1
|
Yadav A, Verma K, Singh K, Tyagi S, Kori L, Bharti PK. Analysis of diagnostic biomarkers for malaria: Prospects on rapid diagnostic test (RDT) development. Microb Pathog 2024; 196:106978. [PMID: 39321969 DOI: 10.1016/j.micpath.2024.106978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/20/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Accurate malaria diagnosis remains a formidable challenge in remote regions of malaria-endemic areas globally. Existing diagnostic methods predominantly rely on microscopy and rapid diagnostic tests (RDTs). While RDTs offer advantages such as rapid results and reduced dependence on highly skilled technicians compared to microscopy, persistent challenges emphasize the critical need to identify novel diagnostic biomarkers to further enhance RDT based malaria diagnosis. This comprehensive review presents a range of promising diagnostic targets. These targets could be useful in developing more robust, accurate, and effective diagnostic tools. Such tools are crucial for the detection of the Plasmodium falciparum (P.falcipaum) malaria parasite. The potential biomarkers discussed here significantly address the challenges posed by HRP2 gene deletion in P.falciparum. Researchers, RDT manufacturers, industrial and other stakeholders involved in malaria diagnosis can harness the crucial information described in this article, to drive the development of advanced RDTs as viable alternatives. By diversifying the available tools for diagnosis, we can attempt to enhance our ability to knock out malaria effectively and contribute to better health outcomes for people residing in malaria-endemic regions. This review serves as a valuable resource for advancing research and development in the field of malaria diagnostics, ultimately aiding to the global fight against this devastating ancient disease.
Collapse
Affiliation(s)
- Ankit Yadav
- Department of Molecular Epidemiology, LOT Testing Laboratory, ICMR-NIMR, Dwarka, Delhi, 110077, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus Sector-19, Ghaziabad, U.P, India
| | - Kanika Verma
- Department of Molecular Epidemiology, LOT Testing Laboratory, ICMR-NIMR, Dwarka, Delhi, 110077, India
| | - Kuldeep Singh
- Department of Molecular Epidemiology, LOT Testing Laboratory, ICMR-NIMR, Dwarka, Delhi, 110077, India
| | - Suchi Tyagi
- Department of Molecular Epidemiology, LOT Testing Laboratory, ICMR-NIMR, Dwarka, Delhi, 110077, India
| | - Lokesh Kori
- Department of Molecular Epidemiology, LOT Testing Laboratory, ICMR-NIMR, Dwarka, Delhi, 110077, India
| | - Praveen Kumar Bharti
- Department of Molecular Epidemiology, LOT Testing Laboratory, ICMR-NIMR, Dwarka, Delhi, 110077, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus Sector-19, Ghaziabad, U.P, India.
| |
Collapse
|
2
|
A nuclear redox sensor modulates gene activation and var switching in Plasmodium falciparum. Proc Natl Acad Sci U S A 2022; 119:e2201247119. [PMID: 35939693 PMCID: PMC9388093 DOI: 10.1073/pnas.2201247119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The virulence of Plasmodium falciparum, which causes the deadliest form of human malaria, is attributed to its ability to evade the human immune response. These parasites "choose" to express a single variant from a repertoire of surface antigens called PfEMP1, which are placed on the surface of the infected red cell. Immune evasion is achieved by switches in expression between var genes, each encoding a different PfEMP1 variant. While the mechanisms that regulate mutually exclusive expression of var genes are still elusive, antisense long-noncoding RNAs (lncRNAs) transcribed from the intron of the active var gene were implicated in the "choice" of the single active var gene. Here, we show that this lncRNA colocalizes with the site of var mRNA transcription and is anchored to the var locus via DNA:RNA interactions. We define the var lncRNA interactome and identify a redox sensor, P. falciparum thioredoxin peroxidase I (PfTPx-1), as one of the proteins associated with the var antisense lncRNA. We show that PfTPx-1 localizes to a nuclear subcompartment associated with active transcription on the nuclear periphery, in ring-stage parasite, when var transcription occurs. In addition, PfTPx-1 colocalizes with S-adenosylmethionine synthetase (PfSAMS) in the nucleus, and its overexpression leads to activation of var2csa, similar to overexpression of PfSAMS. Furthermore, we show that PfTPx-1 knockdown alters the var switch rate as well as activation of additional gene subsets. Taken together, our data indicate that nuclear PfTPx-1 plays a role in gene activation possibly by providing a redox-controlled nuclear microenvironment ideal for active transcription.
Collapse
|
3
|
The interactome of 2-Cys peroxiredoxins in Plasmodium falciparum. Sci Rep 2019; 9:13542. [PMID: 31537845 PMCID: PMC6753162 DOI: 10.1038/s41598-019-49841-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022] Open
Abstract
AbstractPeroxiredoxins (Prxs) are crucially involved in maintaining intracellular H2O2homeostasis via their peroxidase activity. However, more recently, this class of proteins was found to also transmit oxidizing equivalents to selected downstream proteins, which suggests an important function of Prxs in the regulation of cellular protein redox relays. Using a pull-down assay based on mixed disulfide fishing, we characterized the thiol-dependent interactome of cytosolic Prx1a and mitochondrial Prx1m from the apicomplexan malaria parasitePlasmodium falciparum(Pf). Here, 127 cytosolic and 20 mitochondrial proteins that are components of essential cellular processes were found to interact withPfPrx1a andPfPrx1m, respectively. Notably, our data obtained with active-site mutants suggests that reducing equivalents might also be transferred from Prxs to target proteins. Initial functional analyses indicated that the interaction with Prx can strongly impact the activity of target proteins. The results provide initial insights into the interactome of Prxs at the level of a eukaryotic whole cell proteome. Furthermore, they contribute to our understanding of redox regulatory principles and thiol-dependent redox relays of Prxs in subcellular compartments.
Collapse
|
4
|
Knockout of the peroxiredoxin 5 homologue PFAOP does not affect the artemisinin susceptibility of Plasmodium falciparum. Sci Rep 2017; 7:4410. [PMID: 28667301 PMCID: PMC5493673 DOI: 10.1038/s41598-017-04277-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/03/2017] [Indexed: 01/07/2023] Open
Abstract
Artemisinins are the current mainstay of malaria chemotherapy. Their exact mode of action is an ongoing matter of debate, and several factors have recently been reported to affect an early stage of artemisinin resistance of the most important human malaria parasite Plasmodium falciparum. Here, we identified a locus on chromosome 7 that affects the artemisinin susceptibility of P. falciparum in a quantitative trait locus analysis of a genetic cross between strains 7G8 and GB4. This locus includes the peroxiredoxin gene PFAOP. However, steady-state kinetic data with recombinant PfAOP do not support a direct interaction between this peroxidase and the endoperoxide artemisinin. Furthermore, neither the overexpression nor the deletion of the encoding gene affected the IC50 values for artemisinin or the oxidants diamide and tert-butyl hydroperoxide. Thus, PfAOP is dispensable for blood stage parasite survival, and the correlation between the artemisinin susceptibility and chromosome 7 is probably based on another gene within the identified locus.
