1
|
Berry MA, Andrianova EP, Zhulin IB. Diverse domain architectures of CheA histidine kinase, a central component of bacterial and archaeal chemosensory systems. Microbiol Spectr 2024; 12:e0346423. [PMID: 38038435 PMCID: PMC10782961 DOI: 10.1128/spectrum.03464-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/22/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE We found that in contrast to the best-studied model organisms, such as Escherichia coli and Bacillus subtilis, most bacterial and archaeal species have a CheA protein with a different domain composition. We report variations in CheA architecture, such as domain duplication and acquisition as well as class-specific domain composition. Our results will be of interest to those working on signal transduction in bacteria and archaea and lay the foundation for experimental studies.
Collapse
Affiliation(s)
- Marissa A. Berry
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | | | - Igor B. Zhulin
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Berry MA, Andrianova EP, Zhulin IB. Diverse domain architectures of CheA histidine kinase, a central component of bacterial and archaeal chemosensory systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558490. [PMID: 37790397 PMCID: PMC10542144 DOI: 10.1101/2023.09.19.558490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Chemosensory systems in bacteria and archaea are complex, multi-protein pathways that enable rapid cellular responses to environmental changes. The CheA histidine kinase is a central component of chemosensory systems. In contrast to other histidine kinases, it lacks a sensor (input) domain and utilizes dedicated chemoreceptors for sensing. CheA is a multi-domain protein; in model organisms as diverse as Escherichia coli and Bacillus subtilis, it contains five single-copy domains. Deviations from this canonical domain architecture have been reported, however, a broad genome-wide analysis of CheA diversity is lacking. Here, we present results of a genomic survey of CheA domain composition carried out using an unbiased set of thousands of CheA sequences from bacteria and archaea. We found that four out of five canonical CheA domains comprise a minimal functional unit (core domains), as they are present in all surveyed CheA homologs. The most common deviations from a classical five-domain CheA architecture are the lack of a P2/CheY-binding domain, which is missing from more than a half of CheA homologs and the acquisition of a response regulator receiver (CheY-like) domain, which is present in ~35% of CheA homologs. We also document other deviations from classical CheA architecture, including bipartite CheA proteins, domain duplications and fusions, and reveal that phylogenetically defined CheA classes have pre-dominant domain architectures. This study lays a foundation for a better classification of CheA homologs and identifies targets for experimental investigations.
Collapse
Affiliation(s)
- Marissa A. Berry
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
| | | | - Igor B. Zhulin
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
3
|
Guo Y, Aoyagi T, Hori T. Comparative insights into genome signatures of ferric iron oxide- and anode-stimulated Desulfuromonas spp. strains. BMC Genomics 2021; 22:475. [PMID: 34171987 PMCID: PMC8235581 DOI: 10.1186/s12864-021-07809-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Halotolerant Fe (III) oxide reducers affiliated in the family Desulfuromonadaceae are ubiquitous and drive the carbon, nitrogen, sulfur and metal cycles in marine subsurface sediment. Due to their possible application in bioremediation and bioelectrochemical engineering, some of phylogenetically close Desulfuromonas spp. strains have been isolated through enrichment with crystalline Fe (III) oxide and anode. The strains isolated using electron acceptors with distinct redox potentials may have different abilities, for instance, of extracellular electron transport, surface recognition and colonization. The objective of this study was to identify the different genomic signatures between the crystalline Fe (III) oxide-stimulated strain AOP6 and the anode-stimulated strains WTL and DDH964 by comparative genome analysis. RESULTS The AOP6 genome possessed the flagellar biosynthesis gene cluster, as well as diverse and abundant genes involved in chemotaxis sensory systems and c-type cytochromes capable of reduction of electron acceptors with low redox potentials. The WTL and DDH964 genomes lacked the flagellar biosynthesis cluster and exhibited a massive expansion of transposable gene elements that might mediate genome rearrangement, while they were deficient in some of the chemotaxis and cytochrome genes and included the genes for oxygen resistance. CONCLUSIONS Our results revealed the genomic signatures distinctive for the ferric iron oxide- and anode-stimulated Desulfuromonas spp. strains. These findings highlighted the different metabolic abilities, such as extracellular electron transfer and environmental stress resistance, of these phylogenetically close bacterial strains, casting light on genome evolution of the subsurface Fe (III) oxide reducers.
