1
|
Kübelbeck T, Wichmann NO, Raj T, Raj C, Ohnmacht C, Hövelmeyer N, Kramer D, Heissmeyer V. Regulation and Function of the Atypical IκBs-Bcl-3, IκB NS, and IκBζ-in Lymphocytes and Autoimmunity. Eur J Immunol 2025; 55:e202451273. [PMID: 40359334 PMCID: PMC12074568 DOI: 10.1002/eji.202451273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025]
Abstract
Signaling pathways involving NF-κB transcription factors have essential roles in inflammation, immunity, cell proliferation, differentiation, and survival. Classical IκB proteins, such as IκBα and IκBβ, bind to NF-κB via ankyrin repeats to sequester NF-κB in the cytoplasm and thus suppress NF-κB activity. Unlike these constitutively expressed classical IκBs, the expression of the atypical IκBs Bcl-3, IκBNS, and IκBζ is induced in immune cells after recognition of antigens, pathogen-associated molecular patterns (PAMPs) or cytokines, upon which they localize to the nucleus and form complexes with transcription factors and regulators on the DNA. Atypical, nuclear IκBs have been proposed to modulate NF-κB activity in a context-dependent manner as they can either inhibit or increase gene expression of a subset of NF-κB target genes. This complexity may be related to the molecular function of atypical IκBs, which bind to different transcription factor complexes and form a bridge to different cofactors or epigenetic modifiers. Recent research has identified novel target genes of atypical IκBs that include chemokines, cytokines, and master regulators of lymphocyte differentiation, underscoring prominent roles in adaptive immune and autoimmune responses. Here, we summarize our current understanding of atypical IκBs in lymphocytes with a focus on their emerging role in autoimmunity.
Collapse
Affiliation(s)
- Tanja Kübelbeck
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg‐University of MainzMainzGermany
| | - Nina Olivera Wichmann
- Center of Allergy and Environment (ZAUM)Technical University and Helmholtz Zentrum MünchenMunichGermany
| | - Timsse Raj
- Institute for Immunology, Biomedical Center (BMC), Faculty of MedicineLudwig‐Maximilians‐Universität in MunichPlanegg‐MartinsriedGermany
| | - Cynthia Raj
- Institute for Molecular Medicine MainzUniversity Medical Center of the Johannes Gutenberg‐University MainzMainzGermany
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM)Technical University and Helmholtz Zentrum MünchenMunichGermany
| | - Nadine Hövelmeyer
- Institute for Molecular Medicine MainzUniversity Medical Center of the Johannes Gutenberg‐University MainzMainzGermany
- Research Centre for Immunotherapy (FZI)University Medical Center of the Johannes Gutenberg‐University MainzMainzGermany
| | - Daniela Kramer
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg‐University of MainzMainzGermany
- Research Centre for Immunotherapy (FZI)University Medical Center of the Johannes Gutenberg‐University MainzMainzGermany
| | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center (BMC), Faculty of MedicineLudwig‐Maximilians‐Universität in MunichPlanegg‐MartinsriedGermany
- Research Unit Molecular Immune RegulationMolecular Targets and Therapeutics CenterHelmholtz Zentrum MünchenMunichGermany
| |
Collapse
|
2
|
Mathuram TL. GSK-3: An "Ace" Among Kinases. Cancer Biother Radiopharm 2024; 39:619-631. [PMID: 38746994 DOI: 10.1089/cbr.2024.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024] Open
Abstract
Background: Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase known to participate in the regulation of β-catenin signaling (Wnt signaling). This aids in the establishment of a multicomponent destruction complex that stimulates phosphorylation, leading to the destruction of β-catenin. Evidence about the role of increasingly active β-catenin signaling is involved in many forms of human cancer. The understanding of GSK-3 remains elusive as recent research aims to focus on developing potent GSK-3 inhibitors to target this kinase. Objective: This short review aims to highlight the regulation of GSK-3 with emphasis on Wnt signaling while highlighting its interaction with miRNAs corresponding to pluripotency and epithelial mesenchymal transition substantiating this kinase as an "Ace" among kinases in regulation of cellular processes. Result: Significant findings of miRNA regulation by GSK-3 exemplify the underpinnings of kinase-mediated transcriptional regulation in cancers. Conclusion: The review provides evidence on the role of GSK-3 as a possible master regulator of proteins and noncoding RNA, thereby implicating the fate of a cell.
Collapse
|
3
|
Zhao Z, Yuan Y, Li S, Wang X, Yang X. Natural compounds from herbs and nutraceuticals as glycogen synthase kinase-3β inhibitors in Alzheimer's disease treatment. CNS Neurosci Ther 2024; 30:e14885. [PMID: 39129397 PMCID: PMC11317746 DOI: 10.1111/cns.14885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/21/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) pathogenesis is complex. The pathophysiology is not fully understood, and safe and effective treatments are needed. Glycogen synthase kinase 3β (GSK-3β) mediates AD progression through several signaling pathways. Recently, several studies have found that various natural compounds from herbs and nutraceuticals can significantly improve AD symptoms. AIMS This review aims to provide a comprehensive summary of the potential neuroprotective impacts of natural compounds as inhibitors of GSK-3β in the treatment of AD. MATERIALS AND METHODS We conducted a systematic literature search on PubMed, ScienceDirect, Web of Science, and Google Scholar, focusing on in vitro and in vivo studies that investigated natural compounds as inhibitors of GSK-3β in the treatment of AD. RESULTS The mechanism may be related to GSK-3β activation inhibition to regulate amyloid beta production, tau protein hyperphosphorylation, cell apoptosis, and cellular inflammation. By reviewing recent studies on GSK-3β inhibition in phytochemicals and AD intervention, flavonoids including oxyphylla A, quercetin, morin, icariin, linarin, genipin, and isoorientin were reported as potent GSK-3β inhibitors for AD treatment. Polyphenols such as schisandrin B, magnolol, and dieckol have inhibitory effects on GSK-3β in AD models, including in vivo models. Sulforaphene, ginsenoside Rd, gypenoside XVII, falcarindiol, epibrassinolides, 1,8-Cineole, and andrographolide are promising GSK-3β inhibitors. CONCLUSIONS Natural compounds from herbs and nutraceuticals are potential candidates for AD treatment. They may qualify as derivatives for development as promising compounds that provide enhanced pharmacological characteristics.
Collapse
Affiliation(s)
- Zheng Zhao
- Department of Emergency MedicineShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Ye Yuan
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Shuang Li
- Department of Emergency MedicineShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xiaofeng Wang
- Department of Emergency MedicineShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xue Yang
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
4
|
Rafiq A, Aashaq S, Jan I, Ali M, Rakshan R, Bashir A, Haq E, Beigh MA. GSK3β phosphorylates Six1 transcription factor and regulates its APC/C Cdh1 mediated proteosomal degradation. Cell Signal 2024; 115:111030. [PMID: 38163577 DOI: 10.1016/j.cellsig.2023.111030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Sine oculis homeobox homolog 1 (Six1) is a developmentally important transcription factor that regulates cellular proliferation, apoptosis, and dissemination during embryogenesis. Six1 overexpression as reported in multiple cancers modulates expression of a repertoire of its target genes causing an increase in proliferation, metastasis and survival of cancer cells. Six1 exists as a cell cycle regulated nuclear phosphoprotein and its cellular turnover is regulated by APC/C (Anaphase promoting complex / Cyclosome) complex mediated proteolysis. However, the kinases that regulate Six1 proteolysis have not been identified and the mechanistic details that cause its overproduction in various cancers are lacking. Here, we report that Six1 is a physiological GSK3β substrate. GSK3β interacts with Six1 and phosphorylates it at Ser221 within the conserved consensus sequence in its carboxy terminus. Using pharmacological inhibition, siRNA mediated knockdown and protein overexpression of GSK3β; we show that GSK3β regulates Six1 protein stability. Pulse chase analysis of Six1 revealed that GSK3β regulates its ubiquitin proteolysis such that Six1 phosphomimicking mutant (Six1S221E) for Ser221 site had dramatically increased half-life than its phosphodeficient (Six1S221A) and wild type variants. Furthermore, we demonstrate that GSK3β rescues Six1 from APC dependent proteolysis by regulating its binding with APC/C co-activator protein Cdh1. Importantly, strong positive correlation exists between GSK3β and Six1 protein levels throughout the cell cycle and in multiple cancers indicating that GSK3β activation may in part contribute to Six1 overproduction in a subset of human cancers.
Collapse
Affiliation(s)
- Asma Rafiq
- Department of Nanotechnology, School of Biological Sciences, University of Kashmir-, Srinagar 190006, India
| | - Sabreena Aashaq
- Department of Nanotechnology, School of Biological Sciences, University of Kashmir-, Srinagar 190006, India; Department of Immunology and Molecular Medicine, SKIMS, Srinagar 190011, India
| | - Iqra Jan
- Department of Nanotechnology, School of Biological Sciences, University of Kashmir-, Srinagar 190006, India
| | - Mahvish Ali
- Department of Nanotechnology, School of Biological Sciences, University of Kashmir-, Srinagar 190006, India
| | - Rabia Rakshan
- Department of Nanotechnology, School of Biological Sciences, University of Kashmir-, Srinagar 190006, India
| | - Asma Bashir
- Faculty of Biology, Fatima College of Health Sciences, Al-Raqaib 2, Ajman 3798, United Arab Emirates
| | - Ehtishamul Haq
- Department of Biotechnology, School of Biological Sciences, University of Kashmir-, Srinagar 190006, India
| | - Mushtaq A Beigh
- Department of Nanotechnology, School of Biological Sciences, University of Kashmir-, Srinagar 190006, India.
| |
Collapse
|
5
|
Fernandes R, Barbosa-Matos C, Borges-Pereira C, de Carvalho ALRT, Costa S. Glycogen Synthase Kinase-3 Inhibition by CHIR99021 Promotes Alveolar Epithelial Cell Proliferation and Lung Regeneration in the Lipopolysaccharide-Induced Acute Lung Injury Mouse Model. Int J Mol Sci 2024; 25:1279. [PMID: 38279281 PMCID: PMC10816825 DOI: 10.3390/ijms25021279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening lung injury that currently lacks effective clinical treatments. Evidence highlights the potential role of glycogen synthase kinase-3 (GSK-3) inhibition in mitigating severe inflammation. The inhibition of GSK-3α/β by CHIR99021 promoted fetal lung progenitor proliferation and maturation of alveolar epithelial cells (AECs). The precise impact of CHIR99021 in lung repair and regeneration during acute lung injury (ALI) remains unexplored. This study intends to elucidate the influence of CHIR99021 on AEC behaviour during the peak of the inflammatory phase of ALI and, after its attenuation, during the repair and regeneration stage. Furthermore, a long-term evaluation was conducted post CHIR99021 treatment at a late phase of the disease. Our results disclosed the role of GSK-3α/β inhibition in promoting AECI and AECII proliferation. Later administration of CHIR99021 during ALI progression contributed to the transdifferentiation of AECII into AECI and an AECI/AECII increase, suggesting its contribution to the renewal of the alveolar epithelial population and lung regeneration. This effect was confirmed to be maintained histologically in the long term. These findings underscore the potential of targeted therapies that modulate GSK-3α/β inhibition, offering innovative approaches for managing acute lung diseases, mostly in later stages where no treatment is available.
Collapse
Affiliation(s)
- Raquel Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (R.F.); (C.B.-M.); (C.B.-P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga, Portugal
| | - Catarina Barbosa-Matos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (R.F.); (C.B.-M.); (C.B.-P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga, Portugal
| | - Caroline Borges-Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (R.F.); (C.B.-M.); (C.B.-P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga, Portugal
| | - Ana Luísa Rodrigues Toste de Carvalho
- Department of Internal Medicine, São João Universitary Hospital Center, 4200-319 Porto, Portugal;
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Sandra Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (R.F.); (C.B.-M.); (C.B.-P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga, Portugal
| |
Collapse
|
6
|
Seaton G, Smith H, Brancale A, Westwell AD, Clarkson R. Multifaceted roles for BCL3 in cancer: a proto-oncogene comes of age. Mol Cancer 2024; 23:7. [PMID: 38195591 PMCID: PMC10775530 DOI: 10.1186/s12943-023-01922-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
In the early 1990's a group of unrelated genes were identified from the sites of recurring translocations in B-cell lymphomas. Despite sharing the nomenclature 'Bcl', and an association with blood-borne cancer, these genes have unrelated functions. Of these genes, BCL2 is best known as a key cancer target involved in the regulation of caspases and other cell viability mechanisms. BCL3 on the other hand was originally identified as a non-canonical regulator of NF-kB transcription factor pathways - a signaling mechanism associated with important cell outcomes including many of the hallmarks of cancer. Most of the early investigations into BCL3 function have since focused on its role in NF-kB mediated cell proliferation, inflammation/immunity and cancer. However, recent evidence is coming to light that this protein directly interacts with and modulates a number of other signaling pathways including DNA damage repair, WNT/β-catenin, AKT, TGFβ/SMAD3 and STAT3 - all of which have key roles in cancer development, metastatic progression and treatment of solid tumours. Here we review the direct evidence demonstrating BCL3's central role in a transcriptional network of signaling pathways that modulate cancer biology and treatment response in a range of solid tumour types and propose common mechanisms of action of BCL3 which may be exploited in the future to target its oncogenic effects for patient benefit.
