1
|
Abdelkrim Y, Wu J, Jiao FZ, Wang ZH, Hou SX, Zhang TT, Yu ZZ, Qu J. Cobalt germanium hydroxides with asymmetric electron distribution and surface hydroxyl groups for superb catalytic degradation performances. J Colloid Interface Sci 2025; 677:282-293. [PMID: 39094489 DOI: 10.1016/j.jcis.2024.07.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs) are attractive approaches for solving the global problem of water pollution, due to the generation of highly-active reactive oxygen species (ROS). Therefore, highly-efficient PMS activation is crucial for promoting the catalytic degradation of environmental pollutants. Here, bimetallic CoGeO2(OH)2 nanosheets with abundant surface hydroxyl groups (CGH) were synthesized via a simple hydrothermal route for PMS activation and degradation of various organic contaminants for the first time. The abundant surface hydroxyl groups (≡Co-OH/≡Ge-OH) could promptly initiate PMS to generate highly-active species: singlet oxygen (1O2), sulfate radicals (SO4·-) and hydroxyl radicals (HO•), while the asymmetric electron distribution among Co-O-Ge bonds derived from the higher electronegativity of Ge than Co further enhances the quick electron transfer to promote the redox cycle of Co2+/Co3+ and Ge2+/Ge4+, thereby achieving an outstanding catalytic capability. The optimal catalyst exhibits nearly 100 % catalytic degradation performance of dyes (Methylene blue, Rhodamine B, Methyl orange, Orange II, Methyl green) and antibiotics (Norfloxacin, Bisphenol A, Tetracycline) over a wide pH range of 3-11 and under different coexisting anion conditions (Cl-, HCO3-, NO3-, HA), suggesting the excellent adaptability for practical usage. This study could potentially lead to novel perspectives on the remediation of water areas such as groundwater and deep-water areas.
Collapse
Affiliation(s)
- Yasmine Abdelkrim
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Wu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Fan-Zhen Jiao
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhi-Hao Wang
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Sheng-Xing Hou
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ting-Ting Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhong-Zhen Yu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jin Qu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Trang TD, Khiem TC, Huy NN, Huang CW, Ghotekar S, Chen WH, Oh WD, Lin KYA. Magnetic raspberry-like CuCo nanoalloy-embedded carbon as an enhanced activator of Oxone to degrade azo contaminant: Cu-induced hollowed structure and boosted activities. J Colloid Interface Sci 2024; 675:275-292. [PMID: 38970913 DOI: 10.1016/j.jcis.2024.06.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/14/2024] [Accepted: 06/23/2024] [Indexed: 07/08/2024]
Abstract
Azo compounds, particularly azo dyes, are widely used but pose significant environmental risks due to their persistence and potential to form carcinogenic by-products. Advanced oxidation processes (AOPs) are effective in degrading these stubborn compounds, with Oxone activation being a particularly promising method. In this study, a unique nanohybrid material, raspberry-like CuCo alloy embedded carbon (RCCC), is facilely fabricated using CuCo-glycerate (Gly) as a template. With the incorporation of Cu into Co, RCCC is essentially different from its analogue derived from Co-Gly in the absence of Cu, affording a popcorn-like Co embedded on carbon (PCoC). RCCC exhibits a unique morphology, featuring a hollow spherical layer covered by nanoscale beads composed of CuCo alloy distributed over carbon. Therefore, RCCC significantly outperforms PCoC and Co3O4 for activating Oxone to degrade the toxic azo contaminant, Azorubin S (AS), in terms of efficiency and kinetics. Furthermore, RCCC remains highly effective in environments with high NaCl concentrations and can be efficiently reused across multiple cycles. Besides, RCCC also leads to the considerably lower Ea of AS degradation than the reported Ea values by other catalysts. More importantly, the contribution of incorporating Cu with Co as CuCo alloy in RCCC is also elucidated using the Density-Function-Theory (DFT) calculation and synergetic effect of Cu and Co in CuCo contributes to enhance Oxone activation, and boosts generation of SO4•-and •OH. The decomposition pathway of AS by RCCC + Oxone is also comprehensively investigated by studying the Fukui indices of AS and a series of its degradation by-products using the DFT calculation. In accordance to the toxicity assessment, RCCC + Oxone also considerably reduces acute and chronic toxicities to lower potential environmental impact. These results ensure that RCCC would be an advantageous catalyst for Oxone activation to degrade AS in water.
Collapse
Affiliation(s)
- Tran Doan Trang
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Ta Cong Khiem
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Nguyen Nhat Huy
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 700000, Viet Nam
| | - Chao-Wei Huang
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | - Suresh Ghotekar
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan, ROC; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan, ROC; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan, ROC
| | - Wen Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan, ROC; Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan, ROC; Department of Chemical Engineering, Chung Yuan Christian University, Chungli District, Taoyuan 320, Taiwan, ROC.
| |
Collapse
|
3
|
Guo J, Gao B, Li Q, Wang S, Shang Y, Duan X, Xu X. Size-Dependent Catalysis in Fenton-like Chemistry: From Nanoparticles to Single Atoms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403965. [PMID: 38655917 DOI: 10.1002/adma.202403965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Indexed: 04/26/2024]
Abstract
State-of-the-art Fenton-like reactions are crucial in advanced oxidation processes (AOPs) for water purification. This review explores the latest advancements in heterogeneous metal-based catalysts within AOPs, covering nanoparticles (NPs), single-atom catalysts (SACs), and ultra-small atom clusters. A distinct connection between the physical properties of these catalysts, such as size, degree of unsaturation, electronic structure, and oxidation state, and their impacts on catalytic behavior and efficacy in Fenton-like reactions. In-depth comparative analysis of metal NPs and SACs is conducted focusing on how particle size variations and metal-support interactions affect oxidation species and pathways. The review highlights the cutting-edge characterization techniques and theoretical calculations, indispensable for deciphering the complex electronic and structural characteristics of active sites in downsized metal particles. Additionally, the review underscores innovative strategies for immobilizing these catalysts onto membrane surfaces, offering a solution to the inherent challenges of powdered catalysts. Recent advances in pilot-scale or engineering applications of Fenton-like-based devices are also summarized for the first time. The paper concludes by charting new research directions, emphasizing advanced catalyst design, precise identification of reactive oxygen species, and in-depth mechanistic studies. These efforts aim to enhance the application potential of nanotechnology-based AOPs in real-world wastewater treatment.
Collapse
Affiliation(s)
- Jirui Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yanan Shang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
4
|
Brasil FM, Oliveira DL, Melquíades MO, Nobre FX, Balestra CET, Ardisson JD, Fabris JD, Santana GP, Ramirez MA. Influence of kaolin and red clay on ceramic specimen properties when galvanic sludge is incorporated to encapsulate heavy metals. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 181:176-187. [PMID: 38614039 DOI: 10.1016/j.wasman.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/17/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
This study presented the influence of two types of clay: kaolin (Kao) and red clay (RC) on the chemical and physical properties of ceramic specimens when galvanic sludge (GS) is incorporated to encapsulate heavy metals. Samples were obtained of GS from the industrial district of Manaus - Amazonas State, Brazil, and kaolin (Kao), and red clay (RC) from the Central Amazon. A fourth sample was prepared by mixing GS, Kao, and RC in the ratio 1:1:8 (GS + Kao + RC). This mixture was ground, and ceramic specimens were prepared, and heat treated at 950 °C and 1200 °C for three hours for phase detection, compressive strength, leaching of Fe, Ni and Cr metals and life cycle assessment. Galvanic sludge, Kao, and RC were also, and heat treated to at 950 °C and 1200 °C for three hours, obtaining GS950, GS1200, Kao950, Kao1200, RC950, and RC1200. The samples were submitted to XRF, XRD, Rietveld refinement, Mössbauer spectroscopy, TG/DTG/DSC, and SEM. The results show that the formation of nickel oxide and a spinel solid solution of the type Fe3+{Fe1-y3+,Fe1-x2+,Nix2+,Cry3+}O4 (in which [] = tetrahedral site, {} octahedral site) occurs in GS1200, which is caused by sulfate decomposition to SO2. At 1200 °C, heavy metals are encapsulated, forming other phases such as nickel silicate and hematite. Life cycle assessment was used to verify the sustainability and value of GS in clay for making bricks, and it indicated that the production of ceramics is feasible, reduces the use of clays, and is sustainable.
Collapse
Affiliation(s)
- F M Brasil
- School of Engineering and Sciences, Guaratinguetá, São Paulo State University - UNESP, Guaratinguetá, SP, Brazil; Federal University of Amazonas, UFAM, Campus Sede, Manaus, Amazonas, Brazil.
| | - D L Oliveira
- Federal University of Amazonas, UFAM, Campus Sede, Manaus, Amazonas, Brazil
| | - M O Melquíades
- Federal Institute of Education, Science and Technology of Amazonas (IFAM) - Unidade Centro, Manaus, Amazonas, Brazil
| | - F X Nobre
- Federal Institute of Education, Science and Technology of Amazonas (IFAM) - Unidade Centro, Manaus, Amazonas, Brazil
| | - C E T Balestra
- Federal Technological University of Paraná, UTFPR, Campus Toledo, PR, Brazil
| | - J D Ardisson
- Nuclear Technology Development Center/CDTN/CNEN, Pampulha, Belo Horizonte, MG, Brazil
| | - J D Fabris
- Federal University of Minas Gerais, UFMG, Pampulha, Belo Horizonte, MG, Brazil
| | - G P Santana
- Federal University of Amazonas, UFAM, Campus Sede, Manaus, Amazonas, Brazil
| | - M A Ramirez
- School of Engineering and Sciences, Guaratinguetá, São Paulo State University - UNESP, Guaratinguetá, SP, Brazil
| |
Collapse
|
5
|
Kajani AA, Pouresmaeili A, Kamali M. Facile one-pot synthesis of the mesoporous chitosan-coated cobalt ferrite nanozyme as an antibacterial and MRI contrast agent. RSC Adv 2024; 14:16801-16808. [PMID: 38784415 PMCID: PMC11112679 DOI: 10.1039/d4ra02462a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
Cobalt ferrite (CoFe) nanoparticles (NPs) with appropriate physicochemical and biological properties have attracted great attention for biomedical applications. In the present study, chitosan-coated mesoporous CoFe (CoFeCH) NPs were synthesized using a facile one-step hydrothermal method and fully characterized using FE-SEM, EDS, BET, FTIR spectroscopy, DLS, TGA, XRD, and VSM. The spherical, highly colloidal, and monodispersed CoFeCH NPs with an average hydrodynamic size of 177.9 nm, PDI of 0.238 and zeta potential value of -33 represented a high saturation magnetization value of 59.37 emu g-1. N2 adsorption-desorption analysis confirmed the mesoporous structure of CoFeCH NPs with a type IV isotherm, calculated specific surface area of 89.583 m2 g-1 and total pore volume of 0.3668 cm3 g-1. CoFeCH NPs exhibited high antibacterial effects on S. aureus and E. coli, comparable with standard antibiotics, while CH-coating led to higher biocompatibility of CoFe NPs on human cells in vitro. CoFeCH NPs also showed significant peroxidase activity with a Km value of 14.37 and specific activity of 0.632 mmol min-1. CoFeCH NPs were successfully used as a MRI contrast agent with an R2 value of 91.3 mM-1 s-1. The overall results indicated the high potential of synthesized CoFeCH NPs by the present method for biomedical applications, especially as an antibacterial and MRI contrast agent.