Collapse
|
5
|
Dennison NJ, Saraiva RG, Cirimotich CM, Mlambo G, Mongodin EF, Dimopoulos G. Functional genomic analyses of Enterobacter, Anopheles and Plasmodium reciprocal interactions that impact vector competence. Malar J 2016; 15:425. [PMID: 27549662 PMCID: PMC4994321 DOI: 10.1186/s12936-016-1468-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/02/2016] [Indexed: 11/23/2022] Open
Abstract
Background Malaria exerts a tremendous socioeconomic impact worldwide despite current control efforts, and novel disease transmission-blocking strategies are urgently needed. The Enterobacter bacterium Esp_Z, which is naturally harboured in the mosquito midgut, can inhibit the development of Plasmodium parasites prior to their invasion of the midgut epithelium through a mechanism that involves oxidative stress. Here, a multifaceted approach is used to study the tripartite interactions between the mosquito, Esp_Z and Plasmodium, towards addressing the feasibility of using sugar-baited exposure of mosquitoes to the Esp_Z bacterium for interruption of malaria transmission. Methods The ability of Esp_Z to colonize Anopheles gambiae midguts harbouring microbiota derived from wild mosquitoes was determined by qPCR. Upon introduction of Esp_Z via nectar feeding, the permissiveness of colonized mosquitoes to Plasmodium falciparum infection was determined, as well as the impact of Esp_Z on mosquito fitness parameters, such as longevity, number of eggs laid and number of larvae hatched. The genome of Esp_Z was sequenced, and transcriptome analyses were performed to identify bacterial genes that are important for colonization of the mosquito midgut, as well as for ROS-production. A gene expression analysis of members of the oxidative defence pathway of Plasmodium berghei was also conducted to assess the parasite’s oxidative defence response to Esp_Z exposure. Results Esp_Z persisted for up to 4 days in the An. gambiae midgut after introduction via nectar feeding, and was able to significantly inhibit Plasmodium sporogonic development. Introduction of this bacterium did not adversely affect mosquito fitness. Candidate genes involved in the selection of a better fit Esp_Z to the mosquito midgut environment and in its ability to condition oxidative status of its surroundings were identified, and parasite expression data indicated that Esp_Z is able to induce a partial and temporary shutdown of the ookinetes antioxidant response. Conclusions Esp_Z is capable of inhibiting sporogonic development of Plasmodium in the presence of the mosquito’s native microbiota without affecting mosquito fitness. Several candidate bacterial genes are likely mediating midgut colonization and ROS production, and inhibition of Plasmodium development appears to involve a shutdown of the parasite’s oxidative defence system. A better understanding of the complex reciprocal tripartite interactions can facilitate the development and optimization of an Esp_Z-based malaria control strategy. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1468-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nathan J Dennison
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Raúl G Saraiva
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Chris M Cirimotich
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Godfree Mlambo
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
6
|
Duran-Bedolla J, Téllez-Sosa J, Valdovinos-Torres H, Pavón N, Buelna-Chontal M, Tello-López AT, Argotte-Ramos R, Rodríguez MH, Rodríguez MC. Cellular stress associated with the differentiation of Plasmodium berghei ookinetes. Biochem Cell Biol 2016; 95:310-317. [PMID: 28177775 DOI: 10.1139/bcb-2016-0028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
For malaria transmission, Plasmodium parasites must develop in the mosquito vector. Oxidative stress in the insect midgut, triggered by environmental changes (e.g., pH and temperature), influences the cellular signaling involved in differentiation from gametocytes to mobile ookinetes for the purpose of parasite survival. Oxidative stress activates the homeostatic response to stress characterized by the phosphorylation eIF2α, the attenuation of protein synthesis, and the transcription of genes participating in the unfolded protein response and antioxidant processes, forming a part of an integrated stress response (ISR). We hypothesized that ISR operates during the differentiation of gametocytes to ookinetes to assure Plasmodium survival. Using in-vitro conditions resembling the mosquito midgut conditions, we cultured Plasmodium berghei gametocytes to ookinetes and evaluated the redox balance by detecting reactive oxygen species and superoxide dismutase activity. Additionally, we evaluated the phosphorylation of eIF2α, the attenuation of the global protein synthesis, and the gene expression of cellular stress markers (e.g., endoplasmic reticulum chaperones and antioxidant molecules, measured by reverse-transcription quantitative polymerase chain reaction), finding that these processes were all taking place, probably to improve survival during the differentiation of Plasmodium berghei ookinetes.