Collapse
Affiliation(s)
- Gillian Seaton
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Hannah Smith
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Andrea Brancale
- UCT Prague, Technická 5, 166 28, 6 - Dejvice, IČO: 60461337, Prague, Czech Republic
| | - Andrew D Westwell
- Cardiff University School of Pharmacy and Pharmaceutical Sciences, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Richard Clarkson
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
7
|
Parker C, Chambers AC, Flanagan DJ, Ho JWY, Collard TJ, Ngo G, Baird DM, Timms P, Morgan RG, Sansom OJ, Williams AC. BCL-3 loss sensitises colorectal cancer cells to DNA damage by targeting homologous recombination. DNA Repair (Amst) 2022; 115:103331. [PMID: 35468497 PMCID: PMC10618080 DOI: 10.1016/j.dnarep.2022.103331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/28/2022] [Accepted: 04/13/2022] [Indexed: 11/11/2022]
Abstract
The proto-oncogene BCL-3 is upregulated in a subset of colorectal cancers (CRC), where it has been shown to enhance tumour cell survival. However, although increased expression correlates with poor patient prognosis, the role of BCL-3 in determining therapeutic response remains largely unknown. In this study, we use combined approaches in multiple cell lines and pre-clinical mouse models to investigate the function of BCL-3 in the DNA damage response. We show that suppression of BCL-3 increases γH2AX foci formation and decreases homologous recombination in CRC cells, resulting in reduced RAD51 foci number and increased sensitivity to PARP inhibition. Importantly, a similar phenotype is seen in Bcl3-/- mice, where Bcl3-/- mouse crypts also exhibit sensitivity to DNA damage with increased γH2AX foci compared to wild type mice. Additionally, Apc.Kras-mutant x Bcl3-/- mice are more sensitive to cisplatin chemotherapy compared to wild type mice. Taken together, our results identify BCL-3 as a regulator of the cellular response to DNA damage and suggests that elevated BCL-3 expression, as observed in CRC, could increase resistance of tumour cells to DNA damaging agents including radiotherapy. These findings offer a rationale for targeting BCL-3 in CRC as an adjunct to conventional therapies and suggest that BCL-3 expression in tumours could be a useful biomarker in stratification of rectal cancer patients for neo-adjuvant chemoradiotherapy.
Collapse
Affiliation(s)
- Christopher Parker
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Adam C Chambers
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK.
| | - Dustin J Flanagan
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD UK; Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Jasmine Wing Yu Ho
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD UK
| | - Tracey J Collard
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Greg Ngo
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN UK
| | - Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN UK
| | - Penny Timms
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Rhys G Morgan
- School of Life Sciences, University of Sussex, Sussex House, Falmer, Brighton BN1 9RH UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD UK
| | - Ann C Williams
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
8
|
Carr D, Zein A, Coulombe J, Jiang T, Cabrita MA, Ward G, Daneshmand M, Sau A, Pratt MAC. Multiple roles for Bcl-3 in mammary gland branching, stromal collagen invasion, involution and tumor pathology. Breast Cancer Res 2022; 24:40. [PMID: 35681213 PMCID: PMC9185916 DOI: 10.1186/s13058-022-01536-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Bcl-3 protein is an atypical member of the inhibitor of -κB family that has dual roles as a transcriptional repressor and a coactivator for dimers of NF-κB p50 and p52. Bcl-3 is expressed in mammary adenocarcinomas and can promote tumorigenesis and survival signaling and has a key role in tumor metastasis. In this study, we have investigated the role of Bcl-3 in the normal mammary gland and impact on tumor pathology. METHODS We utilized bcl-3-/- mice to study mammary gland structure in virgins and during gestation, lactation and early involution. Expression of involution-associated genes and proteins and putative Bcl-3 target genes was examined by qRT-PCR and immunoblot analysis. Cell autonomous branching morphogenesis and collagen I invasion properties of bcl-3-/- organoids were tested in 3D hydrogel cultures. The role of Bcl-3 in tumorigenesis and tumor pathology was also assessed using a stochastic carcinogen-induced mammary tumor model. RESULTS Bcl-3-/- mammary glands demonstrated reduced branching complexity in virgin and pregnant mice. This defect was recapitulated in vitro where significant defects in bud formation were observed in bcl-3-/- mammary organoid cultures. Bcl-3-/- organoids showed a striking defect in protrusive collective fibrillary collagen I invasion associated with reduced expression of Fzd1 and Twist2. Virgin and pregnant bcl-3-/- glands showed increased apoptosis and rapid increases in lysosomal cell death and apoptosis after forced weaning compared to WT mice. Bcl-2 and Id3 are strongly induced in WT but not bcl-3-/- glands in early involution. Tumors in WT mice were predominately adenocarcinomas with NF-κB activation, while bcl-3-/- lesions were largely squamous lacking NF-κB and with low Bcl-2 expression. CONCLUSIONS Collectively, our results demonstrate that Bcl-3 has a key function in mammary gland branching morphogenesis, in part by regulation of genes involved in extracellular matrix invasion. Markedly reduced levels of pro-survival proteins expression in bcl-3 null compared to WT glands 24 h post-weaning indicate that Bcl-3 has a role in moderating the rate of early phase involution. Lastly, a reduced incidence of bcl-3-/- mammary adenocarcinomas versus squamous lesions indicates that Bcl-3 supports the progression of epithelial but not metaplastic cancers.
Collapse
Affiliation(s)
- David Carr
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Aiman Zein
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Josée Coulombe
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Tianqi Jiang
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Miguel A Cabrita
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Gwendoline Ward
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Manijeh Daneshmand
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Andrea Sau
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - M A Christine Pratt
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
9
|
Liu H, Zeng L, Yang Y, Guo C, Wang H. Bcl-3: A Double-Edged Sword in Immune Cells and Inflammation. Front Immunol 2022; 13:847699. [PMID: 35355979 PMCID: PMC8959985 DOI: 10.3389/fimmu.2022.847699] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/21/2022] [Indexed: 12/21/2022] Open
Abstract
The NF-κB transcription factor family controls the transcription of many genes and regulates a number of pivotal biological processes. Its activity is regulated by the IκB family of proteins. Bcl-3 is an atypical member of the IκB protein family that regulates the activity of nuclear factor NF-κB. It can promote or inhibit the expression of NF-κB target genes according to the received cell type and stimulation, impacting various cell functions, such as proliferation and differentiation, induction of apoptosis and immune response. Bcl-3 is also regarded as an environment-dependent cell response regulator that has dual roles in the development of B cells and the differentiation, survival and proliferation of Th cells. Moreover, it also showed a contradictory role in inflammation. At present, in addition to the work aimed at studying the molecular mechanism of Bcl-3, an increasing number of studies have focused on the effects of Bcl-3 on inflammation, immunity and malignant tumors in vivo. In this review, we focus on the latest progress of Bcl-3 in the regulation of the NF-κB pathway and its extensive physiological role in inflammation and immune cells, which may help to provide new ideas and targets for the early diagnosis or targeted treatment of various inflammatory diseases, immunodeficiency diseases and malignant tumors.
Collapse
Affiliation(s)
- Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lin Zeng
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunlei Guo
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
10
|
Ghosh G, Wang VYF. Origin of the Functional Distinctiveness of NF-κB/p52. Front Cell Dev Biol 2021; 9:764164. [PMID: 34888310 PMCID: PMC8650618 DOI: 10.3389/fcell.2021.764164] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
The transcription regulators of the NF-κB family have emerged as a critical factor affecting the function of various adult tissues. The NF-κB family transcription factors are homo- and heterodimers made up of five monomers (p50, p52, RelA, cRel and RelB). The family is distinguished by sequence homology in their DNA binding and dimerization domains, which enables them to bind similar DNA response elements and participate in similar biological programs through transcriptional activation and repression of hundreds of genes. Even though the family members are closely related in terms of sequence and function, they all display distinct activities. In this review, we discuss the sequence characteristics, protein and DNA interactions, and pathogenic involvement of one member of family, NF-κB/p52, relative to that of other members. We pinpoint the small sequence variations within the conserved region that are mostly responsible for its distinct functional properties.
Collapse
Affiliation(s)
- Gourisankar Ghosh
- Department of Biochemistry, University of California, San Diego, San Diego, CA, United States
| | - Vivien Ya-Fan Wang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
11
|
Turnham DJ, Yang WW, Davies J, Varnava A, Ridley AJ, Conlan RS, Clarkson RWE. Bcl-3 promotes multi-modal tumour cell migration via NF-κB1 mediated regulation of Cdc42. Carcinogenesis 2021; 41:1432-1443. [PMID: 31957805 DOI: 10.1093/carcin/bgaa005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/21/2019] [Accepted: 01/15/2020] [Indexed: 12/21/2022] Open
Abstract
A key challenge in the implementation of anti-metastatics as cancer therapies is the multi-modal nature of cell migration, which allows tumour cells to evade the targeted inhibition of specific cell motility pathways. The nuclear factor-kappaB (NF-κB) co-factor B-cell lymphoma 3 (Bcl-3) has been implicated in breast cancer cell migration and metastasis, yet it remains to be determined exactly which cell motility pathways are controlled by Bcl-3 and whether migrating tumour cells are able to evade Bcl-3 intervention. Addressing these questions and the mechanism underpinning Bcl-3's role in this process would help determine its potential as a therapeutic target. Here we identify Bcl-3 as an upstream regulator of the two principal forms of breast cancer cell motility, involving collective and single-cell migration. This was found to be mediated by the master regulator Cdc42 through binding of the NF-κB transcription factor p50 to the Cdc42 promoter. Notably, Bcl-3 depletion inhibited both stable and transitory motility phenotypes in breast cancer cells with no evidence of migratory adaptation. Overexpression of Bcl-3 enhanced migration and increased metastatic tumour burden of breast cancer cells in vivo, whereas overexpression of a mutant Bcl-3 protein, which is unable to bind p50, suppressed cell migration and metastatic tumour burden suggesting that disruption of Bcl-3/NF-κB complexes is sufficient to inhibit metastasis. These findings identify a novel role for Bcl-3 in intrinsic and adaptive multi-modal cell migration mediated by its direct regulation of the Rho GTPase Cdc42 and identify the upstream Bcl-3:p50 transcription complex as a potential therapeutic target for metastatic disease.
Collapse
Affiliation(s)
- Daniel J Turnham
- European Cancer Stem Cell Research Institute, School of Bioscience, Cardiff University, Cardiff, UK
| | - William W Yang
- Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - Julia Davies
- Swansea University Medical School, Singleton Park, Swansea, UK
| | - Athina Varnava
- European Cancer Stem Cell Research Institute, School of Bioscience, Cardiff University, Cardiff, UK
| | - Anne J Ridley
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK
| | - R Steven Conlan
- Swansea University Medical School, Singleton Park, Swansea, UK
| | - Richard W E Clarkson
- European Cancer Stem Cell Research Institute, School of Bioscience, Cardiff University, Cardiff, UK
| |
Collapse
|
12
|
Tang W, Saret S, Tian R, Wang H, Claudio E, Murphy PM, Siebenlist U. Bcl-3 suppresses differentiation of RORγt + regulatory T cells. Immunol Cell Biol 2021; 99:586-595. [PMID: 33525048 PMCID: PMC11005920 DOI: 10.1111/imcb.12441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/27/2022]
Abstract
Regulatory T cells (Tregs) exert inhibitory function under various physiological conditions and adopt diverse characteristics following environmental cues. Multiple subsets of Tregs expressing master transcription factors of helper T cells such as RORγt, T-bet, Gata3 and PPARγ have been characterized, but the molecular mechanism governing the differentiation of these subsets remains largely unknown. Here we report that the atypical IκB protein family member Bcl-3 suppresses RORγt+ Treg accumulation. The suppressive effect of Bcl-3 was particularly evident in the mouse immune tolerance model of anti-CD3 therapy. Using conditional knockout mice, we illustrate that loss of Bcl-3 specifically in Tregs was sufficient to boost RORγt+ Treg formation and resistance of mice to dextran sulfate sodium-induced colitis. We further demonstrate the suppressive effect of Bcl-3 on RORγt+ Treg differentiation in vitro. Our results reveal a novel role of nuclear factor-kappa B signaling pathways in Treg subset differentiation that may have clinical implications in immunotherapy.
Collapse
Affiliation(s)
- Wanhu Tang
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sun Saret
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ruxiao Tian
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hongshan Wang
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Estefania Claudio
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Philip M. Murphy
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Pankratova EV, Portseva TN, Makarova AA, Ilyin YV, Stepchenko AG, Georgieva SG. GSK3 Kinase Inhibitor, CHIR, Suppress Transcription of Tissue Specific POU2F1 Isoform in Burkitt Namalwa Lymphoma Cells. DOKL BIOCHEM BIOPHYS 2021; 496:32-35. [PMID: 33689071 PMCID: PMC7946658 DOI: 10.1134/s1607672921010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/22/2022]
Abstract
POU2F1 (Oct-1) is a transcription factor, the overexpression of which is found in many human malignant tumors; a significant increase in its level in cells determines the malignant potential of the tumor. POU2F1 is represented in cells by several isoforms that are transcribed from alternative promoters. In Burkitt's B-cell lymphoma Namalwa, the concentration of tissue-specific isoform Oct-1L is several times higher than in normal B cells. We tested the potential to inhibit the transcription of individual Oct-1 isoforms using the GSK3 kinase inhibitor CHIR, an aminopyrimidine derivative. We have shown that CHIR specifically affects the expression of the tissue-specific isoform Oct-1L, significantly reducing the level of mRNA and Oct-1L protein. However, CHIR does not change the amount of mRNA and protein of the ubiquitous isoform Oct-1A in Namalwa tumor cells. The results obtained show that it is possible to develop a system for selective inhibition of Oct-1 transcription factor isoforms in human cells to suppress drug resistance of tumor cells with a high POU2F1 content.
