify all peroxisomal proteins is currently ineffective as stand-alone method, but can display its full potential when combined with other methods.
Collapse
Affiliation(s)
- Markus Kunze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
28
|
de Pádua RA, Kia AM, Costa-Filho AJ, Wilkinson SR, Nonato MC. Characterisation of the fumarate hydratase repertoire in Trypanosoma cruzi. Int J Biol Macromol 2017; 102:42-51. [DOI: 10.1016/j.ijbiomac.2017.03.099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 11/16/2022]
|
29
|
Sarwono AEY, Suganuma K, Mitsuhashi S, Okada T, Musinguzi SP, Shigetomi K, Inoue N, Ubukata M. Identification and characterization of guanosine 5'-monophosphate reductase of Trypanosoma congolense as a drug target. Parasitol Int 2017; 66:537-544. [PMID: 28366788 DOI: 10.1016/j.parint.2017.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/17/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
Trypanosoma congolense is one of the most prevalent pathogens which causes trypanosomosis in African animals, resulting in a significant economic loss. In its life cycle, T. congolense is incapable of synthesizing purine nucleotides via a de novo pathway, and thus relies on a salvage pathway to survive. In this study, we identified a gene from T. congolense, TcIL3000_5_1940, as a guanosine 5'-monophosphate reductase (GMPR), an enzyme that modulates the concentration of intracellular guanosine in the pathogen. The recombinant protein was expressed in Escherichia coli, and the gene product was enzymatically confirmed as a unique GMPR, designated as rTcGMPR. This enzyme was constitutively expressed in glycosomes at all of the parasite's developmental stages similar to other purine nucleotide metabolic enzymes. Mycophenolic acid (MPA) was found to inhibit rTcGMPR activity. Hence, it is a potential lead compound for the design of trypanocidal agents, specifically GMPR inhibitor.
Collapse
Affiliation(s)
- Albertus Eka Yudistira Sarwono
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Keisuke Suganuma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido 080-8555, Japan; Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Shinya Mitsuhashi
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Tadashi Okada
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido 080-8555, Japan; Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Simon Peter Musinguzi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Kengo Shigetomi
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Noboru Inoue
- Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Makoto Ubukata
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8589, Japan.
| |
Collapse
|
30
|
Trypanosoma cruzi contains two galactokinases; molecular and biochemical characterization. Parasitol Int 2016; 65:472-82. [DOI: 10.1016/j.parint.2016.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/20/2016] [Accepted: 06/12/2016] [Indexed: 11/20/2022]
|
31
|
The Pentose Phosphate Pathway in Parasitic Trypanosomatids. Trends Parasitol 2016; 32:622-634. [DOI: 10.1016/j.pt.2016.04.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 12/20/2022]
|
32
|
Boitz JM, Jardim A, Ullman B. GMP reductase and genetic uncoupling of adenylate and guanylate metabolism in Leishmania donovani parasites. Mol Biochem Parasitol 2016; 208:74-83. [PMID: 27343371 DOI: 10.1016/j.molbiopara.2016.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 11/26/2022]
Abstract
Purine acquisition is an essential nutritional process for Leishmania. Although purine salvage into adenylate nucleotides has been investigated in detail, little attention has been focused on the guanylate branch of the purine pathway. To characterize guanylate nucleotide metabolism in Leishmania and create a cell culture model in which the pathways for adenylate and guanylate nucleotide synthesis can be genetically uncoupled for functional studies in intact cells, we created and characterized null mutants of L. donovani that were deficient in either GMP reductase alone (Δgmpr) or in both GMP reductase and its paralog IMP dehydrogenase (Δgmpr/Δimpdh). Whereas wild type parasites were capable of utilizing virtually any purine nucleobase/nucleoside, the Δgmpr and Δgmpr/Δimpdh null lines exhibited highly restricted growth phenotypes. The Δgmpr single mutant could not grow in xanthine, guanine, or their corresponding nucleosides, while no purine on its own could support the growth of Δgmpr/Δimpdh cells. Permissive growth conditions for the Δgmpr/Δimpdh necessitated both xanthine, guanine, or the corresponding nucleosides, and additionally, a second purine that could serve as a source for adenylate nucleotide synthesis. Interestingly, GMPR, like its paralog IMPDH, is compartmentalized to the leishmanial glycosome, a process mediated by its COOH-terminal peroxisomal targeting signal. The restricted growth phenotypes displayed by the L. donovani Δgmpr and Δgmpr/Δimpdh null mutants confirms the importance of GMPR in the purine interconversion processes of this parasite.