Collapse
Affiliation(s)
- Josefina Duran-Bedolla
- a Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Avenida Universidad 655, C.P. 62100, Cuernavaca, Morelos, México
| | - Juan Téllez-Sosa
- a Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Avenida Universidad 655, C.P. 62100, Cuernavaca, Morelos, México
| | - Humberto Valdovinos-Torres
- a Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Avenida Universidad 655, C.P. 62100, Cuernavaca, Morelos, México
| | - Natalia Pavón
- b Departamento de Farmacología and Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, Juan Badiano # 1, Col. Sección XVI, C.P. 014080, Tlalpan, D.F., México
| | - Mabel Buelna-Chontal
- b Departamento de Farmacología and Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, Juan Badiano # 1, Col. Sección XVI, C.P. 014080, Tlalpan, D.F., México
| | - Angel T Tello-López
- a Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Avenida Universidad 655, C.P. 62100, Cuernavaca, Morelos, México
| | - Rocio Argotte-Ramos
- a Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Avenida Universidad 655, C.P. 62100, Cuernavaca, Morelos, México
| | - Mario Henry Rodríguez
- a Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Avenida Universidad 655, C.P. 62100, Cuernavaca, Morelos, México
| | - María Carmen Rodríguez
- a Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Avenida Universidad 655, C.P. 62100, Cuernavaca, Morelos, México
| |
Collapse
|
7
|
Ebine K, Hirai M, Sakaguchi M, Yahata K, Kaneko O, Saito-Nakano Y. Plasmodium Rab5b is secreted to the cytoplasmic face of the tubovesicular network in infected red blood cells together with N-acylated adenylate kinase 2. Malar J 2016; 15:323. [PMID: 27316546 PMCID: PMC4912828 DOI: 10.1186/s12936-016-1377-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rab5 GTPase regulates membrane trafficking between the plasma membrane and endosomes and harbours a conserved C-terminal isoprenyl modification that is necessary for membrane recruitment. Plasmodium falciparum encodes three Rab5 isotypes, and one of these, Rab5b (PfRab5b), lacks the C-terminal modification but possesses the N-terminal myristoylation motif. PfRab5b was reported to localize to the parasite periphery. However, the trafficking pathway regulated by PfRab5b is unknown. METHODS A complementation analysis of Rab5 isotypes was performed in Plasmodium berghei. A constitutively active PfRab5b mutant was expressed under the regulation of a ligand-dependent destabilization domain (DD)-tag system in P. falciparum. The localization of PfRab5b was evaluated after removing the ligand followed by selective permeabilization of the membrane with different detergents. Furthermore, P. falciparum N-terminally myristoylated adenylate kinase 2 (PfAK2) was co-expressed with PfRab5b, and trafficking of PfAK2 to the parasitophorous vacuole membrane was examined by confocal microscopy. RESULTS PfRab5b complemented the function of PbRab5b, however, the conventional C-terminally isoprenylated Rab5, PbRab5a or PbRab5c, did not. The constitutively active PfRab5b mutant localized to the cytosol of the parasite and the tubovesicular network (TVN), a region that extends from the parasitophorous vacuole membrane (PVM) in infected red blood cells (iRBCs). By removing the DD-ligand, parasite cytosolic PfRab5b signal disappeared and a punctate structure adjacent to the endoplasmic reticulum (ER) and parasite periphery accumulated. The peripheral PfRab5b was sensitive to extracellular proteolysis after treatment with streptolysin O, which selectively permeabilizes the red blood cell plasma membrane, indicating that PfRab5b localized on the iRBC cytoplasmic face of the TVN. Transport of PfAK2 to the PVM was abrogated by overexpression of PfRab5b, and PfAK2 accumulated in the punctate structure together with PfRab5b. CONCLUSION N-myristoylated Plasmodium Rab5b plays a role that is distinct from that of conventional mammalian Rab5 isotypes. PfRab5b localizes to a compartment close to the ER, translocated to the lumen of the organelle, and co-localizes with PfAK2. PfRab5b and PfAK2 are then transported to the TVN, and PfRab5b localizes on the iRBC cytoplasmic face of TVN. These data demonstrate that PfRab5b is transported from the parasite cytosol to TVN together with N-myristoylated PfAK2 via an uncharacterized membrane-trafficking pathway.
Collapse
Affiliation(s)
- Kazuo Ebine
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-Ku, Tokyo, Japan. .,Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi, Japan.
| | - Makoto Hirai
- Department of Molecular and Cellular Parasitology, Graduate School of Medicine, Juntendo University, Bunkyo-Ku, Tokyo, Japan.,Department of Parasitology, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Miako Sakaguchi
- Central Laboratory, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Nagasaki, Japan
| | - Kazuhide Yahata
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Nagasaki, Japan
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Nagasaki, Japan
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-Ku, Tokyo, Japan.
| |
Collapse
|
8
|
Kumar H, Frischknecht F, Mair GR, Gomes J. In silico identification of genetically attenuated vaccine candidate genes for Plasmodium liver stage. INFECTION GENETICS AND EVOLUTION 2015; 36:72-81. [PMID: 26348884 DOI: 10.1016/j.meegid.2015.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/28/2015] [Accepted: 09/02/2015] [Indexed: 12/28/2022]
Abstract
Genetically attenuated parasites (GAPs) that lack genes essential for the liver stage of the malaria parasite, and therefore cause developmental arrest, have been developed as live vaccines in rodent malaria models and recently been tested in humans. The genes targeted for deletion were often identified by trial and error. Here we present a systematic gene - protein and transcript - expression analyses of several Plasmodium species with the aim to identify candidate genes for the generation of novel GAPs. With a lack of liver stage expression data for human malaria parasites, we used data available for liver stage development of Plasmodium yoelii, a rodent malaria model, to identify proteins expressed in the liver stage but absent from blood stage parasites. An orthology-based search was then employed to identify orthologous proteins in the human malaria parasite Plasmodium falciparum resulting in a total of 310 genes expressed in the liver stage but lacking evidence of protein expression in blood stage parasites. Among these 310 possible GAP candidates, we further studied Plasmodium liver stage proteins by phyletic distribution and functional domain analyses and shortlisted twenty GAP-candidates; these are: fabB/F, fabI, arp, 3 genes encoding subunits of the PDH complex, dnaJ, urm1, rS5, ancp, mcp, arh, gk, lisp2, valS, palm, and four conserved Plasmodium proteins of unknown function. Parasites lacking one or several of these genes might yield new attenuated malaria parasites for experimental vaccination studies.
Collapse
Affiliation(s)
- Hirdesh Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India.; Integrative Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Gunnar R Mair
- Integrative Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - James Gomes
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India..
| |
Collapse
|
9
|
Development of monoclonal antibodies against Plasmodium falciparum thioredoxin peroxidase 1 and its possible application for malaria diagnosis. Exp Parasitol 2015; 154:62-6. [PMID: 25913091 DOI: 10.1016/j.exppara.2015.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 02/05/2015] [Accepted: 04/17/2015] [Indexed: 12/30/2022]
Abstract
Rapid diagnostic tests (RDTs) have been considered as an ideal alternative for light microscopy to detect malaria parasites especially in remote areas. The development and improvement of RDTs is an area of intensive research in the last decade. To date, few parasite proteins have been targeted in RDTs which are known to have certain deficiencies and made the researchers to look for other promising candidates to address this problem. Plasmodium falciparum thioredoxin peroxidase 1 (PfTPx-1) is abundantly expressed in the cytoplasm of the parasite and well conserved across Plasmodium species, making this antigen a promising target for malaria diagnosis. Several monoclonal antibodies (mAbs) were produced against PfTPx-1. The binding affinities of mAbs were measured. Several immunochromatographic tests (ICTs) were developed using different combination of mAbs. All mAbs showed promising affinities to be used for diagnosis. The sensitivities of ICTs were evaluated using recombinant PfTPx-1 whose results lead us to the preparation of 4 different ICTs. These tests showed positive reaction with P. falciparum in vitro culture supernatant indicating the release of PfTPx-1 during schizont rupture. Altogether, these findings suggest that PfTPx-1 is a promising biomarker to diagnose P. falciparum infection. However, the diagnostic performance of this antigen should be further validated using clinical samples.