Collapse
Affiliation(s)
- Yong Guo
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Tomo Aoyagi
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan.
| |
Collapse
|
4
|
Arapov TD, Saldaña RC, Sebastian AL, Ray WK, Helm RF, Scharf BE. Cellular Stoichiometry of Chemotaxis Proteins in Sinorhizobium meliloti. J Bacteriol 2020; 202:e00141-20. [PMID: 32393521 PMCID: PMC7317046 DOI: 10.1128/jb.00141-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/05/2020] [Indexed: 11/20/2022] Open
Abstract
Chemotaxis systems enable microbes to sense their immediate environment, moving toward beneficial stimuli and away from those that are harmful. In an effort to better understand the chemotaxis system of Sinorhizobium meliloti, a symbiont of the legume alfalfa, the cellular stoichiometries of all ten chemotaxis proteins in S. meliloti were determined. A combination of quantitative immunoblot and mass spectrometry revealed that the protein stoichiometries in S. meliloti varied greatly from those in Escherichia coli and Bacillus subtilis To compare protein ratios to other systems, values were normalized to the central kinase CheA. All S. meliloti chemotaxis proteins exhibited increased ratios to various degrees. The 10-fold higher molar ratio of adaptor proteins CheW1 and CheW2 to CheA might result in the formation of rings in the chemotaxis array that consist of only CheW instead of CheA and CheW in a 1:1 ratio. We hypothesize that the higher ratio of CheA to the main response regulator CheY2 is a consequence of the speed-variable motor in S. meliloti, instead of a switch-type motor. Similarly, proteins involved in signal termination are far more abundant in S. meliloti, which utilizes a phosphate sink mechanism based on CheA retrophosphorylation to inactivate the motor response regulator versus CheZ-catalyzed dephosphorylation as in E. coli and B. subtilis Finally, the abundance of CheB and CheR, which regulate chemoreceptor methylation, was increased compared to CheA, indicative of variations in the adaptation system of S. meliloti Collectively, these results mark significant differences in the composition of bacterial chemotaxis systems.IMPORTANCE The symbiotic soil bacterium Sinorhizobium meliloti contributes greatly to host-plant growth by fixing atmospheric nitrogen. The provision of nitrogen as ammonium by S. meliloti leads to increased biomass production of its legume host alfalfa and diminishes the use of environmentally harmful chemical fertilizers. To better understand the role of chemotaxis in host-microbe interaction, a comprehensive catalogue of the bacterial chemotaxis system is vital, including its composition, function, and regulation. The stoichiometry of chemotaxis proteins in S. meliloti has very few similarities to the systems in Escherichia coli and Bacillus subtilis In addition, total amounts of proteins are significantly lower. S. meliloti exhibits a chemotaxis system distinct from known models by incorporating new proteins as exemplified by the phosphate sink mechanism.
Collapse
Affiliation(s)
- Timofey D Arapov
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | | | - Amanda L Sebastian
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - W Keith Ray
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Richard F Helm
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Birgit E Scharf
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
5
|
Abstract
The fundamental motile behavior of E. coli is a random walk, where straight “runs” are punctuated by “tumbles.” This behavior, conferred by the chemotaxis signaling system, is used to track chemical gradients in liquid. Our study results show that when migrating collectively on surfaces, E. coli modifies its chemosensory physiology to decrease its tumble bias (and hence to increase run durations) by post-transcriptional changes that alter the levels of a key signaling protein. We speculate that the low tumble bias may contribute to the observed Lévy walk (LW) trajectories within the swarm, where run durations have a power law distribution. In animals, LW patterns are hypothesized to maximize searches in unpredictable environments. Swarming bacteria face several challenges while moving collectively over a surface—maintaining cohesion, overcoming constraints imposed by a physical substrate, searching for nutrients as a group, and surviving lethal levels of antimicrobials. The altered chemosensory behavior that we describe in this report may help with these challenges. Many flagellated bacteria “swarm” over a solid surface as a dense consortium. In different bacteria, swarming is facilitated by several alterations such as those corresponding to increased flagellum numbers, special stator proteins, or secreted surfactants. We report here a change in the chemosensory physiology of swarming Escherichia coli which alters its normal “run tumble” bias. E. coli bacteria taken from a swarm exhibit more highly extended runs (low tumble bias) and higher speeds than E. coli bacteria swimming individually in a liquid medium. The stability of the signaling protein CheZ is higher in swarmers, consistent with the observed elevation of CheZ levels and with the low tumble bias. We show that the tumble bias displayed by wild-type swarmers is the optimal bias for maximizing swarm expansion. In assays performed in liquid, swarm cells have reduced chemotactic performance. This behavior is specific to swarming, is not specific to growth on surfaces, and persists for a generation. Therefore, the chemotaxis signaling pathway is reprogrammed for swarming.
