1
|
Nanda S, Pandey R, Sardar R, Panda A, Naorem A, Gupta D, Malhotra P. Comparative genomics of two protozoans Dictyostelium discoideum and Plasmodium falciparum reveals conserved as well as distinct regulatory pathways crucial for exploring novel therapeutic targets for Malaria. Heliyon 2024; 10:e38500. [PMID: 39391471 PMCID: PMC11466611 DOI: 10.1016/j.heliyon.2024.e38500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Plasmodium falciparum, which causes life-threatening cerebral malaria has rapidly gained resistance against most frontline anti-malarial drugs, thereby generating an urgent need to develop novel therapeutic approaches. Conducting in-depth investigations on Plasmodium in its native form is challenging, thereby necessitating the requirement of an efficient model system. In line, mounting evidence suggests that Dictyostelium discoideum retains both conformational and functional properties of Plasmodium proteins, however, the true potential of Dictyostelium as a host system is not fully explored. In the present study, we have exploited comparative genomics as a tool to extract, compare, and curate the extensive data available on the organism-specific databases to evaluate if D. discoideum can be established as a prime model system for functional characterization of P. falciparum genes. Through comprehensive in silico analysis, we report that despite the presence of adaptation-specific genes, the two display noteworthy conservation in the housekeeping genes, signaling pathway components, transcription regulators, and post-translational modulators. Furthermore, through orthologue analysis, the known, potential, and novel drug target genes of P. falciparum were found to be significantly conserved in D. discoideum. Our findings advocate that D. discoideum can be employed to express and functionally characterize difficult-to-express P. falciparum genes.
Collapse
Affiliation(s)
- Shivam Nanda
- Department of Genetics, University of Delhi, South Campus, New Delhi, 110 021, India
| | - Rajan Pandey
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Rahila Sardar
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Ashutosh Panda
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Aruna Naorem
- Department of Genetics, University of Delhi, South Campus, New Delhi, 110 021, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Pawan Malhotra
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| |
Collapse
|
2
|
Ding H, Dong Y, Deng Y, Xu Y, Liu Y, Wu J, Chen M, Zhang C, Liu L, Lin Y. Molecular surveillance of chloroquine resistance in Plasmodium vivax isolates from malaria cases in Yunnan Province of China using pvcrt-o gene polymorphisms. Malar J 2023; 22:338. [PMID: 37940956 PMCID: PMC10631137 DOI: 10.1186/s12936-023-04776-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND The efficacy of chloroquine treatment for vivax malaria has been rarely evaluated due to a lack of an appropriate testing method. The objective of this study was to conduct molecular monitoring of chloroquine resistance in Plasmodium vivax strains from vivax malaria patients in Yunnan Province, focusing on the analysis of polymorphism in the P. vivax chloroquine resistance transporter protein orthologous gene (pvcrt-o). METHODS In accordance with the principles of a cohort study, blood samples were collected from malaria cases diagnosed with a P. vivax mono-infection in Yunnan Province from 2020 to 2022. Segmental PCR was used to amplify the whole pvcrt-o gene in the blood samples and their products were subsequently sequenced. The sequencing data were arranged to obtain the full coding DNA sequence (CDS) as well as the gene's promoter region sequences. The CDSs were aligned with the reference sequence (XM_001613407.1) of the P. vivax SalI isolate to identify the mutant loci. RESULTS From a total of 375 blood samples taken from vivax malaria cases, 272 both whole gene CDSs (1272-1275 bp) and promoter DNA sequences (707 bp) of pvcrt-o gene were obtained. Among the whole CDSs, there were 7 single nucleotide polymorphic sites in which c.7 A>G was the minor allele frequency (MAF) site with 4.4% (12/272) detection rate. The mutation detection rate showed a significant decrease from 9.8% (10/102) in 2020 to 1.1% (1/92) in 2021 and 1.3% (1/78) in 2022, indicating statistical significance (χ2 = 11.256, P < 0.05). Among the identified 12 haplotypes, the majority of which were wild type (75.7%; 206/272). These four mutant haplotypes (Hap_3, Hap_5, Hap_9, and Hap_10) were classified as "K10 insertion type" and accounted for 12.1% (33/272). The detection rate of Hap_3 increased from 1.0% (1/102) in 2020 to 13.0% (12/92) in 2021 and 14.1% (11/78) in 2022, indicating statistical significance. A total of 23.8% (65/272) of the samples exhibited 14 bp (bp) deletions in the promoter region, occurring most frequently in the wild type haplotype (Hap_1) samples at a rate of 28.6% (59/206). CONCLUSIONS In recent years in Yunnan Province, a notable proportion of vivax malaria patients are infected by P. vivax strains with a "K10 insertion" and partial sequence deletions in the promoter region of the pvcrt-o gene, necessitating vigilance.
Collapse
Affiliation(s)
- Hongyun Ding
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan International Joint Laboratory of Tropical Infectious Diseases, Yunnan Institute of Parasitic Diseases Control, Pu'er, 665000, China
| | - Ying Dong
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan International Joint Laboratory of Tropical Infectious Diseases, Yunnan Institute of Parasitic Diseases Control, Pu'er, 665000, China.
| | - Yan Deng
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan International Joint Laboratory of Tropical Infectious Diseases, Yunnan Institute of Parasitic Diseases Control, Pu'er, 665000, China
| | - Yanchun Xu
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan International Joint Laboratory of Tropical Infectious Diseases, Yunnan Institute of Parasitic Diseases Control, Pu'er, 665000, China
| | - Yan Liu
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan International Joint Laboratory of Tropical Infectious Diseases, Yunnan Institute of Parasitic Diseases Control, Pu'er, 665000, China
| | - Jing Wu
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan International Joint Laboratory of Tropical Infectious Diseases, Yunnan Institute of Parasitic Diseases Control, Pu'er, 665000, China
| | - Mengni Chen
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan International Joint Laboratory of Tropical Infectious Diseases, Yunnan Institute of Parasitic Diseases Control, Pu'er, 665000, China
| | - Canglin Zhang
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan International Joint Laboratory of Tropical Infectious Diseases, Yunnan Institute of Parasitic Diseases Control, Pu'er, 665000, China
| | - Li Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Yingkun Lin
- Center for Disease Control and Prevention, Dehong, 678499, China.
| |
Collapse
|
3
|
Rumaseb A, Moraes Barros RR, Sá JM, Juliano JJ, William T, Braima KA, Barber BE, Anstey NM, Price RN, Grigg MJ, Marfurt J, Auburn S. No Association between the Plasmodium vivax crt-o MS334 or In9 pvcrt Polymorphisms and Chloroquine Failure in a Pre-Elimination Clinical Cohort from Malaysia with a Large Clonal Expansion. Antimicrob Agents Chemother 2023; 67:e0161022. [PMID: 37314336 PMCID: PMC10353443 DOI: 10.1128/aac.01610-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/04/2023] [Indexed: 06/15/2023] Open
Abstract
Increasing reports of resistance to a frontline malaria blood-stage treatment, chloroquine (CQ), raises concerns for the elimination of Plasmodium vivax. The absence of an effective molecular marker of CQ resistance in P. vivax greatly constrains surveillance of this emerging threat. A recent genetic cross between CQ sensitive (CQS) and CQ resistant (CQR) NIH-1993 strains of P. vivax linked a moderate CQR phenotype with two candidate markers in P. vivax CQ resistance transporter gene (pvcrt-o): MS334 and In9pvcrt. Longer TGAAGH motif lengths at MS334 were associated with CQ resistance, as were shorter motifs at the In9pvcrt locus. In this study, high-grade CQR clinical isolates of P. vivax from a low endemic setting in Malaysia were used to investigate the association between the MS334 and In9pvcrt variants and treatment efficacy. Among a total of 49 independent monoclonal P. vivax isolates assessed, high-quality MS334 and In9pvcrt sequences could be derived from 30 (61%) and 23 (47%), respectively. Five MS334 and six In9pvcrt alleles were observed, with allele frequencies ranging from 2 to 76% and 3 to 71%, respectively. None of the clinical isolates had the same variant as the NIH-1993 CQR strain, and none of the variants were associated with CQ treatment failure (all P > 0.05). Multi-locus genotypes (MLGs) at 9 neutral microsatellites revealed a predominant P. vivax strain (MLG6) accounting for 52% of Day 0 infections. The MLG6 strain comprised equal proportions of CQS and CQR infections. Our study reveals complexity in the genetic basis of CQ resistance in the Malaysian P. vivax pre-elimination setting and suggests that the proposed pvcrt-o MS334 and In9pvcrt markers are not reliable markers of CQ treatment efficacy in this setting. Further studies are needed in other endemic settings, applying hypothesis-free genome-wide approaches, and functional approaches to understand the biological impact of the TGAAGH repeats linked to CQ response in a cross are warranted to comprehend and track CQR P. vivax.
Collapse
Affiliation(s)
- Angela Rumaseb
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Roberto R. Moraes Barros
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Juliana M. Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jonathan J. Juliano
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Timothy William
- Clinical Research Centre, Queen Elizabeth Hospital, Sabah, Malaysia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Kamil A. Braima
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Bridget E. Barber
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Nicholas M. Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Matthew J. Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- College of Medicine and Public Health, Flinders University, Darwin, Northern Territory, Australia
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Pirahmadi S, Afzali S, Mehrizi AA, Raz A, Raeisi A. Molecular epidemiology of potential candidate markers for chloroquine resistance in imported Plasmodium vivax malaria cases in Iran. Malar J 2023; 22:118. [PMID: 37038137 PMCID: PMC10084653 DOI: 10.1186/s12936-023-04553-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/04/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND The spread of Plasmodium vivax strains resistant to chloroquine (CQ) has posed a challenge to control strategies aimed at eliminating malaria. Molecular analysis of candidate resistance markers is very important for monitoring the P. vivax resistance to CQ in different endemic regions. In the present study, the multidrug resistance 1 (pvmdr1) gene, a possible marker for CQ resistance in P. vivax, was evaluated by molecular methods. METHODS A simple PCR-RFLP method was developed for mutation analysis in pvmdr1 gene. A number of 120 blood spots were obtained from patients with P. vivax mono-infection in 2021. All of the samples were collected from Pakistani patients who travelled to Iran. RESULTS None of the samples had any mutation at codon 976 of pvmdr1, while the 1076 mutation was detected in 96.2% of the examined isolates. Only two pvmdr1 haplotypes were identified, including the single mutant (Y976/1076L) as the most prevalent haplotype (with 96.2% frequency) and the wild type (Y976/F1076; with 3.8% frequency). CONCLUSIONS In this study, the major CQ resistance-mediating mutation and multiple mutant haplotypes of the pvmdr1 gene was not detected. However, continuous monitoring of drug resistance markers and close supervision of the efficacy of CQ is essential to detect the potential emergence of CQ-resistant P. vivax isolates in Iran. This data is important for performing future epidemiological surveillance to monitor CQ resistance in this endemic area and the bordering regions.
