1
|
Shinozaki Y, Saito K, Kashiwagi K, Koizumi S. Ocular P2 receptors and glaucoma. Neuropharmacology 2023; 222:109302. [PMID: 36341810 DOI: 10.1016/j.neuropharm.2022.109302] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/08/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Adenosine triphosphate (ATP), an energy source currency in cells, is released or leaked to the extracellular space under both physiological and pathological conditions. Extracellular ATP functions as an intercellular signaling molecule through activation of purinergic P2 receptors. Ocular tissue and cells release ATP in response to physiological stimuli such as intraocular pressure (IOP), and P2 receptor activation regulates IOP elevation or reduction. Dysregulated purinergic signaling may cause abnormally elevated IOP, which is one of the major risk factors for glaucoma. Glaucoma, a leading cause of blindness worldwide, is characterized by progressive degeneration of optic nerves and retinal ganglion cells (RGCs), which are essential retinal neurons that transduce visual information to the brain. An elevation in IOP may stress RGCs and increase the risk for glaucoma pathogenesis. In the aqueous humor of human patients with glaucoma, the ATP level is significantly elevated. Such excess amount of ATP may directly cause RGC death via a specific subtype of P2 receptors. Dysregulated purinergic signaling may also trigger inflammation, oxidative stress, and excitotoxicity via activating non-neuronal cell types such as glial cells. In this review, we discussed the physiological roles of extracellular nucleotides in the ocular tissue and their potential role in the pathogenesis of glaucoma. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
- Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan; Interdisciplinary Brain-Immune Research Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kozo Saito
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kenji Kashiwagi
- Department of Ophthalmology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan; Interdisciplinary Brain-Immune Research Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.
| |
Collapse
|
2
|
Markitantova YV, Simirskii VN. The Role of the Purinergic Signaling System in the Control of Histogenesis, Homeostasis, and Pathogenesis of the Vertebrate Retina. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421060084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Ali AA, Avakian GA, Von Gall C. The Role of Purinergic Receptors in the Circadian System. Int J Mol Sci 2020; 21:E3423. [PMID: 32408622 PMCID: PMC7279285 DOI: 10.3390/ijms21103423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/24/2022] Open
Abstract
The circadian system is an internal time-keeping system that synchronizes the behavior and physiology of an organism to the 24 h solar day. The master circadian clock, the suprachiasmatic nucleus (SCN), resides in the hypothalamus. It receives information about the environmental light/dark conditions through the eyes and orchestrates peripheral oscillators. Purinergic signaling is mediated by extracellular purines and pyrimidines that bind to purinergic receptors and regulate multiple body functions. In this review, we highlight the interaction between the circadian system and purinergic signaling to provide a better understanding of rhythmic body functions under physiological and pathological conditions.
Collapse
Affiliation(s)
| | | | - Charlotte Von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany; (A.A.H.A.); (G.A.A.)
| |
Collapse
|
4
|
Jacob TF, Singh V, Dixit M, Ginsburg-Shmuel T, Fonseca B, Pintor J, Youdim MBH, Major DT, Weinreb O, Fischer B. A promising drug candidate for the treatment of glaucoma based on a P2Y6-receptor agonist. Purinergic Signal 2018; 14:271-284. [PMID: 30019187 DOI: 10.1007/s11302-018-9614-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/31/2018] [Indexed: 11/28/2022] Open
Abstract
Extracellular nucleotides can regulate the production/drainage of the aqueous humor via activation of P2 receptors, thus affecting the intraocular pressure (IOP). We evaluated 5-OMe-UDP(α-B), 1A, a potent P2Y6-receptor agonist, for reducing IOP and treating glaucoma. Cell viability in the presence of 1A was measured using [3-(4, 5-dimethyl-thiazol-2-yl) 2, 5-diphenyl-tetrazolium bromide] (MTT) assay in rabbit NPE ciliary non-pigmented and corneal epithelial cells, human retinoblastoma, and liver Huh7 cells. The effect of 1A on IOP was determined in acute glaucomatous rabbit hyaluronate model and phenol-induced chronic glaucomatous rabbit model. The origin of activity of 1A was investigated by generation of a homology model of hP2Y6-R and docking studies. 1A did not exert cytotoxic effects up to 100 mM vs. trusopt and timolol in MTT assay in ocular and liver cells. In normotensive rabbits, 100 μM 1A vs. xalatan, trusopt, and pilocarpine reduced IOP by 45 vs. 20-30%, respectively. In the phenol animal model, 1A (100 μM) showed reduction of IOP by 40 and 20%, following early and late administration, respectively. Docking results suggest that the high activity and selectivity of 1A is due to intramolecular interaction between Pα-BH3 and C5-OMe which positions 1A in a most favorable site inside the receptor. P2Y6-receptor agonist 1A effectively and safely reduces IOP in normotense, acute, and chronic glaucomatous rabbits, and hence may be suggested as a novel approach for the treatment of glaucoma.
Collapse
Affiliation(s)
- Tali Fishman Jacob
- GlaucoPharm Ltd, P.O.Box 620, New Industrial Park, 20692, Yokneam, Israel
| | - Vijay Singh
- Department of Chemistry, Gonda-Goldschmied Medical Research Center, Bar-Ilan University, 52900, Ramat Gan, Israel
| | - Mudit Dixit
- Department of Chemistry, Gonda-Goldschmied Medical Research Center, Bar-Ilan University, 52900, Ramat Gan, Israel
| | - Tamar Ginsburg-Shmuel
- Department of Chemistry, Gonda-Goldschmied Medical Research Center, Bar-Ilan University, 52900, Ramat Gan, Israel
| | - Begoña Fonseca
- Escuela Universitaria De Optica, Universidad Complutense De Madrid, C/Arcos De Jalon 118, 28037, Madrid, Spain
| | - Jesus Pintor
- Escuela Universitaria De Optica, Universidad Complutense De Madrid, C/Arcos De Jalon 118, 28037, Madrid, Spain
| | - Moussa B H Youdim
- GlaucoPharm Ltd, P.O.Box 620, New Industrial Park, 20692, Yokneam, Israel
| | - Dan T Major
- Department of Chemistry, Gonda-Goldschmied Medical Research Center, Bar-Ilan University, 52900, Ramat Gan, Israel.
