1
|
Wooton-Kee CR. Therapeutic implications of impaired nuclear receptor function and dysregulated metabolism in Wilson's disease. Pharmacol Ther 2023; 251:108529. [PMID: 37741465 PMCID: PMC10841433 DOI: 10.1016/j.pharmthera.2023.108529] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/29/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
Copper is an essential trace element that is required for the activity of many enzymes and cellular processes, including energy homeostasis and neurotransmitter biosynthesis; however, excess copper accumulation results in significant cellular toxicity. The liver is the major organ for maintaining copper homeostasis. Inactivating mutations of the copper-transporting P-type ATPase, ATP7B, result in Wilson's disease, an autosomal recessive disorder that requires life-long medicinal therapy or liver transplantation. Current treatment protocols are limited to either sequestration of copper via chelation or reduction of copper absorption in the gut (zinc therapy). The goal of these strategies is to reduce free copper, redox stress, and cellular toxicity. Several lines of evidence in Wilson's disease animal models and patients have revealed altered hepatic metabolism and impaired hepatic nuclear receptor activity. Nuclear receptors are transcription factors that coordinate hepatic metabolism in normal and diseased livers, and several hepatic nuclear receptors have decreased activity in Wilson's disease and Atp7b-/- models. In this review, we summarize the basic physiology that underlies Wilson's disease pathology, Wilson's disease animal models, and the possibility of targeting nuclear receptor activity in Wilson's disease patients.
Collapse
Affiliation(s)
- Clavia Ruth Wooton-Kee
- Baylor College of Medicine, Department of Pediatrics-Nutrition, Children's Nutrition Research Center, Houston, TX, United States of America.
| |
Collapse
|
2
|
Hu S, Jing Y, Li T, Wang YG, Liu Z, Gao J, Tian YC. Inferring circadian gene regulatory relationships from gene expression data with a hybrid framework. BMC Bioinformatics 2023; 24:362. [PMID: 37752445 PMCID: PMC10521455 DOI: 10.1186/s12859-023-05458-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND The central biological clock governs numerous facets of mammalian physiology, including sleep, metabolism, and immune system regulation. Understanding gene regulatory relationships is crucial for unravelling the mechanisms that underlie various cellular biological processes. While it is possible to infer circadian gene regulatory relationships from time-series gene expression data, relying solely on correlation-based inference may not provide sufficient information about causation. Moreover, gene expression data often have high dimensions but a limited number of observations, posing challenges in their analysis. METHODS In this paper, we introduce a new hybrid framework, referred to as Circadian Gene Regulatory Framework (CGRF), to infer circadian gene regulatory relationships from gene expression data of rats. The framework addresses the challenges of high-dimensional data by combining the fuzzy C-means clustering algorithm with dynamic time warping distance. Through this approach, we efficiently identify the clusters of genes related to the target gene. To determine the significance of genes within a specific cluster, we employ the Wilcoxon signed-rank test. Subsequently, we use a dynamic vector autoregressive method to analyze the selected significant gene expression profiles and reveal directed causal regulatory relationships based on partial correlation. CONCLUSION The proposed CGRF framework offers a comprehensive and efficient solution for understanding circadian gene regulation. Circadian gene regulatory relationships are inferred from the gene expression data of rats based on the Aanat target gene. The results show that genes Pde10a, Atp7b, Prok2, Per1, Rhobtb3 and Dclk1 stand out, which have been known to be essential for the regulation of circadian activity. The potential relationships between genes Tspan15, Eprs, Eml5 and Fsbp with a circadian rhythm need further experimental research.
Collapse
Affiliation(s)
- Shuwen Hu
- School of Computer Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- Agriculture and Food, CSIRO, St Lucia, QLD, 4067, Australia
| | - Yi Jing
- Faculty of Science, The University of New South Wales, Sydney, 2052, Australia
| | - Tao Li
- School of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - You-Gan Wang
- Institute for Learning Sciences and Teacher Education, Australian Catholic University, Brisbane, QLD, 4000, Australia
| | - Zhenyu Liu
- School of Computer and Information Engineering, Inner Mongolia Agriculture University, Hohhot, 010018, China
| | - Jing Gao
- School of Computer and Information Engineering, Inner Mongolia Agriculture University, Hohhot, 010018, China.
| | - Yu-Chu Tian
- School of Computer Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
| |
Collapse
|
3
|
Mi X, Song Y, Deng C, Yan J, Li Z, Li Y, Zheng J, Yang W, Gong L, Shi J. Stimulation of Liver Fibrosis by N2 Neutrophils in Wilson's Disease. Cell Mol Gastroenterol Hepatol 2023; 16:657-684. [PMID: 37406734 PMCID: PMC10514429 DOI: 10.1016/j.jcmgh.2023.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND & AIMS Wilson's disease is an inherited hepatoneurologic disorder caused by mutations in the copper transporter ATP7B. Liver disease from Wilson's disease is one leading cause of cirrhosis in adolescents. Current copper chelators and zinc salt treatments improve hepatic presentations but frequently worsen neurologic symptoms. In this study, we showed the function and machinery of neutrophil heterogeneity using a zebrafish/murine/cellular model of Wilson's disease. METHODS We investigated the neutrophil response in atp7b-/- zebrafish by live imaging, movement tracking, and transcriptional analysis in sorted cells. Experiments were conducted to validate liver neutrophil heterogeneity in Atp7b-/- mice. In vitro experiments were performed in ATP7B-knockout human hepatocellular carcinomas G2 cells and isolated bone marrow neutrophils to reveal the mechanism of neutrophil heterogeneity. RESULTS Recruitment of neutrophils into the liver is observed in atp7b-/- zebrafish. Pharmacologic stimulation of neutrophils aggravates liver and behavior defects in atp7b-/- zebrafish. Transcriptional analysis in sorted liver neutrophils from atp7b-/- zebrafish reveals a distinct transcriptional profile characteristic of N2 neutrophils. Furthermore, liver N2 neutrophils also were observed in ATP7B-knockout mice, and pharmacologically targeted transforming growth factor β1, DNA methyltransferase, or signal transducer and activator of transcription 3 reduces liver N2 neutrophils and improves liver function and alleviates liver inflammation and fibrosis in ATP7B-knockout mice. Epigenetic silencing of Socs3 expression by transforming growth factor β1 contributes to N2-neutrophil polarization in isolated bone marrow neutrophils. CONCLUSIONS Our findings provide a novel prospect that pharmacologic modulation of N2-neutrophil activity should be explored as an alternative therapeutic to improve liver function in Wilson's disease.