Collapse
Affiliation(s)
- Sakineh Pirahmadi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Shima Afzali
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Akram Abouie Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Abbasali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Ahmad Raeisi
- National Programme Manager for Malaria Control, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
5
|
Rehn T, Lubiana P, Nguyen THT, Pansegrau E, Schmitt M, Roth LK, Brehmer J, Roeder T, Cadar D, Metwally NG, Bruchhaus I. Ectopic Expression of Plasmodium vivax vir Genes in P. falciparum Affects Cytoadhesion via Increased Expression of Specific var Genes. Microorganisms 2022; 10:microorganisms10061183. [PMID: 35744701 PMCID: PMC9230084 DOI: 10.3390/microorganisms10061183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Plasmodium falciparum-infected erythrocytes (PfIEs) adhere to endothelial cell receptors (ECRs) of blood vessels mainly via PfEMP1 proteins to escape elimination via the spleen. Evidence suggests that P. vivax-infected reticulocytes (PvIRs) also bind to ECRs, presumably enabled by VIR proteins, as shown by inhibition experiments and studies with transgenic P. falciparum expressing vir genes. To test this hypothesis, our study investigated the involvement of VIR proteins in cytoadhesion using vir gene-expressing P. falciparum transfectants. Those VIR proteins with a putative transmembrane domain were present in Maurer's clefts, and some were also present in the erythrocyte membrane. The VIR protein without a transmembrane domain (PVX_050690) was not exported. Five of the transgenic P. falciparum cell lines, including the one expressing PVX_050690, showed binding to CD36. We observed highly increased expression of specific var genes encoding PfEMP1s in all CD36-binding transfectants. These results suggest that ectopic vir expression regulates var expression through a yet unknown mechanism. In conclusion, the observed cytoadhesion of P. falciparum expressing vir genes depended on PfEMP1s, making this experimental unsuitable for characterizing VIR proteins.
Collapse
Affiliation(s)
- Torben Rehn
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (T.R.); (P.L.); (T.H.T.N.); (E.P.); (M.S.); (L.K.R.); (J.B.); (D.C.); (N.G.M.)
| | - Pedro Lubiana
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (T.R.); (P.L.); (T.H.T.N.); (E.P.); (M.S.); (L.K.R.); (J.B.); (D.C.); (N.G.M.)
| | - Thi Huyen Trang Nguyen
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (T.R.); (P.L.); (T.H.T.N.); (E.P.); (M.S.); (L.K.R.); (J.B.); (D.C.); (N.G.M.)
| | - Eva Pansegrau
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (T.R.); (P.L.); (T.H.T.N.); (E.P.); (M.S.); (L.K.R.); (J.B.); (D.C.); (N.G.M.)
| | - Marius Schmitt
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (T.R.); (P.L.); (T.H.T.N.); (E.P.); (M.S.); (L.K.R.); (J.B.); (D.C.); (N.G.M.)
| | - Lisa Katharina Roth
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (T.R.); (P.L.); (T.H.T.N.); (E.P.); (M.S.); (L.K.R.); (J.B.); (D.C.); (N.G.M.)
| | - Jana Brehmer
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (T.R.); (P.L.); (T.H.T.N.); (E.P.); (M.S.); (L.K.R.); (J.B.); (D.C.); (N.G.M.)
| | - Thomas Roeder
- Molecular Physiology Department, Zoological Institute, Christian-Albrechts University Kiel, 24118 Kiel, Germany;
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 24118 Kiel, Germany
| | - Dániel Cadar
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (T.R.); (P.L.); (T.H.T.N.); (E.P.); (M.S.); (L.K.R.); (J.B.); (D.C.); (N.G.M.)
| | - Nahla Galal Metwally
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (T.R.); (P.L.); (T.H.T.N.); (E.P.); (M.S.); (L.K.R.); (J.B.); (D.C.); (N.G.M.)
| | - Iris Bruchhaus
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (T.R.); (P.L.); (T.H.T.N.); (E.P.); (M.S.); (L.K.R.); (J.B.); (D.C.); (N.G.M.)
- Department of Biology, University of Hamburg, 22601 Hamburg, Germany
- Correspondence:
| |
Collapse
|
6
|
Tang T, Xu Y, Cao L, Tian P, Shao J, Deng Y, Zhou H, Xiao B. Ten-Year Molecular Surveillance of Drug-Resistant Plasmodium spp. Isolated From the China-Myanmar Border. Front Cell Infect Microbiol 2021; 11:733788. [PMID: 34540721 PMCID: PMC8441003 DOI: 10.3389/fcimb.2021.733788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Antimalarial drug resistance has emerged as a major threat to global malaria control efforts, particularly in the Greater Mekong Subregion (GMS). In this study, we analyzed the polymorphism and prevalence of molecular markers associated with resistance to first-line antimalarial drugs, such as artemisinin, chloroquine, and pyrimethamine, using blood samples collected from malaria patients in the China-Myanmar border region of the GMS from 2008 to 2017, including 225 cases of Plasmodium falciparum and 194 cases of Plasmodium vivax. In artemisinin resistance, only the C580Y mutation with low frequency was detected in pfk13, and no highly frequent stable mutation was found in pvk12. In chloroquine resistance, the frequency of K76T mutation in pfcrt was always high, and the frequency of double mutations in pvmdr1 of P. vivax has been steadily increasing every year. In pyrimidine resistance, pfdhfr and pvdhfr had relatively more complex mutant types associated with drug resistance sites, and the overall mutation rate was still high. Therefore, artemisinin-based combination therapies are still suitable for use as the first choice of antimalarial strategy in the China-Myanmar border region in the future.
Collapse
Affiliation(s)
- Tongke Tang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yanchun Xu
- Yunnan Institute of Parasitic Diseases Control, Pu'er, China
| | - Long Cao
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Penghai Tian
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jiang Shao
- Institutional Center for Shared Technologies and Facilities of Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yan Deng
- Yunnan Institute of Parasitic Diseases Control, Pu'er, China
| | - Hongning Zhou
- Yunnan Institute of Parasitic Diseases Control, Pu'er, China
| | - Bo Xiao
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
7
|
Auburn S, Cheng Q, Marfurt J, Price RN. The changing epidemiology of Plasmodium vivax: Insights from conventional and novel surveillance tools. PLoS Med 2021; 18:e1003560. [PMID: 33891580 PMCID: PMC8064506 DOI: 10.1371/journal.pmed.1003560] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Sarah Auburn and co-authors discuss the unique biology and epidemiology of P. vivax and current evidence on conventional and new approaches to surveillance.
Collapse
Affiliation(s)
- Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Qin Cheng
- Department of Drug Resistance and Diagnostics, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
- The Australian Defence Force Malaria and Infectious Disease Institute Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
Mosawi SH, Dalimi A, Safi N, Fotouhi-Ardakani R, Ghaffarifar F, Sadraei J. An unlabelled probe-based real time PCR and modified semi-nested PCR as molecular tools for analysis of chloroquine resistant Plasmodium vivax isolates from Afghanistan. Malar J 2020; 19:253. [PMID: 32664942 PMCID: PMC7362495 DOI: 10.1186/s12936-020-03323-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/07/2020] [Indexed: 11/27/2022] Open
Abstract
Background Plasmodium vivax resistance to chloroquine (CQ) has been reported from many endemic regions in the world. Plasmodium vivax is responsible for 95% of malaria cases in Afghanistan and CQ is the first-line treatment given for vivax malaria. The pvmdr-1 and pvcrt-o (K10 insertion) genes are possible markers for CQ-resistance in P. vivax isolates. There have been no studies done on the presence or absence of molecular markers for CQ-resistance P. vivax in Afghanistan. The present work aimed to evaluate the frequency of mutations in the pvmdr-1 and K10 insertion in the pvcrt-o genes of P. vivax. Methods Plasmodium vivax isolates were collected from Laghman, Baghlan and Khost provinces. For investigation of polymorphisms of desired regions in pvmdr-1 and pvcrt-o genes, sequencing was applied on the PCR products. A new asymmetric qPCR and melting analysis assay based on unlabelled probe developed for scanning of K10 insertion in pvcrt-o gene. Results The analysis of sequencing data of the pvmdr-1 gene showed wild type Y976 and K997 and mutant M958 and L1076 in 33 isolates from three provinces. Of the 36 samples evaluated for K10 insertion in pvcrt-o, 2/18(11%), 0/10(0%) and 0/8(0%) isolates from Laghman, Baghlan and Khost province, respectively, possessed K10 insertion, confirmed by either sequencing and unlabelled probes. Conclusion Two samples with K10 insertion and 33 samples with pvmdr1 polymorphism, indicating on the possibility of CQ resistance in P. vivax populations in Afghanistan. Furthermore, unlabelled probes are simple and inexpensive alternative tools for screening of P. vivax mutations.