Collapse
Affiliation(s)
- Abolghasem Abbasi Kajani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan Isfahan 81746-73441 Iran +98-3137932342 +98-3137934401
- Environmental Research Institute, University of Isfahan Isfahan 81746-73441 Iran
| | - Ali Pouresmaeili
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan Isfahan 81746-73441 Iran +98-3137932342 +98-3137934401
| | - Mehdi Kamali
- Environmental Research Institute, University of Isfahan Isfahan 81746-73441 Iran
- Department of Environmental Engineering, University of Tehran Tehran Iran
| |
Collapse
|
6
|
Chen C, Zhang J, Liu J, Li J, Ma S, Yu A. Sea Urchin-like NiCo 2O 4 Catalyst Activated Peroxymonosulfate for Degradation of Phenol: Performance and Mechanism. Molecules 2023; 29:152. [PMID: 38202736 PMCID: PMC10780213 DOI: 10.3390/molecules29010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/24/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
How to efficiently activate peroxymonosulfate (PMS) in a complex water matrix to degrade organic pollutants still needs greater efforts, and cobalt-based bimetallic nanomaterials are desirable catalysts. In this paper, sea urchin-like NiCo2O4 nanomaterials were successfully prepared and comprehensively characterized for their structural, morphological and chemical properties via techniques, such as X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), among others. The sea urchin-like NiCo2O4 nanomaterials exhibited remarkable catalytic performance in activating PMS to degrade phenol. Within the NiCo2O4/PMS system, the removal rate of phenol (50 mg L-1, 250 mL) reached 100% after 45 min, with a reaction rate constant k of 0.091 min-1, which was 1.4-times higher than that of the monometallic compound Co3O4/PMS system. The outstanding catalytic activity of sea urchin-like NiCo2O4 primarily arises from the synergistic effect between Ni and Co ions. Additionally, a comprehensive analysis of key parameters influencing the catalytic activity of the sea urchin-like NiCo2O4/PMS system, including reaction temperature, initial pH of solution, initial concentration, catalyst and PMS dosages and coexisting anions (HCO3-, Cl-, NO3- and humic acid), was conducted. Cycling experiments show that the material has good chemical stability. Electron paramagnetic resonance (EPR) and quenching experiments verified that both radical activation (SO4•-, •OH, O2•-) and nonradical activation (1O2) are present in the NiCo2O4/PMS system. Finally, the possible degradation pathways in the NiCo2O4/PMS system were proposed based on gas chromatography-mass spectrometry (GC-MS). Favorably, sea urchin-like NiCo2O4-activated PMS is a promising technology for environmental treatment and the remediation of phenol-induced water pollution problems.
Collapse
Affiliation(s)
- Chunguang Chen
- Department of Chemistry, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.Z.); (J.L.); (J.L.); (S.M.)
| | - Junkai Zhang
- Department of Chemistry, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.Z.); (J.L.); (J.L.); (S.M.)
| | - Jia Liu
- Department of Chemistry, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.Z.); (J.L.); (J.L.); (S.M.)
| | - Jiani Li
- Department of Chemistry, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.Z.); (J.L.); (J.L.); (S.M.)
| | - Shuo Ma
- Department of Chemistry, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.Z.); (J.L.); (J.L.); (S.M.)
| | - Aishui Yu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Institute of New Energy, Fudan University, Shanghai 200438, China
| |
Collapse
|
7
|
Doan Trang T, Lee J, Oh WD, Kwon E, Wang H, Fai Tsang Y, Munagapati VS, Yang H, Chen WH, Andrew Lin KY. Hollow-Structured N-doped carbon-embedded CoFe NanoAlloy for boosting activation of Monopersulfate: Engineered interface and heteroatom Doping-Induced enhancements. J Colloid Interface Sci 2023; 652:1028-1042. [PMID: 37639925 DOI: 10.1016/j.jcis.2023.08.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/03/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
While transition metals are useful for activating monopersulfate (MPS) to degrade contaminants, bimetallic alloys exhibit stronger catalytic activities owing to several favorable effects. Therefore, even though Co is an efficient metal for MPS activation, CoFe alloys are even more promising heterogeneous catalysts for MPS activation. Immobilization/embedment of CoFe alloy nanoparticles (NPs) onto hetero-atom-doped carbon matrices appears as a practical strategy for evenly dispersing CoFe NPs and enhancing catalytic activities via interfacial synergies between CoFe and carbon. Herein, N-doped carbon-embedded CoFe alloy (NCCF) is fabricated here to exhibit a unique hollow-engineered nanostructure and the composition of CoFe alloy by using Co-ZIF as a precursor after the facile etching and Fe doping. The Fe dopant embeds CoFe alloy NPs into the hollow-structured N-doped carbon substrate, enabling NCCF to possess the higher mesoscale porosity, active N species as well as more superior electrochemical properties than its analogue without Fe dopants, carbon matrix-supported cobalt (NCCo). Thus, NCCF exhibits a considerably larger activity than NCCo and the benchmark catalyst, Co3O4 NP, for MPS activation to degrade an environmental hormone, dihydroxydiphenyl ketone (DHPK). Besides, NCCF + MPS shows an even lower activation energy for DHPK degradation than literatures, and retains its high efficiency for eliminating DHPK in different water media. DHPK degradation pathway and ecotoxicity assessment are unraveled based on the insights from the computational chemistry, demonstrating that DHPK degradation by NCCF + MPS did not result in the formation of toxic and highly toxic by-products. These features make NCCF a promising heterogeneous catalyst for MPS activation to degrade DHPK.
Collapse
Affiliation(s)
- Tran Doan Trang
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan
| | - Jechan Lee
- Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Eilhann Kwon
- Department of earth resources and environmental engineering, Hanyang University, SeongDong-Gu, Seoul, Korea
| | - Haitao Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong
| | - Venkata Subbaiah Munagapati
- Research Centre for Soil & Water Resources and Natural Disaster Prevention (SWAN), National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan
| | - Hongta Yang
- Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan.
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan; Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
8
|
Trang TD, Lin JY, Chang HC, Huy NN, Ghotekar S, Lin KYA, Munagapati VS, Yee YF, Lin YF. Hollow-Architected Heteroatom-Doped Carbon-Supported Nanoscale Cu/Co as an Enhanced Magnetic Activator for Oxone to Degrade Toxicants in Water. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2565. [PMID: 37764595 PMCID: PMC10537558 DOI: 10.3390/nano13182565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Even though transition metals can activate Oxone to degrade toxic contaminants, bimetallic materials possess higher catalytic activities because of synergistic effects, making them more attractive for Oxone activation. Herein, nanoscale CuCo-bearing N-doped carbon (CuCoNC) can be designed to afford a hollow structure as well as CuCo species by adopting cobaltic metal organic frameworks as a template. In contrast to Co-bearing N-doped carbon (CoNC), which lacks the Cu dopant, CuCo alloy nanoparticles (NPs) are contained by the Cu dopant within the carbonaceous matrix, giving CuCoNC more prominent electrochemical properties and larger porous structures and highly nitrogen moieties. CuCoNC, as a result, has a significantly higher capability compared to CoNC and Co3O4 NPs, for Oxone activation to degrade a toxic contaminant, Rhodamine B (RDMB). Furthermore, CuCoNC+Oxone has a smaller activation energy for RDMB elimination and maintains its superior effectiveness for removing RDMB in various water conditions. The computational chemistry insights have revealed the RDMB degradation mechanism. This study reveals that CuCoNC is a useful activator for Oxone to eliminate RDMB.
Collapse
Affiliation(s)
- Tran Doan Trang
- Department of Environmental Engineering & Innovation, Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan
| | - Jia-Yin Lin
- Semiconductor and Green Technology Program, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 402, Taiwan
| | - Hou-Chien Chang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Nguyen Nhat Huy
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam;
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Suresh Ghotekar
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India;
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation, Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Venkata Subbaiah Munagapati
- Research Centre for Soil & Water Resources and Natural Disaster Prevention (SWAN), National Yunlin University of Science and Technology, Douliou 64002, Taiwan
| | - Yeoh Fei Yee
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Penang, Malaysia
| | - Yi-Feng Lin
- Department of Chemical Engineering and R&D Center for Membrane Technology, Chung Yuan Christian University, 200 Chung Pei Rd., Chungli, Taoyuan 320, Taiwan
| |
Collapse
|
9
|
Spivakov AA, Lin CR, Chen YZ, Huang LH. Temperature-Induced Irreversible Structural Transition in Fe 1.1Mn 1.9O 4 Nanoparticles Synthesized by Combustion Method. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1273. [PMID: 37049366 PMCID: PMC10097261 DOI: 10.3390/nano13071273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
Fe1.1Mn1.9O4 nanoparticles were successfully synthesized using a combustion method. The influence of the heating temperature on the evolution of the structural and magnetic properties has been studied using various methods. The structural analysis results revealed that as-synthesized nanoparticles have a tetragonal structure with an average size of ~24 nm. The magnetic measurements of the sample showed its ferrimagnetic nature at room temperature with hysteresis at low fields. Temperature-dependent magnetization measurements allowed for the conclusion that the Curie temperature for Fe1.1Mn1.9O4 nanoparticles was ~465 °C. After high-temperature magnetic measurements, during which the samples were heated to various maximum heating temperatures (Tmax.heat.) in the range from 500 to 900 °C, it was found that the structure of the samples after cooling to room temperature depended on the heating temperature. Herewith, when the heating temperature was 600 < Tmax.heat. < 700 °C, an irreversible structural phase transition occurred, and the cooled samples retained a high-temperature cubic structure. The results of the magnetic analysis showed that the samples, following high-temperature magnetic measurements, demonstrated ferrimagnetic behavior.