Collapse
|
10
|
Perkins A, Poole L, Karplus PA. Tuning of peroxiredoxin catalysis for various physiological roles. Biochemistry 2014; 53:7693-705. [PMID: 25403613 PMCID: PMC4270387 DOI: 10.1021/bi5013222] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 11/12/2014] [Indexed: 12/15/2022]
Abstract
Peroxiredoxins (Prxs) make up an ancient family of enzymes that are the predominant peroxidases for nearly all organisms and play essential roles in reducing hydrogen peroxide, organic hydroperoxides, and peroxynitrite. Even between distantly related organisms, the core protein fold and key catalytic residues related to its cysteine-based catalytic mechanism have been retained. Given that these enzymes appeared early in biology, Prxs have experienced more than 1 billion years of optimization for specific ecological niches. Although their basic enzymatic function remains the same, Prxs have diversified and are involved in roles such as protecting DNA against mutation, defending pathogens against host immune responses, suppressing tumor formation, and--for eukaryotes--helping regulate peroxide signaling via hyperoxidation of their catalytic Cys residues. Here, we review the current understanding of the physiological roles of Prxs by analyzing knockout and knockdown studies from ∼25 different species. We also review what is known about the structural basis for the sensitivity of some eukaryotic Prxs to inactivation by hyperoxidation. In considering the physiological relevance of hyperoxidation, we explore the distribution across species of sulfiredoxin (Srx), the enzyme responsible for rescuing hyperoxidized Prxs. We unexpectedly find that among eukaryotes appearing to have a "sensitive" Prx isoform, some do not contain Srx. Also, as Prxs are suggested to be promising targets for drug design, we discuss the rationale behind recently proposed strategies for their selective inhibition.
Collapse
Affiliation(s)
- Arden Perkins
- Department
of Biochemistry and Biophysics, Oregon State
University, Corvallis, Oregon 97331, United
States
| | - Leslie
B. Poole
- Department
of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - P. Andrew Karplus
- Department
of Biochemistry and Biophysics, Oregon State
University, Corvallis, Oregon 97331, United
States
| |
Collapse
|
11
|
Usui M, Masuda-Suganuma H, Fukumoto S, Angeles JMM, Hakimi H, Inoue N, Kawazu SI. Effect of thioredoxin peroxidase-1 gene disruption on the liver stages of the rodent malaria parasite Plasmodium berghei. Parasitol Int 2014; 64:290-4. [PMID: 25284813 DOI: 10.1016/j.parint.2014.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/23/2014] [Accepted: 09/28/2014] [Indexed: 11/30/2022]
Abstract
Phenotypic observation of thioredoxin peroxidase-1 (TPx-1) gene-disrupted Plasmodium berghei (TPx-1 KO) in the liver-stage was performed with an in vitro infection system in order to investigate defective liver-stage development in a mouse infection model. Indirect immunofluorescence microscopy assay with anti-circumsporozoite protein antibody revealed that in the liver schizont stage, TPx-1 KO parasite cells were significantly smaller than cells of the wild-type parent strain (WT). Indirect immunofluorescence microscopy assay with anti-merozoite surface protein-1 antibody, which was used to evaluate late schizont-stage development, indicated that TPx-1 KO schizont development was similar to WT strain development towards the merozoite-forming stage (mature schizont). However, fewer merozoites were produced in the mature TPx-1 KO schizont than in the mature WT schizont. Taken together, the results suggest that TPx-1 may be involved in merozoite formation during liver schizont development.
Collapse
Affiliation(s)
- Miho Usui
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, 2-13 Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| | - Hirono Masuda-Suganuma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, 2-13 Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| | - Shinya Fukumoto
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, 2-13 Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| | - Jose Ma M Angeles
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, 2-13 Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| | - Hassan Hakimi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, 2-13 Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| | - Noboru Inoue
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, 2-13 Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| | - Shin-Ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, 2-13 Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
12
|
Mastronicola D, Falabella M, Testa F, Pucillo LP, Teixeira M, Sarti P, Saraiva LM, Giuffrè A. Functional characterization of peroxiredoxins from the human protozoan parasite Giardia intestinalis. PLoS Negl Trop Dis 2014; 8:e2631. [PMID: 24416465 PMCID: PMC3886907 DOI: 10.1371/journal.pntd.0002631] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/26/2013] [Indexed: 01/03/2023] Open
Abstract
The microaerophilic protozoan parasite Giardia intestinalis, causative of one of the most common human intestinal diseases worldwide, infects the mucosa of the proximal small intestine, where it has to cope with O2 and nitric oxide (NO). Elucidating the antioxidant defense system of this pathogen lacking catalase and other conventional antioxidant enzymes is thus important to unveil novel potential drug targets. Enzymes metabolizing O2, NO and superoxide anion (O2−•) have been recently reported for Giardia, but it is yet unknown how the parasite copes with H2O2 and peroxynitrite (ONOO−). Giardia encodes two yet uncharacterized 2-cys peroxiredoxins (Prxs), GiPrx1a and GiPrx1b. Peroxiredoxins are peroxidases implicated in virulence and drug resistance in several parasitic protozoa, able to protect from nitroxidative stress and repair oxidatively damaged molecules. GiPrx1a and a truncated form of GiPrx1b (deltaGiPrx1b) were expressed in Escherichia coli, purified and functionally characterized. Both Prxs effectively metabolize H2O2 and alkyl-hydroperoxides (cumyl- and tert-butyl-hydroperoxide) in the presence of NADPH and E. coli thioredoxin reductase/thioredoxin as the reducing system. Stopped-flow experiments show that both proteins in the reduced state react with ONOO− rapidly (k = 4×105 M−1 s−1 and 2×105 M−1 s−1 at 4°C, for GiPrx1a and deltaGiPrx1b, respectively). Consistent with a protective role against oxidative stress, expression of GiPrx1a (but not deltaGiPrx1b) is induced in parasitic cells exposed to air O2 for 24 h. Based on these results, GiPrx1a and deltaGiPrx1b are suggested to play an important role in the antioxidant defense of Giardia, possibly contributing to pathogenesis. Giardia intestinalis causes one of the most common human intestinal diseases worldwide, called giardiasis. This microorganism infects the small intestine where it has to cope with O2, nitric oxide (NO) and related reactive species that are toxic for Giardia as it lacks most of the conventional antioxidant enzymes. Understanding how this pathogen survives oxidative stress is thus important because it may help to identify novel drug targets to combat giardiasis. Some enzymes playing a role in the antioxidant defense of Giardia have been recently reported, but it is yet unknown how the parasite copes with two well-known oxidants, hydrogen peroxide (H2O2) and peroxynitrite (ONOO−). In this study, the Authors show that Giardia expresses two enzymes (called peroxiredoxins), yet uncharacterized, that are able not only to degrade both H2O2 and ONOO−, but also to repair damaged molecules (called hydroperoxides) that accumulate in the cell under oxidative stress conditions. These results are totally unprecedented because no enzymes with these types of functions have been reported for Giardia to date. If these two enzymes will prove to be essential for Giardia virulence in future studies, a new way will be paved towards the discovery of novel drugs to treat giardiasis.