Collapse
Affiliation(s)
- Sayed Hussain Mosawi
- Department of Medical Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Medical Sciences Research Center, Ghalib University, Kabul, Afghanistan
| | - Abdolhossein Dalimi
- Department of Medical Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Najibullah Safi
- World Health Organization Country Office, Kabul, Afghanistan
| | - Reza Fotouhi-Ardakani
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Fatemeh Ghaffarifar
- Department of Medical Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javid Sadraei
- Department of Medical Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
9
|
Wang X, Ruan W, Zhou S, Feng X, Yan H, Huang F. Prevalence of molecular markers associated with drug resistance of Plasmodium vivax isolates in Western Yunnan Province, China. BMC Infect Dis 2020; 20:307. [PMID: 32334523 PMCID: PMC7183581 DOI: 10.1186/s12879-020-05032-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/15/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Plasmodium vivax is the most widely distributed malaria parasite, and its drug resistance poses unique challenges to malaria elimination. The Greater Mekong Subregion (GMS) is known as the global epicenter of multidrug resistance. Surveillance of molecular markers associated with drug resistance in this area will help to inform drug policy. METHODS Dry blood spots from 58 patients out of 109 with P. vivax infection between 2017, December and 2019, March were obtained from Yingjiang County, Yunnan Province, along the China-Myanmar border. Pvdhfr, Pvdhps, Pvmdr1 and Pvcrt-o were amplified and sequenced to assess gene mutations. The polymorphism and prevalence of these molecular markers were analyzed. RESULTS Mutations in Pvdhfr at codons 57, 58, 61, 99 and 117 were detected in 27.59, 48.28, 27.59, 32.76 and 48.28% of the isolates, respectively. Single mutant haplotype (I13F57S58T61S99S117I173) was the most frequent (29.31%, 17/58), followed by double mutant haplotype (20.69%, 12/58). Of three types of tandem repeat variations of Pvdhfr, deletion type was the most common. Pvdhps showed a lower prevalence among mutation genotypes. Single mutant was dominant and accounted for 34.48% (20/58). Prevalence of Pvmdr1 mutations at codons 958 and 1076 were 100.00% and 84.48%, respectively. The proportion of double and single mutant types was 84.48% (49/58) and 15.52% (9/58), respectively. Eleven samples (18.97%, 11/58) showed K10 "AAG" insertion in chloroquine resistance transporter gene Pvcrt-o. CONCLUSIONS There was moderate diversity of molecular patterns of resistance markers of Pvdhfr, Pvdhps, Pvmdr1 and Pvcrt-o in imported P. vivax cases to Yingjiang county in Western Yunnan, along the China-Myanmar border. Prevalence and molecular pattern of candidate drug resistance markers Pvdhfr, Pvdhps, Pvmdr1 and Pvcrt-o were demonstrated in this current study, which would help to update drug policy.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, and WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, People’s Republic of China
- Zhejiang Provincial Center for Disease Control and Prevention, Zhejiang, People’s Republic of China
| | - Wei Ruan
- Zhejiang Provincial Center for Disease Control and Prevention, Zhejiang, People’s Republic of China
| | - Shuisen Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, and WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, People’s Republic of China
| | - Xinyu Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, and WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, People’s Republic of China
| | - He Yan
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, and WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, People’s Republic of China
| | - Fang Huang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, and WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, People’s Republic of China
| |
Collapse
|
10
|
Auburn S, Getachew S, Pearson RD, Amato R, Miotto O, Trimarsanto H, Zhu SJ, Rumaseb A, Marfurt J, Noviyanti R, Grigg MJ, Barber B, William T, Goncalves SM, Drury E, Sriprawat K, Anstey NM, Nosten F, Petros B, Aseffa A, McVean G, Kwiatkowski DP, Price RN. Genomic Analysis of Plasmodium vivax in Southern Ethiopia Reveals Selective Pressures in Multiple Parasite Mechanisms. J Infect Dis 2019; 220:1738-1749. [PMID: 30668735 PMCID: PMC6804337 DOI: 10.1093/infdis/jiz016] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/18/2019] [Indexed: 01/12/2023] Open
Abstract
The Horn of Africa harbors the largest reservoir of Plasmodium vivax in the continent. Most of sub-Saharan Africa has remained relatively vivax-free due to a high prevalence of the human Duffy-negative trait, but the emergence of strains able to invade Duffy-negative reticulocytes poses a major public health threat. We undertook the first population genomic investigation of P. vivax from the region, comparing the genomes of 24 Ethiopian isolates against data from Southeast Asia to identify important local adaptions. The prevalence of the Duffy binding protein amplification in Ethiopia was 79%, potentially reflecting adaptation to Duffy negativity. There was also evidence of selection in a region upstream of the chloroquine resistance transporter, a putative chloroquine-resistance determinant. Strong signals of selection were observed in genes involved in immune evasion and regulation of gene expression, highlighting the need for a multifaceted intervention approach to combat P. vivax in the region.
Collapse
Affiliation(s)
- Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Sisay Getachew
- College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Richard D Pearson
- Wellcome Sanger Institute, Hinxton, Cambridge
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Roberto Amato
- Wellcome Sanger Institute, Hinxton, Cambridge
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Olivo Miotto
- Wellcome Sanger Institute, Hinxton, Cambridge
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
- Mahidol–Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Hidayat Trimarsanto
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Agency for Assessment and Application of Technology, Jakarta, Indonesia
| | - Sha Joe Zhu
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Angela Rumaseb
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | | | - Matthew J Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society, Sabah-Menzies School of Health Research Clinical Research Unit, Sabah, Malaysia
| | - Bridget Barber
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society, Sabah-Menzies School of Health Research Clinical Research Unit, Sabah, Malaysia
| | - Timothy William
- Infectious Diseases Society, Sabah-Menzies School of Health Research Clinical Research Unit, Sabah, Malaysia
- Clinical Research Centre, Queen Elizabeth Hospital, Sabah, Malaysia
- Jesselton Medical Centre, Sabah, Malaysia
| | | | | | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Beyene Petros
- College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Gil McVean
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Dominic P Kwiatkowski
- Wellcome Sanger Institute, Hinxton, Cambridge
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| |
Collapse
|
11
|
Sá JM, Kaslow SR, Moraes Barros RR, Brazeau NF, Parobek CM, Tao D, Salzman RE, Gibson TJ, Velmurugan S, Krause MA, Melendez-Muniz V, Kite WA, Han PK, Eastman RT, Kim A, Kessler EG, Abebe Y, James ER, Chakravarty S, Orr-Gonzalez S, Lambert LE, Engels T, Thomas ML, Fasinu PS, Serre D, Gwadz RW, Walker L, DeConti DK, Mu J, Bailey JA, Sim BKL, Hoffman SL, Fay MP, Dinglasan RR, Juliano JJ, Wellems TE. Plasmodium vivax chloroquine resistance links to pvcrt transcription in a genetic cross. Nat Commun 2019; 10:4300. [PMID: 31541097 PMCID: PMC6754410 DOI: 10.1038/s41467-019-12256-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/26/2019] [Indexed: 12/30/2022] Open
Abstract
Mainstay treatment for Plasmodium vivax malaria has long relied on chloroquine (CQ) against blood-stage parasites plus primaquine against dormant liver-stage forms (hypnozoites), however drug resistance confronts this regimen and threatens malaria control programs. Understanding the basis of P. vivax chloroquine resistance (CQR) will inform drug discovery and malaria control. Here we investigate the genetics of P. vivax CQR by a cross of parasites differing in drug response. Gametocytogenesis, mosquito infection, and progeny production are performed with mixed parasite populations in nonhuman primates, as methods for P. vivax cloning and in vitro cultivation remain unavailable. Linkage mapping of progeny surviving >15 mg/kg CQ identifies a 76 kb region in chromosome 1 including pvcrt, an ortholog of the Plasmodium falciparum CQR transporter gene. Transcriptional analysis supports upregulated pvcrt expression as a mechanism of CQR.
Collapse
Affiliation(s)
- Juliana M Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sarah R Kaslow
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Roberto R Moraes Barros
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nicholas F Brazeau
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Christian M Parobek
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Dingyin Tao
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Rebecca E Salzman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tyler J Gibson
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Michael A Krause
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Viviana Melendez-Muniz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Whitney A Kite
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Paul K Han
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard T Eastman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Adam Kim
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Evan G Kessler
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | | | - Sachy Orr-Gonzalez
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lynn E Lambert
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Theresa Engels
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marvin L Thomas
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Pius S Fasinu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC, 27506, USA
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Robert W Gwadz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Larry Walker
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC, 27506, USA
| | - Derrick K DeConti
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeffrey A Bailey
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC, 27506, USA
- Division of Transfusion Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | | | | | - Michael P Fay
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Rhoel R Dinglasan
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- Emerging Pathogens Institute, Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Jonathan J Juliano
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
12
|
Silva SR, Almeida ACG, da Silva GAV, Ramasawmy R, Lopes SCP, Siqueira AM, Costa GL, Sousa TN, Vieira JLF, Lacerda MVG, Monteiro WM, de Melo GC. Chloroquine resistance is associated to multi-copy pvcrt-o gene in Plasmodium vivax malaria in the Brazilian Amazon. Malar J 2018; 17:267. [PMID: 30012145 PMCID: PMC6048775 DOI: 10.1186/s12936-018-2411-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/09/2018] [Indexed: 01/08/2023] Open
Abstract
Background The resistance of Plasmodium vivax to chloroquine has become an obstacle to control strategies based on the use of anti-malarials. The current study investigated the association between P. vivax CQ-resistance in vivo with copy number variation and mutations in the promoter region in pvcrt-o and pvmdr1 genes. Methods The study included patients with P. vivax that received supervised treatment with chloroquine and primaquine. Recurrences were actively recorded during this period. Results Among the 60 patients with P. vivax, 25 were CQ-resistant and 35 CQ-susceptible. A frequency of 7.1% of multi-copy pvcrt-o was observed in CQ-susceptible samples and 7.7% in CQ-resistant at D0 (P > 0.05) and 33.3% in CQ-resistant at DR (P < 0.05). For pvmdr1, 10.7% of the CQ-susceptible samples presented multiple copies compared to 11.1% in CQ-resistant at D0 and 0.0% in CQ-resistant at DR (P > 0.05). A deletion of 19 bp was found in 11/23 (47.6%) of the patients with CQ-susceptible P. vivax and 3/10 (23.1%) of the samples with in CQRPv at D0. At day DR, 55.5% of the samples with CQRPv had the 19 bp deletion. For the pvmdr-1 gene, was no variation in the analysed gene compared to the P. vivax reference Sal-1. Conclusions This was the first study with 42-day clinical follow-up to evaluate the variation of the number of copies and polymorphisms in the promoter region of the pvcrt-o and pvmdr1 genes in relation to treatment outcomes. Significantly higher frequency of multi-copy pvcrt-o was found in CQRPv samples at DR compared to CQ-susceptible, indicating parasite selection of this genotype after CQ treatment and its association with CQ-resistance in vivo. Electronic supplementary material The online version of this article (10.1186/s12936-018-2411-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Siuhelem Rocha Silva
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, 69040-000, Brazil
| | - Anne Cristine Gomes Almeida
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, 69040-000, Brazil
| | | | - Rajendranath Ramasawmy
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, 69040-000, Brazil
| | - Stefanie Costa Pinto Lopes
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Instituto Leônidas & Maria Deane (ILMD), Fiocruz, Manaus, Amazonas, 69057-070, Brazil
| | - André Machado Siqueira
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Instituto Nacional de Infectologia, Evandro Chagas, Fiocruz, Rio de Janeiro, 21040-360, Brazil
| | - Gabriel Luíz Costa
- Centro de Pesquisas René Rachou, Fiocruz, Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - Taís Nóbrega Sousa
- Centro de Pesquisas René Rachou, Fiocruz, Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | | | - Marcus Vinícius Guimarães Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Instituto Leônidas & Maria Deane (ILMD), Fiocruz, Manaus, Amazonas, 69057-070, Brazil
| | - Wuelton Marcelo Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, 69040-000, Brazil
| | - Gisely Cardoso de Melo
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil. .,Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, 69040-000, Brazil.