Collapse
|
6
|
Abstract
Microorganisms can move towards favorable growth conditions as a response to environmental stimuli. This process requires a motility structure and a system to direct the movement. For swimming motility, archaea employ a rotating filament, the archaellum. This archaea-specific structure is functionally equivalent, but structurally different, from the bacterial flagellum. To control the directionality of movement, some archaea make use of the chemotaxis system, which is used for the same purpose by bacteria. Over the past decades, chemotaxis has been studied in detail in several model bacteria. In contrast, archaeal chemotaxis is much less explored and largely restricted to analyses in halophilic archaea. In this review, we summarize the available information on archaeal taxis. We conclude that archaeal chemotaxis proteins function similarly as their bacterial counterparts. However, because the motility structures are fundamentally different, an archaea-specific docking mechanism is required, for which initial experimental data have only recently been obtained.
Collapse
|
7
|
Fis is a global regulator critical for modulation of virulence factor production and pathogenicity of Dickeya zeae. Sci Rep 2018; 8:341. [PMID: 29321600 PMCID: PMC5762655 DOI: 10.1038/s41598-017-18578-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 12/11/2017] [Indexed: 12/25/2022] Open
Abstract
Dickeya zeae is the causal agent of rice foot rot disease, which has recently become a great threat to rice planting countries and regions. The pathogen produces a family of phytotoxins named zeamines that is critical for bacterial virulence, but little is known about the signaling pathways and regulatory mechanisms that govern zeamine production. In this study, we showed that a conserved transcriptional regulator Fis is involved in the regulation of zeamine production in D. zeae strain EC1. Deletion mutants were markedly attenuated in the virulence against rice seed germination. Transcriptome and phenotype analyses showed that Fis is a potent global transcriptional regulator modulating various virulence traits, including production of extracellular enzymes and exopolysaccharides, swimming and swarming motility, biofilm formation and cell aggregation. DNA gel retardation analysis showed that Fis directly regulates the transcription of key virulence genes and the genes encoding Vfm quorum sensing system through DNA/protein interaction. Our findings unveil a key regulator associated with the virulence of D. zeae EC1, and present useful clues for further elucidation of the regulatory complex and signaling pathways which govern the virulence of this important pathogen.
Collapse
|
8
|
Class III Histidine Kinases: a Recently Accessorized Kinase Domain in Putative Modulators of Type IV Pilus-Based Motility. J Bacteriol 2017; 199:JB.00218-17. [PMID: 28484044 DOI: 10.1128/jb.00218-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 04/28/2017] [Indexed: 01/02/2023] Open
Abstract
Histidine kinases are key components of regulatory systems that enable bacteria to respond to environmental changes. Two major classes of histidine kinases are recognized on the basis of their modular design: classical (HKI) and chemotaxis specific (HKII). Recently, a new type of histidine kinase that appeared to have features of both HKIs and HKIIs was identified and termed HKIII; however, the details of HKIII's relationship to other two classes of histidine kinases, their function, and evolutionary history remain unknown. Here, we carried out genomic, phylogenetic, and protein sequence analyses that allowed us to reveal the unusual evolutionary history of this protein family, formalize its distinctive features, and propose its putative function. HKIIIs are characterized by the presence of sensory domains and the lack of a dimerization domain, which is typically present in all histidine kinases. In addition to a single-domain response regulator, HKIII signal transduction systems utilize CheX phosphatase and, in many instances, an unorthodox soluble chemoreceptor that are usual components of chemotaxis signal transduction systems. However, many HKIII genes are found in genomes completely lacking chemotaxis genes, thus decoupling their function from chemotaxis. By contrast, all HKIII-containing genomes also contain pilT, a marker gene for bacterial type IV pilus-based motility, whose regulation is proposed as a putative function for HKIII. These signal transduction systems have a narrow phyletic distribution but are present in many emerging and opportunistic pathogens, thus offering an attractive potential target for future antimicrobial drug design.IMPORTANCE Bacteria adapt to their environment and their hosts by detecting signals and regulating their cellular functions accordingly. Here, we describe a largely unexplored family of signal transduction histidine kinases, called HKIII, that have a unique modular design. While they are currently identified in a relatively short list of bacterial species, this list contains many emerging pathogens. We show that HKIIIs likely control bacterial motility across solid surfaces, which is a key virulence factor in many bacteria, including those causing severe infections. Full understanding of this putative function may help in designing effective drugs against pathogens that will not affect the majority of the beneficial human microbiome.