Collapse
Affiliation(s)
- Jan M Boitz
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Mail Code L224, Portland, OR 97239, USA
| | - Armando Jardim
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X3V9, Canada
| | - Buddy Ullman
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Mail Code L224, Portland, OR 97239, USA.
| |
Collapse
|
33
|
Faria J, Loureiro I, Santarém N, Cecílio P, Macedo-Ribeiro S, Tavares J, Cordeiro-da-Silva A. Disclosing the essentiality of ribose-5-phosphate isomerase B in Trypanosomatids. Sci Rep 2016; 6:26937. [PMID: 27230471 PMCID: PMC4882579 DOI: 10.1038/srep26937] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/10/2016] [Indexed: 01/31/2023] Open
Abstract
Ribose-5-phosphate isomerase (RPI) belongs to the non-oxidative branch of the pentose phosphate pathway, catalysing the inter-conversion of D-ribose-5-phosphate and D-ribulose-5-phosphate. Trypanosomatids encode a type B RPI, whereas humans have a structurally unrelated type A, making RPIB worthy of exploration as a potential drug target. Null mutant generation in Leishmania infantum was only possible when an episomal copy of RPIB gene was provided, and the latter was retained both in vitro and in vivo in the absence of drug pressure. This suggests the gene is essential for parasite survival. Importantly, the inability to remove the second allele of RPIB gene in sKO mutants complemented with an episomal copy of RPIB carrying a mutation that abolishes isomerase activity suggests the essentiality is due to its metabolic function. In vitro, sKO promastigotes exhibited no defect in growth, metacyclogenesis or macrophage infection, however, an impairment in intracellular amastigotes' replication was observed. Additionally, mice infected with sKO mutants rescued by RPIB complementation had a reduced parasite burden in the liver. Likewise, Trypanosoma brucei is resistant to complete RPIB gene removal and mice infected with sKO mutants showed prolonged survival upon infection. Taken together our results genetically validate RPIB as a potential drug target in trypanosomatids.
Collapse
Affiliation(s)
- Joana Faria
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Inês Loureiro
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Nuno Santarém
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Pedro Cecílio
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Protein Crystallography Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Portugal
| | - Joana Tavares
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Anabela Cordeiro-da-Silva
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Portugal
| |
Collapse
|
34
|
Opperdoes FR, Butenko A, Flegontov P, Yurchenko V, Lukeš J. Comparative Metabolism of Free-living Bodo saltans
and Parasitic Trypanosomatids. J Eukaryot Microbiol 2016; 63:657-78. [DOI: 10.1111/jeu.12315] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/10/2016] [Accepted: 03/20/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Fred R. Opperdoes
- de Duve Institute; Université Catholique de Louvain; Brussels B-1200 Belgium
| | - Anzhelika Butenko
- Life Science Research Centre; Faculty of Science; University of Ostrava; Ostrava 710 00 Czech Republic
| | - Pavel Flegontov
- Life Science Research Centre; Faculty of Science; University of Ostrava; Ostrava 710 00 Czech Republic
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) 370 05 Czech Republic
- A.A. Kharkevich Institute for Information Transmission Problems; Russian Academy of Sciences; Moscow 127 051 Russia
| | - Vyacheslav Yurchenko
- Life Science Research Centre; Faculty of Science; University of Ostrava; Ostrava 710 00 Czech Republic
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) 370 05 Czech Republic
- Faculty of Science; Institute of Environmental Technologies; University of Ostrava; Ostrava 710 00 Czech Republic
| | - Julius Lukeš
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) 370 05 Czech Republic
- Faculty of Science; University of South Bohemia; České Budějovice (Budweis) 370 05 Czech Republic
- Canadian Institute for Advanced Research; Toronto ON M5G 1Z8 Canada
| |
Collapse