Collapse
Affiliation(s)
- Xiaoxiao Mi
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yu Song
- Department of Hepatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chaohua Deng
- Department of Infectious Diseases and Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jian Yan
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhihui Li
- Clinical Research Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yingniang Li
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Zheng
- Department of Pathology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Wenjun Yang
- Department of Pathology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Ling Gong
- Department of Infectious Diseases and Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Junping Shi
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Infectious Diseases and Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, Zhejiang, China.
| |
Collapse
|
4
|
Einer C, Munk DE, Park E, Akdogan B, Nagel J, Lichtmannegger J, Eberhagen C, Rieder T, Vendelbo MH, Michalke B, Wimmer R, Blutke A, Feuchtinger A, Dershwitz P, DiSpirito AM, Islam T, Castro RE, Min BK, Kim T, Choi S, Kim D, Jung C, Lee H, Park D, Im W, Eun SY, Cho YH, Semrau JD, Rodrigues CMP, Hohenester S, Damgaard Sandahl T, DiSpirito AA, Zischka H. ARBM101 (Methanobactin SB2) Drains Excess Liver Copper via Biliary Excretion in Wilson's Disease Rats. Gastroenterology 2023; 165:187-200.e7. [PMID: 36966941 DOI: 10.1053/j.gastro.2023.03.216] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND & AIMS Excess copper causes hepatocyte death in hereditary Wilson's disease (WD). Current WD treatments by copper-binding chelators may gradually reduce copper overload; they fail, however, to bring hepatic copper close to normal physiological levels. Consequently, lifelong daily dose regimens are required to hinder disease progression. This may result in severe issues due to nonadherence or unwanted adverse drug reactions and also due to drug switching and ultimate treatment failures. This study comparatively tested bacteria-derived copper binding agents-methanobactins (MBs)-for efficient liver copper depletion in WD rats as well as their safety and effect duration. METHODS Copper chelators were tested in vitro and in vivo in WD rats. Metabolic cage housing allowed the accurate assessment of animal copper balances and long-term experiments related to the determination of minimal treatment phases. RESULTS We found that copper-binding ARBM101 (previously known as MB-SB2) depletes WD rat liver copper dose dependently via fecal excretion down to normal physiological levels within 8 days, superseding the need for continuous treatment. Consequently, we developed a new treatment consisting of repetitive cycles, each of ∼1 week of ARBM101 applications, followed by months of in-between treatment pauses to ensure a healthy long-term survival in WD rats. CONCLUSIONS ARBM101 safely and efficiently depletes excess liver copper from WD rats, thus allowing for short treatment periods as well as prolonged in-between rest periods.
Collapse
Affiliation(s)
- Claudia Einer
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ditte Emilie Munk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Eok Park
- R&D Center, ArborMed Company Ltd, Pangyo, Seongnam, Gyeonggi-do, Republic of Korea; Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
| | - Banu Akdogan
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Judith Nagel
- Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University Munich, Munich, Germany
| | - Josef Lichtmannegger
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Carola Eberhagen
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tamara Rieder
- Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University Munich, Munich, Germany
| | - Mikkel H Vendelbo
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ralf Wimmer
- Department of Medicine II, Ludwig Maximilian University Munich, Munich, Germany
| | - Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Philip Dershwitz
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa
| | - Ana M DiSpirito
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa
| | - Tawhidul Islam
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Byong-Keol Min
- R&D Center, ArborMed Company Ltd, Pangyo, Seongnam, Gyeonggi-do, Republic of Korea
| | - TaeWon Kim
- R&D Center, ArborMed Company Ltd, Pangyo, Seongnam, Gyeonggi-do, Republic of Korea
| | - Seoyoung Choi
- R&D Center, ArborMed Company Ltd, Pangyo, Seongnam, Gyeonggi-do, Republic of Korea
| | - Dasol Kim
- R&D Center, ArborMed Company Ltd, Pangyo, Seongnam, Gyeonggi-do, Republic of Korea
| | - Chunwon Jung
- R&D Center, ArborMed Company Ltd, Pangyo, Seongnam, Gyeonggi-do, Republic of Korea
| | - Hongjae Lee
- R&D Center, ArborMed Company Ltd, Pangyo, Seongnam, Gyeonggi-do, Republic of Korea
| | - Dongsik Park
- R&D Center, ArborMed Company Ltd, Pangyo, Seongnam, Gyeonggi-do, Republic of Korea
| | - Weonbin Im
- R&D Center, ArborMed Company Ltd, Pangyo, Seongnam, Gyeonggi-do, Republic of Korea
| | - So-Young Eun
- R&D Center, ArborMed Company Ltd, Pangyo, Seongnam, Gyeonggi-do, Republic of Korea
| | - You-Hee Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
| | - Jeremy D Semrau
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Simon Hohenester
- Department of Medicine II, Ludwig Maximilian University Munich, Munich, Germany
| | | | - Alan A DiSpirito
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University Munich, Munich, Germany.
| |
Collapse
|
5
|
Wooton-Kee CR, Robertson M, Zhou Y, Dong B, Sun Z, Kim KH, Liu H, Xu Y, Putluri N, Saha P, Coarfa C, Moore DD, Nuotio-Antar AM. Metabolic dysregulation in the Atp7b-/- Wilson's disease mouse model. Proc Natl Acad Sci U S A 2020; 117:2076-2083. [PMID: 31924743 PMCID: PMC6994990 DOI: 10.1073/pnas.1914267117] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inactivating mutations in the copper transporter Atp7b result in Wilson's disease. The Atp7b-/- mouse develops hallmarks of Wilson's disease. The activity of several nuclear receptors decreased in Atp7b-/- mice, and nuclear receptors are critical for maintaining metabolic homeostasis. Therefore, we anticipated that Atp7b-/- mice would exhibit altered progression of diet-induced obesity, fatty liver, and insulin resistance. Following 10 wk on a chow or Western-type diet (40% kcal fat), parameters of glucose and lipid homeostasis were measured. Hepatic metabolites were measured by liquid chromatography-mass spectrometry and correlated with transcriptomic data. Atp7b-/- mice fed a chow diet presented with blunted body-weight gain over time, had lower fat mass, and were more glucose tolerant than wild type (WT) littermate controls. On the Western diet, Atp7b-/- mice exhibited reduced body weight, adiposity, and hepatic steatosis compared with WT controls. Atp7b-/- mice fed either diet were more insulin sensitive than WT controls; however, fasted Atp7b-/- mice exhibited hypoglycemia after administration of insulin due to an impaired glucose counterregulatory response, as evidenced by reduced hepatic glucose production. Coupling gene expression with metabolomic analyses, we observed striking changes in hepatic metabolic profiles in Atp7b-/- mice, including increases in glycolytic intermediates and components of the tricarboxylic acid cycle. In addition, the active phosphorylated form of AMP kinase was significantly increased in Atp7b-/- mice relative to WT controls. Alterations in hepatic metabolic profiles and nuclear receptor signaling were associated with improved glucose tolerance and insulin sensitivity as well as with impaired fasting glucose production in Atp7b-/- mice.