Collapse
Affiliation(s)
- E V Pankratova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - T N Portseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - A A Makarova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yu V Ilyin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - A G Stepchenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - S G Georgieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
14
|
Carcinoma-Associated Fibroblasts Promote Growth of Sox2-Expressing Breast Cancer Cells. Cancers (Basel) 2020; 12:cancers12113435. [PMID: 33228022 PMCID: PMC7699386 DOI: 10.3390/cancers12113435] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The tumor microenvironment has a strong impact on the behavior of tumor cells. One major cell type residing in the tumor microenvironment is the carcinoma-associated fibroblast (CAF). We were interested in the effect of CAFs on Sox2 (sex determining region Y (SRY)-box 2), which not only is an essential embryonal stem cell transcription factor, but also plays a role in cancer stem cell activity. We found that long-term exposure of ERα-positive breast cancer cells to the cocktail of CAF-secreted factors strongly increased Sox2 expression involving tumor-related proteins and signaling pathways. However, Sox2 was not only present in those tumor cells that express stem cell markers, but was equally abundant in other tumor cells. By being widely expressed, Sox2 may have functions in non-stem cells. In fact, Sox2 was found to regulate ERα expression, to act anti-apoptotically, to promote cellular growth and to protect cells against the anti-estrogen fulvestrant. Abstract CAFs (Carcinoma-associated fibroblasts) play an important role in cancer progression. For instance, they promote resistance to anti-estrogens, such as fulvestrant. Here, we show that, in ERα-positive breast cancer cell lines, the cocktail of factors secreted by CAFs (CAF-CM) induce the expression of the embryonal stem cell transcription factor Sox2 (sex determining region Y (SRY)-box 2). Long-term exposure to CAF-CM was able to give rise to very high Sox2 levels both in the absence and presence of fulvestrant. IL-6 (interleukin-6), a major component of CAF-CM, failed to raise Sox2 expression. In MCF-7 sublines established in the presence of CAF-CM, almost all cells showed Sox2 expression, whereas long-term treatment of T47D cells with CAF-CM resulted in a ~60-fold increase in the proportions of two distinct populations of Sox2 high and low expresser cells. Exposure of BT474 cells to CAF-CM raised the fraction of Sox2 high expresser cells by ~3-fold. Cell sorting based on CD44 and CD24 expression or ALDH (aldehyde dehydrogenase) activity revealed that most Sox2 high expresser cells were not CD44hi/CD24lo- or ALDH-positive cells suggesting that they were not CSCs (cancer stem cells), though CD44 played a role in Sox2 expression. Functionally, Sox2 was found to protect CAF-CM-treated cells against apoptosis and to allow higher growth activity in the presence of fulvestrant. Mechanistically, the key drivers of Sox2 expression was found to be STAT3 (Signal transducer and activator of transcription 3), Bcl-3 (B-cell lymphoma 3) and the PI3K (Phosphoinositide 3-kinase)/AKT pathway, whose activities/expression can all be upregulated by CAF-CM. These data suggest that CAF-CM induces Sox2 expression in non-CSCs by activating proteins involved in growth control and drug resistance, leading to higher protection against apoptosis.
Collapse
|
15
|
Pittman GS, Wang X, Campbell MR, Coulter SJ, Olson JR, Pavuk M, Birnbaum LS, Bell DA. Dioxin-like compound exposures and DNA methylation in the Anniston Community Health Survey Phase II. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140424. [PMID: 32629249 PMCID: PMC7574543 DOI: 10.1016/j.scitotenv.2020.140424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/30/2020] [Accepted: 06/20/2020] [Indexed: 05/26/2023]
Abstract
The Anniston Community Health Survey (ACHS-I) was initially conducted from 2005 to 2007 to assess polychlorinated biphenyl (PCB) exposures in Anniston, Alabama residents. In 2014, a follow-up study (ACHS-II) was conducted to measure the same PCBs as in ACHS-I and additional compounds e.g., polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin-like non-ortho (cPCBs) substituted PCBs. In this epigenome-wide association study (EWAS), we examined the associations between PCDD, PCDF, and PCB exposures and DNA methylation. Whole blood DNA methylation was measured using Illumina EPIC arrays (n=292). We modeled lipid-adjusted toxic equivalencies (TEQs) for: ΣDioxins (sum of 28 PCDDs, PCDFs, cPCBs, and mPCBs), PCDDs, PCDFs, cPCBs, and mPCBs using robust multivariable linear regression adjusting for age, race, sex, smoking, bisulfite conversion batch, and estimated percentages of six blood cell types. Among all exposures we identified 10 genome-wide (Bonferroni p≤6.74E-08) and 116 FDR (p≤5.00E-02) significant associations representing 10 and 113 unique CpGs, respectively. Of the 10 genome-wide associations, seven (70%) occurred in the PCDDs and four (40%) of these associations had an absolute differential methylation ≥1.00%, based on the methylation difference between the highest and lowest exposure quartiles. Most of the associations (six, 60%) represented hypomethylation changes. Of the 10 unique CpGs, eight (80%) were in genes shown to be associated with dioxins and/or PCBs based on data from the 2019 Comparative Toxicogenomics Database. In this study, we have identified a set of CpGs in blood DNA that may be particularly susceptible to dioxin, furan, and dioxin-like PCB exposures.
Collapse
Affiliation(s)
- Gary S Pittman
- National Institute of Environmental Health Sciences-National Institutes of Health, Research Triangle Park, NC 27709, United States of America
| | - Xuting Wang
- National Institute of Environmental Health Sciences-National Institutes of Health, Research Triangle Park, NC 27709, United States of America.
| | - Michelle R Campbell
- National Institute of Environmental Health Sciences-National Institutes of Health, Research Triangle Park, NC 27709, United States of America.
| | - Sherry J Coulter
- National Institute of Environmental Health Sciences-National Institutes of Health, Research Triangle Park, NC 27709, United States of America.
| | - James R Olson
- University at Buffalo, Buffalo, NY 14214, United States of America.
| | - Marian Pavuk
- Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA 30341, United States of America.
| | - Linda S Birnbaum
- National Institute of Environmental Health Sciences-National Institutes of Health, Research Triangle Park, NC 27709, United States of America.
| | - Douglas A Bell
- National Institute of Environmental Health Sciences-National Institutes of Health, Research Triangle Park, NC 27709, United States of America.
| |
Collapse
|
16
|
Sun D, Zhao Y, Wang W, Guan C, Hu Z, Liu L, Jiang X. PCAT1 induced by transcription factor YY1 promotes cholangiocarcinoma proliferation, migration and invasion by sponging miR-216a-3p to up-regulate oncogene BCL3. Biol Chem 2020; 402:207-219. [PMID: 33544468 DOI: 10.1515/hsz-2020-0276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/12/2020] [Indexed: 01/14/2023]
Abstract
This study was designed to illustrate the function and role of PCAT1 in CCA. The relative expression was confirmed by RT-qPCR and western blot. The biological function of PCAT1 was evaluated by CCK8, EdU, colony formation, wound healing, transwell, and subcutaneous tumor formation assays. Protein levels of EMT markers were measured by western blot. The binding relationship was predicted by JASPAR and starBase. The binding of YY1 to PCAT1 promoter was assessed by ChIP and luciferase reporter. The binding capacity between miR-216a-3p and PCAT1 as well as BCL3 was assessed by luciferase reporter and AGO2-RIP assays. In this study, we found that PCAT1 was up-regulated in CCA tissues and cells, and the PCAT1 overexpression was associated with poor prognosis. Moreover, PCAT1 was assessed as an independent risk factor of prognosis for CCA patients. Amplified PCAT1 was found to promote tumor proliferation, migration, invasion and EMT process, whereas PCAT1 knockdown inhibited these malignant phenotypes. Mechanistically, PCAT1 was predominantly localized in the cytoplasm and competitively bound miR-216a-3p to increase BCL3 expression. In addition, PCAT1 was activated by transcription factor YY1. This study revealed that PCAT1 acted as an oncogene in CCA, and the YY1/PCAT1/miR-216a-3p/BCL3 axis exhibited critical functions in CCA progression.
Collapse
Affiliation(s)
- Dongsheng Sun
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, No. 148 BaoJian-ro, Harbin150086, Heilongjiang, China
| | - Yuqiao Zhao
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, No. 148 BaoJian-ro, Harbin150086, Heilongjiang, China
| | - Weina Wang
- Department of Anesthesiology,The 2nd Affiliated Hospital of Harbin Medical University, No. 148 BaoJian-ro, Harbin150086, Heilongjiang, China
| | - Canghai Guan
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, No. 148 BaoJian-ro, Harbin150086, Heilongjiang, China
| | - Zengtao Hu
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, No. 148 BaoJian-ro, Harbin150086, Heilongjiang, China
| | - Lang Liu
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, No. 148 BaoJian-ro, Harbin150086, Heilongjiang, China
| | - Xingming Jiang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, No. 148 BaoJian-ro, Harbin150086, Heilongjiang, China
| |
Collapse
|
17
|
Natarajan U, Venkatesan T, Dhandayuthapani S, Dondapatti P, Rathinavelu A. Differential mechanisms involved in RG-7388 and Nutlin-3 induced cell death in SJSA-1 osteosarcoma cells. Cell Signal 2020; 75:109742. [PMID: 32827690 DOI: 10.1016/j.cellsig.2020.109742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 11/17/2022]
Abstract
Targeted therapy is becoming the mainstay of cancer treatment due to reduced side effects and enhanced tumor attack. In the last few decades, Murine Double Minute 2 (MDM2) protein has become one of the targets for developing cancer therapies. Blocking MDM2-p53 interaction has long been considered to offer a broad range of advantages during cancer treatment. In this study, we are reporting the differential mechanism of cell death induced by the two small-molecule inhibitors, named RG-7388 and Nutlin-3, that are specific for MDM2 in SJSA-1 Osteosarcoma cells (OS). Mechanistically, RG-7388 was able to enhance the phosphorylation of Mcl-1, which appears to significantly enhance its degradation, thereby relieving the pro-apoptotic protein Bak to execute the apoptosis mechanism. It was noted that the untreated SJSA-1 cells showed an accumulation of Mcl-1 levels, which was decreased following RG-7388 and to a lesser extent by Nutlin-3 and GSK-3β (glycogen synthase kinase 3β) inhibitor treatments. Additionally, we noted that CHIR-99021 (GSK-3β inhibitor) blocked the cytotoxicity exerted by RG-7388 on SJSA-1 cells by decreasing Bak levels. Since Bak is an important pro-apoptotic protein, we hypothesized that phosphorylation of Mcl-1 by GSK-3β could negatively impact the Mcl-1/Bak dimerization and relieve Bak to trigger the loss of mitochondrial membrane potential and thereby initiates apoptosis. We also observed that inhibition of GSK-3β mediated reduction in Bak levels had a protective effect on the mitochondrial membrane integrity, and thus, caused a significant inhibition of the caspase-3 activity and PARP cleavage. Nutlin-3, on the other hand, appears to increase the levels of Bax, leading to the inactivation of Bcl-2, consequently loss of mitochondrial membrane potential and release of Cytochrome c (Cyt c) and elevation of Apaf-1 triggering apoptosis. Thus, to the best of our knowledge, this is the first study that delineates the differences in the molecular mechanism involving two MDM2 inhibitors triggering apoptosis through parallel pathways in SJSA-1 cells. This study further opens new avenues for the use of RG-7388 in treating osteosarcomas that often becomes resistant to chemotherapy due to Bcl-2 overexpression.
Collapse
Affiliation(s)
- Umamaheswari Natarajan
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA
| | - Thiagarajan Venkatesan
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA
| | - Sivanesan Dhandayuthapani
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA
| | - Priya Dondapatti
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA
| | - Appu Rathinavelu
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA; College of Pharmacy, Health Professions Division, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA.
| |
Collapse
|
18
|
Legge DN, Chambers AC, Parker CT, Timms P, Collard TJ, Williams AC. The role of B-Cell Lymphoma-3 (BCL-3) in enabling the hallmarks of cancer: implications for the treatment of colorectal carcinogenesis. Carcinogenesis 2020; 41:249-256. [PMID: 31930327 PMCID: PMC7221501 DOI: 10.1093/carcin/bgaa003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/29/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
With its identification as a proto-oncogene in chronic lymphocytic leukaemia and central role in regulating NF-κB signalling, it is perhaps not surprising that there have been an increasing number of studies in recent years investigating the role of BCL-3 (B-Cell Chronic Lymphocytic Leukaemia/Lymphoma-3) in a wide range of human cancers. Importantly, this work has begun to shed light on our mechanistic understanding of the function of BCL-3 in tumour promotion and progression. Here, we summarize the current understanding of BCL-3 function in relation to the characteristics or traits associated with tumourigenesis, termed ‘Hallmarks of Cancer’. With the focus on colorectal cancer, a major cause of cancer related mortality in the UK, we describe the evidence that potentially explains why increased BCL-3 expression is associated with poor prognosis in colorectal cancer. As well as promoting tumour cell proliferation, survival, invasion and metastasis, a key emerging function of this proto-oncogene is the regulation of the tumour response to inflammation. We suggest that BCL-3 represents an exciting new route for targeting the Hallmarks of Cancer; in particular by limiting the impact of the enabling hallmarks of tumour promoting inflammation and cell plasticity. As BCL-3 has been reported to promote the stem-like potential of cancer cells, we suggest that targeting BCL-3 could increase the tumour response to conventional treatment, reduce the chance of relapse and hence improve the prognosis for cancer patients.