|
35
|
Gabaldón T, Ginger ML, Michels PAM. Peroxisomes in parasitic protists. Mol Biochem Parasitol 2016; 209:35-45. [PMID: 26896770 DOI: 10.1016/j.molbiopara.2016.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/12/2016] [Accepted: 02/13/2016] [Indexed: 01/24/2023]
Abstract
Representatives of all major lineages of eukaryotes contain peroxisomes with similar morphology and mode of biogenesis, indicating a monophyletic origin of the organelles within the common ancestor of all eukaryotes. Peroxisomes originated from the endoplasmic reticulum, but despite a common origin and shared morphological features, peroxisomes from different organisms show a remarkable diversity of enzyme content and the metabolic processes present can vary dependent on nutritional or developmental conditions. A common characteristic and probable evolutionary driver for the origin of the organelle is an involvement in lipid metabolism, notably H2O2-dependent fatty-acid oxidation. Subsequent evolution of the organelle in different lineages involved multiple acquisitions of metabolic processes-often involving retargeting enzymes from other cell compartments-and losses. Information about peroxisomes in protists is still scarce, but available evidence, including new bioinformatics data reported here, indicate striking diversity amongst free-living and parasitic protists from different phylogenetic supergroups. Peroxisomes in only some protists show major involvement in H2O2-dependent metabolism, as in peroxisomes of mammalian, plant and fungal cells. Compartmentalization of glycolytic and gluconeogenic enzymes inside peroxisomes is characteristic of kinetoplastids and diplonemids, where the organelles are hence called glycosomes, whereas several other excavate parasites (Giardia, Trichomonas) have lost peroxisomes. Amongst alveolates and amoebozoans patterns of peroxisome loss are more complicated. Often, a link is apparent between the niches occupied by the parasitic protists, nutrient availability, and the absence of the organelles or their presence with a specific enzymatic content. In trypanosomatids, essentiality of peroxisomes may be considered for use in anti-parasite drug discovery.
Collapse
Affiliation(s)
- Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Michael L Ginger
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK; Department of Biological Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
| | - Paul A M Michels
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, UK; Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, UK; Laboratorio de Enzimología de Parásitos, Departamento de Biología, Universidad de Los Andes, Mérida, Venezuela.
| |
Collapse
|
36
|
Njogu PM, Guantai EM, Pavadai E, Chibale K. Computer-Aided Drug Discovery Approaches against the Tropical Infectious Diseases Malaria, Tuberculosis, Trypanosomiasis, and Leishmaniasis. ACS Infect Dis 2016; 2:8-31. [PMID: 27622945 DOI: 10.1021/acsinfecdis.5b00093] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Despite the tremendous improvement in overall global health heralded by the adoption of the Millennium Declaration in the year 2000, tropical infections remain a major health problem in the developing world. Recent estimates indicate that the major tropical infectious diseases, namely, malaria, tuberculosis, trypanosomiasis, and leishmaniasis, account for more than 2.2 million deaths and a loss of approximately 85 million disability-adjusted life years annually. The crucial role of chemotherapy in curtailing the deleterious health and economic impacts of these infections has invigorated the search for new drugs against tropical infectious diseases. The research efforts have involved increased application of computational technologies in mainstream drug discovery programs at the hit identification, hit-to-lead, and lead optimization stages. This review highlights various computer-aided drug discovery approaches that have been utilized in efforts to identify novel antimalarial, antitubercular, antitrypanosomal, and antileishmanial agents. The focus is largely on developments over the past 5 years (2010-2014).