| | - Orly Weinreb
- GlaucoPharm Ltd, P.O.Box 620, New Industrial Park, 20692, Yokneam, Israel.
| | - Bilha Fischer
- Department of Chemistry, Gonda-Goldschmied Medical Research Center, Bar-Ilan University, 52900, Ramat Gan, Israel.
| |
Collapse
|
5
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
6
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 1077] [Impact Index Per Article: 153.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
7
|
Abstract
Müller glia, the principal macroglia of the retina, express diverse subtypes of adenosine and metabotropic purinergic (P2Y) receptors. Müller cells of several species, including man, also express ionotropic P2X7 receptors. ATP is liberated from Müller cells after activation of metabotropic glutamate receptors and during osmotic and mechanical induction of membrane stretch; adenosine is released through equilibrative nucleoside transporters. Müller cell-derived purines modulate the neuronal activity and have autocrine effects, for example, induction of glial calcium waves and regulation of the cellular volume. Glial calcium waves induced by neuron-derived ATP mediate functional hyperemia in the retina. Purinergic signaling contributes to the induction of Müller cell gliosis, for example, of cellular proliferation and downregulation of potassium channels, which are important for the homeostatic functions of Müller cells. Purinergic glial calcium waves may also promote the long-range propagation of gliosis and neuronal degeneration across the retinal tissue. The osmotic ATP release is inhibited under pathological conditions. Inhibition of the ATP release may result in osmotic Müller cell swelling and dysregulation of the water transport through the cells; both may contribute to the development of retinal edema. Suppression of the osmotic ATP release and upregulation of the ecto-apyrase (NTPDase1), which facilitate the extracellular degradation of ATP and the formation of adenosine, may protect neurons and photoreceptors from death due to overactivation of P2X receptors. Pharmacological inhibition of P2X7 receptors and stimulation of adenosine receptors may represent clinical approaches to prevent retinal cell death and dysregulated cell proliferation, and to treat retinal edema.
Collapse
Affiliation(s)
- Andreas Reichenbach
- 1 Paul Flechsig Institute of Brain Research, University of Leipzig , Leipzig, Germany
| | - Andreas Bringmann
- 2 Department of Ophthalmology and Eye Hospital, University of Leipzig , Leipzig, Germany
| |
Collapse
|
8
|
Crooke A, Guzman-Aranguez A, Carracedo G, de Lara MJP, Pintor J. Understanding the Presence and Roles of Ap 4A (Diadenosine Tetraphosphate) in the Eye. J Ocul Pharmacol Ther 2017; 33:426-434. [PMID: 28414592 DOI: 10.1089/jop.2016.0146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Diadenosine tetraphosphate abbreviated Ap4A is a naturally occurring dinucleotide, which is present in most of the ocular fluids. Due to its intrinsic resistance to enzyme degradation compared to mononucleotides, this molecule can exhibit profound actions on ocular tissues, including the ocular surface, ciliary body, trabecular meshwork, and probably the retina. The actions of Ap4A are mostly carried out by P2Y2 receptors, but the participation of P2X2 and P2Y6 in processes such as the regulation of intraocular pressure (IOP), together with the P2Y2, is pivotal. Beyond the physiological role, this dinucleotide can present on the ocular surface keeping a right production of tear secretion or regulating IOP. It is important to note that exogenous application of Ap4A to cells or animal models can significantly modify pathophysiological conditions and thus is an attractive therapeutic molecule. The ocular location where Ap4A actions have not been fully elucidated is in the retina. Although some analogues show interesting actions on pathological situations such as retinal detachment, little is known about the real effect of this dinucleotide, this being one of the challenges that require pursuing in the near future.
Collapse
Affiliation(s)
- Almudena Crooke
- 1 Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid , Madrid, Spain
| | - Ana Guzman-Aranguez
- 1 Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid , Madrid, Spain
| | - Gonzalo Carracedo
- 2 Departamento de Optometría y Visión, F. Óptica, Universidad Complutense de Madrid , Madrid, Spain
| | - Maria J Perez de Lara
- 1 Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid , Madrid, Spain
| | - Jesus Pintor
- 1 Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid , Madrid, Spain
| |
Collapse
|
9
|
Involvement of P2X 7 receptors in retinal ganglion cell apoptosis induced by activated Müller cells. Exp Eye Res 2016; 153:42-50. [PMID: 27720859 DOI: 10.1016/j.exer.2016.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 08/25/2016] [Accepted: 10/05/2016] [Indexed: 12/22/2022]
Abstract
Müller cell reactivation (gliosis) is an early response in glaucomatous retina. Previous studies have demonstrated that activation of P2X7 receptors results in retinal ganglion cell (RGC) apoptosis. Here, the issues of whether and how activated Müller cells may contribute to RGC apoptosis through P2X7 receptors were investigated. Either intravitreal injection of (S)-3,5-dihydroxyphenylglycine (DHPG), a group I metabotropic glutamate receptor (mGluR I) agonist, in normal rat retinas, or DHPG treatment of purified cultured rat retinal Müller cells induced an increase in glial fibrillary acidic protein (GFAP) expression, indicative of Müller cell gliosis. In addition, an increase in adenosine triphosphate (ATP) release from purified cultured Müller cells was detected during DHPG treatment (for 10 min to 48 h), which was mediated by the intracellular mGluR5/Gq/PI-PLC/PKC signaling pathway. Intravitreal injection of DHPG mimicked the reduction in the number of fluorogold retrogradely labeled RGCs in chronic ocular hypertension (COH) rats. Treatment with the conditioned culture medium (CM) obtained from the DHPG-activated Müller cell medium induced an increase in the number of TUNEL-positive cells in cultured RGCs, which was mimicked by benzoylbenzoyl adenosine triphosphate (BzATP), a P2X7 receptor agonist, but was partially blocked by brilliant blue G (BBG), a P2X7 receptor antagonist. Moreover, the CM treatment of cultured RGCs significantly increased Bax protein level and decreased Bcl-2 protein level, which was also mimicked by BzATP and partially blocked by BBG, respectively. These results suggest that reactivated Müller cells may release excessive ATP, in turn leading to RGC apoptosis through activating P2X7 receptors in these cells.