Collapse
|
10
|
Wang T, Faria Albanese JA, de Vos WM, de Grooth J. Continuous pH regulation for PES@CoFe2O4 based catalytic UF membranes: Preventing adsorption for optimal degradation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
11
|
Duan G, Wei G, Li Q, Zhu Y, Zhang L, Liang L, Huang Z, He S, Li B. Insight into catalytic activation of bisulfite for lomefloxacin degradation by simple composite of calcinated red mud. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:29125-29142. [PMID: 36409411 DOI: 10.1007/s11356-022-23706-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic was detected in many environments, and it had posed a serious threat to human health. The advanced oxidation process has been considered an effective way to treat antibiotics. In this work, using industrial waste red mud (RM) as raw material, a series of modified RM (MRM-T; T donates the calcination temperature) was obtained via a facile calcination method and applied to activate sodium bisulfite (NaHSO3) for the lomefloxacin (LOM) degradation. Among all MRM-T, MRM-700 exhibited superior catalytic activity, and approximately 89% of LOM (10 mg/L) was degraded at 30 min through the activation of NaHSO3 ([NaHSO3] = 0.5 g/L) by MRM-700 ([MRM-700] = 0.9 g/L). Moreover, the kinetic constant of LOM removal in the MRM-700/NaHSO3 system (0.082 min-1) was 16.4 times higher than that of the RM-raw/NaHSO3 system (0.005 min-1). The as-synthesized product of MRM-700 was characterized by N2 adsorption-desorption isotherms, X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Raman spectra. The result indicated that the catalyst possessed excellent pore structure, high specific area, and abundant Fe3+ sites, and the lattice of Fe2O3 was doped after calcination, both of which were favorable for the activation of NaHSO3. The quenching experiment proved that •SO4- and •OH- active species were produced in MRM-700/NaHSO3 system, and •SO4- played a dominant role in LOM removal. In addition, the potential LOM degradation pathway was analyzed via UPLC-MS technology and density functional theory (DFT) calculation, and the toxicity of the treated LOM solution was tested by the culture of mung bean sprouts. This study not only provided a feasible strategy for the valuable use of RM to activate NaHSO3 but also offered a cost-effective catalyst for the efficient removal of pollutants in wastewater.
Collapse
Affiliation(s)
- Guangxiang Duan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Guangtao Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, People's Republic of China.
- Guangxi Key Laboratory of Processing for Non-Ferrous Metallic and Featured Materials, Guangxi Zhuang Autonomous Region, Nanning, 530004, People's Republic of China.
| | - Qingyong Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Youlian Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Linye Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, People's Republic of China
- Guangxi Key Laboratory of Bio-Refinery, Guangxi Zhuang Autonomous Region, Nanning, 530007, People's Republic of China
| | - Lulu Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Zhenjing Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Shuo He
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Baiying Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| |
Collapse
|
12
|
Degradation of phenolic pollutants by persulfate-based advanced oxidation processes: metal and carbon-based catalysis. REV CHEM ENG 2022. [DOI: 10.1515/revce-2022-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Wastewater recycling is a solution to address the global water shortage. Phenols are major pollutants in wastewater, and they are toxic even at very low concentrations. Advanced oxidation process (AOP) is an emerging technique for the effective degradation and mineralization of phenols into water. Herein, we aim at giving an insight into the current state of the art in persulfate-based AOP for the oxidation of phenols using metal/metal-oxide and carbon-based materials. Special attention has been paid to the design strategies of high-performance catalysts, and their advantages and drawbacks are discussed. Finally, the key challenges that govern the implementation of persulfate-based AOP catalysts in water purification, in terms of cost and environmental friendliness, are summarized and possible solutions are proposed. This work is expected to help the selection of the optimal strategy for treating phenol emissions in real scenarios.
Collapse
|
13
|
Liu D, Chen D, Hao Z, Tang Y, Jiang L, Li T, Tian B, Yan C, Luo Y, Jia B. Efficient degradation of Rhodamine B in water by CoFe 2O 4/H 2O 2 and CoFe 2O 4/PMS systems: A comparative study. CHEMOSPHERE 2022; 307:135935. [PMID: 35940420 DOI: 10.1016/j.chemosphere.2022.135935] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/23/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
In this work, a comparative study of efficient degradation of Rhodamine B (RhB) in CoFe2O4/H2O2 and CoFe2O4/PMS systems was performed. Batch experiments indicated that the RhB degradation rate of CoFe2O4/H2O2 system reached 95.5% at 90 min under the condition of 0.5 g L-1 of CoFe2O4 dosage, 10 mM of H2O2 concentration and 3.0 of initial pH. At certain conditions of initial pH = 7.0, 0.3 g L-1 of CoFe2O4 dosage, 7 mM of PMS concentration, CoFe2O4/PMS system could completely degrade RhB within 90 min. EPR and quenching experiments indicated that •OH was the main active species of CoFe2O4/H2O2 system, and •OH, SO4•-, •O2- and 1O2 participated in RhB degradation of CoFe2O4/PMS system. The circulate of Co(II)/Co(III) and Fe(II)/Fe(III) on the CoFe2O4 surface promoted the formation of free radical species in the two system. In CoFe2O4/PMS system, the formed •O2- and SO5•- realized the generation of non-free radical species (1O2). The LC-MS results indicated that N-de-ethylation, chromophore cleavage, opening rings and mineralization were the main steps for the RhB degradation of the two systems. After five cycles of degradation experiment, the CoFe2O4/H2O2 and CoFe2O4/PMS systems still maintained the high degradation rate (85.2% and 92.4%) and low mass loss (2.7% and 3.09%). In addition, CoFe2O4/PMS system had better potential value for the actual water and multi-pollutant degradation than CoFe2O4/H2O2 system. Finally, the toxicity analysis and cost assessment of the two oxidation systems were preliminarily evaluated.
Collapse
Affiliation(s)
- Dongdong Liu
- Key Laboratory of Straw Biology and Utilization, The Ministry of Education, Jilin Agricultural University, Changchun, 130118, PR China; College of Engineering and Technology, Jilin Agricultural University, Changchun, 130118, PR China
| | - Dengqian Chen
- College of Engineering and Technology, Jilin Agricultural University, Changchun, 130118, PR China
| | - Zhengkai Hao
- College of Engineering and Technology, Jilin Agricultural University, Changchun, 130118, PR China
| | - Yibo Tang
- College of Engineering and Technology, Jilin Agricultural University, Changchun, 130118, PR China
| | - Lipeng Jiang
- College of Engineering and Technology, Jilin Agricultural University, Changchun, 130118, PR China
| | - Tianqi Li
- College of Engineering and Technology, Jilin Agricultural University, Changchun, 130118, PR China
| | - Bing Tian
- College of Engineering and Technology, Jilin Agricultural University, Changchun, 130118, PR China
| | - Cuiping Yan
- College of Engineering and Technology, Jilin Agricultural University, Changchun, 130118, PR China
| | - Yuan Luo
- College of Engineering and Technology, Jilin Agricultural University, Changchun, 130118, PR China
| | - Boyin Jia
- College of Animal Medicine, Jilin Agricultural University, Changchun, 130118, PR China.
| |
Collapse
|
14
|
He Z, Fareed H, Yang H, Xia Y, Su J, Wang L, Kang L, Wu M, Huang Z. Mechanistic insight into the charge carrier separation and molecular oxygen activation of manganese doping BiOBr hollow microspheres. J Colloid Interface Sci 2022; 629:355-367. [DOI: 10.1016/j.jcis.2022.08.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/10/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
|
15
|
Gao L, Deng J, Li T, Qi K, Zhang J, Yi Q. A facial strategy to efficiently improve catalytic performance of CoFe 2O 4 to peroxymonosulfate. J Environ Sci (China) 2022; 116:1-13. [PMID: 35219407 DOI: 10.1016/j.jes.2021.06.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 06/14/2023]
Abstract
Cobalt iron spinel (CoFe2O4) has been considered as a good heterogeneous catalysis to peroxymonosulfate (PMS) in the degradation of persistent organic pollutants due to its magnetic properties and good chemical stability. However, its catalytic activity needs to be further improved. Here, a facial strategy, "in-situ substitution", was adopted to modify CoFe2O4 to improve its catalytic performance just by suitably increasing the Co/Fe ratio in synthesis process. Compared with CoFe2O4, the newly synthesized Co1.5Fe1.5O4, could not only significantly improve the degradation efficiency of phenol, from 50.69 to 93.6%, but also exhibited more effective mineralization ability and higher PMS utilization. The activation energy advantage for phenol degradation using Co1.5Fe1.5O4 was only 44.2 kJ/mol, much lower than that with CoFe2O4 (127.3 kJ/mol). A series of related representations of CoFe2O4 and Co1.5Fe1.5O4 were compared to explore the possible reasons for the outstanding catalytic activity of Co1.5Fe1.5O4. Results showed that Co1.5Fe1.5O4 as well represented spinel crystal as CoFe2O4 and the excess cobalt just partially replaced the position of iron without changing the original structure. Co1.5Fe1.5O4 had smaller particle size (8.7 nm), larger specific surface area (126.3 m2/g), which was more favorable for exposure of active sites. Apart from the superior physical properties, more importantly, more reactive centers Co (Ⅱ) and surface hydroxyl compounds generated on Co1.5Fe1.5O4, which might be the major reason. Furthermore, Co1.5Fe1.5O4 behaved good paramagnetism, wide range of pH suitability and strong resistance to salt interference, making it a new prospect in environmental application.