Collapse
Affiliation(s)
- Peter M. Njogu
- Department of Pharmaceutical Chemistry and ‡Division of Pharmacology, School of Pharmacy, University of Nairobi, P.O. Box 19676-00202, Nairobi, Kenya
- Department of Chemistry, ⊗Institute of Infectious
Disease and Molecular Medicine, and ΘSouth African Medical Research Council Drug
Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
| | - Eric M. Guantai
- Department of Pharmaceutical Chemistry and ‡Division of Pharmacology, School of Pharmacy, University of Nairobi, P.O. Box 19676-00202, Nairobi, Kenya
- Department of Chemistry, ⊗Institute of Infectious
Disease and Molecular Medicine, and ΘSouth African Medical Research Council Drug
Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
| | - Elumalai Pavadai
- Department of Pharmaceutical Chemistry and ‡Division of Pharmacology, School of Pharmacy, University of Nairobi, P.O. Box 19676-00202, Nairobi, Kenya
- Department of Chemistry, ⊗Institute of Infectious
Disease and Molecular Medicine, and ΘSouth African Medical Research Council Drug
Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Department of Pharmaceutical Chemistry and ‡Division of Pharmacology, School of Pharmacy, University of Nairobi, P.O. Box 19676-00202, Nairobi, Kenya
- Department of Chemistry, ⊗Institute of Infectious
Disease and Molecular Medicine, and ΘSouth African Medical Research Council Drug
Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
37
|
Glycosomal bromodomain factor 1 from Trypanosoma cruzi enhances trypomastigote cell infection and intracellular amastigote growth. Biochem J 2015; 473:73-85. [DOI: 10.1042/bj20150986] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/23/2015] [Indexed: 12/16/2022]
Abstract
We characterized bromodomain factor 1 from Trypanosoma cruzi (TcBDF1), a developmentally regulated protein that localizes in the glycosomes of epimastigotes. The overexpression of wild-type TcBDF1 is detrimental for epimastigotes, but favours trypomastigote infection, whereas mutant TcBDF1 diminishes the infectivity rate.
Collapse
|
38
|
Jamdhade MD, Pawar H, Chavan S, Sathe G, Umasankar PK, Mahale KN, Dixit T, Madugundu AK, Prasad TSK, Gowda H, Pandey A, Patole MS. Comprehensive proteomics analysis of glycosomes from Leishmania donovani. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:157-70. [PMID: 25748437 DOI: 10.1089/omi.2014.0163] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Leishmania donovani is a kinetoplastid protozoan that causes a severe and fatal disease kala-azar, or visceral leishmaniasis. L. donovani infects human host after the phlebotomine sandfly takes a blood meal and resides within the phagolysosome of infected macrophages. Previous studies on host-parasite interactions have not focused on Leishmania organelles and the role that they play in the survival of this parasite within macrophages. Leishmania possess glycosomes that are unique and specialized subcellular microbody organelles. Glycosomes are known to harbor most peroxisomal enzymes and, in addition, they also possess nine glycolytic enzymes. In the present study, we have carried out proteomic profiling using high resolution mass spectrometry of a sucrose density gradient-enriched glycosomal fraction isolated from L. donovani promastigotes. This study resulted in the identification of 4022 unique peptides, leading to the identification of 1355 unique proteins from a preparation enriched in L. donovani glycosomes. Based on protein annotation, 566 (41.8%) were identified as hypothetical proteins with no known function. A majority of the identified proteins are involved in metabolic processes such as carbohydrate, lipid, and nucleic acid metabolism. Our present proteomic analysis is the most comprehensive study to date to map the proteome of L. donovani glycosomes.
Collapse
|
39
|
Haanstra JR, González-Marcano EB, Gualdrón-López M, Michels PAM. Biogenesis, maintenance and dynamics of glycosomes in trypanosomatid parasites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1038-48. [PMID: 26384872 DOI: 10.1016/j.bbamcr.2015.09.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 12/31/2022]
Abstract
Peroxisomes of organisms belonging to the protist group Kinetoplastea, which include trypanosomatid parasites of the genera Trypanosoma and Leishmania, are unique in playing a crucial role in glycolysis and other parts of intermediary metabolism. They sequester the majority of the glycolytic enzymes and hence are called glycosomes. Their glycosomal enzyme content can vary strongly, particularly quantitatively, between different trypanosomatid species, and within each species during its life cycle. Turnover of glycosomes by autophagy of redundant ones and biogenesis of a new population of organelles play a pivotal role in the efficient adaptation of the glycosomal metabolic repertoire to the sudden, major nutritional changes encountered during the transitions in their life cycle. The overall mechanism of glycosome biogenesis is similar to that of peroxisomes in other organisms, but the homologous peroxins involved display low sequence conservation as well as variations in motifs mediating crucial protein-protein interactions in the process. The correct compartmentalisation of enzymes is essential for the regulation of the trypanosomatids' metabolism and consequently for their viability. For Trypanosoma brucei it was shown that glycosomes also play a crucial role in its life-cycle regulation: a crucial developmental control switch involves the translocation of a protein phosphatase from the cytosol into the organelles. Many glycosomal proteins are differentially phosphorylated in different life-cycle stages, possibly indicative of regulation of enzyme activities as an additional means to adapt the metabolic network to the different environmental conditions encountered.