Collapse
|
9
|
Zschiedrich CP, Keidel V, Szurmant H. Molecular Mechanisms of Two-Component Signal Transduction. J Mol Biol 2016; 428:3752-75. [PMID: 27519796 DOI: 10.1016/j.jmb.2016.08.003] [Citation(s) in RCA: 376] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 02/03/2023]
Abstract
Two-component systems (TCS) comprising sensor histidine kinases and response regulator proteins are among the most important players in bacterial and archaeal signal transduction and also occur in reduced numbers in some eukaryotic organisms. Given their importance to cellular survival, virulence, and cellular development, these systems are among the most scrutinized bacterial proteins. In the recent years, a flurry of bioinformatics, genetic, biochemical, and structural studies have provided detailed insights into many molecular mechanisms that underlie the detection of signals and the generation of the appropriate response by TCS. Importantly, it has become clear that there is significant diversity in the mechanisms employed by individual systems. This review discusses the current knowledge on common themes and divergences from the paradigm of TCS signaling. An emphasis is on the information gained by a flurry of recent structural and bioinformatics studies.
Collapse
Affiliation(s)
- Christopher P Zschiedrich
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E Second Street, Pomona, CA 91766, USA; Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Victoria Keidel
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E Second Street, Pomona, CA 91766, USA; Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hendrik Szurmant
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E Second Street, Pomona, CA 91766, USA; Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
10
|
Borrelia burgdorferi CheD Promotes Various Functions in Chemotaxis and the Pathogenic Life Cycle of the Spirochete. Infect Immun 2016; 84:1743-1752. [PMID: 27021244 DOI: 10.1128/iai.01347-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/23/2016] [Indexed: 12/13/2022] Open
Abstract
Borrelia burgdorferi possesses a sophisticated chemotaxis signaling system; however, the roles of the majority of the chemotaxis proteins in the infectious life cycle have not yet been demonstrated. Specifically, the role of CheD during host colonization has not been demonstrated in any bacterium. Here, we systematically characterized the B. burgdorferi CheD homolog using genetics and biochemical and mouse-tick-mouse infection cycle studies. Bacillus subtilis CheD plays an important role in chemotaxis by deamidation of methyl-accepting chemotaxis protein receptors (MCPs) and by increasing the receptor kinase activity or enhancing CheC phosphatase activity, thereby regulating the levels of the CheY response regulator. Our biochemical analysis indicates that B. burgdorferi CheD significantly enhances CheX phosphatase activity by specifically interacting with the phosphatase. Moreover, CheD specifically binds two of the six MCPs, indicating that CheD may also modulate the receptor proteins. Although the motility of the cheD mutant cells was indistinguishable from that of the wild-type cells, the mutant did exhibit reduced chemotaxis. Importantly, the mutant showed significantly reduced infectivity in C3H/HeN mice via needle inoculation. Mouse-tick-mouse infection assays indicated that CheD is dispensable for acquisition or transmission of spirochetes; however, the viability of cheD mutants in ticks is marginally reduced compared to that of the wild-type or complemented cheD spirochetes. These data suggest that CheD plays an important role in the chemotaxis and pathogenesis of B. burgdorferi We propose potential connections between CheD, CheX, and MCPs and discuss how these interactions play critical roles during the infectious life cycle of the spirochete.