| |
Collapse
|
13
|
Joy S, Mukhi B, Ghosh SK, Achur RN, Gowda DC, Surolia N. Drug resistance genes: pvcrt-o and pvmdr-1 polymorphism in patients from malaria endemic South Western Coastal Region of India. Malar J 2018; 17:40. [PMID: 29351800 PMCID: PMC5775544 DOI: 10.1186/s12936-018-2188-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 01/15/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Malaria is highly prevalent in many parts of India and is mostly caused by the parasite species Plasmodium vivax followed by Plasmodium falciparum. Chloroquine (CQ) is the first-line treatment for blood stage P. vivax parasites, but cases of drug resistance to CQ have been reported from India. One of the surveillance strategies which is used to monitor CQ drug resistance, is the analysis of single nucleotide polymorphisms (SNPs) of the associated gene markers. Susceptibility to CQ can also be determined by copy number assessment of multidrug resistant gene (mdr-1). The current study has examined the prevalence of SNPs in P. vivax orthologs of P. falciparum chloroquine resistant and multi-drug resistant genes (pvcrt-o and pvmdr-1, respectively) and pvmdr-1 copy number variations in isolates from the highly endemic Mangaluru city near the South Western Coastal region of India. METHODS A total of 140 blood samples were collected from P. vivax infected patients attending Wenlock Hospital Mangaluru during July 2014 to January 2016. Out of these 140 samples, sequencing was carried out for 54 (38.5%) and 85 (60.7%) isolates for pvcrt-o and pvmdr-1, respectively. Single nucleotide polymorphisms (SNPs) in the pvcrt-o and pvmdr-1 genes were analysed by direct sequencing method, while copy number variations of 60 isolates (42. 8%) were determined by real time PCR. RESULTS Out of 54 clinical isolates analysed for pvcrt-o, three (5.6%) showed K10 insertion and the rest had wild type sequence. This is the first report to show K10 insertion in P. vivax isolates from India. Further, out of 85 clinical isolates of P. vivax analysed for mutations in pvmdr-1 gene, only one isolate had wild type sequence (~ 1%) while the remaining (99%) carried mutant alleles. Seven non-synonymous mutations with two novel mutations (I946V and Y1028C) were observed. Of all the observed mutations in pvmdr-1 gene, T958M was most highly prevalent (present in 90% of samples) followed by F1076L (76%), and Y976F (7%). Amplification of pvmdr-1 gene was observed in 31.6% of the isolates, out of 60 amplified. CONCLUSION The observed variations both in pvmdr-1 and pvcrt-o genes indicate a trend towards parasite acquiring CQ resistance in this endemic area.
Collapse
Affiliation(s)
- Shiny Joy
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre For Advanced Scientific Research, Jakkur, Bangalore, India
| | - Benudhar Mukhi
- Department of Biological Control, National Institute of Malaria Research, Poojanahalli, Bangalore, India
| | - Susanta K Ghosh
- Department of Biological Control, National Institute of Malaria Research, Poojanahalli, Bangalore, India
| | - Rajeshwara N Achur
- Department of Biochemistry, Kuvempu University, Shivamogga District, Shankaraghatta, Karnataka, India
| | - D Channe Gowda
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Namita Surolia
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre For Advanced Scientific Research, Jakkur, Bangalore, India.
| |
Collapse
|
14
|
Armistead JS, Adams JH. Advancing Research Models and Technologies to Overcome Biological Barriers to Plasmodium vivax Control. Trends Parasitol 2017; 34:114-126. [PMID: 29153587 DOI: 10.1016/j.pt.2017.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 02/06/2023]
Abstract
Malaria prevalence has declined in the past 10 years, especially outside of sub-Saharan Africa. However, the proportion of cases due to Plasmodium vivax is increasing, accounting for up to 90-100% of the malaria burden in endemic regions. Nonetheless, investments in malaria research and control still prioritize Plasmodium falciparum while largely neglecting P. vivax. Specific biological features of P. vivax, particularly invasion of reticulocytes, occurrence of dormant liver forms of the parasite, and the potential for transmission of sexual-stage parasites prior to onset of clinical illness, promote its persistence and hinder development of research tools and interventions. This review discusses recent advances in P. vivax research, current knowledge of its unique biology, and proposes priorities for P. vivax research and control efforts.
Collapse
Affiliation(s)
- Jennifer S Armistead
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - John H Adams
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
15
|
Moraes Barros RR, Gibson TJ, Kite WA, Sá JM, Wellems TE. Comparison of two methods for transformation of Plasmodium knowlesi: Direct schizont electroporation and spontaneous plasmid uptake from plasmid-loaded red blood cells. Mol Biochem Parasitol 2017; 218:16-22. [PMID: 28988930 DOI: 10.1016/j.molbiopara.2017.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 09/19/2017] [Accepted: 10/02/2017] [Indexed: 01/04/2023]
Abstract
Human infections from Plasmodium knowlesi present challenges to malaria control in Southeast Asia. P. knowlesi also offers a model for other human malaria species including Plasmodium vivax. P. knowlesi parasites can be cultivated in the laboratory, and their transformation is standardly performed by direct electroporation of schizont-infected red blood cells (RBCs) with plasmid DNA. Here we show that the efficiency of direct electroporation is exquisitely dependent on developmental age of the schizonts. Additionally, we show that transformation of P. knowlesi can be achieved without direct electroporation by using the parasite's ability to infect and take up DNA from plasmid-loaded RBCs. Transformation with plasmid-loaded RBCs does not require labor-intensive preparations of schizont-infected RBCs as for direct electroporation, and parasite damage from high voltage discharge is avoided. Further studies of the mechanism of spontaneous DNA uptake may suggest strategies for improved transformation and provide insights into the transport pathways of apicomplexans.
Collapse
Affiliation(s)
- Roberto R Moraes Barros
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8132, USA.
| | - Tyler J Gibson
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8132, USA.
| | - Whitney A Kite
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8132, USA.
| | - Juliana M Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8132, USA.
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8132, USA.
| |
Collapse
|
16
|
Hassett MR, Riegel BE, Callaghan PS, Roepe PD. Analysis of Plasmodium vivax Chloroquine Resistance Transporter Mutant Isoforms. Biochemistry 2017; 56:5615-5622. [PMID: 28898049 DOI: 10.1021/acs.biochem.7b00749] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chloroquine (CQ) resistance (CQR) in Plasmodium falciparum malaria is widespread and has limited the use of CQ in many regions of the globe. Malaria caused by the related human parasite P. vivax is as widespread as is P. falciparum malaria and has been treated with CQ as extensively as has P. falciparum, suggesting that P. vivax parasites have been selected with CQ as profoundly as have P. falciparum parasites. Indeed, a growing number of clinical reports have presented data suggesting increased P. vivax CQR. Cytostatic (growth inhibitory) CQR for P. falciparum is caused by Plasmodium falciparum chloroquine resistance transporter (PfCRT) mutations, and it has been proposed that mutations in the PvCRT orthologue may simliarly cause P. vivax CQR via increasing CQ transport from the P. vivax digestive vacuole. Here we report the first quantitative analysis of drug transport mediated by all known mutant isoforms of Plasmodium vivax chloroquine resistance transporter (PvCRT) in order to test the protein's potential link to growing P. vivax CQR phenomena. Small, but statistically significant, differences in the transport of CQ and other quinoline antimalarial drugs were found for multiple PvCRT isoforms, relative to wild type PvCRT, suggesting that mutations in PvCRT can contribute to P. vivax CQR and other examples of quinoline antimalarial drug resistance.
Collapse
Affiliation(s)
- Matthew R Hassett
- Departments of Chemistry and of Biochemistry & Cellular & Molecular Biology, Georgetown University , 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Bryce E Riegel
- Departments of Chemistry and of Biochemistry & Cellular & Molecular Biology, Georgetown University , 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Paul S Callaghan
- Departments of Chemistry and of Biochemistry & Cellular & Molecular Biology, Georgetown University , 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Paul D Roepe
- Departments of Chemistry and of Biochemistry & Cellular & Molecular Biology, Georgetown University , 37th and O Streets NW, Washington, D.C. 20057, United States
| |
Collapse
|
17
|
Kim A, Popovici J, Vantaux A, Samreth R, Bin S, Kim S, Roesch C, Liang L, Davies H, Felgner P, Herrera S, Arévalo-Herrera M, Ménard D, Serre D. Characterization of P. vivax blood stage transcriptomes from field isolates reveals similarities among infections and complex gene isoforms. Sci Rep 2017; 7:7761. [PMID: 28798400 PMCID: PMC5552866 DOI: 10.1038/s41598-017-07275-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/23/2017] [Indexed: 01/19/2023] Open
Abstract
Our understanding of the structure and regulation of Plasmodium vivax genes is limited by our inability to grow the parasites in long-term in vitro cultures. Most P. vivax studies must therefore rely on patient samples, which typically display a low proportion of parasites and asynchronous parasites. Here, we present stranded RNA-seq data generated directly from a small volume of blood from three Cambodian vivax malaria patients collected before treatment. Our analyses show surprising similarities of the parasite gene expression patterns across infections, despite extensive variations in parasite stage proportion. These similarities contrast with the unique gene expression patterns observed in sporozoites isolated from salivary glands of infected Colombian mosquitoes. Our analyses also indicate that more than 10% of P. vivax genes encode multiple, often undescribed, protein-coding sequences, potentially increasing the diversity of proteins synthesized by blood stage parasites. These data also greatly improve the annotations of P. vivax gene untranslated regions, providing an important resource for future studies of specific genes.