Collapse
Affiliation(s)
- Jurgen R Haanstra
- Systems Bioinformatics, Vrije Universiteit Amsterdam, The Netherlands
| | - Eglys B González-Marcano
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Melisa Gualdrón-López
- Federal University of Minas Gerais, Laboratory of Immunoregulation of Infectious Diseases, Department of Biochemistry and Immunology, Institute for Biological Sciences, Belo Horizonte, Brazil
| | - Paul A M Michels
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela; Centre for Translational and Chemical Biology, Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, United Kingdom.
| |
Collapse
|
40
|
Dissecting Leishmania infantum Energy Metabolism - A Systems Perspective. PLoS One 2015; 10:e0137976. [PMID: 26367006 PMCID: PMC4569355 DOI: 10.1371/journal.pone.0137976] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 08/24/2015] [Indexed: 01/02/2023] Open
Abstract
Leishmania infantum, causative agent of visceral leishmaniasis in humans, illustrates a complex lifecycle pertaining to two extreme environments, namely, the gut of the sandfly vector and human macrophages. Leishmania is capable of dynamically adapting and tactically switching between these critically hostile situations. The possible metabolic routes ventured by the parasite to achieve this exceptional adaptation to its varying environments are still poorly understood. In this study, we present an extensively reconstructed energy metabolism network of Leishmania infantum as an attempt to identify certain strategic metabolic routes preferred by the parasite to optimize its survival in such dynamic environments. The reconstructed network consists of 142 genes encoding for enzymes performing 237 reactions distributed across five distinct model compartments. We annotated the subcellular locations of different enzymes and their reactions on the basis of strong literature evidence and sequence-based detection of cellular localization signal within a protein sequence. To explore the diverse features of parasite metabolism the metabolic network was implemented and analyzed as a constraint-based model. Using a systems-based approach, we also put forth an extensive set of lethal reaction knockouts; some of which were validated using published data on Leishmania species. Performing a robustness analysis, the model was rigorously validated and tested for the secretion of overflow metabolites specific to Leishmania under varying extracellular oxygen uptake rate. Further, the fate of important non-essential amino acids in L. infantum metabolism was investigated. Stage-specific scenarios of L. infantum energy metabolism were incorporated in the model and key metabolic differences were outlined. Analysis of the model revealed the essentiality of glucose uptake, succinate fermentation, glutamate biosynthesis and an active TCA cycle as driving forces for parasite energy metabolism and its optimal growth. Finally, through our in silico knockout analysis, we could identify possible therapeutic targets that provide experimentally testable hypotheses.
Collapse
|
41
|
Kraeva N, Butenko A, Hlaváčová J, Kostygov A, Myškova J, Grybchuk D, Leštinová T, Votýpka J, Volf P, Opperdoes F, Flegontov P, Lukeš J, Yurchenko V. Leptomonas seymouri: Adaptations to the Dixenous Life Cycle Analyzed by Genome Sequencing, Transcriptome Profiling and Co-infection with Leishmania donovani. PLoS Pathog 2015; 11:e1005127. [PMID: 26317207 PMCID: PMC4552786 DOI: 10.1371/journal.ppat.1005127] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/04/2015] [Indexed: 11/18/2022] Open
Abstract
The co-infection cases involving dixenous Leishmania spp. (mostly of the L. donovani complex) and presumably monoxenous trypanosomatids in immunocompromised mammalian hosts including humans are well documented. The main opportunistic parasite has been identified as Leptomonas seymouri of the sub-family Leishmaniinae. The molecular mechanisms allowing a parasite of insects to withstand elevated temperature and substantially different conditions of vertebrate tissues are not understood. Here we demonstrate that L. seymouri is well adapted for the environment of the warm-blooded host. We sequenced the genome and compared the whole transcriptome profiles of this species cultivated at low and high temperatures (mimicking the vector and the vertebrate host, respectively) and identified genes and pathways differentially expressed under these experimental conditions. Moreover, Leptomonas seymouri was found to persist for several days in two species of Phlebotomus spp. implicated in Leishmania donovani transmission. Despite of all these adaptations, L. seymouri remains a predominantly monoxenous species not capable of infecting vertebrate cells under normal conditions.