Collapse
Affiliation(s)
- Lili Gao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Jieqiong Deng
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Tong Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Kai Qi
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jiandong Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Qun Yi
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
16
|
Li L, Zhang Y, Yang S, Zhang S, Xu Q, Chen P, Du Y, Xing Y. Cobalt-loaded cherry core biochar composite as an effective heterogeneous persulfate catalyst for bisphenol A degradation. RSC Adv 2022; 12:7284-7294. [PMID: 35424685 PMCID: PMC8982249 DOI: 10.1039/d1ra09236g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/17/2022] [Indexed: 12/18/2022] Open
Abstract
Persulfate (PS)-based advanced oxidation processes have drawn tremendous attention for the degradation of recalcitrant pollutants, and cobalt composites are effective for PS activation to generate reactive species. In this study, composites of cobalt species loaded on cherry core-derived biochar (Co/C) were prepared with a one-step pyrolysis method. The Co/C catalyst was applied as a catalyst for PS activation to degrade bisphenol A (BPA). Factors influencing the degradation efficiency were examined, including the ratio of raw materials, Co/C and PS dosages, temperature, and solution pH. The Co/C catalyst prepared when the ratio of raw material was 1 : 1 (Co/C-50) could efficiently activate both peroxymonosulfate (PMS) and peroxydisulfate (PDS). When the initial concentration of BPA was 20 mg L-1, complete removal of BPA was achieved in the Co/C-50-PMS and Co/C-50-PDS systems within 8 min and 10 min, respectively. More than 70% of BPA could be mineralized in the Co/C-50-PS system. The free radical quenching experiments demonstrated that in the Co/C-50-PS system, the degradation of BPA was achieved through free radical, surface-bound free radical, and non-free radical pathways. The successful preparation of the Co/C-50-PS catalyst broadens the application of cobalt-based carbon materials in the activation of PS to remove organic pollutants.
Collapse
Affiliation(s)
- Li Li
- School of Chemistry and Materials Science, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University Yantai 264025 Shandong province China +086 0535-6695905 +086 0535-6696162
| | - Yuanyuan Zhang
- Environmental Monitor Station of Yantai No. 118, Qingnian South Road Yantai 264000 Shandong province China
| | - Shuangshuang Yang
- School of Chemistry and Materials Science, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University Yantai 264025 Shandong province China +086 0535-6695905 +086 0535-6696162
| | - Shengxiao Zhang
- School of Chemistry and Materials Science, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University Yantai 264025 Shandong province China +086 0535-6695905 +086 0535-6696162
| | - Qiang Xu
- School of Chemistry and Materials Science, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University Yantai 264025 Shandong province China +086 0535-6695905 +086 0535-6696162
| | - Pinzhu Chen
- School of Chemistry and Materials Science, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University Yantai 264025 Shandong province China +086 0535-6695905 +086 0535-6696162
| | - Yaxuan Du
- School of Chemistry and Materials Science, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University Yantai 264025 Shandong province China +086 0535-6695905 +086 0535-6696162
| | - Yuxin Xing
- School of Chemistry and Materials Science, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University Yantai 264025 Shandong province China +086 0535-6695905 +086 0535-6696162
| |
Collapse
|
17
|
Liu WJ, Yang H, Park YK, Kwon E, Huang CW, Thanh BX, Khiem TC, You S, Ghanbari F, Lin KYA. Enhanced degradation of ultra-violet stabilizer Bis(4-hydroxy)benzophenone using oxone catalyzed by hexagonal nanoplate-assembled CoS 3-dimensional cluster. CHEMOSPHERE 2022; 288:132427. [PMID: 34600922 DOI: 10.1016/j.chemosphere.2021.132427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
As UV-light stabilizers, Bis(4-hydroxy)benzophenone (BBP), are extensively consumed to quench radicals from photooxidation, continuous release of BPs into the environment poses serious threats to the ecology in view of their xenohormone toxicities, and BBP shall be eliminated from water to avoid its adverse effect. Since sulfate radical (SR)-based chemical oxidation techniques have been proven as effective procedures for eliminating organic emerging contaminants, this study aims to develop useful SR-based procedures through activating Oxone for degrading BBP in water. In contrast to the conventional Co3O4, cobalt sulfide (CoS) is particularly proposed as an alternative heterogeneous catalyst for activating Oxone to degrade BBP because CoS exhibits more reactive redox characteristics. As structures of catalysts predominantly control their catalytic activities, in this study, a unique nanoplate-assembled CoS (NPCS) 3D cluster is fabricated via a convenient one-step process to serve as a promising heterogeneous catalyst for activating Oxone to degrade BBP. With NPCS = 100 mg/L and Oxone = 200 mg/L, 5 mg/L of BBP can be completely eliminated in 60 min. The catalytic activity of NPCS towards Oxone activation also significantly surpasses the reference material, Co3O4, to enhance degradation of BBP. Ea of BBP degradation by NPCS-activated Oxone is also determined as a relatively low value of 42.7 kJ/mol. The activation mechanism as well as degradation pathway of BBP degradation by NPCS-activated Oxone was investigated and validated through experimental evidences and density functional theory (DFT) calculation to offer valuable insights into degradation behaviors for developing SR-based processes of BBP degradation using CoS catalysts.
Collapse
Affiliation(s)
- Wei-Jie Liu
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Hongta Yang
- Department of Chemical Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Eilhann Kwon
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gunja-dong, Gwangjin-gu, Seoul, Republic of Korea
| | - Chao-Wei Huang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Bui Xuan Thanh
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology, VNU-HCM, 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, 700000, Viet Nam
| | - Ta Cong Khiem
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Siming You
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Farshid Ghanbari
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran.
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan.
| |
Collapse
|
18
|
Tuan DD, Liu WJ, Kwon E, Thanh BX, Munagapati VS, Wen JC, Lisak G, Hu C, Lin KYA. Ultrafine cobalt nanoparticle-embedded leaf-like hollow N-doped carbon as an enhanced catalyst for activating monopersulfate to degrade phenol. J Colloid Interface Sci 2022; 606:929-940. [PMID: 34487940 DOI: 10.1016/j.jcis.2021.08.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/18/2022]
Abstract
While cobalt (Co) stands out as the most effective non-precious metal for activating monopersulfate (MPS) to degrade organic pollutants, Co nanoparticles (NPs) are easily aggregated, losing their activities. As many efforts have attempted to immobilize Co NPs on supports/substrates to minimize the aggregation issue, recently hollow-structured carbon-based materials (HSCMs) have been regarded as promising supports owing to their distinct physical and chemical properties. Herein, in this study, a special HSCM is developed by using a special type of ZIF (i.e., ZIF-L) as a precursor. Through one-step chemical etching with tannic acid (TA), the resultant product still remains leaf-like morphology of pristine ZIF-L but the inner part of this product becomes hollow, which is subsequently transformed to ultrafine Co-NP embedded hollow-structured N-doped carbon (CoHNC) via pyrolysis. Interestingly, CoHNC exhibits superior catalytic activities than CoNC (without hollow structure) and the commercial Co3O4 NPs for activating MPS to degrade phenol. The Ea value of phenol degradation by CoHNC + MPS was determined as 44.3 kJ/mol. Besides, CoHNC is also capable of effectively activating MPS to degrade phenol over multiple-cycles without any significant changes of catalytic activities, indicating that CoHNC is a promising heterogeneous catalyst for activating MPS to degrade organic pollutants in water.
Collapse
Affiliation(s)
- Duong Dinh Tuan
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Wei-Jie Liu
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Eilhann Kwon
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gunja-dong, Gwangjin-gu, Seoul, Republic of Korea
| | - Bui Xuan Thanh
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology, VNU-HCM, 268 Ly Thuong Kiet, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Venkata Subbaiah Munagapati
- Research Center for Soil & Water Resources and Natural Disaster Prevention (SWAN), National Yunlin University of Science and Technology, Taiwan
| | - Jet-Chau Wen
- Research Center for Soil & Water Resources and Natural Disaster Prevention (SWAN), National Yunlin University of Science and Technology, Taiwan; Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou, Taiwan.gy, Douliou, Taiwan
| | - Grzegorz Lisak
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore; Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141 Singapore, Singapore
| | - Chechia Hu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Da'an Dist., Taipei City 106, Taiwan.
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan.
| |
Collapse
|
19
|
Direct electron transfer process-based peroxymonosulfate activation via surface labile oxygen over mullite oxide YMn2O5 for effective removal of bisphenol A. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Zhang Y, Chu W. Bisphenol S degradation via persulfate activation under UV-LED using mixed catalysts: Synergistic effect of Cu-TiO 2 and Zn-TiO 2 for catalysis. CHEMOSPHERE 2022; 286:131797. [PMID: 34426121 DOI: 10.1016/j.chemosphere.2021.131797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/22/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
A photocatalyst composed of Zn-TiO2 and Cu-TiO2 through simple physical mixing was used to activate persulfate(PS) for Bisphenol S (BPS) degradation. Zn-TiO2 and Cu-TiO2 were prepared with a sol gel method and were characterized by X-ray diffraction (XRD), Raman, Transmission electron microscope (TEM), Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The two catalysts have shown an obvious synergistic effect in the photocatalytic degradation process. When 5 mM persulfate and 0.3 g/L catalyst were used, the removal rate of mixed catalyst (0.2 g/L Zn-TiO2 and 0.1 g/L Cu-TiO2) is 100 % in 18 min, which is significantly better than that of 0.3 g/L Zn-TiO2(58 %) and 0.3 g/L Cu-TiO2(90 %). Typically, the effects of various operation parameters, including the ratio of Cu-TiO2/Zn-TiO2, catalyst dosage, persulfate dosage, initial concentration of BPS, and initial solution pH, were examined. Reactive oxygen species (ROS) in the UV/mixed catalyst/PS process was identified by scavenger and electron paramagnetic resonance (EPR) tests. The superoxide radicals generated by both Zn-TiO2 and the hydrolysis of persulfate in the system could accelerate the Cu (II)/Cu(I) redox cycles and results in the synergistic effect. This study proposed a new and effective way to improve the reaction by simply combining two catalysts, and unraveled the mechanism behind the synergistic effect, which could provide new ideas to use the catalyst more effectively for wastewater treatment or other areas.