Collapse
Affiliation(s)
- Clavia Ruth Wooton-Kee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030;
| | - Matthew Robertson
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Ying Zhou
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030
| | - Bingning Dong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Zhen Sun
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Kang Ho Kim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Hailan Liu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Yong Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Pradip Saha
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Cristian Coarfa
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - David D Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030;
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030
| | | |
Collapse
|
6
|
Wang X, Garrick MD, Collins JF. Animal Models of Normal and Disturbed Iron and Copper Metabolism. J Nutr 2019; 149:2085-2100. [PMID: 31504675 PMCID: PMC6887953 DOI: 10.1093/jn/nxz172] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/04/2019] [Accepted: 06/28/2019] [Indexed: 01/19/2023] Open
Abstract
Research on the interplay between iron and copper metabolism in humans began to flourish in the mid-20th century, and diseases associated with dysregulated homeostasis of these essential trace minerals are common even today. Iron deficiency is the most frequent cause of anemia worldwide, leading to significant morbidity, particularly in developing countries. Iron overload is also quite common, usually being the result of genetic mutations which lead to inappropriate expression of the iron-regulatory hormone hepcidin. Perturbations of copper homeostasis in humans have also been described, including rare genetic conditions which lead to severe copper deficiency (Menkes disease) or copper overload (Wilson disease). Historically, the common laboratory rat (Rattus norvegicus) was the most frequently utilized species to model human physiology and pathophysiology. Recently, however, the development of genetic-engineering technology combined with the worldwide availability of numerous genetically homogenous (i.e., inbred) mouse strains shifted most research on iron and copper metabolism to laboratory mice. This created new opportunities to understand the function of individual genes in the context of a living animal, but thoughtful consideration of whether mice are the most appropriate models of human pathophysiology was not necessarily involved. Given this background, this review is intended to provide a guide for future research on iron- and copper-related disorders in humans. Generation of complementary experimental models in rats, swine, and other mammals is now facile given the advent of newer genetic technologies, thus providing the opportunity to accelerate the identification of pathogenic mechanisms and expedite the development of new treatments to mitigate these important human disorders.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Michael D Garrick
- Department of Biochemistry, University at Buffalo–The State University of New York, Buffalo, NY, USA
| | - James F Collins
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA,Address correspondence to JFC (e-mail: )
| |
Collapse
|
7
|
Laser Ablation Inductively Coupled Plasma Spectrometry: Metal Imaging in Experimental and Clinical Wilson Disease. INORGANICS 2019. [DOI: 10.3390/inorganics7040054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Wilson disease is an inherited disorder caused by mutations in the ATP7B gene resulting in copper metabolism disturbances. As a consequence, copper accumulates in different organs with most common presentation in liver and brain. Chelating agents that nonspecifically chelate copper, and promote its urinary excretion, or zinc salts interfering with the absorption of copper from the gastrointestinal tract, are current medications. Also gene therapy, restoring ATP7B gene function or trials with bis-choline tetrathiomolybdate (WTX101) removing excess copper from intracellular hepatic copper stores and increasing biliary copper excretion, is promising in reducing body’s copper content. Therapy efficacy is mostly evaluated by testing for evidence of liver disease and neurological symptoms, hepatic synthetic functions, indices of copper metabolisms, urinary copper excretions, or direct copper measurements. However, several studies conducted in patients or Wilson disease models have shown that not only the absolute concentration of copper, but also its spatial distribution within the diseased tissue is relevant for disease severity and outcome. Here we discuss laser ablation inductively coupled plasma spectrometry imaging as a novel method for accurate determination of trace element concentrations with high diagnostic sensitivity, spatial resolution, specificity, and quantification ability in experimental and clinical Wilson disease specimens.
Collapse
|
8
|
Weiskirchen S, Kim P, Weiskirchen R. Determination of copper poisoning in Wilson's disease using laser ablation inductively coupled plasma mass spectrometry. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S72. [PMID: 31179309 DOI: 10.21037/atm.2018.10.67] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Copper (Cu) is an essential trace element that is vital to the health of all living organisms. As a transition metal, it is involved in a myriad of biological processes. Balance studies estimated that the adult human requirement for copper is in the range of 1.3 to 2 mg per day. Cu deficiency alters immune function, neuropeptide synthesis and antioxidant defense, while the excess in Cu results in oxidative stress and progressive structural damage of mitochondrial and clinically in hepatic and/or neurological symptoms. This becomes particularly visible in Wilson's disease (WD) representing a rare autosomal recessive inherited disorder with a disease prevalence of about 1 in 30,000 people. The affected gene, i.e., ATP7B, belongs to the class of ATP-dependent, P-type Cu-transporting ATPases. To understand the pathomechanism in WD, several experimental models for studying WD were established. Independent studies performed in these models showed that the inactivation of the Atp7b gene results in a gradual increase in Cu in many organs during life span. However, the exact distribution of Cu and the potential impact of elevated Cu concentrations on other metals within the tissue are only sparely analyzed. Recently, novel laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)-based protocols for metal bio-imaging in liver and brain were established. In the present review, we will discuss the methodological background of this innovative technique and summarize our experiences using LA-ICP-MS imaging in biological monitoring, exact measurement, and spatial assignment of metals within tissue obtained from Atp7b null mice and clinical specimens taken from patients suffering from genetically confirmed WD. Using WD as an example, the data discussed demonstrates that LA-ICP-MS has multi-element capability, allowing precise measurement and visualization of metals in the tissue with high spatial resolution, sensitivity, quantification ability, and exceptional reproducibility.
Collapse
Affiliation(s)
- Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Philipp Kim
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
9
|
Polishchuk EV, Merolla A, Lichtmannegger J, Romano A, Indrieri A, Ilyechova EY, Concilli M, De Cegli R, Crispino R, Mariniello M, Petruzzelli R, Ranucci G, Iorio R, Pietrocola F, Einer C, Borchard S, Zibert A, Schmidt HH, Di Schiavi E, Puchkova LV, Franco B, Kroemer G, Zischka H, Polishchuk RS. Activation of Autophagy, Observed in Liver Tissues From Patients With Wilson Disease and From ATP7B-Deficient Animals, Protects Hepatocytes From Copper-Induced Apoptosis. Gastroenterology 2019; 156:1173-1189.e5. [PMID: 30452922 DOI: 10.1053/j.gastro.2018.11.032] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 10/23/2018] [Accepted: 11/10/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Wilson disease (WD) is an inherited disorder of copper metabolism that leads to copper accumulation and toxicity in the liver and brain. It is caused by mutations in the adenosine triphosphatase copper transporting β gene (ATP7B), which encodes a protein that transports copper from hepatocytes into the bile. We studied ATP7B-deficient cells and animals to identify strategies to decrease copper toxicity in patients with WD. METHODS We used RNA-seq to compare gene expression patterns between wild-type and ATP7B-knockout HepG2 cells exposed to copper. We collected blood and liver tissues from Atp7b-/- and Atp7b+/- (control) rats (LPP) and mice; some mice were given 5 daily injections of an autophagy inhibitor (spautin-1) or vehicle. We obtained liver biopsies from 2 patients with WD in Italy and liver tissues from patients without WD (control). Liver tissues were analyzed by immunohistochemistry, immunofluorescence, cell viability, apoptosis assays, and electron and confocal microscopy. Proteins were knocked down in cell lines using small interfering RNAs. Levels of copper were measured in cell lysates, blood samples, liver homogenates, and subcellular fractions by spectroscopy. RESULTS After exposure to copper, ATP7B-knockout cells had significant increases in the expression of 103 genes that regulate autophagy (including MAP1LC3A, known as LC3) compared with wild-type cells. Electron and confocal microscopy visualized more autophagic structures in the cytoplasm of ATP7B-knockout cells than wild-type cells after copper exposure. Hepatocytes in liver tissues from patients with WD and from Atp7b-/- mice and rats (but not controls) had multiple autophagosomes. In ATP7B-knockout cells, mammalian target of rapamycin (mTOR) had decreased activity and was dissociated from lysosomes; this resulted in translocation of the mTOR substrate transcription factor EB to the nucleus and activation of autophagy-related genes. In wild-type HepG2 cells (but not ATP7B-knockout cells), exposure to copper and amino acids induced recruitment of mTOR to lysosomes. Pharmacologic inhibitors of autophagy or knockdown of autophagy proteins ATG7 and ATG13 induced and accelerated the death of ATP7B-knockout HepG2 cells compared with wild-type cells. Autophagy protected ATP7B-knockout cells from copper-induced death. CONCLUSION ATP7B-deficient hepatocytes, such as in those in patients with WD, activate autophagy in response to copper overload to prevent copper-induced apoptosis. Agents designed to activate this autophagic pathway might decrease copper toxicity in patients with WD.