Collapse
Affiliation(s)
- Natalya Kraeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jana Hlaváčová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Alexei Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Jitka Myškova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Danyil Grybchuk
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Tereza Leštinová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Votýpka
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Fred Opperdoes
- de Duve Institute and Université catholique de Louvain, Brussels, Belgium
| | - Pavel Flegontov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
42
|
Loureiro I, Faria J, Clayton C, Macedo-Ribeiro S, Santarém N, Roy N, Cordeiro-da-Siva A, Tavares J. Ribose 5-phosphate isomerase B knockdown compromises Trypanosoma brucei bloodstream form infectivity. PLoS Negl Trop Dis 2015; 9:e3430. [PMID: 25568941 PMCID: PMC4287489 DOI: 10.1371/journal.pntd.0003430] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/21/2014] [Indexed: 12/13/2022] Open
Abstract
Ribose 5-phosphate isomerase is an enzyme involved in the non-oxidative branch of the pentose phosphate pathway, and catalyzes the inter-conversion of D-ribose 5-phosphate and D-ribulose 5-phosphate. Trypanosomatids, including the agent of African sleeping sickness namely Trypanosoma brucei, have a type B ribose-5-phosphate isomerase. This enzyme is absent from humans, which have a structurally unrelated ribose 5-phosphate isomerase type A, and therefore has been proposed as an attractive drug target waiting further characterization. In this study, Trypanosoma brucei ribose 5-phosphate isomerase B showed in vitro isomerase activity. RNAi against this enzyme reduced parasites' in vitro growth, and more importantly, bloodstream forms infectivity. Mice infected with induced RNAi clones exhibited lower parasitaemia and a prolonged survival compared to control mice. Phenotypic reversion was achieved by complementing induced RNAi clones with an ectopic copy of Trypanosoma cruzi gene. Our results present the first functional characterization of Trypanosoma brucei ribose 5-phosphate isomerase B, and show the relevance of an enzyme belonging to the non-oxidative branch of the pentose phosphate pathway in the context of Trypanosoma brucei infection. Within the non-oxidative branch of the pentose phosphate pathway, ribose 5-phosphate isomerase catalyzes the inter-conversion of ribose 5-phosphate and ribulose 5-phosphate. There are two types of ribose 5-phosphate isomerase, namely A and B. The presence of type B in Trypanosoma brucei, and its absence in humans, make this protein a promising drug target. African sleeping sickness is a serious parasitic disease that relies on limited chemotherapeutic options for control. In our study, a functional characterization of Trypanosoma brucei ribose 5-phosphate isomerase B is reported. Biochemical studies confirmed enzyme isomerase activity and its downregulation by RNAi affected mainly parasites infectivity in vivo. Overall this study shows that ribose 5-phosphate isomerase depletion is detrimental for parasites infectivity under host pressure.
Collapse
Affiliation(s)
- Inês Loureiro
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - Joana Faria
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH cv Alliance, Heidelberg, Germany
| | - Sandra Macedo-Ribeiro
- Protein Crystallography Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - Nuno Santarém
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - Nilanjan Roy
- Ashok & Rita Patel Institute of Integrated Study & Research in Biotechnology & Allied Sciences, New Vallabh Vidyanagar, Dist-Anand, Gujarat, India
| | - Anabela Cordeiro-da-Siva
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
- * E-mail: (ACdS); (JT)
| | - Joana Tavares
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
- * E-mail: (ACdS); (JT)
| |
Collapse
|
43
|
Saunders EC, de Souza DP, Chambers JM, Ng M, Pyke J, McConville MJ. Use of (13)C stable isotope labelling for pathway and metabolic flux analysis in Leishmania parasites. Methods Mol Biol 2015; 1201:281-296. [PMID: 25388122 DOI: 10.1007/978-1-4939-1438-8_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This protocol describes the combined use of metabolite profiling and stable isotope labelling to define pathways of central carbon metabolism in the protozoa parasite, Leishmania mexicana. Parasite stages are cultivated in standard or completely defined media and then rapidly transferred to chemically equivalent media containing a single (13)C-labelled nutrient. The incorporation of label can be followed over time or after establishment of isotopic equilibrium by harvesting parasites with rapid metabolic quenching. (13)C enrichment of multiple intracellular polar and apolar (lipidic) metabolites can be quantified using gas chromatography-mass spectrometry (GC-MS), while the uptake and secretion of (13)C-labelled metabolites can be measured by (13)C-NMR. Analysis of the mass isotopomer distribution of key metabolites provides information on pathway structure, while analysis of labelling kinetics can be used to infer metabolic fluxes. This protocol is exemplified using L. mexicana labelled with (13)C-U-glucose. The method can be used to measure perturbations in parasite metabolism induced by drug inhibition or genetic manipulation of enzyme levels and is broadly applicable to any cultured parasite stages.