Collapse
Affiliation(s)
- Adam Kim
- Institute for Genome Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Jean Popovici
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Amélie Vantaux
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Reingsey Samreth
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Sophalai Bin
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Saorin Kim
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Camille Roesch
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Li Liang
- Division of Infectious Diseases, University of California Irvine, Irvine, California, USA
| | - Huw Davies
- Division of Infectious Diseases, University of California Irvine, Irvine, California, USA
| | - Philip Felgner
- Division of Infectious Diseases, University of California Irvine, Irvine, California, USA
| | | | - Myriam Arévalo-Herrera
- Caucaseco Scientific Research Center, Cali, Colombia.,School of Health, University of Valle, Cali, Colombia
| | - Didier Ménard
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia. .,Unité Biologie des Interactions Hôte-Parasite, Institut Pasteur, Paris, France. .,Inserm U1016, CNRS UMR8104, Institut Cochin, Paris, France.
| | - David Serre
- Institute for Genome Sciences, University of Maryland, Baltimore, Maryland, USA.
| |
Collapse
|
18
|
Plasmodium falciparum and Plasmodium vivax Demonstrate Contrasting Chloroquine Resistance Reversal Phenotypes. Antimicrob Agents Chemother 2017; 61:AAC.00355-17. [PMID: 28533239 PMCID: PMC5527611 DOI: 10.1128/aac.00355-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/08/2017] [Indexed: 01/12/2023] Open
Abstract
High-grade chloroquine (CQ) resistance has emerged in both Plasmodium falciparum and P. vivax The aim of the present study was to investigate the phenotypic differences of CQ resistance in both of these species and the ability of known CQ resistance reversal agents (CQRRAs) to alter CQ susceptibility. Between April 2015 and April 2016, the potential of verapamil (VP), mibefradil (MF), L703,606 (L7), and primaquine (PQ) to reverse CQ resistance was assessed in 46 P. falciparum and 34 P. vivax clinical isolates in Papua, Indonesia, where CQ resistance is present in both species, using a modified schizont maturation assay. In P. falciparum, CQ 50% inhibitory concentrations (IC50s) were reduced when CQ was combined with VP (1.4-fold), MF (1.2-fold), L7 (4.2-fold), or PQ (1.8-fold). The degree of CQ resistance reversal in P. falciparum was highly correlated with CQ susceptibility for all CQRRAs (R2 = 0.951, 0.852, 0.962, and 0.901 for VP, MF, L7, and PQ, respectively), in line with observations in P. falciparum laboratory strains. In contrast, no reduction in the CQ IC50s was observed with any of the CQRRAs in P. vivax, even in those isolates with high chloroquine IC50s. The differential effect of CQRRAs in P. falciparum and P. vivax suggests significant differences in CQ kinetics and, potentially, the likely mechanism of CQ resistance between these two species.
Collapse
|
19
|
Spillman NJ, Beck JR, Ganesan SM, Niles JC, Goldberg DE. The chaperonin TRiC forms an oligomeric complex in the malaria parasite cytosol. Cell Microbiol 2017; 19. [PMID: 28067475 DOI: 10.1111/cmi.12719] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 02/06/2023]
Abstract
The malaria parasite exports numerous proteins into its host red blood cell (RBC). The trafficking of these exported effectors is complex. Proteins are first routed through the secretory system, into the parasitophorous vacuole (PV), a membranous compartment enclosing the parasite. Proteins are then translocated across the PV membrane in a process requiring ATP and unfolding. Once in the RBC compartment the exported proteins are then refolded and further trafficked to their final localizations. Chaperones are important in the unfolding and refolding processes. Recently, it was suggested that the parasite TRiC chaperonin complex is exported, and that it is involved in trafficking of exported effectors. Using a parasite-specific antibody and epitope-tagged transgenic parasites we could observe no export of Plasmodium TRiC into the RBC. We tested the importance of the parasite TRiC by creating a regulatable knockdown line of the TRiC-θ subunit. Loss of the parasite TRiC-θ led to a severe growth defect in asexual development, but did not alter protein export into the RBC. These observations indicate that the TRiC proteins play a critical role in parasite biology, though their function, within the parasite, appears unrelated to protein trafficking in the RBC compartment.
Collapse
Affiliation(s)
- Natalie J Spillman
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, 63110, USA
| | - Josh R Beck
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, 63110, USA
| | - Suresh M Ganesan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Daniel E Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, 63110, USA
| |
Collapse
|
20
|
Clinical manifestations and molecular mechanisms in the changing paradigm of vivax malaria in India. INFECTION GENETICS AND EVOLUTION 2016; 39:317-324. [PMID: 26876067 DOI: 10.1016/j.meegid.2016.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/14/2016] [Accepted: 02/09/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND Plasmodium vivax once considered benign is now being increasingly associated with complicated malaria where the spectrum of complications is vast and like Plasmodium falciparum. The clinical data is important with respect to the immunopathological status of the patient. Several genes like the vir genes and pvcrt-o are speculated to be attributing to the severity of P. vivax malaria. METHODS In the present study we carried out the transcription analysis of five vir genes (vir 14-related, vir 12, vir 17-like, putative vir 14 and vir 10-related) and pvcrt-o gene in severe (n=12) and non-severe (n=7) P. vivax clinical infections and studied the correlation of these genes with clinical disease severity. RESULTS This study revealed multiorgan involvement in severe vivax cases with severe thrombocytopenia and anemia, the predominantly occurring symptoms. Four out of five vir genes and pvcrt-o showed a significant increase in expression levels of severe infections compared to the non-severe infections indicating their possible role in the changing pathogenesis of P. vivax. CONCLUSIONS The increased virulence in vivax malaria seems to be the result of multifactorial parameters changing it phenotypically as well as genotypically. However more studies are needed to understand the still nascent severity of P. vivax malaria.
Collapse
|
21
|
Expression of Plasmodium vivax crt-o Is Related to Parasite Stage but Not Ex Vivo Chloroquine Susceptibility. Antimicrob Agents Chemother 2015; 60:361-7. [PMID: 26525783 PMCID: PMC4704153 DOI: 10.1128/aac.02207-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/19/2015] [Indexed: 11/20/2022] Open
Abstract
Chloroquine (CQ)-resistant Plasmodium vivax is present in most countries where P. vivax infection is endemic, but the underlying molecular mechanisms responsible remain unknown. Increased expression of P. vivaxcrt-o (pvcrt-o) has been correlated with in vivo CQ resistance in an area with low-grade resistance. We assessed pvcrt-o expression in isolates from Papua (Indonesia), where P. vivax is highly CQ resistant. Ex vivo drug susceptibilities to CQ, amodiaquine, piperaquine, mefloquine, and artesunate were determined using a modified schizont maturation assay. Expression levels of pvcrt-o were measured using a novel real-time quantitative reverse transcription-PCR method. Large variations in pvcrt-o expression were observed across the 51 isolates evaluated, with the fold change in expression level ranging from 0.01 to 59 relative to that seen with the P. vivax β-tubulin gene and from 0.01 to 24 relative to that seen with the P. vivax aldolase gene. Expression was significantly higher in isolates with the majority of parasites at the ring stage of development (median fold change, 1.7) compared to those at the trophozoite stage (median fold change, 0.5; P < 0.001). Twenty-nine isolates fulfilled the criteria for ex vivo drug susceptibility testing and showed high variability in CQ responses (median, 107.9 [range, 6.5 to 345.7] nM). After controlling for the parasite stage, we found that pvcrt-o expression levels did not correlate with the ex vivo response to CQ or with that to any of the other antimalarials tested. Our results highlight the importance of development-stage composition for measuring pvcrt-o expression and suggest that pvcrt-o transcription is not a primary determinant of ex vivo drug susceptibility. A comprehensive transcriptomic approach is warranted for an in-depth investigation of the role of gene expression levels and P. vivax drug resistance.
Collapse
|
22
|
Gonçalves LA, Cravo P, Ferreira MU. Emerging Plasmodium vivax resistance to chloroquine in South America: an overview. Mem Inst Oswaldo Cruz 2015. [PMID: 25184999 PMCID: PMC4156446 DOI: 10.1590/0074-0276130579] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The global emergence of Plasmodium vivax strains resistant to
chloroquine (CQ) since the late 1980s is complicating the current international
efforts for malaria control and elimination. Furthermore, CQ-resistant vivax malaria
has already reached an alarming prevalence in Indonesia, East Timor and Papua New
Guinea. More recently, in vivo studies have documented CQ-resistant P.
vivax infections in Guyana, Peru and Brazil. Here, we summarise the
available data on CQ resistance across P. vivax-endemic areas of
Latin America by combining published in vivo and in vitro studies. We also review the
current knowledge regarding the molecular mechanisms of CQ resistance in P.
vivax and the prospects for developing and standardising reliable
molecular markers of drug resistance. Finally, we discuss how the Worldwide
Antimalarial Resistance Network, an international collaborative effort involving
malaria experts from all continents, might contribute to the current regional efforts
to map CQ-resistant vivax malaria in South America.
Collapse
Affiliation(s)
| | - Pedro Cravo
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - Marcelo Urbano Ferreira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
23
|
Golassa L, Erko B, Baliraine FN, Aseffa A, Swedberg G. Polymorphisms in chloroquine resistance-associated genes in Plasmodium vivax in Ethiopia. Malar J 2015; 14:164. [PMID: 25889237 PMCID: PMC4404130 DOI: 10.1186/s12936-015-0625-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/20/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Evidence for decreasing chloroquine (CQ) efficacy against Plasmodium vivax has been reported from many endemic countries in the world. In Ethiopia, P. vivax accounts for 40% of all malaria cases and CQ is the first-line drug for vivax malaria. Mutations in multidrug resistance 1 (pvmdr-1) and K10 insertion in the pvcrt-o genes have been identified as possible molecular markers of CQ-resistance (CQR) in P. vivax. Despite reports of CQ treatment failures, no data are currently available on the prevalence of molecular markers of P. vivax resistance in Ethiopia. The objective of this study was to determine the prevalence of mutations in the pvmdr-1 and K10 insertion in the pvcrt-o genes. METHODS A total of 36 P. vivax clinical isolates were collected from West Arsi district in Ethiopia. Sequencing was used to analyse polymorphisms of the pvcrt-o and pvmdr-1 genes. RESULTS Sequencing results of the pvmdr-1 fragment showed the presence of two non-synonymous mutations at positions 976 and 1076. The Y → F change at codon 976 (TAC → TTC) was observed in 21 (75%) of 28 the isolates while the F → L change (at codon 1076), which was due to a single mutation (TTT → CTT), was observed in 100% of the isolates. Of 33 samples successfully amplified for the pvcrt-o, the majority of the isolates (93.9%) were wild type, without K10 insertion. CONCLUSIONS High prevalence of mutations in candidate genes conferring CQR in P. vivax was identified. The fact that CQ is still the first-line treatment for vivax malaria, the significance of mutations in the pvcrt-o and pvmdr-1 genes and the clinical response of the patients' to CQ treatment and whether thus an association exists between point mutations of the candidate genes and CQR requires further research in Ethiopia.