Collapse
Affiliation(s)
- Yanlin Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Wei Chu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
21
|
Nanoneedle-Assembled Copper/Cobalt sulfides on nickel foam as an enhanced 3D hierarchical catalyst to activate monopersulfate for Rhodamine b degradation. J Colloid Interface Sci 2021; 613:168-181. [PMID: 35033763 DOI: 10.1016/j.jcis.2021.11.186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 11/22/2022]
Abstract
While metal oxides are conventionally proposed for activating monopersulfate (MPS) to degrade refractory contaminants, metal sulfides have recently gained increased attention for MPS activation because these sulfides exhibit more reactive redox characteristics to enhance the catalytic activation of MPS. The present study attempts to develop a novel material comprised of metal sulfides with 3D hierarchical nanostructures to activate MPS. Specifically, a 3D hierarchically structured catalyst was fabricated by growing CuCo-layered double hydroxide (LDH) on nickel foam (NF), followed by direct sulfurization, affording Cu/CoS@NF (CCSNF). CCSNF could exhibit a unique morphology of floral bunches comprised of nano-needles, residing on the NF surfaces. Compared with its precursor, CuCo-LDH@NF, oxide analogue, and CuCo2O4@NF, CCSNF possessed superior physical and chemical properties, including larger surface area and pore volume, higher current density, and lower charge transfer resistance. These features render CCSNF a much more effective catalyst than CuCo-LDH@NF and CuCo2O4@NF for activating MPS to degrade Rhodamine B (RB). In particular, RB degradation by CCSNF-activated MPS required an activation energy only 26.8 kJ/mol, which is much lower than the reported values. The activation mechanism and degradation pathway of RB degradation by CCSNF-activated MPS were investigated and validated through experimental evidences and density function theory calculations.
Collapse
|
22
|
Degradation of an imidazolium-based ionic liquid in water using monopersulfate catalyzed by Dahlia flower-like cobalt oxide. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Yin JY, Oh WD, Kwon E, Thanh BX, You S, Wang H, Lin KYA. Cobalt sulfide nanofilm-assembled cube as an efficient catalyst for activating monopersulfate to degrade UV filter, 4,4′-dihydroxybenzophenone, in water. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126891] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Nguyen HT, Lee J, Kwon E, Lisak G, Thanh BX, Ghanbari F, Lin KYA. Bamboo-like N-doped carbon nanotube-confined cobalt as an efficient and robust catalyst for activating monopersulfate to degrade bisphenol A. CHEMOSPHERE 2021; 279:130569. [PMID: 33901896 DOI: 10.1016/j.chemosphere.2021.130569] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/21/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
As bisphenol A (BPA) is an extensively used chemical for manufacturing plastic products, discharge of BPA into the environment has caused serious threats to ecology. Therefore, -based chemical oxidation methods have been employed for eliminating BPA. Because monopersulfate (MNP) has become a popular reagent for obtaining , and Co is the most efficient metal for activating MNP, it is critical to develop heterogeneous Co catalysts for easier implementation and recovery. Herein, a unique Co-based catalyst is proposed by utilizing tubular-structured N-doped carbon substrates, derived dicyandiamide (DCDA), to confine Co nanoparticles (NPs). Through simple pyrolysis of a mixture of Co/DCDA, DCDA would be transformed into N-doped carbon nanotubes (CNT) to wrap the resultant Co NP, and, interestingly, this N-doped CNT would exhibit a special bamboo-like morphology. More importantly, as Co NPs are mono-dispersed and singly-confined in N-doped CNTs, forming CoCNT, CoCNT exhibits significantly higher catalytic activities than Co3O4, for activating MNP to degrade BPA. The enhancement of catalytic activities in CoCNT would be possibly ascribed to the synergistic effects between Co NP and the N-doped CNT which not only acts as the support/protection but also provides active sites. Therefore, CoCNT + MNP could lead to a much lower Ea (i.e., 13.8 kJ/mol) of BPA degradation than the reported Ea values. Besides, CoCNT is still effective for eliminating BPA even in the presence of high-concentration NaCl and surfactants. CoCNT is also reusable over many cycles and retains its catalytic activity with 100% BPA removal, demonstrating that CoCNT is an advantageous and robust catalyst for MNP activation.
Collapse
Affiliation(s)
- Ha Trang Nguyen
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Jechan Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Eilhann Kwon
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gunja-dong, Gwangjin-gu, Seoul, Republic of Korea
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Bui Xuan Thanh
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology, VNU-HCM, 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, 700000, Viet Nam
| | - Farshid Ghanbari
- Department of Environmental Health Engineering, Abadan Faculty of Medical Sciences, Abadan, Iran.
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan.
| |
Collapse
|
25
|
Ye ML, Zhu Y, Lu Y, Gan L, Zhang Y, Zhao YG. Magnetic nanomaterials with unique nanozymes-like characteristics for colorimetric sensors: A review. Talanta 2021; 230:122299. [PMID: 33934768 DOI: 10.1016/j.talanta.2021.122299] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/21/2022]
Abstract
Colorimetric sensors for the rapid detection of numerous analytes have been widely applied in many fields such as biomedicine, food industry and environmental science due to their highly sensitive and selective response, easy operation and visual identification by naked eyes. In this review, the recent progress of the colorimetric sensors based on the magnetic nanomaterials with unique nanozymes-like catalytic activity (magnetic nanozyme) and their colorimetric sensing applications are presented. Emerging magnetic nanozyme-based colorimetric sensors, such as metal oxide/sulfides-based, metal-based, carbon-based, and aptamer-conjugated magnetic nanomaterials, offer many desirable features for target analytes detection. And due to the unique nanoscale physical-chemical properties, magnetic nanozymes have been used to mimic the catalytic activity of natural enzymes such as peroxidases, oxidases and catalases. This review also highlights the catalytic mechanisms of enzyme-like reactions, and promising colorimetric sensing system for the detection of chemical compounds like H2O2, pesticide, ascorbic acid, dopamine, tetracyclines, perfluorooctane sulfonate, phenolic compounds, heavy metal ion and sulfite have been deeply discussed. In addition, the remaining challenges and future directions in utilizing magnetic nanozyme for colorimetric sensors are addressed.
Collapse
Affiliation(s)
- Ming-Li Ye
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China; Department of Environmental Engineering, Wuchang University of Technology, Wuhan, 430223, China
| | - Yan Zhu
- Department of Environmental Engineering, Wuchang University of Technology, Wuhan, 430223, China
| | - Yin Lu
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Lu Gan
- Zhejiang University Hospital, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yun Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.
| | - Yong-Gang Zhao
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang, 315010, China.
| |
Collapse
|
26
|
Nguyen HT, Lee J, Kwon E, Lisak G, Thanh BX, Oh WD, Lin KYA. Metal-complexed covalent organic frameworks derived N-doped carbon nanobubble-embedded cobalt nanoparticle as a magnetic and efficient catalyst for oxone activation. J Colloid Interface Sci 2021; 591:161-172. [PMID: 33601102 DOI: 10.1016/j.jcis.2021.01.108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 11/28/2022]
Abstract
While Cobalt nanoparticles (Co NPs) are useful for catalytic Oxone activation, it is more advantageous to embed/immobilize Co NPs on nitrogen-doped carbon substrates to provide synergy for enhancing catalytic performance. Herein, this study proposes to fabricate such a composite by utilizing covalent organic frameworks (COF) as a precursor. Through complexation of COF with Co, a stable product of Co-complexed COF (Co-COF) can be synthesized. This Co-COF is further converted through pyrolysis to N-doped carbon in which cobaltic NPs are embedded. Owing to its well-defined structures of Co-COF, the pyrolysis process transforms COF into N-doped carbon with a bubble-like morphology. Such Co NP-embedded N-doped carbon nanobubbles (CoCNB) with pores, magnetism and Co, shall be a promising catalyst. Thus, CoCNB shows a much stronger catalytic activity than commercial Co3O4 NPs to activate Oxone to degrade toxic Amaranth dye (AMD). CoCNB-activated Oxone also achieves a significantly lower Ea value of AMD degradation (i.e., 27.9 kJ/mol) than reported Ea values in previous literatures. Besides, CoCNB is still effective for complete elimination of AMD in the presence of high-concentration NaCl and surfactants, and CoCNB is also reusable over five consecutive cycles.
Collapse
Affiliation(s)
- Ha Trang Nguyen
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Jechan Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Eilhann Kwon
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gunja-dong, Gwangjin-gu, Seoul, Republic of Korea
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Bui Xuan Thanh
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology, VNU-HCM, 268 Ly Thuong Kiet, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Wen Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan.
| |
Collapse
|
27
|
Zhang H, Qin J, Gao Z, Meng Q, He G, Chen H. Magnetically separable graphene-based Ni–Fe mixed metal oxide nanocubes derived from a Prussian- blue analogue: synthesis, structure and application in oxidative degradation of bisphenol A. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01827a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mixed metal oxide (MMO) nanocubes were prepared by calcining a Ni–Fe Prussian-blue analogue (Ni–Fe PBA) and then uniformly supported on reduced graphene oxide (RGO) through a simple hydrothermal reaction instead of the commonly used etching.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Advanced Catalytic Materials and Technology
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center
- Changzhou University
- Changzhou
- China
| | - Jingyu Qin
- Key Laboratory of Advanced Catalytic Materials and Technology
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center
- Changzhou University
- Changzhou
- China
| | - Zhifeng Gao
- Key Laboratory of Advanced Catalytic Materials and Technology
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center
- Changzhou University
- Changzhou
- China
| | - Qi Meng
- Key Laboratory of Advanced Catalytic Materials and Technology
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center
- Changzhou University
- Changzhou
- China
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center
- Changzhou University
- Changzhou
- China
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center
- Changzhou University
- Changzhou
- China
| |
Collapse
|
28
|
A High-Efficient Carbon-Coated Iron-Based Fenton-Like Catalyst with Enhanced Cycle Stability and Regenerative Performance. Catalysts 2020. [DOI: 10.3390/catal10121486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Carbon coated iron-based Fenton-like catalysts are now widely studied in wastewater treatment. However, their poor stability is still a big challenge and the related regenerative performance is seldom investigated. Herein, a carbon-coated Fe3O4 on carbon cloth (cc/Fe3O4@C) was prepared with glucose as carbon source via electrodeposition and ethanol solvothermal methods. An amorphous carbon layer with polar C-groups covers the surface of Fe3O4, which presents a flaky cross-linked network structure on the carbon cloth (cc). The cc/Fe3O4@C exhibits an improved catalytic activity with nearly 84% phenol was removed within 35 min with polar C-groups. What’s more, around 80% phenol can still be degraded in 120 min after 14 degradation cycles. After the regeneration treatment, the degradation performance was restored to the level of the fresh in the first two regenerations. The enhanced cycle stability and regeneration performance of the catalyst are as follows: Firstly, the catalyst’s composition and structure were recovered; Secondly, the reduction effect of the amorphous carbon layer ensuring timely supplement of Fe2+ from Fe3+. Also, the carbon layer reduces Fe leaching during the Fenton-like process.