Collapse
Affiliation(s)
- Danny N Legge
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - Adam C Chambers
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - Christopher T Parker
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - Penny Timms
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - Tracey J Collard
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - Ann C Williams
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK
| |
Collapse
|
19
|
Chen X, Wang C, Jiang Y, Wang Q, Tao Y, Zhang H, Zhao Y, Hu Y, Li C, Ye D, Liu D, Jiang W, Chin EY, Chen S, Liu Y, Wang M, Liu S, Zhang X. Bcl-3 promotes Wnt signaling by maintaining the acetylation of β-catenin at lysine 49 in colorectal cancer. Signal Transduct Target Ther 2020; 5:52. [PMID: 32355204 PMCID: PMC7193563 DOI: 10.1038/s41392-020-0138-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/24/2019] [Accepted: 02/18/2020] [Indexed: 11/09/2022] Open
Abstract
Wnt/β-catenin signaling plays a critical role in colorectal cancer (CRC) tumorigenesis and the homeostasis of colorectal cancer stem cells (CSCs), but its molecular mechanism remains unclear. B-cell lymphoma 3 (Bcl-3), a member of the IκB family, is overexpressed in CRC and promotes tumorigenicity. Here, we report a novel function of Bcl-3 in maintaining colorectal CSC homeostasis by activating Wnt/β-catenin signaling. Silencing Bcl-3 suppresses the self-renewal capacity of colorectal CSCs and sensitizes CRC cells to chemotherapeutic drugs through a decrease in Wnt/β-catenin signaling. Moreover, our data show that Bcl-3 is a crucial component of Wnt/β-catenin signaling and is essential for β-catenin transcriptional activity in CRC cells. Interestingly, Wnt3a increases the level and nuclear translocation of Bcl-3, which binds directly to β-catenin and enhances the acetylation of β-catenin at lysine 49 (Ac-K49-β-catenin) and transcriptional activity. Bcl-3 depletion decreases the Ac-K49-β-catenin level by increasing the level of histone deacetylase 1 to remove acetyl groups from β-catenin, thus interrupting Wnt/β-catenin activity. In CRC clinical specimens, Bcl-3 expression negatively correlates with the overall survival of CRC patients. A significantly positive correlation was found between the expression of Bcl-3 and Ac-K49-β-catenin. Collectively, our data reveal that Bcl-3 plays a crucial role in CRC chemoresistance and colorectal CSC maintenance via its modulation of the Ac-K49-β-catenin, which serves as a promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Xi Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Chen Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Yuhang Jiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
| | - Qi Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Yu Tao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
| | - Haohao Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
| | - Yongxu Zhao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Yiming Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
| | - Cuifeng Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
| | - Deji Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Dandan Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Wenxia Jiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Eugene Y Chin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Sheng Chen
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yongzhong Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Mingliang Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Sanhong Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China.
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| | - Xiaoren Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China.
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China.
| |
Collapse
|
20
|
GSK3: A Kinase Balancing Promotion and Resolution of Inflammation. Cells 2020; 9:cells9040820. [PMID: 32231133 PMCID: PMC7226814 DOI: 10.3390/cells9040820] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
GSK3 has been implicated for years in the regulation of inflammation and addressed in a plethora of scientific reports using a variety of experimental (disease) models and approaches. However, the specific role of GSK3 in the inflammatory process is still not fully understood and controversially discussed. Following a detailed overview of structure, function, and various regulatory levels, this review focusses on the immunoregulatory functions of GSK3, including the current knowledge obtained from animal models. Its impact on pro-inflammatory cytokine/chemokine profiles, bacterial/viral infections, and the modulation of associated pro-inflammatory transcriptional and signaling pathways is discussed. Moreover, GSK3 contributes to the resolution of inflammation on multiple levels, e.g., via the regulation of pro-resolving mediators, the clearance of apoptotic immune cells, and tissue repair processes. The influence of GSK3 on the development of different forms of stimulation tolerance is also addressed. Collectively, the role of GSK3 as a kinase balancing the initiation/perpetuation and the amelioration/resolution of inflammation is highlighted.
Collapse
|
21
|
Manna D, Bhuyan R, Saikh F, Ghosh S, Basak J, Ghosh R. Novel 1,4-dihydropyridine induces apoptosis in human cancer cells through overexpression of Sirtuin1. Apoptosis 2019; 23:532-553. [PMID: 30203236 DOI: 10.1007/s10495-018-1483-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
1,4-Dihydropyridines (1,4-DHPs) are important as a class of heterocyclic compounds that exhibit wide range of biological actions. Many of its derivatives are already characterized as medicinally important drugs and used worldwide. In this study, we have screened some novel Hantzsch 1,4-DHP compounds using both in silico (QSAR and Pharmacophore) and in vitro (cytotoxic screening). 1,4-DHP showed selective cytotoxicity against five human cancerous cell lines; A375, A549, HeLa, HepG2 and SH-SY5Y but limited effect towards normal skin keratinocyte (HaCaT), lung fibroblast (WL-38) and healthy peripheral blood mononuclear cells. In A375 and HepG2 cells, one of the 1,4-DHP derivative (DHP-8) was found to inhibit cell proliferation, and simultaneously increased the apoptotic population as well as mitochondrial membrane depolarization. Furthermore, the mitochondrial signal was triggered with the activation of cleaved Caspase9, Caspase3 and PARP. The treatment with DHP-8 also increased the expression level of SIRT1, subsequently decreasing the level of pAKTser473 and survivin. Reduced pAKTser473 expression led to decrease the phosphorylated inactive form of GSK3βser9 and as a result, proteasomal degradation of Mcl-1 occurred in both the cell lines. Here, we suggest that the apoptotic effect of DHP-8 in A375 and HepG2 cells was mediated by AKT and survivin pathways through SIRT1 activation. The involvement of DHP-8 in SIRT1 activation was further verified by co-treatment of nicotinamide with DHP-8 in both A375 and HepG2 cells. Overall, this study emphasizes the possible potential and therapeutic role of DHP-8 in skin and liver cancer.
Collapse
Affiliation(s)
- Debashri Manna
- Department of Biochemistry and Biophysics, University of Kalyani, Nadia, Kalyani, West Bengal, 741235, India
| | - Rajabrata Bhuyan
- Department of Biochemistry and Biophysics, University of Kalyani, Nadia, Kalyani, West Bengal, 741235, India
| | - Forid Saikh
- Department of Chemistry, Organic Section, Jadavpur University, Kolkata, West Bengal, 700032, India.,Kharagpur College, Kharagpur, West Bengal, 721305, India
| | - Somnath Ghosh
- Department of Chemistry, Organic Section, Jadavpur University, Kolkata, West Bengal, 700032, India
| | - Jayasri Basak
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, Kolkata, West Bengal, 700016, India
| | - Rita Ghosh
- Department of Biochemistry and Biophysics, University of Kalyani, Nadia, Kalyani, West Bengal, 741235, India.
| |
Collapse
|
22
|
Signaling mechanisms inducing hyporesponsiveness of phagocytes during systemic inflammation. Blood 2019; 134:134-146. [PMID: 31076441 DOI: 10.1182/blood.2019000320] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022] Open
Abstract
The inflammatory responsiveness of phagocytes to exogenous and endogenous stimuli is tightly regulated. This regulation plays an important role in systemic inflammatory response syndromes (SIRSs). In SIRSs, phagocytes initially develop a hyperinflammatory response, followed by a secondary state of hyporesponsiveness, a so-called "tolerance." This hyporesponsiveness can be induced by endotoxin stimulation of Toll-like receptor 4 (TLR4), resulting in an ameliorated response after subsequent restimulation. This modification of inflammatory response patterns has been described as innate immune memory. Interestingly, tolerance can also be triggered by endogenous TLR4 ligands, such as the alarmins myeloid-related protein 8 (MRP8, S100A8) and MRP14 (S100A9), under sterile conditions. However, signaling pathways that trigger hyporesponsiveness of phagocytes in clinically relevant diseases are only barely understood. Through our work, we have now identified 2 main signaling cascades that are activated during MRP-induced tolerance of phagocytes. We demonstrate that the phosphatidylinositol 3-kinase/AKT/GSK-3β pathway interferes with NF-κB-driven gene expression and that inhibition of GSK-3β mimics tolerance in vivo. Moreover, we identified interleukin-10-triggered activation of transcription factors STAT3 and BCL-3 as master regulators of MRP-induced tolerance. Accordingly, patients with dominant-negative STAT3 mutations show no tolerance development. In a clinically relevant condition of systemic sterile stress, cardiopulmonary bypass surgery, we confirmed the initial induction of MRP expression and the tolerance induction of monocytes associated with nuclear translocation of STAT3 and BCL-3 as relevant mechanisms. Our data indicate that the use of pharmacological JAK-STAT inhibitors may be promising targets for future therapeutic approaches to prevent complications associated with secondary hyporesponsiveness during SIRS.
Collapse
|
23
|
Legge DN, Shephard AP, Collard TJ, Greenhough A, Chambers AC, Clarkson RW, Paraskeva C, Williams AC. BCL-3 promotes a cancer stem cell phenotype by enhancing β-catenin signalling in colorectal tumour cells. Dis Model Mech 2019; 12:dmm.037697. [PMID: 30792270 PMCID: PMC6451435 DOI: 10.1242/dmm.037697] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/15/2019] [Indexed: 12/23/2022] Open
Abstract
To decrease bowel cancer incidence and improve survival, we need to understand the mechanisms that drive tumorigenesis. Recently, B-cell lymphoma 3 (BCL-3; a key regulator of NF-κB signalling) has been recognised as an important oncogenic player in solid tumours. Although reported to be overexpressed in a subset of colorectal cancers (CRCs), the role of BCL-3 expression in colorectal tumorigenesis remains poorly understood. Despite evidence in the literature that BCL-3 may interact with β-catenin, it is perhaps surprising, given the importance of deregulated Wnt/β-catenin/T-cell factor (TCF) signalling in colorectal carcinogenesis, that the functional significance of this interaction is not known. Here, we show for the first time that BCL-3 acts as a co-activator of β-catenin/TCF-mediated transcriptional activity in CRC cell lines and that this interaction is important for Wnt-regulated intestinal stem cell gene expression. We demonstrate that targeting BCL-3 expression (using RNA interference) reduced β-catenin/TCF-dependent transcription and the expression of intestinal stem cell genes LGR5 and ASCL2. In contrast, the expression of canonical Wnt targets Myc and cyclin D1 remained unchanged. Furthermore, we show that BCL-3 increases the functional stem cell phenotype, as shown by colorectal spheroid and tumoursphere formation in 3D culture conditions. We propose that BCL-3 acts as a driver of the stem cell phenotype in CRC cells, potentially promoting tumour cell plasticity and therapeutic resistance. As recent reports highlight the limitations of directly targeting cancer stem cells (CSCs), we believe that identifying and targeting drivers of stem cell plasticity have significant potential as new therapeutic targets. This article has an associated First Person interview with the first author of the paper. Summary: BCL-3 acts as a co-activator of β-catenin/TCF-mediated transcriptional activity, driving a stem-cell-like phenotype in colorectal cancer cells, with implications for tumour cell plasticity and therapeutic resistance.
Collapse
Affiliation(s)
- Danny N Legge
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Alex P Shephard
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Tracey J Collard
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Alexander Greenhough
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK.,Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Adam C Chambers
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Richard W Clarkson
- European Cancer Stem Cell Research Institute, Hadyn Ellis Building, Maindy Road, Cathays, Cardiff CF24 4HQ, UK
| | - Christos Paraskeva
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Ann C Williams
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
24
|
Identification of KLF9 and BCL3 as transcription factors that enhance reprogramming of primordial germ cells. PLoS One 2018; 13:e0205004. [PMID: 30286177 PMCID: PMC6171932 DOI: 10.1371/journal.pone.0205004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/18/2018] [Indexed: 11/25/2022] Open
Abstract
Primordial germ cells (PGCs) are precursors of eggs and sperm. Although PGCs are unipotent cells in vivo, they are reprogrammed into pluripotent stem cells (PSCs), also known as embryonic germ cells (EGCs), in the presence of leukemia inhibitory factor and basic fibroblast growth factor (bFGF) in vitro. However, the molecular mechanisms responsible for their reprogramming are not fully understood. Here we show identification of transcription factors that mediate PGC reprogramming. We selected genes encoding transcription factors or epigenetic regulatory factors whose expression was significantly different between PGCs and PSCs with in silico analysis and RT-qPCR. Among the candidate genes, over-expression (OE) of Bcl3 or Klf9 significantly enhanced PGC reprogramming. Notably, EGC formation was stimulated by Klf9-OE even without bFGF. G-protein-coupled receptor signaling-related pathways, which are involved in PGC reprogramming, were enriched among genes down-regulated by Klf9-OE, and forskolin which activate adenylate cyclase, rescued repressed EGC formation by knock-down of Klf9, suggesting a molecular linkage between KLF9 and such signaling.