Collapse
Affiliation(s)
- Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia. .,Armauer Hansen Research Institute, Addis Ababa, Ethiopia.
| | - Berhanu Erko
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Göte Swedberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
24
|
Waheed AA, Ghanchi NK, Rehman KA, Raza A, Mahmood SF, Beg MA. Vivax malaria and chloroquine resistance: a neglected disease as an emerging threat. Malar J 2015; 14:146. [PMID: 25889875 PMCID: PMC4392755 DOI: 10.1186/s12936-015-0660-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/20/2015] [Indexed: 11/21/2022] Open
Abstract
In Pakistan, Plasmodium vivax contributes to major malaria burden. In this case, a pregnant woman presented with P. vivax infection and which was not cleared by chloroquine, despite adequate treatment. This is probably the first confirmed case of chloroquine-resistant vivax from Pakistan, where severe malaria due to P. vivax is already an emerging problem.
Collapse
Affiliation(s)
- Anam A Waheed
- Medical College, Aga Khan University, Karachi, Pakistan.
| | - Najia K Ghanchi
- Department of Pathology and Laboratory Medicine, Aga Khan University, Stadium Road, PO Box 3500, Karachi, 74800, Pakistan.
| | - Karim A Rehman
- Medical College, Aga Khan University, Karachi, Pakistan.
| | - Afsheen Raza
- Department of Pathology and Laboratory Medicine, Aga Khan University, Stadium Road, PO Box 3500, Karachi, 74800, Pakistan.
| | - Syed F Mahmood
- Section of Adult Infectious Diseases, Department of Medicine, Aga Khan University, Stadium Road, PO Box 3500, Karachi, 74800, Pakistan.
| | - Mohammad A Beg
- Department of Pathology and Laboratory Medicine, Aga Khan University, Stadium Road, PO Box 3500, Karachi, 74800, Pakistan.
| |
Collapse
|
25
|
Expression levels of pvcrt-o and pvmdr-1 are associated with chloroquine resistance and severe Plasmodium vivax malaria in patients of the Brazilian Amazon. PLoS One 2014; 9:e105922. [PMID: 25157811 PMCID: PMC4144906 DOI: 10.1371/journal.pone.0105922] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/25/2014] [Indexed: 11/19/2022] Open
Abstract
Molecular markers associated with the increase of chloroquine resistance and disease severity in Plasmodium vivax are needed. The objective of this study was to evaluate the expression levels of pvcrt-o and pvmdr-1 genes in a group of patients presenting CQRPv and patients who developed severe complications triggered exclusively by P. vivax infection. Two different sets of patients were included to this comprehensive study performed in the Brazilian Amazon: 1) patients with clinically characterized chloroquine-resistant P. vivax compared with patients with susceptible parasites from invivo studies and 2) patients with severe vivax malaria compared with patients without severity. Quantitative real-time PCR was performed to compare the transcript levels of two main transporters genes, P. vivax chloroquine resistance transporter (pvcrt-o) and the P. vivax multidrug resistance transporter (pvmdr-1). Twelve chloroquine resistant cases and other 15 isolates from susceptible cases were included in the first set of patients. For the second set, seven patients with P. vivax-attributed severe and 10 mild manifestations were included. Parasites from patients with chloroquine resistance presented up to 6.1 (95% CI: 3.8–14.3) and 2.4 (95% CI: 0.53–9.1) fold increase in pvcrt-o and pvmdr-1 expression levels, respectively, compared to the susceptible group. Parasites from the severe vivax group had a 2.9 (95% CI: 1.1–8.3) and 4.9 (95% CI: 2.3–18.8) fold increase in pvcrt-o and pvmdr-1 expression levels as compared to the control group with mild disease. These findings suggest that chloroquine resistance and clinical severity in P. vivax infections are strongly associated with increased expression levels of the pvcrt-o and pvmdr-1 genes likely involved in chloroquine resistance.
Collapse
|
26
|
Spillman NJ, Allen RJW, McNamara CW, Yeung BKS, Winzeler EA, Diagana TT, Kirk K. Na(+) regulation in the malaria parasite Plasmodium falciparum involves the cation ATPase PfATP4 and is a target of the spiroindolone antimalarials. Cell Host Microbe 2013; 13:227-37. [PMID: 23414762 PMCID: PMC3574224 DOI: 10.1016/j.chom.2012.12.006] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/28/2012] [Accepted: 12/20/2012] [Indexed: 01/06/2023]
Abstract
The malaria parasite Plasmodium falciparum establishes in the host erythrocyte plasma membrane new permeability pathways that mediate nutrient uptake into the infected cell. These pathways simultaneously allow Na(+) influx, causing [Na(+)] in the infected erythrocyte cytosol to increase to high levels. The intraerythrocytic parasite itself maintains a low cytosolic [Na(+)] via unknown mechanisms. Here we present evidence that the intraerythrocytic parasite actively extrudes Na(+) against an inward gradient via PfATP4, a parasite plasma membrane protein with sequence similarities to Na(+)-ATPases of lower eukaryotes. Mutations in PfATP4 confer resistance to a potent class of antimalarials, the spiroindolones. Consistent with this, the spiroindolones cause a profound disruption in parasite Na(+) homeostasis, which is attenuated in parasites bearing resistance-conferring mutations in PfATP4. The mutant parasites also show some impairment of Na(+) regulation. Taken together, our results are consistent with PfATP4 being a Na(+) efflux ATPase and a target of the spiroindolones.
Collapse
Affiliation(s)
- Natalie J Spillman
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Infection by Plasmodium vivax poses unique challenges for diagnosis and treatment. Relatively low numbers of parasites in peripheral circulation may be difficult to confirm, and patients infected by dormant liver stages cannot be diagnosed before activation and the ensuing relapse. Radical cure thus requires therapy aimed at both the blood stages of the parasite (blood schizontocidal) and prevention of subsequent relapses (hypnozoitocidal). Chloroquine and primaquine have been the companion therapies of choice for the treatment of vivax malaria since the 1950s. Confirmed resistance to chloroquine occurs in much of the vivax endemic world and demands the investigation of alternative blood schizontocidal companions in radical cure. Such a shift in practice necessitates investigation of the safety and efficacy of primaquine when administered with those therapies, and the toxicity profile of such combination treatments, particularly in patients with glucose-6-phosphate dehydrogenase deficiency. These clinical studies are confounded by the frequency and timing of relapse among strains of P. vivax, and potentially by differing susceptibilities to primaquine. The inability to maintain this parasite in continuous in vitro culture greatly hinders new drug discovery. Development of safe and effective chemotherapies for vivax malaria for the coming decades requires overcoming these challenges.
Collapse
|
28
|
In vivo therapeutic efficacy of chloroquine alone or in combination with primaquine against vivax malaria in Kolkata, West Bengal, India, and polymorphism in pvmdr1 and pvcrt-o genes. Antimicrob Agents Chemother 2012; 57:1246-51. [PMID: 23262997 DOI: 10.1128/aac.02050-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmodium vivax malaria, though benign, has now become a matter of concern due to recent reports of life-threatening severity and development of parasite resistance to different antimalarial drugs. The magnitude of the problem is still undetermined. The present study was undertaken to determine the in vivo efficacy of chloroquine (CQ) and chloroquine plus primaquine in P. vivax malaria in Kolkata and polymorphisms in the pvmdr1 and pvcrt-o genes. A total of 250 patients with P. vivax monoinfection were recruited and randomized into two groups, A and B; treated with chloroquine and chloroquine plus primaquine, respectively; and followed up for 42 days according to the WHO protocol of 2009. Data were analyzed using per-protocol analyses. We assessed polymorphisms of the pvmdr1 and pvcrt-o genes by a DNA-sequencing method. Out of the 250 patients recruited, 204 completed a 42-day follow-up period, 101 in group A and 103 in group B. In group A, the non-PCR-corrected efficacy of CQ was 99% (95% confidence interval [CI], 0.944 to 1.00), and in group B, all cases were classified as adequate clinical and parasitological response (ACPR). Day 3 positivity was observed in 11 (5.3%) cases. No specific mutation pattern was recorded in the pvcrt-o gene. Eight nonsynonymous mutations were found in the pvmdr1 gene, three of which were new. The Y976F mutation was not detected in any isolate. Chloroquine, either alone or in combination with primaquine, is still effective against P. vivax malaria in the study area. (The study protocol was registered in CTRI [Clinical Trial Registry-India] of the Indian council of Medical Research under registration no. CTRI/2011/09/002031.).
Collapse
|
29
|
Price RN, Auburn S, Marfurt J, Cheng Q. Phenotypic and genotypic characterisation of drug-resistant Plasmodium vivax. Trends Parasitol 2012; 28:522-9. [PMID: 23044287 PMCID: PMC4627502 DOI: 10.1016/j.pt.2012.08.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 08/15/2012] [Accepted: 08/15/2012] [Indexed: 01/23/2023]
Abstract
In this review we present recent developments in the analysis of Plasmodium vivax clinical trials and ex vivo drug-susceptibility assays, as well approaches currently being used to identify molecular markers of drug resistance. Clinical trials incorporating the measurement of in vivo drug concentrations and parasite clearance times are needed to detect early signs of resistance. Analysis of P. vivax growth dynamics ex vivo have defined the criteria for acceptable assay thresholds for drug susceptibility testing, and their subsequent interpretation. Genotyping and next-generation sequencing studies in P. vivax field isolates are set to transform our understanding of the molecular mechanisms of drug resistance.