Collapse
|
11
|
Xu G, Wang BG. Independent Evolution of Six Families of Halogenating Enzymes. PLoS One 2016; 11:e0154619. [PMID: 27153321 PMCID: PMC4859513 DOI: 10.1371/journal.pone.0154619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/17/2016] [Indexed: 11/18/2022] Open
Abstract
Halogenated natural products are widespread in the environment, and the halogen atoms are typically vital to their bioactivities. Thus far, six families of halogenating enzymes have been identified: cofactor-free haloperoxidases (HPO), vanadium-dependent haloperoxidases (V-HPO), heme iron-dependent haloperoxidases (HI-HPO), non-heme iron-dependent halogenases (NI-HG), flavin-dependent halogenases (F-HG), and S-adenosyl-L-methionine (SAM)-dependent halogenases (S-HG). However, these halogenating enzymes with similar biological functions but distinct structures might have evolved independently. Phylogenetic and structural analyses suggest that the HPO, V-HPO, HI-HPO, NI-HG, F-HG, and S-HG enzyme families may have evolutionary relationships to the α/β hydrolases, acid phosphatases, peroxidases, chemotaxis phosphatases, oxidoreductases, and SAM hydroxide adenosyltransferases, respectively. These halogenating enzymes have established sequence homology, structural conservation, and mechanistic features within each family. Understanding the distinct evolutionary history of these halogenating enzymes will provide further insights into the study of their catalytic mechanisms and halogenation specificity.
Collapse
Affiliation(s)
- Gangming Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, People’s Republic of China
- * E-mail:
| | - Bin-Gui Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, People’s Republic of China
| |
Collapse
|
12
|
Pérez-Montaño F, Del Cerro P, Jiménez-Guerrero I, López-Baena FJ, Cubo MT, Hungria M, Megías M, Ollero FJ. RNA-seq analysis of the Rhizobium tropici CIAT 899 transcriptome shows similarities in the activation patterns of symbiotic genes in the presence of apigenin and salt. BMC Genomics 2016; 17:198. [PMID: 26951045 PMCID: PMC4782375 DOI: 10.1186/s12864-016-2543-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/25/2016] [Indexed: 11/21/2022] Open
Abstract
Background Rhizobium tropici strain CIAT 899 establishes effective symbioses with several legume species, including Phaseolus vulgaris and Leucaena leucocephala. This bacterium synthesizes a large variety of nodulation factors in response to nod-gene inducing flavonoids and, surprisingly, also under salt stress conditions. The aim of this study was to identify differentially expressed genes in the presence of both inducer molecules, and analyze the promoter regions located upstream of these genes. Results Results obtained by RNA-seq analyses of CIAT 899 induced with apigenin, a nod gene-inducing flavonoid for this strain, or salt allowed the identification of 19 and 790 differentially expressed genes, respectively. Fifteen of these genes were up-regulated in both conditions and were involved in the synthesis of both Nod factors and indole-3-acetic acid. Transcription of these genes was presumably activated through binding of at least one of the five NodD proteins present in this strain to specific nod box promoter sequences when the bacterium was induced by both apigenin and salt. Finally, under saline conditions, many other transcriptional responses were detected, including an increase in the transcription of genes involved in trehalose catabolism, chemotaxis and protein secretion, as well as ribosomal genes, and a decrease in the transcription of genes involved in transmembrane transport. Conclusions To our knowledge this is the first time that a transcriptomic study shows that salt stress induces the expression of nodulation genes in the absence of flavonoids. Thus, in the presence of both nodulation inducer molecules, apigenin and salt, R. tropici CIAT 899 up-regulated the same set of symbiotic genes. It could be possible that the increases in the transcription levels of several genes related to nodulation under saline conditions could represent a strategy to establish symbiosis under abiotic stressing conditions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2543-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francisco Pérez-Montaño
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n° 6, 41012, Sevilla, Spain.
| | - Pablo Del Cerro
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n° 6, 41012, Sevilla, Spain.
| | - Irene Jiménez-Guerrero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n° 6, 41012, Sevilla, Spain.
| | - Francisco Javier López-Baena
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n° 6, 41012, Sevilla, Spain.
| | - Maria Teresa Cubo
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n° 6, 41012, Sevilla, Spain.
| | | | - Manuel Megías
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n° 6, 41012, Sevilla, Spain.
| | - Francisco Javier Ollero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n° 6, 41012, Sevilla, Spain.