Collapse
|
29
|
Yu J, Cao J, Yang Z, Xiong W, Xu Z, Song P, Jia M, Sun S, Zhang Y, Zhu J. One-step synthesis of Mn-doped MIL-53(Fe) for synergistically enhanced generation of sulfate radicals towards tetracycline degradation. J Colloid Interface Sci 2020; 580:470-479. [PMID: 32711198 DOI: 10.1016/j.jcis.2020.07.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/29/2022]
Abstract
Herein, Mn-doped MIL-53(Fe) were fabricated via one-pot solvothermal method and used for peroxymonosulfate (PMS) activation towards tetracycline (TC) degradation from aqueous solution. The characterizations of SEM, FTIR and XRD were utilized to reveal the morphology and structure of the materials. The results showed that Mn-MIL-53(Fe)-0.3 displayed the optimal catalytic performance, the removal efficiency of TC could reach 93.2%. Moreover, the catalytic activity of Mn-MIL-53(Fe) towards TC under different initial pH values, co-existing anions (Cl-,CO32- and SO42-) and humic acid (HA) were investigated. The results of thermodynamic experiment suggested that the catalytic process was endothermic. In addition, integrated with capture experiments results and the characterization results of electron paramagnetic resonance (EPR), which revealed that SO4·- and HO- were the reactive radicals involving in the reaction. More importantly, the possible activation mechanism was discussed in detail based on the X-ray photoelectron spectroscopy results. The active species were generated by the active sites of Fe(II) and Mn(II) on Mn-MIL-53(Fe) effectively activated PMS. Furthermore, the degradation intermediates and possible degradation pathway were investigated by LC-MS. Finally, the catalyst also showed good performance in actual wastewater and demonstrated good recyclability. The Mn-MIL-53(Fe)/PMS system exhibited a promising application prospect for antibiotic-containing waste water treatment.
Collapse
|
30
|
Li MC, Ghanbari F, Chang FC, Hu C, Lin KYA, Du Y. Enhanced degradation of 5-sulfosalicylic acid using peroxymonosulfate activated by ordered porous silica-confined Co3O4 prepared via a solvent-free confined space strategy. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116972] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Li MH, Da Oh W, Lin KYA, Hung C, Hu C, Du Y. Development of 3-dimensional Co 3O 4 catalysts with various morphologies for activation of Oxone to degrade 5-sulfosalicylic acid in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138032. [PMID: 32408427 DOI: 10.1016/j.scitotenv.2020.138032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Since 5-sulfosalicylic acid (SFA) has been increasingly released to the environment, SO4--based oxidation processes using Oxone have been considered as useful methods to eliminate SFA. As Co3O4 has been a promising material for OX activation, the four 3D Co3O4 catalysts with distinct morphologies, including Co3O4-C (with cubes), Co3O4-P (with plates), Co3O4-N (with needles) and Co3O4-F (with floral structures), are fabricated for activating OX to degrade SFA. In particular, Co3O4-F not only exhibits the highest surface area but also possesses the abundant Co2+ and more reactive surface, making Co3O4-F the most advantageous 3D Co3O4 catalyst for OX activation to degrade SFA. The mechanism of SFA by this 3D Co3O4/OX is also investigated and the corresponding SFA degradation pathway has been elucidated. The catalytic activities of Co3O4 catalysts can be correlated to physical and chemical properties which were associated with particular morphologies to provide insights into design of 3D Co3O4-based catalysts for OX-based technology to degrade emerging contaminants, such as SFA.
Collapse
Affiliation(s)
- Mei-Hsuan Li
- Department of Environmental Engineering, Innovation and Development Center of Sustainable Agriculture, Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Wen Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, Innovation and Development Center of Sustainable Agriculture, Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan.
| | - Ching Hung
- Department of Civil Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Chechia Hu
- Department of Chemical Engineering, R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli Dist., Taoyuan City 32023, Taiwan.
| | - Yunchen Du
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
32
|
Chen Y, Zeng Z, Li Y, Liu Y, Chen Y, Wu Y, Zhang J, Li H, Xu R, Wang S, Peng Z. Glucose enhanced the oxidation performance of iron-manganese binary oxides: Structure and mechanism of removing tetracycline. J Colloid Interface Sci 2020; 573:287-298. [PMID: 32283417 DOI: 10.1016/j.jcis.2020.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/30/2022]
Abstract
In this work, iron-manganese binary oxides (FMO) modified with different proportions of glucose addition (FMOCx) by co-precipitation method showed good activity in activating hydrogen peroxide (H2O2) for tetracycline degradation. The structure and surface characterizations of the FMO and FMOCx were measured by XRD, FTIR, TEM, BET and XPS. With increased glucose addition, FMOCx has more surface functional groups such as -OH and -COOH, particle size decreases, surface area gradually increases, and the ratio of high valence iron and manganese also increases. In addition, the glucose might be oxidized by KMnO4 to form amorphous carbon on the catalyst surface. Glucose modified iron-manganese binary oxides FMOC3 (with 0.003 mol glucose added) showed the highest efficiency removal capability for tetracycline up to 85%, which attribute to it has a larger surface area, more surface functional groups and higher surface active Mn(IV) site content. The results also demonstrated that FMOC3 could efficiently activate hydrogen peroxide. This study proves that glucose modified iron-manganese binary oxides (FMOCx) can offered a possibility of degradation of refractory organic pollutants as an environmentally friendly catalyst in the absence of H2O2 or not.
Collapse
Affiliation(s)
- Yaoning Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Ziping Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yuanping Li
- College of Municipal and Mapping Engineering, Hunan City University, Yiyang, Hunan 413000, China.
| | - Yihuan Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yanrong Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yanxin Wu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Hui Li
- Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, China
| | - Ran Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Sha Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhen Peng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
33
|
Li MH, Lin KYA, Yang MT, Thanh BX, Tsang DCW. Prussian Blue Analogue-derived co/fe bimetallic nanoparticles immobilized on S/N-doped carbon sheet as a magnetic heterogeneous catalyst for activating peroxymonosulfate in water. CHEMOSPHERE 2020; 244:125444. [PMID: 31812052 DOI: 10.1016/j.chemosphere.2019.125444] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/29/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
While Co is the most effective metal for activating PMS, extensive efforts are made to develop Co/Fe species (CF) (e.g., CoFe2O4) for imparting magnetic properties and facilitating recovery of catalysts. When carbon substrates are doped with heteroatoms (e.g., S and N) and CF is embedded within the heteroatom-doped carbon matrix, synergies can occur to boost catalytic activities. This study proposes an alternative CF-bearing carbonaceous composite, a cobalt-containing Prussian Blue Analogue (PBA) (Co3[Fe(CN)6]2) is employed as a precursor for preparing CF species embedded in N-doped carbon matrix and immobilized on S/N-co-doped carbon (SNC). Specifically, PBA in-situ grows on SNC by a heat treatment of trithiocyanuric acid to form PBA@SNC, which is then carbonized into CF species@SNC (CF@SNC). By adopting Amaranth degradation as a model reaction, CF@SNC shows a higher catalytic activity (kapp = 0.230 min-1) than CF (kapp = 0.152 min-1) and SNC (kapp = 0.016 min-1) for activating PMS. In comparison with Co3O4, CF@SNC exhibits a higher catalytic activity for PMS activation. CF@SNC renders a relatively low Ea value (53 kJ/mol) for Amaranth degradation in comparison to other reported catalysts. These comparisons demonstrate the advantageous features of CF@SNC as a magnetic and efficient catalyst for PMS activation.
Collapse
Affiliation(s)
- Mei-Hsuan Li
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan.
| | - Ming-Tong Yang
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Bui Xuan Thanh
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology, VNU-HCM, 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, 700000, Viet Nam.
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
34
|
Mei Y, Zeng J, Sun M, Ma J, Komarneni S. A novel Fenton-like system of Fe2O3 and NaHSO3 for Orange II degradation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115866] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Deshpande NG, Ahn CH, Kim DS, Jung SH, Kim YB, Cho HK. Bifunctional reusable Co0.5Ni0.5Fe2O4 nanoparticle-grafted carbon nanotubes for aqueous dye removal from contaminated water. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01057j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Highly stable and reusable CNF-grafted CNTs for efficient and effective aqueous dye removal from contaminated waters.