Collapse
|
25
|
Zou Y, Uddin MM, Padmanabhan S, Zhu Y, Bu P, Vancura A, Vancurova I. The proto-oncogene Bcl3 induces immune checkpoint PD-L1 expression, mediating proliferation of ovarian cancer cells. J Biol Chem 2018; 293:15483-15496. [PMID: 30135206 DOI: 10.1074/jbc.ra118.004084] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/03/2018] [Indexed: 12/12/2022] Open
Abstract
The proto-oncogene Bcl3 induces survival and proliferation in cancer cells; however, its function and regulation in ovarian cancer (OC) remain unknown. Here, we show that Bcl3 expression is increased in human OC tissues. Surprisingly, however, we found that in addition to promoting survival, proliferation, and migration of OC cells, Bcl3 promotes both constitutive and interferon-γ (IFN)-induced expression of the immune checkpoint molecule PD-L1. The Bcl3 expression in OC cells is further increased by IFN, resulting in increased PD-L1 transcription. The mechanism consists of an IFN-induced, Bcl3- and p300-dependent PD-L1 promoter occupancy by Lys-314/315 acetylated p65 NF-κB. Blocking PD-L1 by neutralizing antibody reduces proliferation of OC cells overexpressing Bcl3, suggesting that the pro-proliferative effect of Bcl3 in OC cells is partly mediated by PD-L1. Together, this work identifies PD-L1 as a novel target of Bcl3, and links Bcl3 to IFNγ signaling and PD-L1-mediated immune escape.
Collapse
Affiliation(s)
- Yue Zou
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| | - Mohammad M Uddin
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| | - Sveta Padmanabhan
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| | - Yan Zhu
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| | - Pengli Bu
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| | - Ales Vancura
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| | - Ivana Vancurova
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| |
Collapse
|
26
|
Kang S, Yun J, Kim DY, Jung SY, Kim YJ, Park JH, Ji ST, Jang WB, Ha J, Kim JH, Baek SH, Kwon SM. Adequate concentration of B cell leukemia/lymphoma 3 (Bcl3) is required for pluripotency and self-renewal of mouse embryonic stem cells via downregulation of Nanog transcription. BMB Rep 2018; 51:92-97. [PMID: 29335071 PMCID: PMC5836563 DOI: 10.5483/bmbrep.2018.51.2.219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 01/06/2023] Open
Abstract
B cell leukemia/lymphoma 3 (Bcl3) plays a pivotal role in immune homeostasis, cellular proliferation, and cell survival, as a co-activator or co-repressor of transcription of the NF-κB family. Recently, it was reported that Bcl3 positively regulates pluripotency genes, including Oct4, in mouse embryonic stem cells (mESCs). However, the role of Bcl3 in the maintenance of pluripotency and self-renewal activity is not fully established. Here, we report the dynamic regulation of the proliferation, pluripotency, and self-renewal of mESCs by Bcl3 via an influence on Nanog transcriptional activity. Bcl3 expression is predominantly observed in immature mESCs, but significantly decreased during cell differentiation by LIF depletion and in mESC-derived EBs. Importantly, the knockdown of Bcl3 resulted in the loss of self-renewal ability and decreased cell proliferation. Similarly, the ectopic expression of Bcl3 also resulted in a significant reduction of proliferation, and the self-renewal of mESCs was demonstrated by alkaline phosphatase staining and clonogenic single cell-derived colony assay. We further examined that Bcl3-mediated regulation of Nanog transcriptional activity in mESCs, which indicated that Bcl3 acts as a transcriptional repressor of Nanog expression in mESCs. In conclusion, we demonstrated that a sufficient concentration of Bcl3 in mESCs plays a critical role in the maintenance of pluripotency and the self-renewal of mESCs via the regulation of Nanog transcriptional activity.
Collapse
Affiliation(s)
- Songhwa Kang
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Jisoo Yun
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Da Yeon Kim
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Seok Yun Jung
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Yeon Ju Kim
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Ji Hye Park
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Seung Taek Ji
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Woong Bi Jang
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Jongseong Ha
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Jae Ho Kim
- Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea
| | - Sang Hong Baek
- Laboratory of Cardiovascular Disease, Division of Cardiology, School of Medicine, The Catholic University, Seoul 06591, Korea
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612; Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea
| |
Collapse
|
27
|
Aweida D, Rudesky I, Volodin A, Shimko E, Cohen S. GSK3-β promotes calpain-1-mediated desmin filament depolymerization and myofibril loss in atrophy. J Cell Biol 2018; 217:3698-3714. [PMID: 30061109 PMCID: PMC6168250 DOI: 10.1083/jcb.201802018] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/06/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Phosphorylation by protein kinase GSK3-β is essential for desmin filament depolymerization by calpain-1 and the resulting myofibril destruction in muscle atrophy. Myofibril breakdown is a fundamental cause of muscle wasting and inevitable sequel of aging and disease. We demonstrated that myofibril loss requires depolymerization of the desmin cytoskeleton, which is activated by phosphorylation. Here, we developed a mass spectrometry–based kinase-trap assay and identified glycogen synthase kinase 3-β (GSK3-β) as responsible for desmin phosphorylation. GSK3-β inhibition in mice prevented desmin phosphorylation and depolymerization and blocked atrophy upon fasting or denervation. Desmin was phosphorylated by GSK3-β 3 d after denervation, but depolymerized only 4 d later when cytosolic Ca2+ levels rose. Mass spectrometry analysis identified GSK3-β and the Ca2+-specific protease, calpain-1, bound to desmin and catalyzing its disassembly. Consistently, calpain-1 down-regulation prevented loss of phosphorylated desmin and blocked atrophy. Thus, phosphorylation of desmin filaments by GSK3-β is a key molecular event required for calpain-1–mediated depolymerization, and the subsequent myofibril destruction. Consequently, GSK3-β represents a novel drug target to prevent myofibril breakdown and atrophy.
Collapse
Affiliation(s)
- Dina Aweida
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | - Inga Rudesky
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | | | - Eitan Shimko
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | - Shenhav Cohen
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| |
Collapse
|
28
|
Grondona P, Bucher P, Schulze-Osthoff K, Hailfinger S, Schmitt A. NF-κB Activation in Lymphoid Malignancies: Genetics, Signaling, and Targeted Therapy. Biomedicines 2018; 6:biomedicines6020038. [PMID: 29587428 PMCID: PMC6027339 DOI: 10.3390/biomedicines6020038] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/12/2022] Open
Abstract
The NF-κB transcription factor family plays a crucial role in lymphocyte proliferation and survival. Consequently, aberrant NF-κB activation has been described in a variety of lymphoid malignancies, including diffuse large B-cell lymphoma, Hodgkin lymphoma, and adult T-cell leukemia. Several factors, such as persistent infections (e.g., with Helicobacter pylori), the pro-inflammatory microenvironment of the cancer, self-reactive immune receptors as well as genetic lesions altering the function of key signaling effectors, contribute to constitutive NF-κB activity in these malignancies. In this review, we will discuss the molecular consequences of recurrent genetic lesions affecting key regulators of NF-κB signaling. We will particularly focus on the oncogenic mechanisms by which these alterations drive deregulated NF-κB activity and thus promote the growth and survival of the malignant cells. As the concept of a targeted therapy based on the mutational status of the malignancy has been supported by several recent preclinical and clinical studies, further insight in the function of NF-κB modulators and in the molecular mechanisms governing aberrant NF-κB activation observed in lymphoid malignancies might lead to the development of additional treatment strategies and thus improve lymphoma therapy.
Collapse
Affiliation(s)
- Paula Grondona
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Philip Bucher
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Klaus Schulze-Osthoff
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Stephan Hailfinger
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Anja Schmitt
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| |
Collapse
|
29
|
Willems M, Dubois N, Musumeci L, Bours V, Robe PA. IκBζ: an emerging player in cancer. Oncotarget 2018; 7:66310-66322. [PMID: 27579619 PMCID: PMC5323236 DOI: 10.18632/oncotarget.11624] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 08/23/2016] [Indexed: 01/12/2023] Open
Abstract
IκBζ, an atypical member of the nuclear IκB family of proteins, is expressed at low levels in most resting cells, but is induced upon stimulation of Toll-like/IL-1 receptors through an IRAK1/IRAK4/NFκB-dependent pathway. Like its homolog Bcl3, IκBζ can regulate the transcription of a set of inflamatory genes through its association with the p50 or p52 subunits of NF-κB. Long studied as a key component of the immune response, IκBζ emerges as an important regulator of inflammation, cell proliferation and survival. As a result, growing evidence support the role of this transcription factor in the pathogenesis number of human hematological and solid malignancies.
Collapse
Affiliation(s)
- Marie Willems
- Department of Human Genetics and GIGA Research Center, University of Liège, Liege, Belgium
| | - Nadège Dubois
- Department of Human Genetics and GIGA Research Center, University of Liège, Liege, Belgium
| | - Lucia Musumeci
- Department of Human Genetics and GIGA Research Center, University of Liège, Liege, Belgium
| | - Vincent Bours
- Department of Human Genetics and GIGA Research Center, University of Liège, Liege, Belgium
| | - Pierre A Robe
- Department of Human Genetics and GIGA Research Center, University of Liège, Liege, Belgium.,Department of Neurology and Neurosurgery, T&P Bohnenn Laboratory for Neuro-Oncology, Brain Center Rudolf Magnus, University Medical Center of Utrecht, Heidelberglaan, Utrecht, The Netherlands
| |
Collapse
|
30
|
Rice KM, Manne NDPK, Arvapalli R, Ginjupalli GK, Blough ER. Vascular mechanotransduction data in a rodent model of diabetes: Pressure-induced regulation of SHP2 and associated signaling in the rat inferior vena cava. Data Brief 2017; 15:300-307. [PMID: 29214191 PMCID: PMC5712047 DOI: 10.1016/j.dib.2017.09.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 11/28/2022] Open
Abstract
The effect of diabetes on vascular mechano-transductive response is of great concern. Given the higher rate of vein graft failures associated with diabetes, understanding the multiple cellular and molecular events associated with vascular remodeling is of vital importance. This article represents data related to a study published in Cardiovascular Diabetology [1] (Rice et al., 2006) and Open Journal of Endocrine and Metabolic Diseases [2] (Rice et al., 2015) evaluating the effect of pressurization on rat inferior venae cavae (IVC). Provided within this articles is information related to the method and processing of raw data related to our prior publish work and Data in Brief articles [3], [4] (Rice et al., 2017), as well as the evaluation of alternation in SHP-2 signaling and associated proteins in response to mechanical force. IVC from lean and obese animals were exposed to a 30 min perfusion of 120 mm Hg pressure and evaluated for changes in expression of SHP2, BCL-3, BCL-XL, HSP 27, HSP 70, and PI3K p85, along with the phosphorylation of SHP-2 (Tyr 542).
Collapse
Affiliation(s)
- Kevin M Rice
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA.,Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA.,Biotechnology Graduate Program West Virginia State University, Institute, WV, USA.,Department of Health and Human Service, School of Kinesiology, Marshall University, Huntington, WV, USA
| | | | | | | | - Eric R Blough
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA.,Biotechnology Graduate Program West Virginia State University, Institute, WV, USA.,Department of Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, USA.,Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| |
Collapse
|
31
|
A partnership with the proteasome; the destructive nature of GSK3. Biochem Pharmacol 2017; 147:77-92. [PMID: 29102676 PMCID: PMC5954166 DOI: 10.1016/j.bcp.2017.10.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/31/2017] [Indexed: 12/19/2022]
Abstract
Glycogen Synthase Kinase-3 (GSK3) was originally reported as a key enzyme of glucose homeostasis through regulation of the rate of glycogen synthesis. It has subsequently been found to influence most cellular processes, including growth, differentiation and death, as part of its role in modulating response to hormonal, nutritional and cellular stress stimuli. More than 100 protein targets for GSK3 have been proposed although only a small fraction of these have been convincingly validated in physiological cell systems. The effects of GSK3 phosphorylation on substrates include alteration of enzyme activity, protein localisation, protein:protein interaction and protein stability. This latter form of regulation of GSK3 substrates is the focus of this review. There is an ever-growing list of GSK3 substrates that upon phosphorylation are targeted to the beta-transducin repeat containing protein (β-TrCP), thereby allowing ubiquitination of bound protein by cullin-1 and so initiating destruction at the proteasome. We propose the existence of a GSK3-β-TrCP ‘destruction hit-list’ that allows co-ordinated removal (or stabilisation) of a set of proteins with a common physiological purpose, through control of GSK3. We identify 29 proteins where there is relatively strong evidence for regulation by a GSK3-β-TrCP axis and note common features of regulation and pathophysiology. Furthermore, we assess the potential of pre-phosphorylation (priming) of these targets (normally a prerequisite for GSK3 recognition) to provide a second layer of regulation delineated by the priming kinase that allows GSK3 to mark them for destruction. Finally, we discuss whether this knowledge improves options for therapeutic intervention.
Collapse
|
32
|
Wang VYF, Li Y, Kim D, Zhong X, Du Q, Ghassemian M, Ghosh G. Bcl3 Phosphorylation by Akt, Erk2, and IKK Is Required for Its Transcriptional Activity. Mol Cell 2017; 67:484-497.e5. [PMID: 28689659 DOI: 10.1016/j.molcel.2017.06.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 03/13/2017] [Accepted: 06/09/2017] [Indexed: 01/02/2023]
Abstract
Unlike prototypical IκB proteins, which are inhibitors of NF-κB RelA, cRel, and RelB dimers, the atypical IκB protein Bcl3 is primarily a transcriptional coregulator of p52 and p50 homodimers. Bcl3 exists as phospho-protein in many cancer cells. Unphosphorylated Bcl3 acts as a classical IκB-like inhibitor and removes p50 and p52 from bound DNA. Neither the phosphorylation site(s) nor the kinase(s) phosphorylating Bcl3 is known. Here we show that Akt, Erk2, and IKK1/2 phosphorylate Bcl3. Phosphorylation of Ser33 by Akt induces switching of K48 ubiquitination to K63 ubiquitination and thus promotes nuclear localization and stabilization of Bcl3. Phosphorylation by Erk2 and IKK1/2 of Ser114 and Ser446 converts Bcl3 into a transcriptional coregulator by facilitating its recruitment to DNA. Cells expressing the S114A/S446A mutant have cellular proliferation and migration defects. This work links Akt and MAPK pathways to NF-κB through Bcl3 and provides mechanistic insight into how Bcl3 functions as an oncoprotein through collaboration with IKK1/2, Akt, and Erk2.