Collapse
Affiliation(s)
| | - Micol Falabella
- Department of Biochemical Sciences and Istituto Pasteur – Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Fabrizio Testa
- Department of Biochemical Sciences and Istituto Pasteur – Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | | | - Miguel Teixeira
- Instituto de Tecnologia Quimica e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paolo Sarti
- CNR Institute of Molecular Biology and Pathology, Rome, Italy
- Department of Biochemical Sciences and Istituto Pasteur – Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Lígia M. Saraiva
- Instituto de Tecnologia Quimica e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | |
Collapse
|
13
|
Masatani T, Asada M, Ichikawa-Seki M, Usui M, Terkawi MA, Hayashi K, Kawazu SI, Xuan X. Cloning and characterization of a 2-Cys peroxiredoxin from Babesia gibsoni. J Vet Med Sci 2013; 76:139-43. [PMID: 24025459 PMCID: PMC3979947 DOI: 10.1292/jvms.13-0274] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Peroxiredoxins (Prxs) are a family of antioxidant enzymes. Here, we cloned a 2-Cys Prx,
BgTPx-1, from the canine Babesia parasite B.
gibsoni. Sequence identity between BgTPx-1 and 2-Cys Prx of B.
bovis was 81% at the amino acid level. Enzyme activity assay by using
recombinant BgTPx-1 (rBgTPx-1) indicated that BgTPx-1 has antioxidant activity. Antiserum
from a mouse immunized with rBgTPx-1 reacted with parasite lysates and detect a protein
with a monomeric size of 22 kDa and also a 44 kDa protein, which might be an inefficiently
reduced dimer. BgTPx-1 was expressed in the cytoplasm of B. gibsoni
merozoites. These results suggest that the BgTPx-1 may play a role to control redox
balance in the cytoplasm of B. gibsoni.
Collapse
Affiliation(s)
- Tatsunori Masatani
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Turturice BA, Lamm MA, Tasch JJ, Zalewski A, Kooistra R, Schroeter EH, Sharma S, Kawazu SI, Kanzok SM. Expression of cytosolic peroxiredoxins in Plasmodium berghei ookinetes is regulated by environmental factors in the mosquito bloodmeal. PLoS Pathog 2013; 9:e1003136. [PMID: 23382676 PMCID: PMC3561267 DOI: 10.1371/journal.ppat.1003136] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 11/29/2012] [Indexed: 11/19/2022] Open
Abstract
The Plasmodium ookinete develops over several hours in the bloodmeal of its mosquito vector where it is exposed to exogenous stresses, including cytotoxic reactive oxygen species (ROS). How the parasite adapts to these challenging conditions is not well understood. We have systematically investigated the expression of three cytosolic antioxidant proteins, thioredoxin-1 (Trx-1), peroxiredoxin-1 (TPx-1), and 1-Cys peroxiredoxin (1-Cys Prx), in developing ookinetes of the rodent parasite Plasmodium berghei under various growth conditions. Transcriptional profiling showed that tpx-1 and 1-cys prx but not trx-1 are more strongly upregulated in ookinetes developing in the mosquito bloodmeal when compared to ookinetes growing under culture conditions. Confocal immunofluorescence imaging revealed comparable expression patterns on the corresponding proteins. 1-Cys Prx in particular exhibited strong expression in mosquito-derived ookinetes but was not detectable in cultured ookinetes. Furthermore, ookinetes growing in culture upregulated tpx-1 and 1-cys prx when challenged with exogenous ROS in a dose-dependent fashion. This suggests that environmental factors in the mosquito bloodmeal induce upregulation of cytosolic antioxidant proteins in Plasmodium ookinetes. We found that in a parasite line lacking TPx-1 (TPx-1KO), expression of 1-Cys Prx occurred significantly earlier in mosquito-derived TPx-1KO ookinetes when compared to wild type (WT) ookinetes. The protein was also readily detectable in cultured TPx-1KO ookinetes, indicating that 1-Cys Prx at least in part compensates for the loss of TPx-1 in vivo. We hypothesize that this dynamic expression of the cytosolic peroxiredoxins reflects the capacity of the developing Plasmodium ookinete to rapidly adapt to the changing conditions in the mosquito bloodmeal. This would significantly increase its chances of survival, maturation and subsequent escape. Our results also emphasize that environmental conditions must be taken into account when investigating Plasmodium-mosquito interactions. The malaria parasite Plasmodium is transmitted by Anopheles mosquitoes. Within the midgut of the insect, it is exposed to multiple environmental stresses, including cytotoxic reactive oxygen species (ROS). To avoid destruction, the parasite develops into a motile ookinete capable of leaving the midgut. Yet, ookinete development lasts over several hours and requires the parasite to adapt to an increasingly challenging environment. Here we show that ookinetes of the rodent parasite Plasmodium berghei during development in the mosquito midgut increase the expression of the protective antioxidant proteins peroxiredoxin-1 (TPx-1) and 1-Cys peroxiredoxin (1-Cys Prx). This upregulation was also inducible in cultured ookinetes by challenging them with ROS. This suggests that ookinetes actively modulate the expression of their antioxidant proteins in response to the changing conditions in the mosquito. We also found that ookinetes lacking TPx-1 (TPx-1KO) upregulated 1-Cys Prx expression significantly earlier than wild type ookinetes. This indicates that the TPx-1KO parasites compensate for the loss of TPx-1 by altering the expression pattern of the functionally related 1-Cys Prx. The observed dynamic regulation of the cytosolic antioxidant proteins may help the Plasmodium ookinete to adapt to rapidly changing environmental conditions and thus to increase the probability of survival, maturation and escape from the mosquito midgut.