Collapse
Affiliation(s)
- Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia.
| | | | | | | |
Collapse
|
30
|
Garg S, Saxena V, Lumb V, Pakalapati D, Boopathi PA, Subudhi AK, Chowdhury S, Kochar SK, Kochar DK, Sharma YD, Das A. Novel mutations in the antifolate drug resistance marker genes among Plasmodium vivax isolates exhibiting severe manifestations. Exp Parasitol 2012; 132:410-6. [PMID: 23043980 DOI: 10.1016/j.exppara.2012.09.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 08/19/2012] [Accepted: 09/21/2012] [Indexed: 11/30/2022]
Abstract
Plasmodium vivax is the predominant species of the human malaria parasite present in the Indian subcontinent. There have been recent reports on Chloroquine (CQ) resistance and severe manifestations shown by P. vivax from different regions of the world including India. This study focuses on Bikaner, India where during the last few years there have been continuous reports of severe manifestations by both Plasmodium falciparum and P. vivax. This region has a widespread use of Chloroquine and Sulfadoxine-Pyrimethamine for the treatment of malaria, but the resistance profiles of these drugs are not available. We report here the profile of mutations in marker genes associated with Chloroquine and antifolate drug resistance among the P. vivax parasites obtained from patients with severe (n=30) and non-severe (n=48) manifestations from this region. Most isolates showed the wild type alleles for both the Chloroquine and antifolate resistance markers (P<0.0005). Except for one isolate showing Y976F mutation in the Pvmdr-1 gene, no reported mutation was observed in the Pvmdr-1 or Pvcrt gene. This is in accordance with the fact that till date no Chloroquine resistance has been reported from this region. However, the single isolate with a mutation in Pvmdr-1 may suggest the beginning of the trend towards decreased susceptibility to Chloroquine. The frequency of PvDHFR-PvDHPS two locus mutations was higher among the patients showing severe manifestations than the patient group with non-severe (uncomplicated) malaria (P<0.003). None of the parasites from patients with uncomplicated P. vivax malaria showed the mutant PvDHPS genotype. Novel mutations in PvDHFR (S117H) and PvDHPS (F365L, D459A and M601I) were observed only in the parasite population obtained from patients exhibiting severe complications. Preliminary homology modeling and molecular docking studies predicted that these mutations apparently do not have any effect on the binding of the drug molecule to the enzyme. However, the presence of novel mutations in the PvDHPS gene indicate a degree of polymorphism of this molecule which is in contrast to available published information.
Collapse
Affiliation(s)
- Shilpi Garg
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Auliff AM, Balu B, Chen N, O’Neil MT, Cheng Q, Adams JH. Functional analysis of Plasmodium vivax dihydrofolate reductase-thymidylate synthase genes through stable transformation of Plasmodium falciparum. PLoS One 2012; 7:e40416. [PMID: 22792308 PMCID: PMC3392216 DOI: 10.1371/journal.pone.0040416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/07/2012] [Indexed: 12/02/2022] Open
Abstract
Mechanisms of drug resistance in Plasmodium vivax have been difficult to study partially because of the difficulties in culturing the parasite in vitro. This hampers monitoring drug resistance and research to develop or evaluate new drugs. There is an urgent need for a novel method to study mechanisms of P. vivax drug resistance. In this paper we report the development and application of the first Plasmodium falciparum expression system to stably express P. vivax dhfr-ts alleles. We used the piggyBac transposition system for the rapid integration of wild-type, single mutant (117N) and quadruple mutant (57L/58R/61M/117T) pvdhfr-ts alleles into the P. falciparum genome. The majority (81%) of the integrations occurred in non-coding regions of the genome; however, the levels of pvdhfr transcription driven by the P. falciparum dhfr promoter were not different between integrants of non-coding and coding regions. The integrated quadruple pvdhfr mutant allele was much less susceptible to antifolates than the wild-type and single mutant pvdhfr alleles. The resistance phenotype was stable without drug pressure. All the integrated clones were susceptible to the novel antifolate JPC-2067. Therefore, the piggyBac expression system provides a novel and important tool to investigate drug resistance mechanisms and gene functions in P. vivax.
Collapse
Affiliation(s)
- Alyson M. Auliff
- Drug Resistance and Diagnostics Department, Australian Army Malaria Institute, Enoggera, Queensland, Australia
- School of Population Health, University of Queensland, Brisbane, Queensland, Australia
| | - Bharath Balu
- Department of Global Health, University of South Florida, Tampa, Florida, United States of America
| | - Nanhua Chen
- Drug Resistance and Diagnostics Department, Australian Army Malaria Institute, Enoggera, Queensland, Australia
| | - Michael T. O’Neil
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Qin Cheng
- Drug Resistance and Diagnostics Department, Australian Army Malaria Institute, Enoggera, Queensland, Australia
- School of Population Health, University of Queensland, Brisbane, Queensland, Australia
- * E-mail: (JHA); (QC)
| | - John H. Adams
- Department of Global Health, University of South Florida, Tampa, Florida, United States of America
- * E-mail: (JHA); (QC)
| |
Collapse
|
32
|
Abstract
Drug-resistant micro-organisms became widespread in the 20th Century, often with devastating consequences, in response to widespread use of natural and synthetic drugs against infectious diseases. Antimalarial resistance provides one of the earliest examples, following the introduction of new medicines that filled important needs for prophylaxis and treatment around the globe. In the present chapter, we offer a brief synopsis of major antimalarial developments from two natural remedies, the qinghaosu and cinchona bark infusions, and of synthetic drugs inspired by the active components of these remedies. We review some contributions that early efficacy studies of antimalarial treatment brought to clinical pharmacology, including convincing documentation of atebrine-resistant malaria in the 1940s, prior to the launching of what soon became first-choice antimalarials, chloroquine and amodiaquine. Finally, we discuss some new observations on the molecular genetics of drug resistance, including delayed parasite clearances that have been increasingly observed in response to artemisinin derivatives in regions of South-East Asia.
Collapse
|
33
|
Bernabeu M, Lopez FJ, Ferrer M, Martin-Jaular L, Razaname A, Corradin G, Maier AG, Del Portillo HA, Fernandez-Becerra C. Functional analysis of Plasmodium vivax VIR proteins reveals different subcellular localizations and cytoadherence to the ICAM-1 endothelial receptor. Cell Microbiol 2011; 14:386-400. [PMID: 22103402 DOI: 10.1111/j.1462-5822.2011.01726.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The subcellular localization and function of variant subtelomeric multigene families in Plasmodium vivax remain vastly unknown. Among them, the vir superfamily is putatively involved in antigenic variation and in mediating adherence to endothelial receptors. In the absence of a continuous in vitro culture system for P. vivax, we have generated P. falciparum transgenic lines expressing VIR proteins to infer location and function. We chose three proteins pertaining to subfamilies A (VIR17), C (VIR14) and D (VIR10), with domains and secondary structures that predictably traffic these proteins to different subcellular compartments. Here, we showed that VIR17 remained inside the parasite and around merozoites, whereas VIR14 and VIR10 were exported to the membrane of infected red blood cells (iRBCs) in an apparent independent pathway of Maurer's clefts. Remarkably, VIR14 was exposed at the surface of iRBCs and mediated adherence to different endothelial receptors expressed in CHO cells under static conditions. Under physiological flow conditions, however, cytoadherence was only observed to ICAM-1, which was the only receptor whose adherence was specifically and significantly inhibited by antibodies against conserved motifs of VIR proteins. Immunofluorescence studies using these antibodies also showed different subcellular localizations of VIR proteins in P. vivax-infected reticulocytes from natural infections. These data suggest that VIR proteins are trafficked to different cellular compartments and functionally demonstrates that VIR proteins can specifically mediate cytoadherence to the ICAM-1 endothelial receptor.
Collapse
Affiliation(s)
- M Bernabeu
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Production of recombinant proteins from protozoan parasites. Trends Parasitol 2010; 26:244-54. [PMID: 20189877 DOI: 10.1016/j.pt.2010.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 01/05/2010] [Accepted: 02/05/2010] [Indexed: 12/20/2022]
Abstract
Although the past decade has witnessed sequencing from an increasing number of parasites, modern high-throughput DNA sequencing technologies have the potential to generate complete genome sequences at even higher rates. Along with the discovery of genes that might constitute potential targets for chemotherapy or vaccination, the need for novel protein expression platforms has become a pressing matter. In addition to reviewing the advantages and limitations of the currently available and emerging expression systems, we discuss novel approaches that could overcome current limitations, including the 'pseudoparasite' concept, an expression platform in which the choice of the surrogate organism is based on its phylogenetic affinity to the target parasite, while taking advantage of the whole engineered organism as a vaccination adjuvant.
Collapse
|
35
|
Abstract
The malaria parasite-infected erythrocyte is a multi-compartment structure, incorporating numerous different membrane systems. The movement of nutrients, metabolites and inorganic ions into and out of the intraerythrocytic parasite, as well as between subcellular compartments within the parasite, is mediated by transporters and channels - integral membrane proteins that facilitate the movement of solutes across the membrane bilayer. Proteins of this type also play a key role in antimalarial drug resistance. Genes encoding transporters and channels account for at least 2.5% of the parasite genome. However, ascribing functions and physiological roles to these proteins, and defining their roles in drug resistance, is not straightforward. For any given membrane transport protein, a full understanding of its role(s) in the parasitized erythrocyte requires a knowledge of its subcellular localization and substrate specificity, as well as some knowledge of the effects on the parasite of modifying the sequence and/or level of expression of the gene involved. Here we consider recent work in this area, describe a number of newly identified transport proteins, and summarize the likely subcellular localization and putative substrate specificity of all of the candidate membrane transport proteins identified to date.
Collapse
Affiliation(s)
- Rowena E Martin
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia.
| | | | | |
Collapse
|
36
|
Abstract
The gravity of the threat posed by vivax malaria to public health has been poorly appreciated. The widely held misperception of Plasmodium vivax as being relatively infrequent, benign, and easily treated explains its nearly complete neglect across the range of biological and clinical research. Recent evidence suggests a far higher and more-severe disease burden imposed by increasingly drug-resistant parasites. The two frontline therapies against vivax malaria, chloroquine and primaquine, may be failing. Despite 60 years of nearly continuous use of these drugs, their respective mechanisms of activity, resistance, and toxicity remain unknown. Although standardized means of assessing therapeutic efficacy against blood and liver stages have not been developed, this review examines the provisional in vivo, ex vivo, and animal model systems for doing so. The rationale, design, and interpretation of clinical trials of therapies for vivax malaria are discussed in the context of the nuance and ambiguity imposed by the hypnozoite. Fielding new drug therapies against real-world vivax malaria may require a reworking of the strategic framework of drug development, namely, the conception, testing, and evaluation of sets of drugs designed for the cure of both blood and liver asexual stages as well as the sexual blood stages within a single therapeutic regimen.
Collapse
Affiliation(s)
- J Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Jalan Diponegoro No. 69, Jakarta 10430, Indonesia.
| |
Collapse
|
37
|
Analysis of single-nucleotide polymorphisms in the crt-o and mdr1 genes of Plasmodium vivax among chloroquine-resistant isolates from the Brazilian Amazon region. Antimicrob Agents Chemother 2009; 53:3561-4. [PMID: 19451296 DOI: 10.1128/aac.00004-09] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmodium vivax parasites with chloroquine resistance (CQR) are already circulating in the Brazilian Amazon. Complete single-nucleotide polymorphism (SNP) analyses of coding and noncoding sequences of the pvmdr1 and pvcrt-o genes revealed no associations with CQR, even if some mutations had not been randomly selected. In addition, striking differences in the topologies and numbers of SNPs in these transporter genes between P. vivax and P. falciparum reinforce the idea that mechanisms other than mutations may explain this virulent phenotype in P. vivax.