Collapse
|
10
|
Ho T, Aplin FP, Jobling AI, Phipps JA, de Iongh RU, Greferath U, Vessey KA, Fletcher EL. Localization and Possible Function of P2X Receptors in Normal and Diseased Retinae. J Ocul Pharmacol Ther 2016; 32:509-517. [DOI: 10.1089/jop.2015.0158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Tracy Ho
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| | - Felix P. Aplin
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| | - Andrew I. Jobling
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| | - Joanna A. Phipps
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| | - Robb U. de Iongh
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| | - Ursula Greferath
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| | - Kirstan A. Vessey
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| | - Erica L. Fletcher
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| |
Collapse
|
11
|
de Almeida-Pereira L, Magalhães CF, Repossi MG, Thorstenberg MLP, Sholl-Franco A, Coutinho-Silva R, Ventura ALM, Fragel-Madeira L. Adenine Nucleotides Control Proliferation In Vivo of Rat Retinal Progenitors by P2Y 1 Receptor. Mol Neurobiol 2016; 54:5142-5155. [PMID: 27558237 DOI: 10.1007/s12035-016-0059-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/15/2016] [Indexed: 11/30/2022]
Abstract
Previous studies demonstrated that exogenous ATP is able to regulate proliferation of retinal progenitor cells (RPCs) in vitro possibly via P2Y1 receptor, a G protein-coupled receptor. Here, we evaluated the function of adenine nucleotides in vivo during retinal development of newborn rats. Intravitreal injection of apyrase, an enzyme that hydrolyzes nucleotides, reduced cell proliferation in retinas at postnatal day 2 (P2). This decrease was reversed when retinas were treated together with ATPγ-S or ADPβ-S, two hydrolysis-resistant analogs of ATP and ADP, respectively. During early postnatal days (P0 to P5), an increase in ectonucleotidase (E-NTPDase) activity was observed in the retina, suggesting a decrease in the availability of adenine nucleotides, coinciding with the end of proliferation. Interestingly, intravitreal injection of the E-NTPDase inhibitor ARL67156 increased proliferation by around 60 % at P5 rats. Furthermore, immunolabeling against P2Y1 receptor was observed overall in retina layers from P2 rats, including proliferating Ki-67-positive cells in the neuroblastic layer (NBL), suggesting that this receptor could be responsible for the action of adenine nucleotides upon proliferation of RPCs. Accordingly, intravitreal injection of MRS2179, a selective antagonist of P2Y1 receptors, reduced cell proliferation by approximately 20 % in P2 rats. Moreover, treatment with MRS 2179 caused an increase in p57KIP2 and cyclin D1 expression, a reduction in cyclin E and Rb phosphorylated expression and in BrdU-positive cell number. These data suggest that the adenine nucleotides modulate the proliferation of rat RPCs via activation of P2Y1 receptors regulating transition from G1 to S phase of the cell cycle.
Collapse
Affiliation(s)
- Luana de Almeida-Pereira
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Camila Feitosa Magalhães
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Marinna Garcia Repossi
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | | | - Alfred Sholl-Franco
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Lucianne Fragel-Madeira
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil.
- Laboratório de Desenvolvimento e Regeneração Neural, Departmento de Neurobiologia, Universidade Federal Fluminense, Cx. Postal 100180, Niterói, RJ, 24020-141, Brazil.
| |
Collapse
|
12
|
Reichenbach A, Bringmann A. Purinergic signaling in retinal degeneration and regeneration. Neuropharmacology 2015; 104:194-211. [PMID: 25998275 DOI: 10.1016/j.neuropharm.2015.05.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/07/2015] [Accepted: 05/07/2015] [Indexed: 02/01/2023]
Abstract
Purinergic signaling is centrally involved in mediating the degeneration of the injured and diseased retina, the induction of retinal gliosis, and the protection of the retinal tissue from degeneration. Dysregulated calcium signaling triggered by overactivation of P2X7 receptors is a crucial step in the induction of neuronal and microvascular cell death under pathogenic conditions like ischemia-hypoxia, elevated intraocular pressure, and diabetes, respectively. Overactivation of P2X7 plays also a pathogenic role in inherited and age-related photoreceptor cell death and in the age-related dysfunction and degeneration of the retinal pigment epithelium. Gliosis of micro- and macroglial cells, which is induced and/or modulated by purinergic signaling and associated with an impaired homeostatic support to neurons, and the ATP-mediated propagation of retinal gliosis from a focal injury into the surrounding noninjured tissue are involved in inducing secondary cell death in the retina. On the other hand, alterations in the glial metabolism of extracellular nucleotides, resulting in a decreased level of ATP and an increased level of adenosine, may be neuroprotective in the diseased retina. Purinergic signals stimulate the proliferation of retinal glial cells which contributes to glial scarring which has protective effects on retinal degeneration and adverse effects on retinal regeneration. Pharmacological modulation of purinergic receptors, e.g., inhibition of P2X and activation of adenosine receptors, may have clinical importance for the prevention of photoreceptor, neuronal, and microvascular cell death in diabetic retinopathy, retinitis pigmentosa, age-related macular degeneration, and glaucoma, respectively, for the clearance of retinal edema, and the inhibition of dysregulated cell proliferation in proliferative retinopathies. This article is part of a Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Andreas Reichenbach
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany.
| | - Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| |
Collapse
|
13
|
|
14
|
Verkhratsky A, Burnstock G. Purinergic and glutamatergic receptors on astroglia. ADVANCES IN NEUROBIOLOGY 2014; 11:55-79. [PMID: 25236724 DOI: 10.1007/978-3-319-08894-5_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Astroglial cells express many neurotransmitter receptors; the receptors to glutamate and ATP being the most abundant. Here, we provide a concise overview on the expression and main properties of astroglial glutamate receptors (ionotropic receptors represented by AMPA and NMDA subtypes) and metabotropic (mainly mGluR5 and mGluR3 subtypes) and purinoceptors (adenosine receptors of A1, A2A, A2B, and A3 types, ionotropic P2X1/5 and P2X7 subtypes, and metabotropic P2Y purinoceptors). We also discuss the role of these receptors in glial physiology and pathophysiology.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, School of Biological Sciences, The University of Manchester, 1.124 Stopford Building, Oxford Road, Manchester, M13 9PT, UK,
| | | |
Collapse
|
15
|
Distribution and development of P2Y1-purinoceptors in the mouse retina. J Mol Histol 2013; 44:639-44. [PMID: 23907621 DOI: 10.1007/s10735-013-9525-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
Abstract
There is increasing evidence that ATP acts on purinergic receptors and mediates synaptic transmission in the retina. In a previous study, we raised the possibility that P2X-purinoceptors, presumably P2X(2)-purinoceptors in OFF-cholinergic amacrine cells, play a key role in the formation of OFF pathway-specific modulation. In this study, we examined whether the P2Y(1)-purinoceptors can function in cholinergic amacrine cells in the mouse retina since cholinergic amacrine cells in the rat retina express P2Y(1)-purinoceptors. P2Y(1)-purinoceptors were shown to be expressed in dendrites of both ON- and OFF-cholinergic amacrine cells in adults. At postnatal day 7, there was immunoreactivity for P2Y(1)-purinoceptors in the soma of cholinergic amacrine cells. At postnatal day 14, weak immunoreactivity for P2Y(1)-purinoceptors was detected in the dendrites but not in the soma of cholinergic amacrine cells. At postnatal day 21, strong immunoreactivity for P2Y(1)-purinoceptors was detected in dendrites of cholinergic amacrine cells. The expression pattern of P2Y(1)-purinoceptors was not affected by visual experience. We concluded that P2Y(1)-purinoceptors are not involved in the OFF-pathway-specific signal transmission in cholinergic amacrine cells of the mouse retina.
Collapse
|
16
|
Guzman-Aranguez A, Santano C, Martin-Gil A, Fonseca B, Pintor J. Nucleotides in the eye: focus on functional aspects and therapeutic perspectives. J Pharmacol Exp Ther 2013; 345:331-41. [PMID: 23504005 DOI: 10.1124/jpet.112.202473] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The presence and activity of nucleotides and dinucleotides in the physiology of most, if not all, organisms, from bacteria to humans, have been recognized by the scientific community, and the eye is no exception. Nucleotides in the dynamic fluids interact with many ocular structures, such as the tears and aqueous humor. Moreover, high concentrations of nucleotides in these secretions may reflect disease states such as dry eye and glaucoma. Apart from the nucleotide concentration in these fluids, P2 purinergic receptors have been described on the ocular surface (cornea and conjunctiva), anterior pole (ciliary body, trabecular meshwork), and posterior pole (retina). P2X and P2Y purinergic receptors are essential in maintaining the homeostasis of ocular processes, such as tear secretion, aqueous humor production, or retinal modulation. When they are functioning properly, they allow the eye to do its job (to see), but in some cases, a lack or an excess of nucleotides or a malfunction in the corresponding purinergic receptors leads to disease. This Perspective is focused on the nucleotides and dinucleotides and the P2 purinergic receptors in the eye and how they contribute to normal and disease states. We also emphasize the action of nucleotides and their receptors and antagonists as potential therapeutic agents.
Collapse
Affiliation(s)
- Ana Guzman-Aranguez
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain
| | | | | | | | | |
Collapse
|
17
|
Wurm A, Pannicke T, Iandiev I, Francke M, Hollborn M, Wiedemann P, Reichenbach A, Osborne NN, Bringmann A. Purinergic signaling involved in Müller cell function in the mammalian retina. Prog Retin Eye Res 2011; 30:324-42. [DOI: 10.1016/j.preteyeres.2011.06.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/06/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
|
18
|
Kim NH, Park KS, Sohn JH, Yeh BI, Ko CM, Kong ID. Functional Expression of P2Y Receptors in WERI-Rb1 Retinoblastoma Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2011; 15:61-6. [PMID: 21461242 DOI: 10.4196/kjpp.2011.15.1.61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 02/16/2011] [Accepted: 02/18/2011] [Indexed: 01/28/2023]
Abstract
P2Y receptors are metabotropic G-protein-coupled receptors, which are involved in many important biologic functions in the central nervous system including retina. Subtypes of P2Y receptors in retinal tissue vary according to the species and the cell types. We examined the molecular and pharmacologic profiles of P2Y purinoceptors in retinoblastoma cell, which has not been identified yet. To achieve this goal, we used Ca(2+) imaging technique and western blot analysis in WERI-Rb-1 cell, a human retinoblastoma cell line. ATP (10 µM) elicited strong but transient [Ca(2+)](i) increase in a concentration-dependent manner from more than 80% of the WERI-Rb-1 cells (n=46). Orders of potency of P2Y agonists in evoking [Ca(2+)](i) transients were 2MeS-ATP>ATP>>UTP=αβ-MeATP, which was compatible with the subclass of P2Y(1) receptor. The [Ca(2+)](i) transients evoked by applications of 2MeS-ATP and/or ATP were also profoundly suppressed in the presence of P2Y(1) selective blocker (MRS 2179; 30 µM). P2Y(1) receptor expression in WERI-Rb-1 cells was also identified by using western blot. Taken together, P2Y(1) receptor is mainly expressed in a retinoblastoma cell, which elicits Ca(2+) release from internal Ca(2+) storage sites via the phospholipase C-mediated pathway. P2Y(1) receptor activation in retinoblastoma cell could be a useful model to investigate the role of purinergic [Ca(2+)](i) signaling in neural tissue as well as to find a novel therapeutic target to this lethal cancer.