Collapse
Affiliation(s)
- Benjamin A. Turturice
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Michael A. Lamm
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - James J. Tasch
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Angelika Zalewski
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Rachel Kooistra
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Eric H. Schroeter
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Sapna Sharma
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Shin-Ichiro Kawazu
- Obihiro University of Agriculture and Veterinarian Medicine, National Research Center for Protozoan Diseases, Obihiro, Hokkaido, Japan
| | - Stefan M. Kanzok
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
15
|
Usui M, Masuda-Suganuma H, Fukumoto S, Angeles JMM, Inoue N, Kawazu SI. Expression profiles of peroxiredoxins in liver stage of the rodent malaria parasite Plasmodium berghei. Parasitol Int 2012; 62:337-40. [PMID: 23237790 DOI: 10.1016/j.parint.2012.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/22/2012] [Accepted: 11/24/2012] [Indexed: 11/15/2022]
Abstract
mRNA and protein expression profiles for three peroxiredoxins (TPx-1, TPx-2 and 1-Cys Prx) of liver stage Plasmodium berghei were examined through quantitative reverse transcription-PCR (RT-PCR) and indirect immunofluorescence microscopy assay (IFA). RT-PCR experiments revealed that mRNA expression for the TPx-1 was detected shortly after the sporozoite infection and kept expressed until the schizont stage. In contrast, the mRNA expression for 1-Cys Prx had begun increasing when the parasite developed into the schizont stage. Using the IFA, TPx-1 and 1-Cys Prx were detected in the cytosol. This finding suggested the developmental stage-specific expression of the cytosolic enzymes in the liver stage parasite. On the other hand, the mRNA expression for TPx-2 had begun increasing at the trophozoite stage and peaked at the schizont stage. In the IFA, TPx-2 was found localized in the mitochondria. The increase of TPx-2 might be explained by the exponential development of the parasite during the schizont stage requiring ATP production which may induce reactive oxygen species (ROS) in the mitochondria.
Collapse
Affiliation(s)
- Miho Usui
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, 2-13 Inada-cho, Obihiro, Hokkaido, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Kimura R, Komaki-Yasuda K, Kawazu SI, Kano S. 2-Cys peroxiredoxin of Plasmodium falciparum is involved in resistance to heat stress of the parasite. Parasitol Int 2012. [PMID: 23201565 DOI: 10.1016/j.parint.2012.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the cytoplasm of Plasmodium falciparum, two peroxiredoxins: PfTPx-1 and Pf1-Cys-Prx, are expressed at different time-points of the parasite cell cycle during the intraerythrocytic stage. In the present study, to gain insight into the functions of Prxs in the cytoplasm of P. falciparum, we investigated the heat stress sensitivity of the previously established PfTPx-1 KO line and found that PfTPx-1 disruption renders the parasite hypersensitive to heat stress. In addition, we established Pf1-Cys-Prx knockout (KO) parasite lines. The phenotypes of Pf1-Cys-Prx KO lines were different to those of the PfTPx-1 KO line and did not show hypersensitivity to reactive oxygen species, reactive nitrogen species, chloroquine or heat stress. These results suggest that the function of Pf1-Cys-Prx in the parasite cytoplasm is independent from that of PfTPx-1. The hyperthermal protective function of the PfTPx-1 is obviously important for the parasite physiology in the human patient body, in which it must survive repeated incidences of fever.
Collapse
Affiliation(s)
- Risa Kimura
- Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, Japan.
| | | | | | | |
Collapse
|
17
|
Masuda-Suganuma H, Usui M, Fukumoto S, Inoue N, Kawazu SI. Mitochondrial peroxidase TPx-2 is not essential in the blood and insect stages of Plasmodium berghei. Parasit Vectors 2012; 5:252. [PMID: 23146411 PMCID: PMC3507878 DOI: 10.1186/1756-3305-5-252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 11/08/2012] [Indexed: 11/25/2022] Open
Abstract
Background Malaria parasites actively proliferate in the body of their vertebrate and insect hosts, and are subjected to the toxic effects of reactive oxygen species. The antioxidant defenses of malaria parasites are considered to play essential roles in their survival and are thus considered promising targets for intervention. We sought to identify the cellular function of thioredoxin peroxidase-2 (TPx-2), which is expressed in the mitochondria, by disrupting the TPx-2 gene (pbtpx-2) of the rodent malaria parasite Plasmodium berghei. Findings In three independent experiments, two disruptant populations (TPx-2 KO) and three wild-type parasite populations with pyrimethamine resistance (dhfr-ts/mt at the DHFR-TS locus) and intact pbtpx-2 (TPx-2 WT) were obtained and cloned. Null expression of TPx-2 in the KO population was confirmed by RT-PCR and Western blot analyses. The TPx-2 KO parasite developed normally in mouse erythrocytes and multiplied at a rate similar to that of the TPx-2 WT parasite during the experimental period. The peak period of gametocytemia was delayed by 1 day in the TPx-2 KO compared with that of the TPx-2 WT and the parent parasite, however, the highest gametocyte number was comparable. The number of midgut oocysts in the TPx-2 KO at 14 days post feeding was comparable to that of the TPx-2 WT. Conclusions The present finding suggests that mitochondrial Prx TPx-2 is not essential for asexual and the insect stage development of the malaria parasite.