Collapse
Affiliation(s)
- Vivien Ya-Fan Wang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China; Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Yidan Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Daniel Kim
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Xiangyang Zhong
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Qian Du
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Majid Ghassemian
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
| |
Collapse
|
33
|
Hermida MA, Dinesh Kumar J, Leslie NR. GSK3 and its interactions with the PI3K/AKT/mTOR signalling network. Adv Biol Regul 2017; 65:5-15. [PMID: 28712664 DOI: 10.1016/j.jbior.2017.06.003] [Citation(s) in RCA: 324] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 06/23/2017] [Indexed: 01/01/2023]
Abstract
Glycogen Synthase Kinase-3 (GSK3 or GSK-3) is a promiscuous protein kinase and its phosphorylation of its diverse substrates has major influences on many areas of physiology and pathology, including cellular metabolism, lineage commitment and neuroscience. GSK3 was one of the first identified substrates of the heavily studied oncogenic kinase AKT, phosphorylation by which inhibits GSK3 activity via the formation of an autoinhibitory pseudosubstrate sequence. This has led to investigation of the role of GSK3 inhibition as a key component of the cellular responses to growth factors and insulin, which stimulate the class I PI 3-Kinases and in turn AKT activity and GSK3 phosphorylation. GSK3 has been shown to phosphorylate several upstream and downstream components of the PI3K/AKT/mTOR signalling network, including AKT itself, RICTOR, TSC1 and 2, PTEN and IRS1 and 2, with the potential to apply feedback control within the network. However, it has been clear for some time that functionally distinct, insulated pools of GSK3 exist which are regulated independently, so that for some GSK3 substrates such as β-catenin, phosphorylation by GSK3 is not controlled by input from PI3K and AKT. Instead, as almost all GSK3 substrates require a priming phosphorylated residue to be 4 amino acids C-terminal to the Ser/Thr phosphorylated by GSK3, the predominant form of regulation of the activity of GSK3 often appears to be through control over these priming events, specific to individual substrates. Therefore, a major role of GSK3 can be viewed as an amplifier of the electrostatic effects on protein function which are caused by these priming phosphorylation events. Here we discuss these different aspects to GSK3 regulation and function, and the functions of GSK3 as it integrates with signalling through the PI3K-AKT-mTOR signalling axis.
Collapse
Affiliation(s)
- Miguel A Hermida
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK
| | - J Dinesh Kumar
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK
| | - Nick R Leslie
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK.
| |
Collapse
|
34
|
Yao Y, Wang L, Jin P, Li N, Meng Y, Wang C, Xu M, Zhang Y, Bian J, Deng X. Methane alleviates carbon tetrachloride induced liver injury in mice: anti-inflammatory action demonstrated by increased PI3K/Akt/GSK-3β-mediated IL-10 expression. J Mol Histol 2017; 48:301-310. [DOI: 10.1007/s10735-017-9728-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022]
|
35
|
Zhang X, Li N, Shao H, Meng Y, Wang L, Wu Q, Yao Y, Li J, Bian J, Zhang Y, Deng X. Methane limit LPS-induced NF-κB/MAPKs signal in macrophages and suppress immune response in mice by enhancing PI3K/AKT/GSK-3β-mediated IL-10 expression. Sci Rep 2016; 6:29359. [PMID: 27405597 PMCID: PMC4942692 DOI: 10.1038/srep29359] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/17/2016] [Indexed: 12/18/2022] Open
Abstract
Inflammatory diseases such as sepsis and autoimmune colitis, characterized by an overwhelming activation of the immune system and the counteracting anti-inflammatory response, remain a major health problem in worldwide. Emerging evidence suggests that methane have a protective effect on many animal models, like ischaemia reperfusion injury and diabetes-associated diseases. Whether methane could modulating inflammatory diseases remains largely unknown. Here we show that methane-rich saline (MS) ip treatment (16 ml/kg) alleviated endotoxin shock, bacteria-induced sepsis and dextran-sulfate-sodium-induced colitis in mice via decreased production of TNF-α and IL-6. In MS-treated macrophages, LPS-induced activation of NF-κb/MAPKs was attenuated. Interestingly, MS treatment significantly elevated the levels of IL-10 both in vitro and in vivo. Neutralization of IL-10 abrogated the therapeutic effect of MS. Moreover, anti-IL10 blockade partially restored the MS-mediated attenuation of NF-κb/MAPKs phosphorylation. We further found that MS resulted in markedly enhanced phosphorylation of GSK-3β and AKT, which both mediate the release of Il-10. Additionally, inhibition of PI3K attenuated MS-mediated p-GSK-3β and IL-10 production and reversed the suppressed activation of NF-κb/ MAPKs in response to LPS. Our results reveal a novel effect and mechanisms of methane and support the potential value of MS as a therapeutic approach in innate inflammatory diseases.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China (mainland).,Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, 221004, Jiangsu, China
| | - Na Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China (mainland)
| | - Han Shao
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China (mainland).,Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, 221004, Jiangsu, China
| | - Yan Meng
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China (mainland)
| | - Liping Wang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China (mainland).,Department of Anesthesiology, General Hospital of Fuzhou Army Region, Fuzhou, 350025, China
| | - Qian Wu
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China (mainland)
| | - Ying Yao
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China (mainland)
| | - Jinbao Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China (mainland)
| | - Jinjun Bian
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China (mainland)
| | - Yan Zhang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China (mainland)
| | - Xiaoming Deng
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China (mainland)
| |
Collapse
|
36
|
Urban BC, Collard TJ, Eagle CJ, Southern SL, Greenhough A, Hamdollah-Zadeh M, Ghosh A, Poulsom R, Paraskeva C, Silver A, Williams AC. BCL-3 expression promotes colorectal tumorigenesis through activation of AKT signalling. Gut 2016; 65:1151-64. [PMID: 26033966 PMCID: PMC4941180 DOI: 10.1136/gutjnl-2014-308270] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 03/21/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Colorectal cancer remains the fourth most common cause of cancer-related mortality worldwide. Here we investigate the role of nuclear factor-κB (NF-κB) co-factor B-cell CLL/lymphoma 3 (BCL-3) in promoting colorectal tumour cell survival. DESIGN Immunohistochemistry was carried out on 47 tumour samples and normal tissue from resection margins. The role of BCL-3/NF-κB complexes on cell growth was studied in vivo and in vitro using an siRNA approach and exogenous BCL-3 expression in colorectal adenoma and carcinoma cells. The question whether BCL-3 activated the AKT/protein kinase B (PKB) pathway in colorectal tumour cells was addressed by western blotting and confocal microscopy, and the ability of 5-aminosalicylic acid (5-ASA) to suppress BCL-3 expression was also investigated. RESULTS We report increased BCL-3 expression in human colorectal cancers and demonstrate that BCL-3 expression promotes tumour cell survival in vitro and tumour growth in mouse xenografts in vivo, dependent on interaction with NF-κB p50 or p52 homodimers. We show that BCL-3 promotes cell survival under conditions relevant to the tumour microenvironment, protecting both colorectal adenoma and carcinoma cells from apoptosis via activation of the AKT survival pathway: AKT activation is mediated via both PI3K and mammalian target of rapamycin (mTOR) pathways, leading to phosphorylation of downstream targets GSK-3β and FoxO1/3a. Treatment with 5-ASA suppressed BCL-3 expression in colorectal cancer cells. CONCLUSIONS Our study helps to unravel the mechanism by which BCL-3 is linked to poor prognosis in colorectal cancer; we suggest that targeting BCL-3 activity represents an exciting therapeutic opportunity potentially increasing the sensitivity of tumour cells to conventional therapy.
Collapse
Affiliation(s)
- Bettina C Urban
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | - Tracey J Collard
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | - Catherine J Eagle
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | | | | | | | - Anil Ghosh
- Centre for Digestive Diseases, National Centre for Bowel Research and Surgical Intervention, Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, UK
| | - Richard Poulsom
- Centre for Digestive Diseases, National Centre for Bowel Research and Surgical Intervention, Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, UK
| | - Christos Paraskeva
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | - Andrew Silver
- Centre for Digestive Diseases, National Centre for Bowel Research and Surgical Intervention, Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, UK
| | - Ann C Williams
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
37
|
Regulation of the Adaptive Immune Response by the IκB Family Protein Bcl-3. Cells 2016; 5:cells5020014. [PMID: 27023613 PMCID: PMC4931663 DOI: 10.3390/cells5020014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 01/14/2023] Open
Abstract
Bcl-3 is a member of the IκB family of proteins and an important regulator of Nuclear Factor (NF)-κB activity. The ability of Bcl-3 to bind and regulate specific NF-κB dimers has been studied in great depth, but its physiological roles in vivo are still not fully understood. It is, however, becoming clear that Bcl-3 is essential for the proper development, survival and activity of adaptive immune cells. Bcl-3 dysregulation can be observed in a number of autoimmune pathologies, and Bcl3-deficient animals are more susceptible to bacterial and parasitic infection. This review will describe our current understanding of the roles played by Bcl-3 in the development and regulation of the adaptive immune response, including lymphoid organogenesis, immune tolerance, lymphocyte function and dendritic cell biology.
Collapse
|
38
|
Chen CY, Lee DS, Yan YT, Shen CN, Hwang SM, Lee ST, Hsieh PC. Bcl3 Bridges LIF-STAT3 to Oct4 Signaling in the Maintenance of Naïve Pluripotency. Stem Cells 2015; 33:3468-80. [DOI: 10.1002/stem.2201] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/25/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Chen-Yun Chen
- Program in Molecular Medicine; National Yang-Ming University and Academia Sinica; Taipei Taiwan
- Institute of Biomedical Science; Academia Sinica; Taipei Taiwan
| | - Desy S. Lee
- Institute of Clinical Medicine; National Cheng Kung University and Hospital; Tainan Taiwan
| | - Yu-Ting Yan
- Institute of Biomedical Science; Academia Sinica; Taipei Taiwan
| | - Chia-Ning Shen
- Genomics Research Center; Academia Sinica; Taipei Taiwan
| | - Shiaw-Min Hwang
- Bioresource Collection and Research Center; Food Industry Research and Development Institute; Hsinchu Taiwan
| | - Sho Tone Lee
- Institute of Biomedical Science; Academia Sinica; Taipei Taiwan
| | - Patrick C.H. Hsieh
- Program in Molecular Medicine; National Yang-Ming University and Academia Sinica; Taipei Taiwan
- Institute of Biomedical Science; Academia Sinica; Taipei Taiwan
- Institute of Clinical Medicine; National Cheng Kung University and Hospital; Tainan Taiwan
| |
Collapse
|
39
|
Chau TL, Göktuna SI, Rammal A, Casanova T, Duong HQ, Gatot JS, Close P, Dejardin E, Desmecht D, Shostak K, Chariot A. A role for APPL1 in TLR3/4-dependent TBK1 and IKKε activation in macrophages. THE JOURNAL OF IMMUNOLOGY 2015; 194:3970-83. [PMID: 25780039 DOI: 10.4049/jimmunol.1401614] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 02/03/2015] [Indexed: 01/07/2023]
Abstract
Endosomes have important roles in intracellular signal transduction as a sorting platform. Signaling cascades from TLR engagement to IRF3-dependent gene transcription rely on endosomes, yet the proteins that specifically recruit IRF3-activating molecules to them are poorly defined. We show that adaptor protein containing a pleckstrin-homology domain, a phosphotyrosine-binding domain, and a leucine zipper motif (APPL)1, an early endosomal protein, is required for both TRIF- and retinoic acid-inducible gene 1-dependent signaling cascades to induce IRF3 activation. APPL1, but not early endosome Ag 1, deficiency impairs IRF3 target gene expression upon engagement of both TLR3 and TLR4 pathways, as well as in H1N1-infected macrophages. The IRF3-phosphorylating kinases TBK1 and IKKε are recruited to APPL1 endosomes in LPS-stimulated macrophages. Interestingly, APPL1 undergoes proteasome-mediated degradation through ERK1/2 to turn off signaling. APPL1 degradation is blocked when signaling through the endosome is inhibited by chloroquine or dynasore. Therefore, APPL1 endosomes are critical for IRF3-dependent gene expression in response to some viral and bacterial infections in macrophages. Those signaling pathways involve the signal-induced degradation of APPL1 to prevent aberrant IRF3-dependent gene expression linked to immune diseases.