Collapse
Affiliation(s)
- Nishad G. Deshpande
- School of Advanced Materials Science and Engineering
- Sungkyunkwan University
- Suwon
- Republic of Korea
| | - Cheol Hyoun Ahn
- School of Advanced Materials Science and Engineering
- Sungkyunkwan University
- Suwon
- Republic of Korea
| | - Dong Su Kim
- School of Advanced Materials Science and Engineering
- Sungkyunkwan University
- Suwon
- Republic of Korea
| | - Sung Hyeon Jung
- School of Advanced Materials Science and Engineering
- Sungkyunkwan University
- Suwon
- Republic of Korea
| | - Young Been Kim
- School of Advanced Materials Science and Engineering
- Sungkyunkwan University
- Suwon
- Republic of Korea
| | - Hyung Koun Cho
- School of Advanced Materials Science and Engineering
- Sungkyunkwan University
- Suwon
- Republic of Korea
| |
Collapse
|
36
|
Miao J, Li J, Dai J, Guan D, Zhou C, Zhou W, Duan X, Wang S, Shao Z. Postsynthesis Oxygen Nonstoichiometric Regulation: A New Strategy for Performance Enhancement of Perovskites in Advanced Oxidation. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05550] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jie Miao
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Pu Zhu Nan Road, Nanjing 210009, P. R. China
| | - Jiang Li
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Pu Zhu Nan Road, Nanjing 210009, P. R. China
| | - Jie Dai
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Pu Zhu Nan Road, Nanjing 210009, P. R. China
| | - Daqin Guan
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Pu Zhu Nan Road, Nanjing 210009, P. R. China
| | - Chuan Zhou
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Pu Zhu Nan Road, Nanjing 210009, P. R. China
| | - Wei Zhou
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Pu Zhu Nan Road, Nanjing 210009, P. R. China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Zongping Shao
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Pu Zhu Nan Road, Nanjing 210009, P. R. China
- Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
37
|
Use of an Environmental Pollutant From Hexavalent Chromium Removal as a Green Catalyst in The Fenton Process. Sci Rep 2019; 9:12819. [PMID: 31492935 PMCID: PMC6731299 DOI: 10.1038/s41598-019-49196-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/20/2019] [Indexed: 11/08/2022] Open
Abstract
The present study refers to the use of an environmental pollutant generated during the removal of hexavalent chromium from aqueous media. This pollutant is a material with catalytic properties suitable for application in the oxidative degradation of problematic organic compounds. The material, initially used as an adsorbent, is a composite prepared by modifying the crystalline phases of iron oxides together with the chitosan (CT-FeCr). Chemical and morphological characterizations of the materials were performed using SEM analysis coupled with EDS, XRD and DSC. The CT-FeCr beads were used in the degradation of methylene blue dye (MB) and showed excellent degradation potential (93.6%). The presence of Cr on the surface of the catalyst was responsible for the increase in catalytic activity compared to the CT-Fe and pure magnetite materials. The product of the effluent treatment and the presence of the catalyst itself in the environment do not pose toxic effects. In addition, the CT-FeCr beads showed catalytic stability for several consecutive reaction cycles with possible technical and economic viability. The concept of "industrial symbiosis" may be applied to this technology, with that term relating to the reuse of a byproduct generated in one particular industrial sector by another as a raw material.
Collapse
|
38
|
Zhou H, Wu S, Zhou Y, Yang Y, Zhang J, Luo L, Duan X, Wang S, Wang L, Tsang DCW. Insights into the oxidation of organic contaminants by iron nanoparticles encapsulated within boron and nitrogen co-doped carbon nanoshell: Catalyzed Fenton-like reaction at natural pH. ENVIRONMENT INTERNATIONAL 2019; 128:77-88. [PMID: 31029982 DOI: 10.1016/j.envint.2019.04.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/17/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Iron nanoparticles encapsulated within boron and nitrogen co-doped carbon nanoshell (B/N-C@Fe) were synthesized through a novel and green pyrolysis process using melamine, boric acid, and ferric nitrate as the precursors. The surface morphology, structure, and composition of the B/N-C@Fe materials were thoroughly investigated. The materials were employed as novel catalysts for the activation of potassium monopersulfate triple salt (PMS) for the degradation of levofloxacin (LFX). Linear sweep voltammograms and quenching experiments were used to identify the mechanisms of PMS activation and LFX oxidation by B/N-C@Fe, where SO4- as well as HO were proved to be the main radicals for the reaction processes. This study also discussed how the fluvic acid and inorganic anions in the aqueous solutions affected the degradation of LFX and use this method to simulate the degradation in the real wastewater. The synthesized materials showed a high efficiency (85.5% of LFX was degraded), outstanding stability, and excellent reusability (77.7% of LFX was degraded in the 5th run) in the Fenton-like reaction of LFX. In view of these advantages, B/N-C@Fe have great potentials as novel strategic materials for environmental catalysis.
Collapse
Affiliation(s)
- Hao Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shikang Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Lei Wang
- Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin St, Sheffield S1 3JD, United Kingdom; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
39
|
Yang MT, Du Y, Tong WC, Yip ACK, Lin KYA. Cobalt-impregnated biochar produced from CO 2-mediated pyrolysis of Co/lignin as an enhanced catalyst for activating peroxymonosulfate to degrade acetaminophen. CHEMOSPHERE 2019; 226:924-933. [PMID: 31509922 DOI: 10.1016/j.chemosphere.2019.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 06/10/2023]
Abstract
-While sulfate radical (SO4-)-based processes are useful to degrade acetaminophen (ACE), studies of using peroxymonosulfate (PMS) to degrade ACE are quite limited. In addition, although Co is validated as the most effective metal for activating PMS, very few Co catalysts have been developed and investigated for activating PMS to degrade ACE. Since carbon is a promising substrate to support Co nanoparticles (NPs) to form Co/carbon composite catalysts, most existing carbon substrates require delicate fabrications. As biochar is an easy-to-obtain but versatile carbon material, pyrolysis of Co/lignin affords an advantageous Co-impregnated biochar (CoIB) as an attractive catalyst for PMS activation. Specifically, as CO2 substitutes N2 as a reaction medium for pyrolysis of Co/lignin, the syngas production from pyrolysis can be substantially improved and a magnetic CoIB is afforded. This CoIB consists of evenly-distributed Co nanoparticles (NPs) impregnated in carbon matrices of biochar, and possesses several superior characteristics, such as high porosity, large surface area and magnetism, enabling CoIB a promising catalyst for activating PMS to degrade ACE. CoIB also shows a much higher catalytic activity of PMS activation than CoIBN2, and Co3O4 for degrading ACE. CoIB is also recyclable for activating PMS to effectively degrade ACE for multiple cycles. The ACE degradation pathway by this CoIB-activated PMS is proposed according to the degradation products. These findings validate that CoIB is assuredly an advantageous heterogeneous catalyst, which can be easily prepared from pyrolysis of Co/lignin in CO2 with concomitant enhanced syngas production for effectively activating PMS to degrade ACE.
Collapse
Affiliation(s)
- Ming-Tong Yang
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Yunchen Du
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
| | - Wai-Chi Tong
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Alex C K Yip
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand.
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan.
| |
Collapse
|
40
|
Rodríguez-Chueca J, García-Cañibano C, Lepistö RJ, Encinas Á, Pellinen J, Marugán J. Intensification of UV-C tertiary treatment: Disinfection and removal of micropollutants by sulfate radical based Advanced Oxidation Processes. JOURNAL OF HAZARDOUS MATERIALS 2019; 372:94-102. [PMID: 29728280 DOI: 10.1016/j.jhazmat.2018.04.044] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
This study explores the enhancement of UV-C tertiary treatment by sulfate radical based Advanced Oxidation Processes (SR-AOPs), including photolytic activation of peroxymonosulfate (PMS) and persulfate (PS) and their photocatalytic activation using Fe(II). Their efficiency was assessed both for the inactivation of microorganisms and the removal or micropollutants (MPs) in real wastewater treatment plant effluents. Under the studied experimental range (UV-C dose 5.7-57 J/L; UV-C contact time 3 to 28 s), the photolysis of PMS and PS (0.01 mM) increased up to 25% the bacterial removal regarding to UV-C system. The photolytic activation of PMS led to the total inactivation of bacteria (≈ 5.70 log) with the highest UV-C dose (57 J/L). However, these conditions were insufficient to remove the MPs, being required oxidant's dosages of 5 mM to remove above 90% of carbamazepine, diclofenac, atenolol and triclosan. The best efficiencies were achieved by the combination of PMS or PS with Fe(II), leading to the total removal of the MPs using a low UV-C dosage (19 J/L), UV-C contact time (9 s) and reagent's dosages (0.5 mM). Finally, high mineralization was reached (>50%) with photocatalytic activation of PMS and PS even with low reagent's dosages.
Collapse
Affiliation(s)
- J Rodríguez-Chueca
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933, Móstoles, Madrid, Spain; Department of Chemical and Environmental Engineering, Technical University of Madrid, (UPM), C/ José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - C García-Cañibano
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933, Móstoles, Madrid, Spain
| | - R-J Lepistö
- Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, FI-15140 Lahti, Finland
| | - Á Encinas
- Department of Innovation & Technology, FCC Aqualia, S.A., C/ Montesinos 28, 06002, Badajoz, Spain
| | - J Pellinen
- Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, FI-15140 Lahti, Finland
| | - J Marugán
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933, Móstoles, Madrid, Spain.
| |
Collapse
|
41
|
CO2 as a reaction medium for pyrolysis of lignin leading to magnetic cobalt-embedded biochar as an enhanced catalyst for Oxone activation. J Colloid Interface Sci 2019; 545:16-24. [DOI: 10.1016/j.jcis.2019.02.090] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 11/19/2022]
|
42
|
Cherifi Y, Addad A, Vezin H, Barras A, Ouddane B, Chaouchi A, Szunerits S, Boukherroub R. PMS activation using reduced graphene oxide under sonication: Efficient metal-free catalytic system for the degradation of rhodamine B, bisphenol A, and tetracycline. ULTRASONICS SONOCHEMISTRY 2019; 52:164-175. [PMID: 30477793 DOI: 10.1016/j.ultsonch.2018.11.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/27/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
This study addresses the influence of ultrasound irradiation on the activation of peroxymonosulfate (PMS) using reduced graphene oxide (rGO) under metal-free conditions for the catalytic degradation of rhodamine B (RhB), bisphenol A (BPA) and tetracycline (TC). Our results revealed that the combination of PMS/rGO and ultrasonication enhanced significantly the degradation rate, reaching full degradation in relatively short times with total organic carbon (TOC) removal exceeding 85% of the investigated pollutants. In contrast, under these experimental conditions, rGO/ultrasound and PMS/ultrasound achieved less than 20% degradation of the same pollutants. Electron paramagnetic resonance (EPR) studies along with quenching experiments suggested that hydroxyl radicals (OH) are the dominant reactive species in the degradation process. Furthermore, inductively coupled plasma atomic emission spectroscopy (ICP-AES) and EPR data revealed the presence of trace manganese (Mn) in rGO. To elucidate the role of Mn on the degradation process, rGO was subjected to hot acid treatment for 48 h to remove trace Mn. While the chemical composition of rGO was not significantly altered by this chemical treatment, the degradation efficiency decreased upon Mn dissolution. The result suggests that trace metal in rGO might account for the efficiency of PMS activation. Finally, plausible degradation pathways were proposed based on LC-MS analysis of the reaction intermediates.