Collapse
|
38
|
Fernández-Becerra C, Pinazo MJ, González A, Alonso PL, del Portillo HA, Gascón J. Increased expression levels of the pvcrt-o and pvmdr1 genes in a patient with severe Plasmodium vivax malaria. Malar J 2009; 8:55. [PMID: 19341456 PMCID: PMC2682795 DOI: 10.1186/1475-2875-8-55] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 04/02/2009] [Indexed: 11/17/2022] Open
Abstract
Background There are increasing reports of severe clinical cases exclusively associated with Plasmodium vivax infections. Notably, this severity has been recently suggested to be associated with chloroquine resistance. Patients Two different patients presented at the Hospital Clinic in Barcelona with P. vivax malaria episodes. One patient had severe symptoms and the other mild symptoms. Both patients traveled through the Brazilian Amazon (Manaus) in 2007. For both patients the current diagnosis of malaria was the first. Two other patients with mild symptoms presented to the "Centro de Pesquisa em Medicina Tropical", also in the Brazilian Amazon (Rondônia) in 2000. Methods To exclude the possibility that the patient's severe symptoms were due to Plasmodium falciparum, a nested PCR was performed. A magnetic method was used to purify P. vivax free of human leukocytes. Quantitative real-time PCR was performed to compare the transcript levels of two main transporters likely to be involved in chloroquine resistance in P. vivax, namely the P. vivax chloroquine resistance transporter, pvcrt-o, and the P. vivax multidrug resistance transporter, pvmdr 1. Results Results demonstrated that the severe clinical symptoms were exclusively due to P. vivax. The patient presented acute respiratory conditions requiring admission to the intensive care unit. The magnetic method showed highly purified infected-reticulocytes with mature stages. In addition, it was found that parasites obtained from the severe patient had up to 2.9-fold increase in pvmdr1 levels and up to 21.9-fold increase in pvcrt-o levels compared to expression levels of parasites from the other patients with mild symptoms. Conclusion This is the first clinical case of severe disease exclusively associated with vivax malaria in Spain. Moreover, these findings suggest that clinical severity could be associated with increased expression levels of parasite genes likely involved in chloroquine resistance. It is necessary to further explore the potential of pvmdr1 and particularly pvcrt-o expression levels as molecular markers of severe disease in P. vivax.
Collapse
Affiliation(s)
- Carmen Fernández-Becerra
- Barcelona Centre for International Health Research (CRESIB), Hospital Clinic/IDIBAPS, Universitat de Barcelona, Roselló 132, 4a planta, 08036, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
39
|
Plasmodium vivax resistance to chloroquine in Madagascar: clinical efficacy and polymorphisms in pvmdr1 and pvcrt-o genes. Antimicrob Agents Chemother 2008; 52:4233-40. [PMID: 18809933 DOI: 10.1128/aac.00578-08] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
No data were available concerning Plasmodium vivax resistance to chloroquine (CQ) in Madagascar. We investigated the therapeutic efficacy of CQ in P. vivax malaria, the prevalence of mutations in the pvcrt-o and pvmdr1 genes before treatment, and the association between mutant parasites and the clinical response of the patients to CQ treatment. Clinical isolates were collected at six sentinel sites located in the three epidemiological strata for malaria throughout Madagascar in 2006. Patients were enrolled, treated, and followed up according to the WHO 2001 guidelines for P. vivax infections. Sequencing was used to analyze polymorphisms of the pvcrt-o (exons 1 to 6) and pvmdr1 genes. The treatment failure rate, after adjustment for genotyping, was estimated at 5.1% for the 105 patients included, ranging from zero in the South to 14.8% in the foothills of the Central Highlands. All samples were wild type for pvcrt-o but mutant for the pvmdr1 gene. Ten nonsynonymous mutations were found in the pvmdr1 gene, including five new mutations, four of which were present at low frequencies (1.3% to 7.5%) while the S513R mutation was present at a much higher frequency (96.3%). The other five mutations, including Y976F, had been described before and had frequencies of 97.8% to 100%. Our findings suggest that CQ-resistant P. vivax isolates are present in Madagascar, particularly in the foothills of the Central Highlands. The 976Y pvmdr1 mutation was found not to be useful for monitoring CQ resistance. Further efforts are required to develop suitable tools for monitoring drug resistance in P. vivax malaria.
Collapse
|
40
|
Arya R, Bhattacharya A, Saini KS. Dictyostelium discoideum—a promising expression system for the production of eukaryotic proteins. FASEB J 2008; 22:4055-66. [DOI: 10.1096/fj.08-110544] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ranjana Arya
- Department of Biotechnology and BioinformaticsRanbaxy Laboratories LimitedGurgaonHaryanaIndia
| | | | - Kulvinder Singh Saini
- Department of Biotechnology and BioinformaticsRanbaxy Laboratories LimitedGurgaonHaryanaIndia
- School of Biotechnology, Jawaharlal Nehru UniversityNew Delhi110067India
| |
Collapse
|
41
|
Joshi H, Prajapati SK, Verma A, Kang'a S, Carlton JM. Plasmodium vivax in India. Trends Parasitol 2008; 24:228-35. [PMID: 18403267 DOI: 10.1016/j.pt.2008.01.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 01/24/2008] [Accepted: 01/28/2008] [Indexed: 10/22/2022]
Abstract
Four Plasmodium species cause malaria in humans: Plasmodium vivax is the most widespread and results in pronounced morbidity. India (population >1 billion) is a major contributor to the burden of vivax malaria. With a resurgence in interest concerning the neglected burden of vivax malaria and the completion of the P. vivax genome, it is timely to review what is known concerning P. vivax in India. The P. vivax population is highly diverse in terms of relapse patterns, drug response and clinical profiles, and highly genetically variable according to studies of antigen genes, isoenzyme markers and microsatellites. The unique epidemiology of malaria in India, where P. vivax predominates over Plasmodium falciparum, renders this location ideal for studying the dynamics of co-infection.
Collapse
Affiliation(s)
- Hema Joshi
- National Institute of Malaria Research , Delhi 110054, India.
| | | | | | | | | |
Collapse
|
42
|
Suwanarusk R, Russell B, Chavchich M, Chalfein F, Kenangalem E, Kosaisavee V, Prasetyorini B, Piera KA, Barends M, Brockman A, Lek-Uthai U, Anstey NM, Tjitra E, Nosten F, Cheng Q, Price RN. Chloroquine resistant Plasmodium vivax: in vitro characterisation and association with molecular polymorphisms. PLoS One 2007; 2:e1089. [PMID: 17971853 PMCID: PMC2034531 DOI: 10.1371/journal.pone.0001089] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 10/05/2007] [Indexed: 11/19/2022] Open
Abstract
Background Treatment failure of chloroquine for P. vivax infections has reached high levels in the eastern provinces of Indonesia, however, in vitro characterization of chloroquine resistance and its associated molecular profile have yet to be determined. Methods Using a modified schizont maturation assay we investigated the in vitro chloroquine susceptibility profile and molecular polymorphisms of P. vivax isolates collected from Papua, Indonesia, where high levels of clinical chloroquine treatment failure have been reported, and from Thailand, where chloroquine treatment is generally effective. Results The geometric mean chloroquine IC50 for P. vivax isolates from Papua (n = 145) was 312 nM [95%CI: 237–411 nM] compared to 46.8 nM [95%CI: 34.7–63.1 nM] from Thailand (n = 81); p<0.001. Correlating with the known clinical efficacy of the area, a cut off for chloroquine resistance was defined as 220nM, a level exceeded in 13.6% (11/81) of Thai isolates and 65% (94/145) of Papuan isolates; p<0.001. Several sequence polymorphisms in pvcrt-o and pvmdr1, and difference in pvmdr1 copy number were identified. A Y976F mutation in pvmdr1 was present in 96% (123/128) of Papuan isolates and 25% (17/69) of Thai isolates; p<0.001. Overall, the geometric mean chloroquine IC50 in isolates with the Y976F mutation was 283 nM [95%CI: 211–379], compared to 44.5 nM [95%CI: 31.3–63.4] in isolates with the wild type; p< 0.001. Pvmdr1 amplification occurred in 23% (15/66) of Thai isolates compared to none (0/104) of Indonesian isolates (p<0.001), but was not associated with increased chloroquine resistance after controlling for geographical location. Conclusions In vitro susceptibility testing of P. vivax discriminates between populations with differing levels of clinical efficacy of chloroquine. The pvmdr1 polymorphism at Y976F may provide a useful tool to highlight areas of emerging chloroquine resistance, although further studies defining its clinical correlates are needed.
Collapse
Affiliation(s)
- Rossarin Suwanarusk
- International Health Program, Infectious Diseases Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Bruce Russell
- International Health Program, Infectious Diseases Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Marina Chavchich
- Department of Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
| | - Ferryanto Chalfein
- National Institute of Health Research and Development and Menzies School of Health Malaria Research Program, Timika, Indonesia
| | - Enny Kenangalem
- National Institute of Health Research and Development and Menzies School of Health Malaria Research Program, Timika, Indonesia
- District Ministry of Health, Timika, Papua, Indonesia
| | - Varakorn Kosaisavee
- Department of Parasitology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Budi Prasetyorini
- National Institute of Health Research and Development, Ministry of Health, Jakarta, Indonesia
| | - Kim A. Piera
- International Health Program, Infectious Diseases Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Marion Barends
- Shoklo Malaria Research Unit, Mae Sod, Tak Province, Thailand
| | - Alan Brockman
- International Health Program, Infectious Diseases Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Usa Lek-Uthai
- Department of Parasitology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Nicholas M. Anstey
- International Health Program, Infectious Diseases Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Emiliana Tjitra
- National Institute of Health Research and Development, Ministry of Health, Jakarta, Indonesia
| | - François Nosten
- Faculty of Tropical Medicine, Mahidol University, Bangkok Thailand
- Shoklo Malaria Research Unit, Mae Sod, Tak Province, Thailand
| | - Qin Cheng
- Department of Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
| | - Ric N. Price
- International Health Program, Infectious Diseases Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Centre for Vaccinology and Tropical Medicine, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|