Collapse
Affiliation(s)
- Na-Hyun Kim
- Department of Basic Nursing Science and Institute for Nursing Science, Keimyung University, Daegu 704-701, Korea
| | | | | | | | | | | |
Collapse
|
19
|
Loiola EC, Ventura ALM. Release of ATP from avian Müller glia cells in culture. Neurochem Int 2010; 58:414-22. [PMID: 21193002 DOI: 10.1016/j.neuint.2010.12.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 12/17/2010] [Accepted: 12/20/2010] [Indexed: 01/07/2023]
Abstract
ATP can be released from neurons and act as a neuromodulator in the nervous system. Besides neurons, cortical astrocytes also are capable of releasing ATP from acidic vesicles in a Ca(2+)-dependent way. In the present work, we investigated the release of ATP from Müller glia cells of the chick embryo retina by examining quinacrine staining and by measuring the extracellular levels of ATP in purified Müller glia cultures. Our data revealed that glial cells could be labeled with quinacrine, a reaction that was prevented by incubation of the cells with 1μM bafilomycin A1 or 2μM Evans blue, potent inhibitors of vacuolar ATPases and of the vesicular nucleotide transporter, respectively. Either 50mM KCl or 1mM glutamate was able to decrease quinacrine staining of the cells, as well as to increase the levels of ATP in the extracellular medium by 77% and 89.5%, respectively, after a 5min incubation of the cells. Glutamate-induced rise in extracellular ATP could be mimicked by 100μM kainate (81.5%) but not by 100μM NMDA in medium without MgCl(2) but with 2mM glycine. However, both glutamate- and kainate-induced increase in extracellular ATP levels were blocked by 50μM of the glutamatergic antagonists DNQX and MK-801, suggesting the involvement of both NMDA and non-NMDA receptors. Extracellular ATP accumulation induced by glutamate was also blocked by incubation of the cells with 30μM BAPTA-AM or 1μM bafilomycin A1. These results suggest that glutamate, through activation of both NMDA and non-NMDA receptors, induces the release of ATP from retinal Müller cells through a calcium-dependent exocytotic mechanism.
Collapse
Affiliation(s)
- Erick Correia Loiola
- Department of Neurobiology, Neuroscience Program, Institute of Biology, Federal Fluminense University, Niterói, RJ, Brazil
| | | |
Collapse
|
20
|
Abstract
The development of treatments that slow photoreceptor death could profoundly improve patient wellbeing in those with inherited retinal degenerations. Over recent years, it has emerged that extracellular adenosine-tri-phosphate (ATP) regulates the function of photoreceptors in rodents and primates. Moreover, when the retina is exposed to high levels of ATP, rapid death of photoreceptors occurs, which can be blocked by pretreatment with antagonists to P2X receptors. Compounds that inhibit the action of extracellular ATP slow photoreceptor loss in an animal model of inherited retinal degeneration. In this article, I provide an overview of our work in relation to other research in this area and suggest a model by which ATP contributes to photoreceptor death in inherited retinal degenerations.
Collapse
|
21
|
Involvement of the PI3K/AKT pathway in ATP-induced proliferation of developing retinal cells in culture. Int J Dev Neurosci 2010; 28:503-11. [PMID: 20542106 DOI: 10.1016/j.ijdevneu.2010.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 06/04/2010] [Accepted: 06/06/2010] [Indexed: 01/23/2023] Open
Abstract
ATP induces the proliferation of chick retinal cells in culture through the activation of P2Y1 receptors, PKC and MAP kinases. Together with MAP kinases, the PI3K/AKT pathway has also been implicated as an important mediator in proliferative events during development. Here we investigated the participation of the PI3K/AKT signal pathway on ATP-induced proliferation of chick embryo retinal cells in culture. When retinal cultures obtained from 7-day-old embryos were cultivated for 1 day and treated with ATP, a transient and dose-dependent phosphorylation of both ERK and AKT was observed, an effect that could be mimicked by 500 microM ADP and blocked by 100 microM PPADS, a P2 receptor antagonist. Maximal stimulation of both enzymes was obtained with 100 microM ATP in 5 min, decreasing thereafter. Activation of these pathways by ATP seemed to be independent, since LY294002 and U0126, inhibitors of PI3K and MEK, did not block the activation of ERK and AKT, respectively, although each compound blocked its respective target. Moreover, when the cultures were incubated with ATP in the presence of LY294002, a decreased incorporation of [(3)H]-thymidine was observed, as compared to cultures treated only with ATP, a decline that was also obtained by incubating the cells with ATP plus 0.5 microM API-59CJ-Ome, an inhibitor of AKT. No decrease in cell viability was observed with this concentration of API-59CJ-Ome. An increase in cyclin D1 expression, that could be inhibited by 10 microM LY 294002 or 20 microM U0126, was observed when cells were incubated with 500 microM ADP. No effect of PI3K and MEK inhibitors was observed in the expression of p27kip1 in the cultures. These results suggest that, besides the involvement of the MAP kinases pathway, ATP-induced cell cycling of late developing retinal progenitors in culture also involves the activation of the PI3K/AKT pathway.
Collapse
|
22
|
Wurm A, Erdmann I, Bringmann A, Reichenbach A, Pannicke T. Expression and function of P2Y receptors on Müller cells of the postnatal rat retina. Glia 2009; 57:1680-90. [PMID: 19373936 DOI: 10.1002/glia.20883] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In the postnatal and mature retina, many processes are controlled by the action of nucleotides. Their effects are partly mediated via activation of metabotropic P2Y receptors. However, little is known about the developmental regulation and cellular localization of P2Y receptor subtypes. Combining immunohistochemical and neurophysiological methods, we investigated the developmental expression of P2Y receptors on Müller cells, the principal macroglial cells of the retina. The P2Y(1) and the P2Y(4) receptors, but no other subtypes, were unequivocally localized on Müller cells. P2Y(1) was expressed from postnatal day 5 (P5) on and mediated a calcium response to ATP in Müller cells as well as a volume regulatory signaling cascade preventing Müller cells from swelling under hypotonic conditions. Differentiation of Müller cells was accompanied by a change of the calcium response pattern; the calcium responses in Müller cell endfeet persisted, but ATP responsiveness of Müller cell somata disappeared. P2Y(4) immunoreactivity was observed in Müller cell endfeet and synaptic terminals of rod bipolar cells from P20 on. Activated protein kinases were detected by immunohistochemistry; p-ERK occurred in Müller cells and amacrine cells, whereas p-Akt was detected in bipolar cells. Our data indicate that purinergic signaling via P2Y(1) and P2Y(4) receptors might contribute to differentiation processes in the postnatal retina.