Collapse
Affiliation(s)
- Tieu-Lan Chau
- Interdisciplinary Cluster of Applied Genoproteomics, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Laboratory of Medical Chemistry, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Unit of Signal Transduction, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium
| | - Serkan Ismail Göktuna
- Interdisciplinary Cluster of Applied Genoproteomics, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Laboratory of Medical Chemistry, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Unit of Signal Transduction, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium
| | - Ayman Rammal
- Interdisciplinary Cluster of Applied Genoproteomics, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Laboratory of Medical Chemistry, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Unit of Signal Transduction, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium
| | - Tomás Casanova
- Department of Veterinary Pathology, Fundamental and Applied Research for Animals and Health, University of Liege, 4000 Liege, Belgium
| | - Hong-Quan Duong
- Interdisciplinary Cluster of Applied Genoproteomics, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Laboratory of Medical Chemistry, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Unit of Signal Transduction, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium
| | - Jean-Stéphane Gatot
- Interdisciplinary Cluster of Applied Genoproteomics, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Laboratory of Medical Chemistry, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Unit of Signal Transduction, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium
| | - Pierre Close
- Interdisciplinary Cluster of Applied Genoproteomics, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Laboratory of Medical Chemistry, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Unit of Signal Transduction, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium
| | - Emmanuel Dejardin
- Interdisciplinary Cluster of Applied Genoproteomics, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Unit of Signal Transduction, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Laboratory of Molecular Immunology and Signal Transduction, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; and
| | - Daniel Desmecht
- Department of Veterinary Pathology, Fundamental and Applied Research for Animals and Health, University of Liege, 4000 Liege, Belgium
| | - Kateryna Shostak
- Interdisciplinary Cluster of Applied Genoproteomics, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Laboratory of Medical Chemistry, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Unit of Signal Transduction, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium
| | - Alain Chariot
- Interdisciplinary Cluster of Applied Genoproteomics, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Laboratory of Medical Chemistry, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Unit of Signal Transduction, GIGA-Research, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium; Walloon Excellence in Life Sciences and Biotechnology, Hospital University of Liege Sart-Tilman, University of Liege, 4000 Liege, Belgium
| |
Collapse
|
40
|
Shostak K, Zhang X, Hubert P, Göktuna SI, Jiang Z, Klevernic I, Hildebrand J, Roncarati P, Hennuy B, Ladang A, Somja J, Gothot A, Close P, Delvenne P, Chariot A. NF-κB-induced KIAA1199 promotes survival through EGFR signalling. Nat Commun 2014; 5:5232. [PMID: 25366117 PMCID: PMC4241993 DOI: 10.1038/ncomms6232] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 09/09/2014] [Indexed: 12/21/2022] Open
Abstract
Constitutive activation of EGFR- and NF-κB-dependent pathways is a hallmark of cancer, yet signalling proteins that connect both oncogenic cascades are poorly characterized. Here we define KIAA1199 as a BCL-3- and p65-dependent gene in transformed keratinocytes. KIAA1199 expression is enhanced on human papillomavirus (HPV) infection and is aberrantly expressed in clinical cases of cervical (pre)neoplastic lesions. Mechanistically, KIAA1199 binds Plexin A2 and protects from Semaphorin 3A-mediated cell death by promoting EGFR stability and signalling. Moreover, KIAA1199 is an EGFR-binding protein and KIAA1199 deficiency impairs EGF-dependent Src, MEK1 and ERK1/2 phosphorylations. Therefore, EGFR stability and signalling to downstream kinases requires KIAA1199. As such, KIAA1199 promotes EGF-mediated epithelial-mesenchymal transition (EMT). Taken together, our data define KIAA1199 as an oncogenic protein induced by HPV infection and constitutive NF-κB activity that transmits pro-survival and invasive signals through EGFR signalling.
Collapse
Affiliation(s)
- Kateryna Shostak
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Medical Chemistry, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Signal Transduction, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Xin Zhang
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Medical Chemistry, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Signal Transduction, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Pascale Hubert
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Experimental Pathology, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Cancer, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Serkan Ismail Göktuna
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Medical Chemistry, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Signal Transduction, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Zheshen Jiang
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Medical Chemistry, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Signal Transduction, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Iva Klevernic
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Medical Chemistry, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Signal Transduction, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Julien Hildebrand
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Medical Chemistry, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Signal Transduction, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Patrick Roncarati
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Experimental Pathology, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Cancer, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Benoit Hennuy
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] GIGA Transcriptomics Facility, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Aurélie Ladang
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Medical Chemistry, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Signal Transduction, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Joan Somja
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Experimental Pathology, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Cancer, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - André Gothot
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] GIGA-Infection, Immunity and Inflammation, Department of Medicine/Hematology, University of Liege, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Pierre Close
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Medical Chemistry, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Signal Transduction, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Philippe Delvenne
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Experimental Pathology, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Cancer, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Alain Chariot
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Medical Chemistry, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Signal Transduction, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [4] Walloon Excellence in Life Sciences and Biotechnology (WELBIO) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| |
Collapse
|
41
|
Huo X, Liu S, Shao T, Hua H, Kong Q, Wang J, Luo T, Jiang Y. GSK3 protein positively regulates type I insulin-like growth factor receptor through forkhead transcription factors FOXO1/3/4. J Biol Chem 2014; 289:24759-70. [PMID: 25053419 DOI: 10.1074/jbc.m114.580738] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Glycogen synthase kinase-3 (GSK3) has either tumor-suppressive roles or pro-tumor roles in different types of human tumors. A number of GSK3 targets in diverse signaling pathways have been uncovered, such as tuberous sclerosis complex subunit 2 and β-catenin. The O subfamily of forkhead/winged helix transcription factors (FOXO) is known as tumor suppressors that induce apoptosis. In this study, we find that FOXO binds to type I insulin-like growth factor receptor (IGF-IR) promoter and stimulates its transcription. GSK3 positively regulates the transactivation activity of FOXO and stimulates IGF-IR expression. Although kinase-dead GSK3β cannot up-regulate IGF-IR, the constitutively active GSK3β induces IGF-IR expression in a FOXO-dependent manner. Serum starvation or Akt inhibition leads to an increase in IGF-IR expression, which could be blunted by GSK3 inhibition. GSK3β knockdown or GSK3 inhibitor suppresses IGF-I-induced IGF-IR, Akt, and ERK1/2 phosphorylation. Moreover, knockdown of GSK3β or FOXO1/3/4 leads to a decrease in cellular proliferation and abrogates IGF-I-induced hepatoma cell proliferation. These results suggest that GSK3 and FOXO may positively regulate IGF-I signaling and hepatoma cell proliferation.
Collapse
Affiliation(s)
- Xiaodong Huo
- From the State Key Laboratory of Biotherapy, Section of Oncogene, West China Hospital, Sichuan University, Chengdu 610041
| | - Shu Liu
- From the State Key Laboratory of Biotherapy, Section of Oncogene, West China Hospital, Sichuan University, Chengdu 610041
| | - Ting Shao
- From the State Key Laboratory of Biotherapy, Section of Oncogene, West China Hospital, Sichuan University, Chengdu 610041
| | - Hui Hua
- the Laboratory of Stem Cell Biology, West China Hospital, Chengdu 610041
| | - Qingbin Kong
- From the State Key Laboratory of Biotherapy, Section of Oncogene, West China Hospital, Sichuan University, Chengdu 610041
| | - Jiao Wang
- the School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, and
| | - Ting Luo
- the Cancer Center, West China Hospital, Chengdu 610041, China
| | - Yangfu Jiang
- From the State Key Laboratory of Biotherapy, Section of Oncogene, West China Hospital, Sichuan University, Chengdu 610041,
| |
Collapse
|
42
|
Wang H, Kumar A, Lamont RJ, Scott DA. GSK3β and the control of infectious bacterial diseases. Trends Microbiol 2014; 22:208-17. [PMID: 24618402 DOI: 10.1016/j.tim.2014.01.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/24/2014] [Accepted: 01/30/2014] [Indexed: 12/12/2022]
Abstract
Glycogen synthase kinase 3β (GSK3β) has been shown to be a crucial mediator of the intensity and direction of the innate immune system response to bacterial stimuli. This review focuses on: (i) the central role of GSK3β in the regulation of pathogen-induced inflammatory responses through the regulation of pro- and anti-inflammatory cytokine production, (ii) the extensive ongoing efforts to exploit GSK3β for its therapeutic potential in the control of infectious diseases, and (iii) the increasing evidence that specific pathogens target GSK3β-related pathways for immune evasion. A better understanding of complex bacteria-GSK3β interactions is likely to lead to more effective anti-inflammatory interventions and novel targets to circumvent pathogen colonization and survival.
Collapse
Affiliation(s)
- Huizhi Wang
- Oral Health and Systemic Disease, University of Louisville, Louisville, KY 40292, USA
| | - Akhilesh Kumar
- Oral Health and Systemic Disease, University of Louisville, Louisville, KY 40292, USA
| | - Richard J Lamont
- Oral Health and Systemic Disease, University of Louisville, Louisville, KY 40292, USA; Microbiology and Immunology, University of Louisville, Louisville, KY 40292, USA
| | - David A Scott
- Oral Health and Systemic Disease, University of Louisville, Louisville, KY 40292, USA; Microbiology and Immunology, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
43
|
Shostak K, Patrascu F, Göktuna SI, Close P, Borgs L, Nguyen L, Olivier F, Rammal A, Brinkhaus H, Bentires-Alj M, Marine JC, Chariot A. MDM2 restrains estrogen-mediated AKT activation by promoting TBK1-dependent HPIP degradation. Cell Death Differ 2014; 21:811-24. [PMID: 24488098 DOI: 10.1038/cdd.2014.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 12/18/2013] [Accepted: 12/23/2013] [Indexed: 12/25/2022] Open
Abstract
Restoration of p53 tumor suppressor function through inhibition of its interaction and/or enzymatic activity of its E3 ligase, MDM2, is a promising therapeutic approach to treat cancer. However, because the MDM2 targetome extends beyond p53, MDM2 inhibition may also cause unwanted activation of oncogenic pathways. Accordingly, we identified the microtubule-associated HPIP, a positive regulator of oncogenic AKT signaling, as a novel MDM2 substrate. MDM2-dependent HPIP degradation occurs in breast cancer cells on its phosphorylation by the estrogen-activated kinase TBK1. Importantly, decreasing Mdm2 gene dosage in mouse mammary epithelial cells potentiates estrogen-dependent AKT activation owing to HPIP stabilization. In addition, we identified HPIP as a novel p53 transcriptional target, and pharmacological inhibition of MDM2 causes p53-dependent increase in HPIP transcription and also prevents HPIP degradation by turning off TBK1 activity. Our data indicate that p53 reactivation through MDM2 inhibition may result in ectopic AKT oncogenic activity by maintaining HPIP protein levels.
Collapse
Affiliation(s)
- K Shostak
- 1] Interdisciplinary Cluster for Applied Genoproteomics, GIGA-Research, University of Liège, Liège, Belgium [2] Unit of Medical Chemistry, GIGA-Signal Transduction, GIGA-R, University of Liège, Liège, Belgium
| | - F Patrascu
- 1] Interdisciplinary Cluster for Applied Genoproteomics, GIGA-Research, University of Liège, Liège, Belgium [2] Unit of Medical Chemistry, GIGA-Signal Transduction, GIGA-R, University of Liège, Liège, Belgium
| | - S I Göktuna
- 1] Interdisciplinary Cluster for Applied Genoproteomics, GIGA-Research, University of Liège, Liège, Belgium [2] Unit of Medical Chemistry, GIGA-Signal Transduction, GIGA-R, University of Liège, Liège, Belgium
| | - P Close
- 1] Interdisciplinary Cluster for Applied Genoproteomics, GIGA-Research, University of Liège, Liège, Belgium [2] Unit of Medical Chemistry, GIGA-Signal Transduction, GIGA-R, University of Liège, Liège, Belgium
| | - L Borgs
- 1] Interdisciplinary Cluster for Applied Genoproteomics, GIGA-Research, University of Liège, Liège, Belgium [2] Developmental Neurobiology Unit, GIGA-Neurosciences, GIGA-R, University of Liège, Liège, Belgium
| | - L Nguyen
- 1] Interdisciplinary Cluster for Applied Genoproteomics, GIGA-Research, University of Liège, Liège, Belgium [2] Developmental Neurobiology Unit, GIGA-Neurosciences, GIGA-R, University of Liège, Liège, Belgium [3] Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wallonia, Belgium
| | - F Olivier
- 1] Interdisciplinary Cluster for Applied Genoproteomics, GIGA-Research, University of Liège, Liège, Belgium [2] Animal Facility, University of Liege, CHU, Sart-Tilman, Liège 4000, Belgium
| | - A Rammal
- 1] Interdisciplinary Cluster for Applied Genoproteomics, GIGA-Research, University of Liège, Liège, Belgium [2] Unit of Medical Chemistry, GIGA-Signal Transduction, GIGA-R, University of Liège, Liège, Belgium
| | - H Brinkhaus
- Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - M Bentires-Alj
- Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - J-C Marine
- 1] Center for Human Genetics, KU Leuven, Leuven, Belgium [2] Center for the biology of disease, VIB, KU Leuven, Leuven, Belgium
| | - A Chariot
- 1] Interdisciplinary Cluster for Applied Genoproteomics, GIGA-Research, University of Liège, Liège, Belgium [2] Unit of Medical Chemistry, GIGA-Signal Transduction, GIGA-R, University of Liège, Liège, Belgium [3] Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wallonia, Belgium
| |
Collapse
|
44
|
Collins PE, Kiely PA, Carmody RJ. Inhibition of transcription by B cell Leukemia 3 (Bcl-3) protein requires interaction with nuclear factor κB (NF-κB) p50. J Biol Chem 2014; 289:7059-7067. [PMID: 24459141 DOI: 10.1074/jbc.m114.551986] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
B cell leukemia 3 (Bcl-3) is an essential negative regulator of NF-κB during Toll-like receptor and TNF receptor signaling. Bcl-3 also interacts with a number of transcriptional regulators, including homodimers of the NF-κB p50 subunit. Deletion of Bcl-3 results in increased NF-κB p50 ubiquitination and proteasomal degradation and increased inflammatory gene expression. We employed immobilized peptide array technology to define a region of p50 required for the formation of a Bcl-3·p50 homodimer immunosuppressor complex. Our data demonstrate that amino acids 359-361 and 363 of p50 are critical for interaction with Bcl-3 and essential for Bcl-3-mediated inhibition of inflammatory gene expression. Bcl-3 is unable to interact with p50 when these amino acids are mutated, rendering it incapable of inhibiting the transcriptional activity of NF-κB. Bcl-3 interaction-defective p50 is hyperubiquitinated and has a significantly reduced half-life relative to wild-type p50. Nfkb1(-/-) cells reconstituted with mutated p50 precursor p105 are hyperresponsive to TNFα stimulation relative to wild-type p105, as measured by inflammatory gene expression. Mutant p105 recapitulates a Bcl3(-/-) phenotype. This study demonstrates that interaction with p50 is necessary and sufficient for the anti-inflammatory properties of Bcl-3 and further highlights the importance of p50 homodimer stability in the control of NF-κB target gene expression.