Collapse
Affiliation(s)
- Elena V Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; ITMO University, St. Petersburg, Russia; Institute of Biosciences and Bioresources CNR, Italy
| | - Assunta Merolla
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Josef Lichtmannegger
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Alessia Romano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Department of Translational Medical Science, "Federico II" University of Naples, Naples, Italy
| | - Ekaterina Y Ilyechova
- ITMO University, St. Petersburg, Russia; Department of Molecular Genetics, Institute of Experimental Medicine, St. Petersburg, Russia
| | - Mafalda Concilli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Rossella De Cegli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Roberta Crispino
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Marta Mariniello
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | | | - Giusy Ranucci
- Division of Metabolism, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Raffaele Iorio
- Department of Translational Medical Science, "Federico II" University of Naples, Naples, Italy
| | - Federico Pietrocola
- Equipe 11 labellisée Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Institut National de la Santé et de la Recherche Médicale, UMR1138, Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Claudia Einer
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Sabine Borchard
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Andree Zibert
- Klinik für Transplantationsmedizin, Universitätsklinikum Münster, Münster, Germany
| | - Hartmut H Schmidt
- Klinik für Transplantationsmedizin, Universitätsklinikum Münster, Münster, Germany
| | | | | | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Department of Translational Medical Science, "Federico II" University of Naples, Naples, Italy
| | - Guido Kroemer
- Equipe 11 labellisée Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Institut National de la Santé et de la Recherche Médicale, UMR1138, Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Toxicology and Environmental Hygiene, Technical University Munich, Munich, Germany
| | - Roman S Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy.
| |
Collapse
|
10
|
Einer C, Leitzinger C, Lichtmannegger J, Eberhagen C, Rieder T, Borchard S, Wimmer R, Denk G, Popper B, Neff F, Polishchuk EV, Polishchuk RS, Hauck SM, von Toerne C, Müller JC, Karst U, Baral BS, DiSpirito AA, Kremer AE, Semrau J, Weiss KH, Hohenester S, Zischka H. A High-Calorie Diet Aggravates Mitochondrial Dysfunction and Triggers Severe Liver Damage in Wilson Disease Rats. Cell Mol Gastroenterol Hepatol 2018; 7:571-596. [PMID: 30586623 PMCID: PMC6407159 DOI: 10.1016/j.jcmgh.2018.12.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS In Wilson disease, ATP7B mutations impair copper excretion into bile. Hepatic copper accumulation may induce mild to moderate chronic liver damage or even acute liver failure. Etiologic factors for this heterogeneous phenotype remain enigmatic. Liver steatosis is a frequent finding in Wilson disease patients, suggesting that impaired copper homeostasis is linked with liver steatosis. Hepatic mitochondrial function is affected negatively both by copper overload and steatosis. Therefore, we addressed the question of whether a steatosis-promoting high-calorie diet aggravates liver damage in Wilson disease via amplified mitochondrial damage. METHODS Control Atp7b+/- and Wilson disease Atp7b-/- rats were fed either a high-calorie diet (HCD) or a normal diet. Copper chelation using the high-affinity peptide methanobactin was used in HCD-fed Atp7b-/- rats to test for therapeutic reversal of mitochondrial copper damage. RESULTS In comparison with a normal diet, HCD feeding of Atp7b-/- rats resulted in a markedly earlier onset of clinically apparent hepatic injury. Strongly increased mitochondrial copper accumulation was observed in HCD-fed Atp7b-/- rats, correlating with severe liver injury. Mitochondria presented with massive structural damage, increased H2O2 emergence, and dysfunctional adenosine triphosphate production. Hepatocellular injury presumably was augmented as a result of oxidative stress. Reduction of mitochondrial copper by methanobactin significantly reduced mitochondrial impairment and ameliorated liver damage. CONCLUSIONS A high-calorie diet severely aggravates hepatic mitochondrial and hepatocellular damage in Wilson disease rats, causing an earlier onset of the disease and enhanced disease progression.
Collapse
Affiliation(s)
- Claudia Einer
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Department of Medicine II, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christin Leitzinger
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Josef Lichtmannegger
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Carola Eberhagen
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tamara Rieder
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, Munich, Germany
| | - Sabine Borchard
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ralf Wimmer
- Department of Medicine II, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gerald Denk
- Department of Medicine II, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Bastian Popper
- Department of Anatomy and Cell Biology, Biomedical Center, Ludwig-Maximilians-University, Planegg-Martinsried, Germany; Core Facility Animal Models, Biomedical Center, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Frauke Neff
- Institute of Pathology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | | | | | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Bipin S Baral
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa
| | - Alan A DiSpirito
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa
| | - Andreas E Kremer
- Department of Medicine I, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Jeremy Semrau
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan
| | - Karl Heinz Weiss
- Department of Gastroenterology, Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Simon Hohenester
- Department of Medicine II, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Toxicology and Environmental Hygiene, Technical University Munich, Munich, Germany.
| |
Collapse
|
11
|
Müller JC, Lichtmannegger J, Zischka H, Sperling M, Karst U. High spatial resolution LA-ICP-MS demonstrates massive liver copper depletion in Wilson disease rats upon Methanobactin treatment. J Trace Elem Med Biol 2018; 49:119-127. [PMID: 29895360 DOI: 10.1016/j.jtemb.2018.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 01/18/2023]
Abstract
Wilson disease (WD) is a rare genetic disorder of the copper metabolism leading to systemic copper accumulation, predominantly in the liver. The therapeutic approach in WD patients is the generation of a negative copper balance and the maintenance of copper homeostasis, currently by the use of copper chelators such as D-penicillamine (D-PA). However, in circumstances of delayed diagnosis, poor treatment compliance, or treatment failure, mortality is almost certain without hepatic transplantation. Moreover, even after years of D-PA treatment, high liver copper levels are present in WD patients. We have recently suggested the use of the bacterial peptide Methanobactin (MB), which has an outstanding binding affinity for copper, as potentially efficient and patient-friendly remedy against copper damage in WD. Here we substantiate these findings considerably, by demonstrating a significant removal of copper from liver samples of WD rats upon short, one week only, MB treatments. Using laser ablation-inductively coupled plasma-mass spectrometry with a spatial resolution down to 4 μm, we demonstrate that only small copper hotspots remain in MB treated animal livers. We further demonstrate in WD rat liver, seven weeks after the stopped MB treatment, a lower liver copper concentration as compared to untreated control animals. Thus, MB highly efficiently depletes liver copper overload with a sustained therapeutic effect.