Collapse
Affiliation(s)
- Eleanor C Saunders
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, 30 Flemington Rd, Parkville, VIC, 3010, Australia
| | | | | | | | | | | |
Collapse
|
44
|
An Insight into the proteome of Crithidia fasciculata choanomastigotes as a comparative approach to axenic growth, peanut lectin agglutination and differentiation of Leishmania spp. promastigotes. PLoS One 2014; 9:e113837. [PMID: 25503511 PMCID: PMC4263474 DOI: 10.1371/journal.pone.0113837] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/31/2014] [Indexed: 01/31/2023] Open
Abstract
The life cycle of the trypanosomatid Crithidia fasciculata is monogenetic, as the unique hosts of these parasites are different species of culicids. The comparison of these non-pathogenic microorganisms evolutionary close to other species of trypanosomatids that develop digenetic life cycles and cause chronic severe sickness to millions of people worldwide is of outstanding interest. A ground-breaking analysis of differential protein abundance in Crithidia fasciculata is reported herein. The comparison of the outcome with previous gene expression profiling studies developed in the related human pathogens of the genus Leishmania has revealed substantial differences between the motile stages of these closely related organisms in abundance of proteins involved in catabolism, redox homeostasis, intracellular signalling, and gene expression regulation. As L. major and L. infantum agglutinate with peanut lectin and non-agglutinating parasites are more infective, the agglutination properties were evaluated in C. fasciculata. The result is that choanomastigotes are able to agglutinate with peanut lectin and a non-agglutinating subpopulation can be also isolated. As a difference with L. infantum, the non-agglutinating subpopulation over-expresses the whole machinery for maintenance of redox homeostasis and the translation factors eIF5a, EF1α and EF2, what suggests a relationship between the lack of agglutination and a differentiation process.
Collapse
|
45
|
Triacylglycerol Storage in Lipid Droplets in Procyclic Trypanosoma brucei. PLoS One 2014; 9:e114628. [PMID: 25493940 PMCID: PMC4262433 DOI: 10.1371/journal.pone.0114628] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/11/2014] [Indexed: 11/19/2022] Open
Abstract
Carbon storage is likely to enable adaptation of trypanosomes to nutritional challenges or bottlenecks during their stage development and migration in the tsetse. Lipid droplets are candidates for this function. This report shows that feeding of T. brucei with oleate results in a 4-5 fold increase in the number of lipid droplets, as quantified by confocal fluorescence microscopy and by flow cytometry of BODIPY 493/503-stained cells. The triacylglycerol (TAG) content also increased 4-5 fold, and labeled oleate is incorporated into TAG. Fatty acid carbon can thus be stored as TAG in lipid droplets under physiological growth conditions in procyclic T. brucei. β-oxidation has been suggested as a possible catabolic pathway for lipids in T. brucei. A single candidate gene, TFEα1 with coding capacity for a subunit of the trifunctional enzyme complex was identified. TFEα1 is expressed in procyclic T. brucei and present in glycosomal proteomes, Unexpectedly, a TFEα1 gene knock-out mutant still expressed wild-type levels of previously reported NADP-dependent 3-hydroxyacyl-CoA dehydrogenase activity, and therefore, another gene encodes this enzymatic activity. Homozygous Δtfeα1/Δtfeα1 null mutant cells show a normal growth rate and an unchanged glycosomal proteome in procyclic T. brucei. The decay kinetics of accumulated lipid droplets upon oleate withdrawal can be fully accounted for by the dilution effect of cell division in wild-type and Δtfeα1/Δtfeα1 cells. The absence of net catabolism of stored TAG in procyclic T. brucei, even under strictly glucose-free conditions, does not formally exclude a flux through TAG, in which biosynthesis equals catabolism. Also, the possibility remains that TAG catabolism is completely repressed by other carbon sources in culture media or developmentally activated in post-procyclic stages in the tsetse.