Collapse
Affiliation(s)
- Yacine Cherifi
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, F-59000 Lille, France; Laboratoire de Chimie Appliquée et Génie Chimique de l'Université Mouloud Mammeri de Tizi-Ouzou, Algeria
| | - Ahmed Addad
- Univ. Lille, CNRS, UMR 8207 - UMET, F-59000 Lille, France
| | - Hervé Vezin
- Univ. Lille, UMR CNRS 8516-LASIR Laboratoire de Spectrochimie Infrarouge et Raman 59655 Villeneuve d'Ascq, France
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, F-59000 Lille, France
| | - Baghdad Ouddane
- Univ. Lille, UMR CNRS 8516-LASIR Laboratoire de Spectrochimie Infrarouge et Raman 59655 Villeneuve d'Ascq, France
| | - Ahcène Chaouchi
- Laboratoire de Chimie Appliquée et Génie Chimique de l'Université Mouloud Mammeri de Tizi-Ouzou, Algeria
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, F-59000 Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, F-59000 Lille, France.
| |
Collapse
|
43
|
Peroxymonosulfate-based cleaning technology for metal oxide-coated ceramic ultrafiltration membrane polluted by Alcian Blue 8GX dye: Radical and non-radical oxidation cleaning mechanism. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.057] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
44
|
Chaibakhsh N, Moradi-Shoeili Z. Enzyme mimetic activities of spinel substituted nanoferrites (MFe 2O 4): A review of synthesis, mechanism and potential applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1424-1447. [PMID: 30889678 DOI: 10.1016/j.msec.2019.02.086] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 02/07/2023]
Abstract
Recently, the intrinsic enzyme-like activities of some nanoscale materials known as "nanozymes" have become a growing area of interest. Nanosized spinel substituted ferrites (SFs) with general formula of MFe2O4, where M represents a transition metal, are among a group of magnetic nanomaterials attracting researchers' enormous attention because of their excellent catalytic performance, biomedical applications and capability for environmental remediation. Due to their unique nanoscale physical-chemical properties, they have been used to mimic the catalytic activity of natural enzymes such as peroxidases, oxidases and catalases. In addition, various nanocomposite materials based on SFs have been introduced as novel artificial enzymes. This review mainly highlights the synthetic approaches for newly developed SF-nanozymes and also the structural/experimental factors that are effective on the kinetics and catalytic mechanisms of enzyme-like reactions. SF-nanozymes have been found potentially capable of being applied in various fields such as enzyme-free immunoassays and biosensors for colorimetric detection of biological molecules. Therefore, the application of SF nanoparticles, as efficient enzyme mimetics have been detailed discussed.
Collapse
Affiliation(s)
- Naz Chaibakhsh
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht 41996-13776, Iran.
| | - Zeinab Moradi-Shoeili
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht 41996-13776, Iran.
| |
Collapse
|
45
|
Rodríguez-Chueca J, Varella Della Giustina S, Rocha J, Fernandes T, Pablos C, Encinas Á, Barceló D, Rodríguez-Mozaz S, Manaia CM, Marugán J. Assessment of full-scale tertiary wastewater treatment by UV-C based-AOPs: Removal or persistence of antibiotics and antibiotic resistance genes? THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:1051-1061. [PMID: 30586792 DOI: 10.1016/j.scitotenv.2018.10.223] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/04/2018] [Accepted: 10/16/2018] [Indexed: 06/09/2023]
Abstract
This research reports for the first time the full-scale application of different homogeneous Advanced Oxidation Processes (AOPs) (H2O2/UV-C, PMS/UV-C and PMS/Fe(II)/UV-C) for the removal of antibiotics (ABs) and antibiotic resistance genes (ARGs) from wastewater effluent at Estiviel wastewater treatment plant (WWTP) (Toledo, Spain). AOPs based on the photolytic decomposition of H2O2 and peroxymonosulfate tested at low dosages (0.05-0.5 mM) and with very low UV-C contact time (4-18 s) demonstrated to be more efficient than UV-C radiation alone on the removal of the analyzed ABs. PMS (0.5 mM) combined with UV-C (7 s contact time) was the most efficient treatment in terms of AB removal: 7 out of 10 ABs detected in the wastewater were removed more efficiently than using the other oxidants. In terms of ARGs removal efficiency, UV-C alone seemed the most efficient treatment, although H2O2/UV-C, PMS/UV-C and PMS/Fe(II)/UV-C were supposed to generate higher concentrations of free radicals. The results show that treatments with the highest removal of ABs and ARGs did not coincide, which could be attributed to the competition between DNA and oxidants in the absorption of UV photons, reducing the direct photolysis of the DNA. Whereas the photolytic ABs removal is improved by the generation of hydroxyl and sulfate radicals, the opposite behavior occurs in the case of ARGs. These results suggest that a compromise between ABs and ARGs removal must be achieved in order to optimize wastewater treatment processes.
Collapse
Affiliation(s)
- Jorge Rodríguez-Chueca
- Department of Chemical and Environmental Technology (ESCET), Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933, Móstoles, Madrid, Spain; Department of Chemical and Environmental Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/ José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Saulo Varella Della Giustina
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, 17003 Girona, Spain
| | - Jaqueline Rocha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Telma Fernandes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Cristina Pablos
- Department of Chemical and Environmental Technology (ESCET), Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933, Móstoles, Madrid, Spain
| | - Ángel Encinas
- Department of Innovation & Technology, FCC Aqualia, S.A., C/ Montesinos 28, 06002 Badajoz, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, 17003 Girona, Spain; Environmental Chemistry Department, IDAEA-CSIC, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, 17003 Girona, Spain
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Javier Marugán
- Department of Chemical and Environmental Technology (ESCET), Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933, Móstoles, Madrid, Spain.
| |
Collapse
|
46
|
Yang MT, Zhang ZY, Lin KYA. One-step fabrication of cobalt-embedded carbon nitride as a magnetic and efficient heterogeneous catalyst for activating oxone to degrade pollutants in water. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.07.086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Prussian Blue analogue supported on sulfur-doped carbon nitride as an enhanced heterogeneous catalyst for activating peroxymonosulfate. J Colloid Interface Sci 2018; 529:161-170. [DOI: 10.1016/j.jcis.2018.05.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 11/20/2022]
|
48
|
Lin KYA, Yang MT, Lin JT, Du Y. Cobalt ferrite nanoparticles supported on electrospun carbon fiber as a magnetic heterogeneous catalyst for activating peroxymonosulfate. CHEMOSPHERE 2018; 208:502-511. [PMID: 29886339 DOI: 10.1016/j.chemosphere.2018.05.127] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/04/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Cobalt ferrite (CF) nanoparticle (NP) represents a promising alternative to Co3O4 NP for peroxymonosulfate (PMS) activation in view of its strong magnetism for easy recovery. As CF NPs in water are prone to agglomerate, a few attempts have been made to immobilize CF NPs on substrates. While carbonaceous supports are more favorable owing to their earth abundancy, the study of carbon-supported CF for PMS activation is limited to graphene-based CF, which, however, requires complicated protocols to prepare. As carbon-supported CF, by straightforward preparation, is still greatly desired, this study aims to employ electrospinning techniques for preparing carbon-supported CF by carbonizing an electrospun CF-embedded polyacrylonitrile (PAN) fiber. After carbonization, the CF-PAN fiber is converted into CF-embedded carbon nanofiber (CF@CNF), which contains well distributed CF NPs, high magnetism and stable carbon support, making CF@CNF a highly promising catalyst for activating PMS. As amaranth decolorization is used as a model reaction, CF@CNF is able to activate PMS for generating sulfate radicals and then decolorize amaranth in water. Amaranth decolorization by CF@CNF-PMS is also substantially facilitated at elevated temperature, and enhanced under the weakly acidic condition. CF@CNF also remains effective to activate PMS even in the presence of salts and surfactants, and re-usable over multiple cycles. Compared to other reported catalysts, CF@CNF also exhibited a much lower Ea value (35.8 kJ/mol) for amaranth decolorization. These features validate that CF@CNF is an advantageous and convenient catalyst for activating PMS.
Collapse
Affiliation(s)
- Kun-Yi Andrew Lin
- Department of Environmental Engineering, Taiwan; Research Center of Sustainable Energy and Nanotechnology, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan.
| | | | | | - Yunchen Du
- Department of Chemistry, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
49
|
Marković M, Marinović S, Mudrinić T, Mojović Z, Ajduković M, Milutinović-Nikolić A, Banković P. Cobalt impregnated pillared montmorillonite in the peroxymonosulfate induced catalytic oxidation of tartrazine. REACTION KINETICS MECHANISMS AND CATALYSIS 2018. [DOI: 10.1007/s11144-018-1466-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Vetr F, Moradi-Shoeili Z, Özkar S. Oxidation of o-phenylenediamine to 2,3-diaminophenazine in the presence of cubic ferrites MFe2
O4
(M = Mn, Co, Ni, Zn) and the application in colorimetric detection of H2
O2. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4465] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fahime Vetr
- Department of Chemistry, Faculty of Sciences; University of Guilan; P.O. Box 41335-1914 Rasht Iran
| | - Zeinab Moradi-Shoeili
- Department of Chemistry, Faculty of Sciences; University of Guilan; P.O. Box 41335-1914 Rasht Iran
| | - Saim Özkar
- Department of Chemistry; Middle East Technical University; 06800 Ankara Turkey
| |
Collapse
|