Collapse
Affiliation(s)
- Antje Wurm
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany.
| | | | | | | | | |
Collapse
|
23
|
Sholl-Franco A, Fragel-Madeira L, Macama ADCC, Linden R, Ventura ALM. ATP controls cell cycle and induces proliferation in the mouse developing retina. Int J Dev Neurosci 2009; 28:63-73. [PMID: 19799993 DOI: 10.1016/j.ijdevneu.2009.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 06/30/2009] [Accepted: 09/20/2009] [Indexed: 01/20/2023] Open
Abstract
Previous data suggest that nucleotides are important mitogens in the developing chick retina. Here, we extended the study on the mitogenic effect of ATP to newborn mouse retinal explants. Our results showed that P2Y(1) receptors were widely distributed in C57bl/6 mice retina and that the majority of PCNA positive cells co-localized with P2Y(1) receptor. To evaluate proliferation, retinal explants obtained from newborn mice were incubated with 0.5 microCi [(3)H]-thymidine or 3 microM BrDU 1h before the end of culture. Our data showed that ATP induced a dose-dependent increase in [(3)H]-thymidine incorporation, an effect that was mimicked by ADP but not by UTP and was blocked by the P2 antagonist PPADS in a dose-dependent manner. The increase in [(3)H]-thymidine incorporation induced by ATP was only observed in explants cultured for 3 days or less and was mimicked by the ectoapyrase inhibitor ARL 67156. It corresponded to an increase in the number of BrdU(+) cells in the neuroblastic layer (NL) of the tissue, suggesting that ATP, through activation of P2Y(1) receptors, induced proliferation of late developing progenitors in retinal explants of newborn mice. The increase in the number of BrdU(+) cells was observed across the whole NL when explants were incubated with ATP for 24h and no increase in the number of p-histone H3 labeled cells could be noticed at this time point. In longer incubations of 48h with ATP or 24h with ATP followed by a period of 24h in fresh medium, an increase in the number of BrdU(+) cells promoted by ATP was observed only in the middle and outer, but not in the inner NL. In these conditions, an increase in the number of p-histone H3 labeled cells was detected in the outer NL, suggesting that ATP induced cells to enter S and progress to G2 phase of the cell cycle in the first 24h period of incubation. ATP also induced an increase and a decrease in the expression of cyclin D1 and p27(kip1), respectively, in retinal progenitors of the NL. While the increase in the expression of cyclin D1 was observed when retinal explants were incubated for 3h or longer periods of time, the decrease in the expression of p27(kip1) was noticed only after 6h incubation with ATP. Both effects were blocked by the P2 receptor antagonist PPADS. These data suggest that ATP induces cell proliferation in retinal explants by inducing late developing progenitors to progress from G1 to S phase of cell cycle.
Collapse
Affiliation(s)
- Alfred Sholl-Franco
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21949-900, Brazil.
| | | | | | | | | |
Collapse
|
24
|
Sarman S, Mancini J, van der Ploeg I, Croxatto JO, Kvanta A, Gallo JE. Involvement of Purinergic P2 Receptors in Experimental Retinal Neovascularization. Curr Eye Res 2009; 33:285-91. [DOI: 10.1080/02713680701885470] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Verkhrasky A, Krishtal OA, Burnstock G. Purinoceptors on Neuroglia. Mol Neurobiol 2009; 39:190-208. [DOI: 10.1007/s12035-009-8063-2] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Accepted: 02/24/2009] [Indexed: 02/06/2023]
|
26
|
Housley GD, Bringmann A, Reichenbach A. Purinergic signaling in special senses. Trends Neurosci 2009; 32:128-41. [DOI: 10.1016/j.tins.2009.01.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 12/22/2008] [Accepted: 01/05/2009] [Indexed: 02/06/2023]
|
27
|
The P2X(7) receptor in retinal ganglion cells: A neuronal model of pressure-induced damage and protection by a shifting purinergic balance. Purinergic Signal 2009; 5:241-9. [PMID: 19241145 DOI: 10.1007/s11302-009-9142-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 09/12/2008] [Indexed: 01/19/2023] Open
Abstract
Retinal ganglion cells process the visual signal and transmit it along their axons in the optic nerve to the brain. Molecular, immunohistochemical, and functional analyses indicate that the majority of retinal ganglion cells express the ionotropic P2X(7) receptor. Stimulation of the receptor can lead to a rise in intracellular calcium and cell death, although death does not involve the opening of a large diameter pore. Adenosine acting at A(3) receptors can attenuate the rise in calcium and death accompanying P2X(7) receptor activation, suggesting that dephosphorylation of ATP into adenosine is neuroprotective and that the balance of extracellular purines can influence neuronal survival. Increased intraocular pressure can lead to release of excessive extracellular ATP in the retina and damage ganglion cells by acting on P2X(7) receptors, implicating a role for the receptor in the loss of ganglion cell activity in glaucoma. In summary, the activation of P2X(7) receptors has both physiologic and pathophysiologic implications for ganglion cell function. These characteristics may also provide an insight into the contributions the P2X(7) receptor makes to neurons elsewhere.
Collapse
|
28
|
Ward MM, Fletcher EL. Subsets of retinal neurons and glia express P2Y1 receptors. Neuroscience 2009; 160:555-66. [PMID: 19223012 DOI: 10.1016/j.neuroscience.2009.02.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 02/03/2009] [Accepted: 02/04/2009] [Indexed: 11/18/2022]
Abstract
Recent evidence suggests that extracellular ATP modulates retinal processing and could play a role in modulating glial cells during retinal diseases. Here, we evaluated the localization of P2Y(1) receptors in the rat retina using indirect immunofluorescence immunocytochemistry. We observed labeling within defined populations of inner retinal neurons and Müller cell processes and end feet. Double labeling of P2Y(1) receptor with choline acetyltransferase revealed extensive colocalization indicating the expression of this receptor by cholinergic amacrine cells. Ganglion cell labeling for P2Y(1) receptors was also observed. Having established the normal pattern of immunolabeling within the retina, we next examined whether immunolabeling was altered by retinal disease. P2Y(1) receptor immunolabeling of Müller cells was of greater intensity following light-induced retinal degeneration, suggesting that Müller cell gliosis is accompanied by changes in P2Y(1) receptor expression. Overall, these data provide further evidence for a role of extracellular ATP in retinal signaling within subsets of retinal neurons as well as glia.