Collapse
Affiliation(s)
- Hirono Masuda-Suganuma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, 080-8555, Japan
| | | | | | | | | |
Collapse
|
18
|
|
19
|
Gretes MC, Poole LB, Karplus PA. Peroxiredoxins in parasites. Antioxid Redox Signal 2012; 17:608-33. [PMID: 22098136 PMCID: PMC3373223 DOI: 10.1089/ars.2011.4404] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 11/18/2011] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Parasite survival and virulence relies on effective defenses against reactive oxygen and nitrogen species produced by the host immune system. Peroxiredoxins (Prxs) are ubiquitous enzymes now thought to be central to such defenses and, as such, have potential value as drug targets and vaccine antigens. RECENT ADVANCES Plasmodial and kinetoplastid Prx systems are the most extensively studied, yet remain inadequately understood. For many other parasites our knowledge is even less well developed. Through parasite genome sequencing efforts, however, the key players are being discovered and characterized. Here we describe what is known about the biochemistry, regulation, and cell biology of Prxs in parasitic protozoa, helminths, and fungi. At least one Prx is found in each parasite with a sequenced genome, and a notable theme is the common patterns of expression, localization, and functionality among sequence-similar Prxs in related species. CRITICAL ISSUES The nomenclature of Prxs from parasites is in a state of disarray, causing confusion and making comparative inferences difficult. Here we introduce a systematic Prx naming convention that is consistent between organisms and informative about structural and evolutionary relationships. FUTURE DIRECTIONS The new nomenclature should stimulate the crossfertilization of ideas among parasitologists and with the broader redox research community. The diverse parasite developmental stages and host environments present complex systems in which to explore the variety of roles played by Prxs, with a view toward parlaying what is learned into novel therapies and vaccines that are urgently needed.
Collapse
Affiliation(s)
- Michael C. Gretes
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, Oregon
| | - Leslie B. Poole
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - P. Andrew Karplus
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, Oregon
| |
Collapse
|
20
|
Stable expression of green fluorescent protein and targeted disruption of thioredoxin peroxidase-1 gene in Babesia bovis with the WR99210/dhfr selection system. Mol Biochem Parasitol 2012; 181:162-70. [DOI: 10.1016/j.molbiopara.2011.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 10/28/2011] [Accepted: 11/02/2011] [Indexed: 11/18/2022]
|
21
|
Plata G, Hsiao TL, Olszewski KL, Llinás M, Vitkup D. Reconstruction and flux-balance analysis of the Plasmodium falciparum metabolic network. Mol Syst Biol 2010; 6:408. [PMID: 20823846 PMCID: PMC2964117 DOI: 10.1038/msb.2010.60] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 07/09/2010] [Indexed: 12/18/2022] Open
Abstract
Genome-scale metabolic reconstructions can serve as important tools for hypothesis generation and high-throughput data integration. Here, we present a metabolic network reconstruction and flux-balance analysis (FBA) of Plasmodium falciparum, the primary agent of malaria. The compartmentalized metabolic network accounts for 1001 reactions and 616 metabolites. Enzyme-gene associations were established for 366 genes and 75% of all enzymatic reactions. Compared with other microbes, the P. falciparum metabolic network contains a relatively high number of essential genes, suggesting little redundancy of the parasite metabolism. The model was able to reproduce phenotypes of experimental gene knockout and drug inhibition assays with up to 90% accuracy. Moreover, using constraints based on gene-expression data, the model was able to predict the direction of concentration changes for external metabolites with 70% accuracy. Using FBA of the reconstructed network, we identified 40 enzymatic drug targets (i.e. in silico essential genes), with no or very low sequence identity to human proteins. To demonstrate that the model can be used to make clinically relevant predictions, we experimentally tested one of the identified drug targets, nicotinate mononucleotide adenylyltransferase, using a recently discovered small-molecule inhibitor.
Collapse
Affiliation(s)
- Germán Plata
- Center for Computational Biology and Bioinformatics, Columbia University, New York City, NY 10032, USA
| | | | | | | | | |
Collapse
|
22
|
Blocking Plasmodium falciparum Malaria Transmission with Drugs: The Gametocytocidal and Sporontocidal Properties of Current and Prospective Antimalarials. Pharmaceuticals (Basel) 2010. [PMCID: PMC4052541 DOI: 10.3390/ph4010044] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Drugs that kill or inhibit the sexual stages of Plasmodium could potentially amplify or synergize the impact of other interventions by blocking transmission to mosquitoes. Primaquine and other 8-aminoquinolines have long offered such potential, but safety and other concerns have limited their use. Although transmission-blocking properties are not often a priority of drug discovery efforts, a number of interesting gametocytocidal and/or sporontocidal drug candidates have emerged in recent years. Some still bear significant technical and safety concerns, while others have passed clinical trials and are on the verge of entering the antimalarial armamentarium. Recent advances in our knowledge of gametocyte differentiation, gametogenesis and sporogony have also led to the identification of a large array of potential new targets for drugs that might interfere with malaria transmission. This review examines the properties of existing and prospective drugs, mechanisms of action, counter-indications and their potential role in regional malaria elimination efforts.
Collapse
|
23
|
Vega-Rodríguez J, Franke-Fayard B, Dinglasan RR, Janse CJ, Pastrana-Mena R, Waters AP, Coppens I, Rodríguez-Orengo JF, Jacobs-Lorena M, Serrano AE. The glutathione biosynthetic pathway of Plasmodium is essential for mosquito transmission. PLoS Pathog 2009; 5:e1000302. [PMID: 19229315 PMCID: PMC2636896 DOI: 10.1371/journal.ppat.1000302] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 01/18/2009] [Indexed: 02/07/2023] Open
Abstract
Infection of red blood cells (RBC) subjects the malaria parasite to oxidative stress. Therefore, efficient antioxidant and redox systems are required to prevent damage by reactive oxygen species. Plasmodium spp. have thioredoxin and glutathione (GSH) systems that are thought to play a major role as antioxidants during blood stage infection. In this report, we analyzed a critical component of the GSH biosynthesis pathway using reverse genetics. Plasmodium berghei parasites lacking expression of gamma-glutamylcysteine synthetase (γ-GCS), the rate limiting enzyme in de novo synthesis of GSH, were generated through targeted gene disruption thus demonstrating, quite unexpectedly, that γ-GCS is not essential for blood stage development. Despite a significant reduction in GSH levels, blood stage forms of pbggcs− parasites showed only a defect in growth as compared to wild type. In contrast, a dramatic effect on development of the parasites in the mosquito was observed. Infection of mosquitoes with pbggcs− parasites resulted in reduced numbers of stunted oocysts that did not produce sporozoites. These results have important implications for the design of drugs aiming at interfering with the GSH redox-system in blood stages and demonstrate that de novo synthesis of GSH is pivotal for development of Plasmodium in the mosquito. The antioxidant systems of malaria parasites (Plasmodium spp.) are potential targets for the development of antimalarials. The glutathione (GSH) redox system constitutes one of the Plasmodium primary lines of defense against damage caused by reactive oxygen species and other forms of chemical stress. GSH is synthesized de novo by the sequential action of gamma-glutamylcysteine synthase (γ-GCS) and GSH synthase (GS). Biochemical studies have suggested that parasite survival depends on functional de novo GSH synthesis. Using reverse genetics we interrupted the GSH biosynthetic pathway in the rodent malaria Plasmodium berghei by disrupting the pbggcs gene. The mutation caused minor changes in parasite growth in the mammalian host but development in the mosquito was completely arrested at the oocyst stage. These results suggest that the GSH biosynthetic pathway, while essential for mosquito stage development, is not an appropriate target for antimalarials against blood stages of the parasite.