Collapse
Affiliation(s)
- Jennifer-Christin Müller
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149 Münster, Germany
| | - Josef Lichtmannegger
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Toxicology and Environmental Hygiene, Technical University Munich, 80802 Munich, Germany
| | - Michael Sperling
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149 Münster, Germany; European Virtual Institute for Speciation Analysis (EVISA), Mendelstraße 11, 48149 Münster, Germany
| | - Uwe Karst
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149 Münster, Germany.
| |
Collapse
|
12
|
Reed E, Lutsenko S, Bandmann O. Animal models of Wilson disease. J Neurochem 2018; 146:356-373. [PMID: 29473169 PMCID: PMC6107386 DOI: 10.1111/jnc.14323] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/04/2018] [Accepted: 02/12/2018] [Indexed: 02/06/2023]
Abstract
Wilson disease (WD) is an autosomal recessive disorder of copper metabolism manifesting with hepatic, neurological and psychiatric symptoms. The limitations of the currently available therapy for WD (particularly in the management of neuropsychiatric disease), together with our limited understanding of key aspects of this illness (e.g. neurological vs. hepatic presentation) justify the ongoing need to study WD in suitable animal models. Four animal models of WD have been established: the Long-Evans Cinnamon rat, the toxic-milk mouse, the Atp7b knockout mouse and the Labrador retriever. The existing models of WD all show good similarity to human hepatic WD and have been helpful in developing an improved understanding of the human disease. As mammals, the mouse, rat and canine models also benefit from high homology to the human genome. However, important differences exist between these mammalian models and human disease, particularly the absence of a convincing neurological phenotype. This review will first provide an overview of our current knowledge of the orthologous genes encoding ATP7B and the closely related ATP7A protein in C. elegans, Drosophila and zebrafish (Danio rerio) and then summarise key characteristics of rodent and larger mammalian models of ATP7B-deficiency.
Collapse
Affiliation(s)
- Emily Reed
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Baltimore, USA
| | | | - Oliver Bandmann
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Baltimore, USA
| |
Collapse
|
13
|
Lichtmannegger J, Leitzinger C, Wimmer R, Schmitt S, Schulz S, Kabiri Y, Eberhagen C, Rieder T, Janik D, Neff F, Straub BK, Schirmacher P, DiSpirito AA, Bandow N, Baral BS, Flatley A, Kremmer E, Denk G, Reiter FP, Hohenester S, Eckardt-Schupp F, Dencher NA, Adamski J, Sauer V, Niemietz C, Schmidt HHJ, Merle U, Gotthardt DN, Kroemer G, Weiss KH, Zischka H. Methanobactin reverses acute liver failure in a rat model of Wilson disease. J Clin Invest 2016; 126:2721-35. [PMID: 27322060 DOI: 10.1172/jci85226] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 04/12/2016] [Indexed: 12/15/2022] Open
Abstract
In Wilson disease (WD), functional loss of ATPase copper-transporting β (ATP7B) impairs biliary copper excretion, leading to excessive copper accumulation in the liver and fulminant hepatitis. Current US Food and Drug Administration- and European Medicines Agency-approved pharmacological treatments usually fail to restore copper homeostasis in patients with WD who have progressed to acute liver failure, leaving liver transplantation as the only viable treatment option. Here, we investigated the therapeutic utility of methanobactin (MB), a peptide produced by Methylosinus trichosporium OB3b, which has an exceptionally high affinity for copper. We demonstrated that ATP7B-deficient rats recapitulate WD-associated phenotypes, including hepatic copper accumulation, liver damage, and mitochondrial impairment. Short-term treatment of these rats with MB efficiently reversed mitochondrial impairment and liver damage in the acute stages of liver copper accumulation compared with that seen in untreated ATP7B-deficient rats. This beneficial effect was associated with depletion of copper from hepatocyte mitochondria. Moreover, MB treatment prevented hepatocyte death, subsequent liver failure, and death in the rodent model. These results suggest that MB has potential as a therapeutic agent for the treatment of acute WD.
Collapse
|
14
|
Zischka H, Lichtmannegger J. Pathological mitochondrial copper overload in livers of Wilson's disease patients and related animal models. Ann N Y Acad Sci 2014; 1315:6-15. [DOI: 10.1111/nyas.12347] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hans Zischka
- Institute of Molecular Toxicology and Pharmacology; Helmholtz Center Munich; German Research Center for Environmental Health; Neuherberg Germany
| | - Josef Lichtmannegger
- Institute of Molecular Toxicology and Pharmacology; Helmholtz Center Munich; German Research Center for Environmental Health; Neuherberg Germany
| |
Collapse
|
15
|
Siaj R, Sauer V, Stöppeler S, Spiegel HU, Köhler G, Zibert A, Schmidt HHJ. Dietary copper triggers onset of fulminant hepatitis in the Long-Evans cinnamon rat model. World J Gastroenterol 2012; 18:5542-50. [PMID: 23112546 PMCID: PMC3482640 DOI: 10.3748/wjg.v18.i39.5542] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 03/02/2012] [Accepted: 03/19/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the impact of dietary copper given at different time points on the onset of fulminant hepatitis.
METHODS: The Long-Evans cinnamon (LEC) rat model of Wilson’s disease (WD) was used to study the impact of high dietary copper (hCu) on the induction of fulminant hepatitis at early or late time points of life. High Cu diet was started in rat pups or in adults (month 5) for three months. Animals that received reduced dietary copper (rCu) throughout their lifetime served as a control. Hepatitis-associated serum markers (alanine aminotransferase, aspartate transaminase, bilirubin) were analyzed in animal groups receiving hCu or rCu. Liver copper content and liver histology were revealed at sacrifice. A set of 5 marker genes previously found to be affected in injured liver and which are related to angiogenesis (Vegfa), fat metabolism (Srebf1), extracellular matrix (Timp1), oxidative stress (Hmox1), and the cell cycle (Cdkn1a) were analyzed by real-time polymerase chain reaction.