Collapse
Affiliation(s)
- M M Ward
- Department of Anatomy and Cell Biology, The University of Melbourne, Grattan Street, Parkville 3010, Victoria, Australia
| | | |
Collapse
|
29
|
Kaneda M, Ishii T, Hosoya T. Pathway-dependent modulation by P2-purinoceptors in the mouse retina. Eur J Neurosci 2008; 28:128-36. [PMID: 18616561 DOI: 10.1111/j.1460-9568.2008.06317.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Adenosine trisphosphate (ATP) activates purinoceptors and acts as a neurotransmitter in the nervous system. In the retina, we previously reported that the immunohistochemical distribution of the subset of P2-purinoceptors differs between the ON and OFF pathways. Here, we investigated whether ATP activates P2-purinoceptors and modulates the physiological function of the mouse retina. We also examined if signal processing by P2-purinoceptors is pathway specific. Results showed that ATP activated both ON- and OFF-cholinergic amacrine cells. However, responses in OFF-cholinergic amacrine cells were greater than those in ON-cholinergic amacrine cells. Pharmacological studies in OFF-cholinergic amacrine cells showed that the response of OFF-cholinergic amacrine cells is mediated P2X(2)-purinoceptors. Further, ATP increased gamma-aminobutyric acid (GABA)ergic inhibitory postsynaptic currents (IPSCs) in OFF- but not ON-cholinergic amacrine cells. The increase in GABAergic IPSCs was mediated by P2-purinoceptors. P2-purinoceptor-mediated signals suppressed OFF ganglion cells but activated ON ganglion cells. Our findings indicate that ATP physiologically modulates signal processing of the ON and OFF pathways in a pathway-specific manner through P2-purinoceptors.
Collapse
Affiliation(s)
- Makoto Kaneda
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | | | | |
Collapse
|
30
|
The P2X(7) receptor in retinal ganglion cells: A neuronal model of pressure-induced damage and protection by a shifting purinergic balance. Purinergic Signal 2008; 4:313-21. [PMID: 18923921 DOI: 10.1007/s11302-008-9125-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 09/12/2008] [Indexed: 10/21/2022] Open
Abstract
Retinal ganglion cells process the visual signal and transmit it along their axons in the optic nerve to the brain. Molecular, immunohistochemical, and functional analyses indicate that the majority of retinal ganglion cells express the ionotropic P2X(7) receptor. Stimulation of the receptor can lead to a rise in intracellular calcium and cell death, although death does not involve the opening of a large diameter pore. Adenosine acting at A(3) receptors can attenuate the rise in calcium and death accompanying P2X(7) receptor activation, suggesting that dephosphorylation of ATP into adenosine is neuroprotective and that the balance of extracellular purines can influence neuronal survival. Increased intraocular pressure can lead to release of excessive extracellular ATP in the retina and damage ganglion cells by acting on P2X(7) receptors, implicating a role for the receptor in the loss of ganglion cell activity in glaucoma. In summary, the activation of P2X(7) receptors has both physiologic and pathophysiologic implications for ganglion cell function. These characteristics may also provide an insight into the contributions the P2X(7) receptor makes to neurons elsewhere.
Collapse
|
31
|
Ward MM, Puthussery T, Fletcher EL. Localization and possible function of P2Y(4) receptors in the rodent retina. Neuroscience 2008; 155:1262-74. [PMID: 18625291 DOI: 10.1016/j.neuroscience.2008.06.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 06/10/2008] [Accepted: 06/11/2008] [Indexed: 11/18/2022]
Abstract
Extracellular ATP acts as a neurotransmitter in the retina, via the activation of ionotropic P2X receptors and metabotropic P2Y receptors. The expression of various P2X and P2Y receptor subtypes has been demonstrated in the retina, but the localization of P2Y receptors and their role in retinal signaling remains ill defined. In this study, we were interested in determining the localization of the P2Y(4) receptor subtype in the rat retina, and using the electroretinogram (ERG) to assess whether activation of these receptors modulated visual transmission. Using light and electron microscopy, we demonstrated that P2Y(4) receptors were expressed pre-synaptically in rod bipolar cells and in processes postsynaptic to cone bipolar cells. Furthermore, we show that the expression of P2Y(4) receptors on rod bipolar cell axon terminals is reduced following dark adaptation, suggesting receptor expression may be dependent on retinal activity. Finally, using the electroretinogram, we show that intravitreal injection of uridine triphosphate, a P2Y receptor agonist, decreases the amplitude of the rod PII, supporting a role for P2Y receptors in altering inner retinal function. Taken together, these results suggest a role for P2Y(4) receptors in the modulation of inner retinal signaling.
Collapse
Affiliation(s)
- M M Ward
- Department of Anatomy and Cell Biology, The University of Melbourne, Victoria, Australia
| | | | | |
Collapse
|
32
|
Crooke A, Guzmán-Aranguez A, Peral A, Abdurrahman MKA, Pintor J. Nucleotides in ocular secretions: their role in ocular physiology. Pharmacol Ther 2008; 119:55-73. [PMID: 18562011 DOI: 10.1016/j.pharmthera.2008.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 04/28/2008] [Indexed: 12/15/2022]
Abstract
The eye is the sense organ that permits the detection of light owing to the existence of a sophisticated neuronal array, called the retina, which is responsive to photons. The correct functioning of this complex system requires the coordination of several intraocular structures that ultimately permit the perfect focusing of images on the neural retina. Light has to pass through different media: the tear, the cornea, aqueous humour, lens, and vitreous humour before it reaches the retina. Moreover, the composition and structure of some of these media can change due to several physiological mechanisms. Nucleotides are active components of the humours bathing relevant ocular structures. The tear contains nucleotides and dinucleotides that control the process of tearing, wound healing and protects of superficial infections. In the inner eye, the aqueous humour also presents a collection of mono and dinucleotides that affect pupil contraction, aqueous humour production and accommodation. Behind the lens and between this structure and the retina the vitreous humour can modify the physiology of the retinal cells, mostly the ganglion cells. By investigating the actions of nucleotides and dinucleotide present in the ocular humours we will be able not only to understand the functioning of the ocular structures but also to develop new pharmacological therapies for pathologies such as dry eye, glaucoma or retinal detachment.