Collapse
Affiliation(s)
| | - Patrick A Kiely
- Department of Life Sciences and the Materials and Surface Science Institute, University of Limerick, Limerick, Ireland
| | - Ruaidhrí J Carmody
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow G12 8TA, Scotland, Glasgow, United Kingdom.
| |
Collapse
|
45
|
Zhang X, Paun A, Claudio E, Wang H, Siebenlist U. The tumor promoter and NF-κB modulator Bcl-3 regulates splenic B cell development. THE JOURNAL OF IMMUNOLOGY 2013; 191:5984-92. [PMID: 24244019 DOI: 10.4049/jimmunol.1300611] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bcl-3 is an atypical member of the family of IκB proteins. Unlike the classic members, Bcl-3 functions as a nuclear transcriptional cofactor that may, depending on context, promote or suppress genes via association with p50/NF-κB1 or p52/NF-κB2 homodimers. Bcl-3 is also an oncogene, because it is a partner in recurrent translocations in B cell tumors, resulting in deregulated expression. Bcl-3 functions, however, remain poorly understood. We have investigated the role of Bcl-3 in B cells and discovered a previously unknown involvement in the splenic development of these cells. Loss of Bcl-3 in B cells resulted in significantly more marginal zone (MZ) and fewer follicular (FO) B cells. Conversely, transgenic expression of Bcl-3 in B cells generated fewer MZ and more FO B cells. Both Bcl-3(-/-) FO and MZ B cells were more responsive to LPS stimulation compared with their wild-type counterparts, including increased proliferation. By contrast, Bcl-3(-/-) FO B cells were more prone to apoptosis upon BCR stimulation, also limiting their expansion. The data reveal Bcl-3 as a regulator of B cell fate determination, restricting the MZ path and favoring the FO pathway, at least in part, via increased signal-specific survival of the latter, a finding of relevance to its tumorigenic activity.
Collapse
Affiliation(s)
- Xiaoren Zhang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
46
|
Atypical IκB proteins - nuclear modulators of NF-κB signaling. Cell Commun Signal 2013; 11:23. [PMID: 23578005 PMCID: PMC3639191 DOI: 10.1186/1478-811x-11-23] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/28/2013] [Indexed: 01/01/2023] Open
Abstract
Nuclear factor κB (NF-κB) controls a multitude of physiological processes such as cell differentiation, cytokine expression, survival and proliferation. Since NF-κB governs embryogenesis, tissue homeostasis and the functions of innate and adaptive immune cells it represents one of the most important and versatile signaling networks known. Its activity is regulated via the inhibitors of NF-κB signaling, the IκB proteins. Classical IκBs, like the prototypical protein IκBα, sequester NF-κB transcription factors in the cytoplasm by masking of their nuclear localization signals (NLS). Thus, binding of NF-κB to the DNA is inhibited. The accessibility of the NLS is controlled via the degradation of IκBα. Phosphorylation of the conserved serine residues 32 and 36 leads to polyubiquitination and subsequent proteasomal degradation. This process marks the central event of canonical NF-κB activation. Once their NLS is accessible, NF-κB transcription factors translocate into the nucleus, bind to the DNA and regulate the transcription of their respective target genes. Several studies described a distinct group of atypical IκB proteins, referred to as the BCL-3 subfamily. Those atypical IκBs show entirely different sub-cellular localizations, activation kinetics and an unexpected functional diversity. First of all, their interaction with NF-κB transcription factors takes place in the nucleus in contrast to classical IκBs, whose binding to NF-κB predominantly occurs in the cytoplasm. Secondly, atypical IκBs are strongly induced after NF-κB activation, for example by LPS and IL-1β stimulation or triggering of B cell and T cell antigen receptors, but are not degraded in the first place like their conventional relatives. Finally, the interaction of atypical IκBs with DNA-associated NF-κB transcription factors can further enhance or diminish their transcriptional activity. Thus, they do not exclusively act as inhibitors of NF-κB activity. The capacity to modulate NF-κB transcription either positively or negatively, represents their most important and unique mechanistic difference to classical IκBs. Several reports revealed the importance of atypical IκB proteins for immune homeostasis and the severe consequences following their loss of function. This review summarizes insights into the physiological processes regulated by this protein class and the relevance of atypical IκB functioning.
Collapse
|
47
|
Close P, Gillard M, Ladang A, Jiang Z, Papuga J, Hawkes N, Nguyen L, Chapelle JP, Bouillenne F, Svejstrup J, Fillet M, Chariot A. DERP6 (ELP5) and C3ORF75 (ELP6) regulate tumorigenicity and migration of melanoma cells as subunits of Elongator. J Biol Chem 2012; 287:32535-45. [PMID: 22854966 PMCID: PMC3463322 DOI: 10.1074/jbc.m112.402727] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Indexed: 12/17/2022] Open
Abstract
The Elongator complex is composed of 6 subunits (Elp1-Elp6) and promotes RNAPII transcript elongation through histone acetylation in the nucleus as well as tRNA modification in the cytoplasm. This acetyltransferase complex directly or indirectly regulates numerous biological processes ranging from exocytosis and resistance to heat shock in yeast to cell migration and neuronal differentiation in higher eukaryotes. The identity of human ELP1 through ELP4 has been reported but human ELP5 and ELP6 have remained uncharacterized. Here, we report that DERP6 (ELP5) and C3ORF75 (ELP6) encode these subunits of human Elongator. We further investigated the importance and function of these two subunits by a combination of biochemical analysis and cellular assays. Our results show that DERP6/ELP5 is required for the integrity of Elongator and directly connects ELP3 to ELP4. Importantly, the migration and tumorigenicity of melanoma-derived cells are significantly decreased upon Elongator depletion through ELP1 or ELP3. Strikingly, DERP6/ELP5 and C3ORF75/ELP6-depleted melanoma cells have similar defects, further supporting the idea that DERP6/ELP5 and C3ORF75/ELP6 are essential for Elongator function. Together, our data identify DERP6/ELP5 and C3ORF75/ELP6 as key players for migration, invasion and tumorigenicity of melanoma cells, as integral subunits of Elongator.
Collapse
Affiliation(s)
- Pierre Close
- From the Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R)
- GIGA Signal Transduction and Laboratory of Medical Chemistry
| | - Magali Gillard
- From the Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R)
- GIGA Signal Transduction and Laboratory of Medical Chemistry
| | - Aurélie Ladang
- From the Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R)
- GIGA Signal Transduction and Laboratory of Medical Chemistry
| | - Zheshen Jiang
- From the Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R)
- GIGA Signal Transduction and Laboratory of Medical Chemistry
| | - Jessica Papuga
- From the Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R)
- GIGA Signal Transduction and Laboratory of Medical Chemistry
| | - Nicola Hawkes
- the Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD, United Kingdom
| | - Laurent Nguyen
- From the Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R)
- Developmental Neurobiology Unit and GIGA Neurosciences
| | - Jean-Paul Chapelle
- From the Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R)
- GIGA Signal Transduction and Laboratory of Medical Chemistry
| | | | - Jesper Svejstrup
- the Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD, United Kingdom
| | - Marianne Fillet
- From the Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R)
- GIGA Signal Transduction and Laboratory of Medical Chemistry
- Laboratory of Analytical Pharmaceutical Chemistry, Department of Pharmacy, CIRM, and
| | - Alain Chariot
- From the Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R)
- GIGA Signal Transduction and Laboratory of Medical Chemistry
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), GIGA-R, University of Liège, CHU, Sart-Tilman, B-4000 Liège, Belgium and
| |
Collapse
|
48
|
Bala S, Tang A, Catalano D, Petrasek J, Taha O, Kodys K, Szabo G. Induction of Bcl-3 by acute binge alcohol results in toll-like receptor 4/LPS tolerance. J Leukoc Biol 2012; 92:611-20. [PMID: 22782967 DOI: 10.1189/jlb.0112050] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Acute alcohol binge results in immunosuppression and impaired production of proinflammatory cytokines, including TNF-α. TNF-α production is induced by LPS, a TLR4 ligand, and is tightly regulated at various levels of the signaling cascade, including the NF-κB transcription factor. Here, we hypothesized that acute alcohol induces TLR4/LPS tolerance via Bcl-3, a nuclear protein and member of the NF-κB family. We found that acute alcohol pretreatment resulted in the same attenuating effect as LPS pretreatment on TLR4-induced TNF-α production in human monocytes and murine RAW 264.7 macrophages. Acute alcohol-induced Bcl-3 expression and IP studies revealed increased association of Bcl-3 with NF-κB p50 homodimers in alcohol-treated macrophages and in mice. ChIP assays revealed increased occupancy of Bcl-3 and p50 at the promoter region of TNF-α in alcohol-pretreated cells. To confirm that the Bcl-3-p50 complex regulates transcription/production of TNF-α during acute alcohol exposure, we inhibited Bcl-3 expression using a targeted siRNA. Bcl-3 knockdown prevented the alcohol-induced inhibition of TNF-α mRNA and protein production. In a mouse model of binge alcohol, an increase in Bcl-3 and a concomitant decrease in TNF-α but no change in IL-10 production were found in mice that received alcohol followed by LPS challenge. In summary, our novel data suggest that acute alcohol treatment in vitro and in vivo induces molecular signatures of TLR4/LPS tolerance through the induction of Bcl-3, a negative regulator of TNF-α transcription via its association with NF-κB p50/p50 dimers.
Collapse
Affiliation(s)
- Shashi Bala
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Ubiquitination and the Ubiquitin-Proteasome System as regulators of transcription and transcription factors in epithelial mesenchymal transition of cancer. Tumour Biol 2012; 33:897-910. [PMID: 22399444 DOI: 10.1007/s13277-012-0355-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/09/2012] [Indexed: 02/06/2023] Open
Abstract
Epithelial to Mesenchymal Transition (EMT) in cancer is a process that allows cancer cells to detach from neighboring cells, become mobile and metastasize and shares many signaling pathways with development. Several molecular mechanisms which regulate oncogenic properties in neoplastic cells such as proliferation, resistance to apoptosis and angiogenesis through transcription factors or other mediators are also regulators of EMT. These pathways and downstream transcription factors are, in their turn, regulated by ubiquitination and the Ubiquitin-Proteasome System (UPS). Ubiquitination, the covalent link of the small 76-amino acid protein ubiquitin to target proteins, serves as a signal for protein degradation by the proteasome or for other outcomes such as endocytosis, degradation by the lysosome or directing these proteins to specific cellular compartments. This review discusses aspects of the regulation of EMT by ubiquitination and the UPS and underlines its complexity focusing on transcription and transcription factors regulating EMT and are being regulated by ubiquitination.
Collapse
|
50
|
Cole AR. GSK3 as a Sensor Determining Cell Fate in the Brain. Front Mol Neurosci 2012; 5:4. [PMID: 22363258 PMCID: PMC3275790 DOI: 10.3389/fnmol.2012.00004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/10/2012] [Indexed: 12/23/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) is an unusual serine/threonine kinase that controls many neuronal functions, including neurite outgrowth, synapse formation, neurotransmission, and neurogenesis. It mediates these functions by phosphorylating a wide range of substrates involved in gene transcription, metabolism, apoptosis, cytoskeletal dynamics, signal transduction, lipid membrane dynamics, and trafficking, amongst others. This complicated list of diverse substrates generally follow a more simple pattern: substrates negatively regulated by GSK3-mediated phosphorylation favor a proliferative/survival state, while substrates positively regulated by GSK3 favor a more differentiated/functional state. Accordingly, GSK3 activity is higher in differentiated cells than undifferentiated cells and physiological (Wnt, growth factors) and pharmacological inhibitors of GSK3 promote the proliferative capacity of embryonic stem cells. In the brain, the level of GSK3 activity influences neural progenitor cell proliferation/differentiation in neuroplasticity and repair, as well as efficient neurotransmission in differentiated adult neurons. While defects in GSK3 activity are unlikely to be the primary cause of neurodegenerative diseases, therapeutic regulation of its activity to promote a proliferative/survival versus differentiated/mature functional environment in the brain could be a powerful strategy for treatment of neurodegenerative and other mental disorders.
Collapse
Affiliation(s)
- Adam R Cole
- Neurosignalling Group, Garvan Institute of Medical Research Sydney, NSW, Australia
| |
Collapse
|