RESULTS: Regardless of the time point when hCu was started, LEC rats (35/36) developed fulminant hepatitis and died. Animals receiving rCu (36/36) remained healthy, did not develop hepatitis, and survived long term without symptoms of overt disease, although liver copper accumulated in adult animals (477 ± 75 μg/g). With regard to start of hCu, onset of fulminant hepatitis was significantly (P < 0.001) earlier in adults (35 ± 9 d) that showed pre-accumulation of liver copper as compared to the pup group (77 ± 15 d). Hepatitis-associated serum markers, liver copper and liver histology, as well as gene expression, were affected in LEC rats receiving hCu. However, except for early and rapid onset of hepatitis, biochemical and molecular markers were similar at the early and late time points of disease.
CONCLUSION: Rapid onset of fulminant hepatitis in asymptomatic LEC rats with elevated liver copper suggests that there is a critical threshold of liver copper which is important to trigger the course of WD.
Collapse
|
16
|
Bahde R, Kapoor S, Bhargava KK, Schilsky ML, Palestro CJ, Gupta S. PET with 64Cu-histidine for noninvasive diagnosis of biliary copper excretion in Long-Evans cinnamon rat model of Wilson disease. J Nucl Med 2012; 53:961-968. [PMID: 22577234 PMCID: PMC3700334 DOI: 10.2967/jnumed.111.092361] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Excretion of copper into bile requires the copper transporter Atp7b, which is deficient in Wilson disease. We hypothesized that a radiocopper-histidine complex would be effective for diagnosing Wilson disease by molecular imaging and tested this hypothesis in the Long-Evans cinnamon (LEC) rat model with Atp7b deficiency. METHODS We complexed (64)Cu to l-histidine and analyzed clearance from blood, uptake in tissues, and excretion in bile of healthy Long-Evans agouti (LEA) rats versus LEC rats modeling Wilson disease. Sixty-minute dynamic PET recordings were obtained in LEA and LEC rats. Possible effects of acute and chronic liver injury induced by carbon tetrachloride were studied in LEA rats. Atp7b deficiency in LEC rats was reconstituted by transplantation of healthy cells to establish the specificity of findings. RESULTS Examination of blood, tissue, and bile showed that in healthy rats, radiocopper was incorporated in the liver, followed by rapid excretion in bile. Corresponding blood, tissue, and bile studies in LEC rats showed incorporation of radiocopper in the liver but without copper excretion in bile, leading to hepatic retention of the radiotracer. PET showed onset of copper clearance in the liver of LEA rats, whereas liver copper content progressively increased in LEC rats during the 1-h period. Hepatic radiocopper excretion was not altered by either acute or chronic liver injury. In LEC rats with liver repopulation by transplanted healthy hepatocytes, excretion of radiocopper confirmed that Atp7b was responsible for this effect. CONCLUSION Imaging with the radiocopper-histidine complex successfully identified Atp7b-dependent biliary copper excretion. This principle will advance molecular imaging for Wilson disease.
Collapse
Affiliation(s)
- Ralf Bahde
- Marion Bessin Liver Research Center, Diabetes Center, and Cancer Research Center, Departments of Medicine and Pathology, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York
- Einstein–Montefiore Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, New York
| | - Sorabh Kapoor
- Marion Bessin Liver Research Center, Diabetes Center, and Cancer Research Center, Departments of Medicine and Pathology, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York
- Einstein–Montefiore Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, New York
| | - Kuldeep K. Bhargava
- Division of Nuclear Medicine and Molecular Imaging, North Shore–Long Island Jewish Health System, New Hyde Park, New York
- Hofstra North Shore–LIJ School of Medicine, Hempstead, New York
| | - Michael L. Schilsky
- Yale–New Haven Transplantation Center, Yale School of Medicine, New Haven, Connecticut
| | - Christopher J. Palestro
- Division of Nuclear Medicine and Molecular Imaging, North Shore–Long Island Jewish Health System, New Hyde Park, New York
- Hofstra North Shore–LIJ School of Medicine, Hempstead, New York
| | - Sanjeev Gupta
- Marion Bessin Liver Research Center, Diabetes Center, and Cancer Research Center, Departments of Medicine and Pathology, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York
- Einstein–Montefiore Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
17
|
Siaj R, Sauer V, Stöppeler S, Gerß J, Spiegel HU, Köhler G, Zibert A, Schmidt HHJ. Longitudinal analysis of serum miR-122 in a rat model of Wilson's disease. Hepatol Int 2012; 6:770-7. [PMID: 23125884 PMCID: PMC3480588 DOI: 10.1007/s12072-012-9348-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 01/25/2012] [Indexed: 01/26/2023]
Abstract
PURPOSE MicroRNA-122 (miR-122) has recently been shown to represent a novel biomarker of liver disease. However, the presence of serum miR-122 after liver injury was mostly studied at singular time points. The course of serum miR-122 was determined at consecutive time points during the onset of disease. METHODS Fulminant hepatitis was induced by a high-copper diet in Long-Evans Cinnamon (LEC) rats that were used as models for Wilson's disease (WD). Levels of serum miR-122, alanine aminotransferase (ALT), aspartate aminotransferase (AST), bilirubin, and liver histology were determined. RESULTS Toxic copper given to isolated hepatocytes induced release of miR-122 into the tissue culture medium. Levels of serum miR-122 were highly elevated (21.9 ± 5) in LEC rats after high-copper diet in fulminant hepatitis, whereas healthy rats showed low (<0.6) baseline levels of miR-122. Levels of miR-122 in the serum of LEC rats after high-copper diet continuously increased for about 4 weeks prior to the onset of fulminant hepatitis. In most of the animals (77.8%), significantly increased levels of miR-122 were detected about 2 weeks (13.7 ± 2 days) earlier as compared to hepatitis-associated serum markers ALT, AST, and bilirubin. Analysis of miR-122 in survivors after cell-based therapy of WD demonstrated a rapid decrease of miR-122 levels following hepatocyte transplantation. miR-122 expression in the serum was normalized to baseline levels in most of the (4/5) survivors. CONCLUSION Our results suggest that longitudinal analysis of miR-122 allows detection of severe liver disease at an early stage and might be excellently suited to monitor therapy, at least when severe liver disease can be restored as observed after cell-based therapy of WD. ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (doi:10.1007/s12072-012-9348-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ramsi Siaj
- Klinik und Poliklinik für Transplantationsmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A14, 48149 Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Sauer V, Siaj R, Stöppeler S, Bahde R, Spiegel HU, Köhler G, Zibert A, Schmidt HHJ. Repeated transplantation of hepatocytes prevents fulminant hepatitis in a rat model of Wilson's disease. Liver Transpl 2012; 18:248-59. [PMID: 22140056 DOI: 10.1002/lt.22466] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The outcome of consecutive hepatocyte transplants was explored in a rat model of Wilson's disease before the onset of fulminant hepatitis without preconditioning regimens. Rats received a high-copper diet in order to induce a rapid induction of liver failure. Sham-operated rats (15/15) developed jaundice and fulminant hepatitis, and they died within 4 weeks of first transplantation. Despite the continuation of a high dietary copper challenge, long-term survival was observed for a notable proportion of the transplanted animals (7/18). All survivors displayed normalized levels of hepatitis-associated serum markers and ceruloplasmin oxidase activity by posttransplant days 50 and 98, respectively. The liver copper concentrations, the liver histology, and the expression of marker genes were significantly restored within 4 months of transplantation in comparison with the control group. The high expression of a copper transporter gene (ATPase Cu++ transporting beta polypeptide) in the livers of the survivors indicated a high rate of repopulation by donor hepatocytes. Our data suggest that repeated cell transplantation can overcome the limitations of a single therapy session in rats with severe hepatic disease by functionally restoring the host liver without preconditioning.