Collapse
Affiliation(s)
- Almudena Crooke
- Departamento de Bioquímica, E.U. Optica, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | | | | | | | | |
Collapse
|
33
|
Guzmán-Aranguez A, Crooke A, Peral A, Hoyle CHV, Pintor J. Dinucleoside polyphosphates in the eye: from physiology to therapeutics. Prog Retin Eye Res 2007; 26:674-87. [PMID: 17931952 DOI: 10.1016/j.preteyeres.2007.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Diadenosine polyphosphates are a family of dinucleotides with emerging biochemical, physiological, pharmacological and therapeutic properties in the eye and other tissues. These compounds are formed by two adenosine moieties linked by their ribose 5'-ends to a variable number of phosphates. Diadenosine polyphosphates are present as active components of ocular secretions such as tears and aqueous humour and they can activate P2 purinergic receptors present on the ocular surface, anterior segment and retina. Both metabotropic and ionotropic actions mediated by P2Y and P2X receptors, respectively are responsible for the control of processes such as induction of tear secretion, lysozyme production or acceleration of corneal wound healing. Inside the eye the dinucleotide Ap(4)A can reduce intraocular pressure by acting on P2Y(1) receptors present in trabecular meshwork cells and on P2X(2) receptors present on the cholinergic terminals located in the ciliary muscle. In the retina, derivatives of diadenosine polyphosphates can improve the re-absorption of fluids in retinal detachment. Altogether, diadenosine polyphosphates are not only dinucleotides with roles in the physiology of the eye but it is also possible that their properties may serve to help in the treatment of some ocular pathologies.
Collapse
Affiliation(s)
- Ana Guzmán-Aranguez
- Departamento de Bioquímica, E.U. de Optica, Universidad Complutense de Madrid (UCM), C/Arcos de Jalón s/n, 28037 Madrid, Spain
| | | | | | | | | |
Collapse
|
34
|
França GR, Freitas RCC, Ventura ALM. ATP-induced proliferation of developing retinal cells: regulation by factors released from postmitotic cells in culture. Int J Dev Neurosci 2007; 25:283-91. [PMID: 17570629 DOI: 10.1016/j.ijdevneu.2007.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 04/20/2007] [Accepted: 05/04/2007] [Indexed: 02/03/2023] Open
Abstract
ATP is an important mitogen in the developing retina and its proliferative response decreases as chick retinal cells differentiate in culture. Both non-stimulated or ATP-induced proliferative response was abolished if cycling cells were cocultured with cells from older embryos or cultured with conditioned medium (CM) from postmitotic cells. The effect of CM was dose-dependent and reversible, as removal of CM from the cultures restored both basal and ATP-induced incorporation of [3H]-thymidine. The effect of CM was also dependent on the developmental stage of the retina used to prepare the medium. As tissues from older embryos were used, inhibition of the basal and ATP-induced proliferative response of the cells increased. Similar inhibition of ATP-induced increase in [3H]-thymidine incorporation was observed using CM from purified glial cultures. Neither ARL 67156, an ecto-ATPase inhibitor, prevented nor TGF-beta1 and TGF-beta2 mimicked the inhibitory effect of conditioned medium. Incubation of cells with CM or ATP for 24 h completely abolished the formation of [3H]-phosphoinositides induced by ATP. These effects were blocked by the P2 receptor antagonist PPADS and were not observed with dialysed CM, suggesting that agonist-dependent desensitization of P2 receptors occurred in cultures incubated with CM. However, removal of small molecules such as nucleotides by dialysis did not affect the decline in the proliferative activity induced by CM, suggesting that desensitization is not responsible for the conditioned medium-dependent cell cycle arrest of early developing retinal cells in culture. These results suggest that factors released from postmitotic cells induce the arrest of retinal cells in the mitotic state, a phenomenon that is concomitant with agonist-dependent P2 receptor desensitization.
Collapse
Affiliation(s)
- Guilherme Rapozeiro França
- Departament of Neurobiology, Neuroimmunology Program, Institute of Biology, Federal Fluminense University, Niterói, Cx. Postal 100180, RJ 24001-970, Brazil
| | | | | |
Collapse
|
35
|
Kim YH, Kim DR, Chun KI, Lee JH, Kong ID. Identification of P2Y11 Receptor Expressed in Human Retinoblastoma Cells. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2007. [DOI: 10.3341/jkos.2007.48.8.1134-1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Dae Ran Kim
- Department of Basic Nursing Science Keimyung University College of Nursing, Daegu, Korea
| | - Ko I Chun
- Department of Ophthalmology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jong Hyuck Lee
- Department of Ophthalmology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - In Deok Kong
- Department of Physiology and Institute of Basic Medical Science, Wonju, Korea
| |
Collapse
|
36
|
Bystrova MF, Yatzenko YE, Fedorov IV, Rogachevskaja OA, Kolesnikov SS. P2Y isoforms operative in mouse taste cells. Cell Tissue Res 2005; 323:377-82. [PMID: 16328495 DOI: 10.1007/s00441-005-0098-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2005] [Accepted: 10/24/2005] [Indexed: 01/26/2023]
Abstract
Recent functional evidence indicates that mouse taste cells express P2Y receptors coupled to IP(3) production and Ca(2+) mobilization. Our studies of the expression profile of particular P2Y isoforms in the taste tissue of the mouse have revealed that ATP and UTP equipotently mobilize intracellular Ca(2+) at saturating concentrations, suggesting that common receptors for both nucleotides, i.e., P2Y(2) and P2Y(4) subtypes, might be involved. Reverse transcription/polymerase chain reaction and immunohistochemistry have confirmed the presence of P2Y(2) and P2Y(4) receptors in a population of taste bud cells from the circumvallate and foliate papillae. Transcripts for the P2Y(1) and P2Y(6) isoforms have also been detected in taste tissue preparations, this observation being consistent with the ADP and UDP responsiveness of taste cells. Together, our data suggest that P2Y(2) and P2Y(4) receptors play a predominant role in mediating taste cell responses to ATP and UTP.
Collapse
Affiliation(s)
- Marina F Bystrova
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia.
| | | | | | | | | |
Collapse
|