Collapse
Affiliation(s)
- Joel Vega-Rodríguez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico
| | | | - Rhoel R. Dinglasan
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States of America
| | - Chris J. Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rebecca Pastrana-Mena
- Department of Microbiology and Medical Zoology, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico
| | - Andrew P. Waters
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Wellcome Trust Centre of Molecular Parasitology and Division of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States of America
| | - José F. Rodríguez-Orengo
- Department of Biochemistry, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States of America
| | - Adelfa E. Serrano
- Department of Microbiology and Medical Zoology, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico
- * E-mail:
| |
Collapse
|
24
|
Yano K, Otsuki H, Arai M, Komaki-Yasuda K, Tsuboi T, Torii M, Kano S, Kawazu SI. Disruption of the Plasmodium berghei 2-Cys peroxiredoxin TPx-1 gene hinders the sporozoite development in the vector mosquito. Mol Biochem Parasitol 2008; 159:142-5. [PMID: 18417228 DOI: 10.1016/j.molbiopara.2008.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 03/05/2008] [Accepted: 03/05/2008] [Indexed: 11/16/2022]
Abstract
To investigate the physiologic role of cytosolic 2-Cys peroxiredoxin of Plasmodium berghei (PbTPx-1), we infected the vector mosquito Anopheles stephensi with a parasite carrying a targeted knockout of pbtpx-1 (Prx-KO). The number of Prx-KO midgut oocysts at 14-15 days post-feeding (pf) was comparable to that of the parent strain (WT); however, the numbers of sporozoites that formed in midgut oocysts and accumulated in the salivary gland of Prx-KO-infected mosquitoes by 21 days pf were decreased to 10-20% and 3-10%, respectively, of those values in WT-infected mosquitoes. A higher frequency of DNA strand breaks was detected in Prx-KO oocysts than in WT oocysts. Sporozoites carrying the targeted disruption had reduced infectivity in mice; however, the knockout did not affect the ability of the sporozoite to reach the liver parenchyma and initiate exo-erythrocytic form (EEF) development. TPx-1 may be involved in development during exponentially multiplying stages, such as sporozoites and EEF.
Collapse
Affiliation(s)
- Kazuhiko Yano
- Research Institute, International Medical Center of Japan, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kawazu SI, Komaki-Yasuda K, Oku H, Kano S. Peroxiredoxins in malaria parasites: parasitologic aspects. Parasitol Int 2007; 57:1-7. [PMID: 17890140 DOI: 10.1016/j.parint.2007.08.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/02/2007] [Accepted: 08/04/2007] [Indexed: 11/30/2022]
Abstract
Malaria is one of the most debilitating and life threatening diseases in tropical regions of the world. Over 500 million clinical cases occur, and 2-3 million people die of the disease each year. Because Plasmodium lacks genuine glutathione peroxidase and catalase, the two major antioxidant enzymes in the eukaryotic cell, malaria parasites are likely to utilize members of the peroxiredoxin (Prx) family as the principal enzymes to reduce peroxides, which increase in the parasite cell due to metabolism and parasitism during parasite development. In addition to its function of protecting macromolecules from H(2)O(2), Prx has also been reported to regulate H(2)O(2) as second messenger in transmission of redox signals, which mediate cell proliferation, differentiation, and apoptosis. In the malaria parasite, several lines of experimental data have suggested that the parasite uses Prxs as multifunctional molecules to adapt themselves to asexual and sexual development. In this review, we summarize the accumulated knowledge on the Prx family with respect to their functions in mammalian cells and their possible function(s) in malaria parasites.
Collapse
Affiliation(s)
- Shin-ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, 2-13 Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| | | | | | | |
Collapse
|
26
|
Abstract
Cellular redox metabolism is considered to be involved in the pathophysiology of diseases caused by protozoal parasites such as Toxoplasma, Trypanosoma, Leishmania, and Plasmodia. Redox reactions furthermore are thought to play a major role in the action of and the resistance to some clinically used antiparasitic drugs. Interestingly, in malarial parasites, the antioxidant enzymes catalase and glutathione peroxidase are absent which indicates a crucial role of the thioredoxin system in redox control. Besides a glutathione peroxidase-like thioredoxin peroxidase and a glutathione S-transferase with slight peroxidase activity, Plasmodium falciparum (the causative agent of tropical malaria) possesses four classical peroxiredoxins: Two peroxiredoxins of the typical 2-Cys Prx class, one 1-Cys peroxiredoxin with homology to the atypical 2-Cys Prx class, and a peroxiredoxin of the 1-Cys Prx class have been identified and partially characterized In our article we give an introduction to redox-based drug development strategies against protozoal parasites and summarize the present knowledge on peroxiredoxin systems in Plasmodium.
Collapse
Affiliation(s)
- Marcel Deponte
- Interdisciplinary Research Center, Justus Liebig University, D-35392 Giessen, Germany
| | | | | |
Collapse
|
27
|
Vlachou D, Schlegelmilch T, Runn E, Mendes A, Kafatos FC. The developmental migration of Plasmodium in mosquitoes. Curr Opin Genet Dev 2006; 16:384-91. [PMID: 16793259 DOI: 10.1016/j.gde.2006.06.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 06/09/2006] [Indexed: 11/19/2022]
Abstract
Migration of the protozoan parasite Plasmodium through the mosquito is a complex and delicate process, the outcome of which determines the success of malaria transmission. The mosquito is not simply the vector of Plasmodium but, in terms of the life cycle, its definitive host: there, the parasite undergoes its sexual development, which results in colonization of the mosquito salivary glands. Two of the parasite's developmental stages in the mosquito, the ookinete and the sporozoite, are invasive and depend on gliding motility to access, penetrate and traverse their host cells. Recent advances in the field have included the identification of numerous Plasmodium molecules that are essential for parasite migration in the mosquito vector.
Collapse
Affiliation(s)
- Dina Vlachou
- Division of Cell and Molecular Biology, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK.
| | | | | | | | | |
Collapse
|