Collapse
Affiliation(s)
- Vanessa Sauer
- Clinic for Transplantation Medicine, Mu¨nster University Clinic, Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Burkhead JL, Gray LW, Lutsenko S. Systems biology approach to Wilson's disease. Biometals 2011; 24:455-66. [PMID: 21380607 PMCID: PMC3106420 DOI: 10.1007/s10534-011-9430-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/19/2011] [Indexed: 12/12/2022]
Abstract
Wilson's disease (WD) is a severe disorder of copper misbalance, which manifests with a wide spectrum of liver pathology and/or neurologic and psychiatric symptoms. WD is caused by mutations in a gene encoding a copper-transporting ATPase ATP7B and is accompanied by accumulation of copper in tissues, especially in the liver. Copper-chelation therapy is available for treatment of WD symptoms and is often successful, however, significant challenges remain with respect to timely diagnostics and treatment of the disease. The lack of genotype-phenotype correlation remains unexplained, the causes of fulminant liver failure are not known, and the treatment of neurologic symptoms is only partially successful, underscoring the need for better understanding of WD mechanisms and factors that influence disease manifestations. Recent gene and protein profiling studies in animal models of WD began to uncover cellular processes that are primarily affected by copper accumulation in the liver. The results of such studies, summarized in this review, revealed new molecular players and pathways (cell cycle and cholesterol metabolism, mRNA splicing and nuclear receptor signaling) linked to copper misbalance. A systems biology approach promises to generate a comprehensive view of WD onset and progression, thus helping with a more fine-tune treatment and monitoring of the disorder.
Collapse
|
20
|
Zischka H, Lichtmannegger J, Schmitt S, Jägemann N, Schulz S, Wartini D, Jennen L, Rust C, Larochette N, Galluzzi L, Chajes V, Bandow N, Gilles VS, DiSpirito AA, Esposito I, Goettlicher M, Summer KH, Kroemer G. Liver mitochondrial membrane crosslinking and destruction in a rat model of Wilson disease. J Clin Invest 2011; 121:1508-18. [PMID: 21364284 PMCID: PMC3068979 DOI: 10.1172/jci45401] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 01/05/2011] [Indexed: 11/17/2022] Open
Abstract
Wilson disease (WD) is a rare hereditary condition that is caused by a genetic defect in the copper-transporting ATPase ATP7B that results in hepatic copper accumulation and lethal liver failure. The present study focuses on the structural mitochondrial alterations that precede clinical symptoms in the livers of rats lacking Atp7b, an animal model for WD. Liver mitochondria from these Atp7b–/– rats contained enlarged cristae and widened intermembrane spaces, which coincided with a massive mitochondrial accumulation of copper. These changes, however, preceded detectable deficits in oxidative phosphorylation and biochemical signs of oxidative damage, suggesting that the ultrastructural modifications were not the result of oxidative stress imposed by copper- dependent Fenton chemistry. In a cell-free system containing a reducing dithiol agent, isolated mitochondria exposed to copper underwent modifications that were closely related to those observed in vivo. In this cell-free system, copper induced thiol modifications of three abundant mitochondrial membrane proteins, and this correlated with reversible intramitochondrial membrane crosslinking, which was also observed in liver mitochondria from Atp7b–/– rats. In vivo, copper-chelating agents reversed mitochondrial accumulation of copper, as well as signs of intra-mitochondrial membrane crosslinking, thereby preserving the functional and structural integrity of mitochondria. Together, these findings suggest that the mitochondrion constitutes a pivotal target of copper in WD.
Collapse
Affiliation(s)
- Hans Zischka
- Institute of Toxicology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang J, Yuan B, Guerrero C, Bahde R, Gupta S, Wang Y. Quantification of oxidative DNA lesions in tissues of Long-Evans Cinnamon rats by capillary high-performance liquid chromatography-tandem mass spectrometry coupled with stable isotope-dilution method. Anal Chem 2011; 83:2201-9. [PMID: 21323344 PMCID: PMC3056914 DOI: 10.1021/ac103099s] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of our study was to develop suitable methods to quantify oxidative DNA lesions in the setting of transition metal-related diseases. Transition metal-driven Fenton reactions constitute an important endogenous source of reactive oxygen species (ROS). In genetic diseases with accumulation of transition metal ions, excessive ROS production causes pathophysiological changes, including DNA damage. Wilson's disease is an autosomal recessive disorder with copper toxicosis due to deficiency of ATP7B protein needed for excreting copper into bile. The Long-Evans Cinnamon (LEC) rat bears a deletion in Atp7b gene and serves as an excellent model for hepatic Wilson's disease. We used a sensitive capillary liquid chromatography-electrospray-tandem mass spectrometry (LC-ESI-MS/MS/MS) method in conjunction with the stable isotope-dilution technique to quantify several types of oxidative DNA lesions in the liver and brain of LEC rats. These lesions included 5-formyl-2'-deoxyuridine, 5-hydroxymethyl-2'-deoxyuridine, and the 5'R and 5'S diastereomers of 8,5'-cyclo-2'-deoxyguanosine and 8,5'-cyclo-2'-deoxyadenosine. Moreover, the levels of these DNA lesions in the liver and brain increased with age and correlated with age-dependent regulation of the expression of DNA repair genes in LEC rats. These results provide significant new knowledge for better understanding the implications of oxidative DNA lesions in transition metal-induced diseases, such as Wilson's disease, as well as in aging and aging-related pathological conditions.
Collapse
Affiliation(s)
- Jin Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Bifeng Yuan
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Candace Guerrero
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Ralf Bahde
- Departments of Medicine and Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, and Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Sanjeev Gupta
- Departments of Medicine and Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, and Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403
| |
Collapse
|
22
|
Summer KH, Lichtmannegger J, Bandow N, Choi DW, DiSpirito AA, Michalke B. The biogenic methanobactin is an effective chelator for copper in a rat model for Wilson disease. J Trace Elem Med Biol 2011; 25:36-41. [PMID: 21242075 DOI: 10.1016/j.jtemb.2010.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 10/28/2010] [Accepted: 12/08/2010] [Indexed: 02/06/2023]
Abstract
Copper is an essential redox-active metal ion which in excess becomes toxic due to the formation of reactive oxygen species. In Wilson disease the elevated copper level in liver leads to chronic oxidative stress and subsequent hepatitis. This study was designed to evaluate the copper chelating efficiency of the bacterial methanobactin (MB) in a rat model for Wilson disease. Methanobactin is a small peptide produced by the methanotrophic bacterium Methylosinus trichosporium OB3b and has an extremely high affinity for copper. Methanobactin treatment of the rats was started at high liver copper and serum aspartate aminotransferase (AST) levels. Two dosing schedules with either 6 or 13 intraperitoneal doses of 200mg methanobactin per kg body weight were applied. Methanobactin treatment led to a return of serum AST values to basal levels and a normalization of liver histopathology. Concomitantly, copper levels declined to 45% and 24% of untreated animals after 6 and 13 doses, respectively. Intravenous application of methanobactin led to a prompt release of copper from liver into bile and the copper was shown to be associated with methanobactin. In vitro experiments with liver cytosol high in copper metallothionein demonstrated that methanobactin removes copper from metallothionein confirming the potent copper chelating activity of methanobactin.