Collapse
|
46
|
Szöör B, Haanstra JR, Gualdrón-López M, Michels PAM. Evolution, dynamics and specialized functions of glycosomes in metabolism and development of trypanosomatids. Curr Opin Microbiol 2014; 22:79-87. [DOI: 10.1016/j.mib.2014.09.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/03/2014] [Accepted: 09/12/2014] [Indexed: 01/24/2023]
|
47
|
Achcar F, Kerkhoven EJ, Barrett MP. Trypanosoma brucei: meet the system. Curr Opin Microbiol 2014; 20:162-9. [DOI: 10.1016/j.mib.2014.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/16/2014] [Accepted: 06/19/2014] [Indexed: 12/30/2022]
|
48
|
Uttaro AD. Acquisition and biosynthesis of saturated and unsaturated fatty acids by trypanosomatids. Mol Biochem Parasitol 2014; 196:61-70. [DOI: 10.1016/j.molbiopara.2014.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 12/21/2022]
|
49
|
Pawar H, Renuse S, Khobragade SN, Chavan S, Sathe G, Kumar P, Mahale KN, Gore K, Kulkarni A, Dixit T, Raju R, Prasad TSK, Harsha HC, Patole MS, Pandey A. Neglected Tropical Diseases and Omics Science: Proteogenomics Analysis of the Promastigote Stage ofLeishmania majorParasite. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:499-512. [DOI: 10.1089/omi.2013.0159] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Harsh Pawar
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Rajiv Gandhi University of Health Sciences, Bangalore, India
| | - Santosh Renuse
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Department of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | | | - Sandip Chavan
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal University, Madhav Nagar, Manipal, India
| | - Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal University, Madhav Nagar, Manipal, India
| | - Praveen Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | | | | | | | - Tanwi Dixit
- National Centre for Cell Sciences, Pune, India
| | - Rajesh Raju
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | | | - H. C. Harsha
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | | | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
50
|
Güther MS, Urbaniak MD, Tavendale A, Prescott A, Ferguson MAJ. High-confidence glycosome proteome for procyclic form Trypanosoma brucei by epitope-tag organelle enrichment and SILAC proteomics. J Proteome Res 2014; 13:2796-806. [PMID: 24792668 PMCID: PMC4052807 DOI: 10.1021/pr401209w] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Indexed: 01/23/2023]
Abstract
The glycosome of the pathogenic African trypanosome Trypanosoma brucei is a specialized peroxisome that contains most of the enzymes of glycolysis and several other metabolic and catabolic pathways. The contents and transporters of this membrane-bounded organelle are of considerable interest as potential drug targets. Here we use epitope tagging, magnetic bead enrichment, and SILAC quantitative proteomics to determine a high-confidence glycosome proteome for the procyclic life cycle stage of the parasite using isotope ratios to discriminate glycosomal from mitochondrial and other contaminating proteins. The data confirm the presence of several previously demonstrated and suggested pathways in the organelle and identify previously unanticipated activities, such as protein phosphatases. The implications of the findings are discussed.
Collapse
Affiliation(s)
- Maria
Lucia S. Güther
- Division of Biological Chemistry and Drug Discovery and Centre for Advanced Scientific
Technologies, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Michael D. Urbaniak
- Division of Biological Chemistry and Drug Discovery and Centre for Advanced Scientific
Technologies, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Amy Tavendale
- Division of Biological Chemistry and Drug Discovery and Centre for Advanced Scientific
Technologies, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Alan Prescott
- Division of Biological Chemistry and Drug Discovery and Centre for Advanced Scientific
Technologies, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Michael A. J. Ferguson
- Division of Biological Chemistry and Drug Discovery and Centre for Advanced Scientific
Technologies, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| |
Collapse
|