Collapse
Affiliation(s)
- Karl H Summer
- Institute of Toxicology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Eisenhofer S, Toókos F, Hense BA, Schulz S, Filbir F, Zischka H. A mathematical model of mitochondrial swelling. BMC Res Notes 2010; 3:67. [PMID: 20222945 PMCID: PMC2850912 DOI: 10.1186/1756-0500-3-67] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 03/11/2010] [Indexed: 11/23/2022] Open
Abstract
Background The permeabilization of mitochondrial membranes is a decisive event in apoptosis or necrosis culminating in cell death. One fundamental mechanism by which such permeabilization events occur is the calcium-induced mitochondrial permeability transition. Upon Ca2+-uptake into mitochondria an increase in inner membrane permeability occurs by a yet unclear mechanism. This leads to a net water influx in the mitochondrial matrix, mitochondrial swelling, and finally the rupture of the outer membrane. Although already described more than thirty years ago, many unsolved questions surround this important biological phenomenon. Importantly, theoretical modeling of the mitochondrial permeability transition has only started recently and the existing mathematical models fail to characterize the swelling process throughout the whole time range. Results We propose here a new mathematical approach to the mitochondrial permeability transition introducing a specific delay equation and resulting in an optimized representation of mitochondrial swelling. Our new model is in accordance with the experimentally determined course of volume increase throughout the whole swelling process, including its initial lag phase as well as its termination. From this new model biological consequences can be deduced, such as the confirmation of a positive feedback of mitochondrial swelling which linearly depends on the Ca2+-concentration, or a negative exponential dependence of the average swelling time on the Ca2+-concentration. Finally, our model can show an initial shrinking phase of mitochondria, which is often observed experimentally before the actual swelling starts. Conclusions We present a model of the mitochondrial swelling kinetics. This model may be adapted and extended to diverse other inducing/inhibiting conditions or to mitochondria from other biological sources and thus may benefit a better understanding of the mitochondrial permeability transition.
Collapse
Affiliation(s)
- Sabine Eisenhofer
- Institute of Biomathematics and Biometry, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Melatonin is a hormone secreted from the pineal gland specifically at night and contributes to a wide array of physiological functions in mammals. Melatonin is one of the most well understood output of the circadian clock located in the suprachiasmatic nucleus. Melatonin synthesis is controlled distally via the circadian clock located in the suprachiasmatic nucleus and proximally regulated by norepinephrine released in response to the circadian clock signals. To understand melatonin synthesis in vivo, we have performed microdialysis analysis of the pineal gland, which monitors melatonin as well as the precursor (serotonin) and intermediate (N-acetylserotonin) of melatonin synthesis in freely moving animals in realtime at high resolution. Our data revealed a number of novel features of melatonin production undetected using conventional techniques, which include (1) large inter-individual variations of melatonin onset timing; (2) circadian regulation of serotonin synthesis and secretion in the pineal gland; and (3) a revised view on the rate-limiting step of melatonin formation in vivo. This article will summarize the main findings from our laboratory regarding melatonin formation in mammals.
Collapse
Affiliation(s)
- Asamanja Chattoraj
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, 1301 E., Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
25
|
Zhang L, Lichtmannegger J, Summer KH, Webb S, Pickering IJ, George GN. Tracing Copper−Thiomolybdate Complexes in a Prospective Treatment for Wilson’s Disease. Biochemistry 2009; 48:891-7. [DOI: 10.1021/bi801926e] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Limei Zhang
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada, Institute of Toxicology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany, and Stanford Synchrotron Radiation Laboratory, Stanford Linear Accelerator Center, Menlo Park, California 94025
| | - Josef Lichtmannegger
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada, Institute of Toxicology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany, and Stanford Synchrotron Radiation Laboratory, Stanford Linear Accelerator Center, Menlo Park, California 94025
| | - Karl H. Summer
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada, Institute of Toxicology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany, and Stanford Synchrotron Radiation Laboratory, Stanford Linear Accelerator Center, Menlo Park, California 94025
| | - Samuel Webb
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada, Institute of Toxicology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany, and Stanford Synchrotron Radiation Laboratory, Stanford Linear Accelerator Center, Menlo Park, California 94025
| | - Ingrid J. Pickering
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada, Institute of Toxicology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany, and Stanford Synchrotron Radiation Laboratory, Stanford Linear Accelerator Center, Menlo Park, California 94025
| | - Graham N. George
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada, Institute of Toxicology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany, and Stanford Synchrotron Radiation Laboratory, Stanford Linear Accelerator Center, Menlo Park, California 94025
| |
Collapse
|
26
|
Huang Z, Chattoraj A, Li X, Snyder SH, Borjigin J. The increased degradation of NAT-H28Y mutant protein is due to a reduced interaction with 14-3-3. J Pineal Res 2009; 46:119-20. [PMID: 18691359 DOI: 10.1111/j.1600-079x.2008.00619.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Lutsenko S, Barnes NL, Bartee MY, Dmitriev OY. Function and regulation of human copper-transporting ATPases. Physiol Rev 2007; 87:1011-46. [PMID: 17615395 DOI: 10.1152/physrev.00004.2006] [Citation(s) in RCA: 598] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Copper-transporting ATPases (Cu-ATPases) ATP7A and ATP7B are evolutionarily conserved polytopic membrane proteins with essential roles in human physiology. The Cu-ATPases are expressed in most tissues, and their transport activity is crucial for central nervous system development, liver function, connective tissue formation, and many other physiological processes. The loss of ATP7A or ATP7B function is associated with severe metabolic disorders, Menkes disease, and Wilson disease. In cells, the Cu-ATPases maintain intracellular copper concentration by transporting copper from the cytosol across cellular membranes. They also contribute to protein biosynthesis by delivering copper into the lumen of the secretory pathway where metal ion is incorporated into copper-dependent enzymes. The biosynthetic and homeostatic functions of Cu-ATPases are performed in different cell compartments; targeting to these compartments and the functional activity of Cu-ATPase are both regulated by copper. In recent years, significant progress has been made in understanding the structure, function, and regulation of these essential transporters. These studies raised many new questions related to specific physiological roles of Cu-ATPases in various tissues and complex mechanisms that control the Cu-ATPase function. This review summarizes current data on the structural organization and functional properties of ATP7A and ATP7B as well as their localization and functions in various tissues, and discusses the current models of regulated trafficking of human Cu-ATPases.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | | | | | |
Collapse
|