| |
Collapse
|
13
|
Black WP, Wang L, Davis MY, Yang Z. The orphan response regulator EpsW is a substrate of the DifE kinase and it regulates exopolysaccharide in Myxococcus xanthus. Sci Rep 2015; 5:17831. [PMID: 26639551 PMCID: PMC4671073 DOI: 10.1038/srep17831] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/06/2015] [Indexed: 11/17/2022] Open
Abstract
Here we attempted to identify the downstream target of the DifE histidine kinase in the regulation of exopolysaccharide (EPS) production in the Gram-negative bacterium Myxococcus xanthus. This bacterium is an important model system for the studies of Type IV pilus (T4P) because it is motile by social (S) motility which is powered by T4P retraction. EPS is critical for S motility because it is the preferred anchor for T4P retraction in this bacterium. Previous studies identified the Dif chemosensory pathway as crucial for the regulation of EPS production. However, the downstream target of the DifE kinase in this pathway was unknown. In this study, EpsW, an orphan and single-domain response regulator (RR), was identified as a potential DifE target first by bioinformatics. Subsequent experiments demonstrated that epsW is essential for EPS biosynthesis in vivo and that EpsW is directly phosphorylated by DifE in vitro. Targted mutagenesis of epsW suggests that EpsW is unlikely the terminal RR of the Dif pathway. We propose instead that EpsW is an intermediary in a multistep phosphorelay that regulates EPS in M. xanthus.
Collapse
Affiliation(s)
- Wesley P Black
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Lingling Wang
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.,College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Manli Y Davis
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Zhaomin Yang
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
14
|
Matsuzaki Y, Ohue M, Uchikoga N, Akiyama Y. Protein-protein interaction network prediction by using rigid-body docking tools: application to bacterial chemotaxis. Protein Pept Lett 2015; 21:790-8. [PMID: 23855669 PMCID: PMC4440392 DOI: 10.2174/09298665113209990066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 02/27/2013] [Accepted: 03/03/2013] [Indexed: 11/22/2022]
Abstract
Core elements of cell regulation are made up of protein-protein interaction (PPI) networks. However, many
parts of the cell regulatory systems include unknown PPIs. To approach this problem, we have developed a computational
method of high-throughput PPI network prediction based on all-to-all rigid-body docking of protein tertiary structures.
The prediction system accepts a set of data comprising protein tertiary structures as input and generates a list of possible
interacting pairs from all the combinations as output. A crucial advantage of this docking based method is in providing
predictions of protein pairs that increases our understanding of biological pathways by analyzing the structures of candidate
complex structures, which gives insight into novel interaction mechanisms. Although such exhaustive docking calculation
requires massive computational resources, recent advancements in the computational sciences have made such
large-scale calculations feasible. different rigid-body docking tools with different scoring models. We found that the predicted interactions were different
between the results from the two tools. When the positive predictions from both of the docking tools were combined, all
the core signaling interactions were correctly predicted with the exception of interactions activated by protein phosphorylation.
Large-scale PPI prediction using tertiary structures is an effective approach that has a wide range of potential applications.
This method is especially useful for identifying novel PPIs of new pathways that control cellular behavior.
Collapse
Affiliation(s)
| | | | | | - Yutaka Akiyama
- Graduate School of Information Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
15
|
Sircar R, Borbat PP, Lynch MJ, Bhatnagar J, Beyersdorf MS, Halkides CJ, Freed JH, Crane BR. Assembly states of FliM and FliG within the flagellar switch complex. J Mol Biol 2014; 427:867-886. [PMID: 25536293 DOI: 10.1016/j.jmb.2014.12.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 01/11/2023]
Abstract
At the base of the bacterial flagella, a cytoplasmic rotor (the C-ring) generates torque and reverses rotation sense in response to stimuli. The bulk of the C-ring forms from many copies of the proteins FliG, FliM, and FliN, which together constitute the switch complex. To help resolve outstanding issues regarding C-ring architecture, we have investigated interactions between FliM and FliG from Thermotoga maritima with X-ray crystallography and pulsed dipolar ESR spectroscopy (PDS). A new crystal structure of an 11-unit FliG:FliM complex produces a large arc with a curvature consistent with the dimensions of the C-ring. Previously determined structures along with this new structure provided a basis to test switch complex assembly models. PDS combined with mutational studies and targeted cross-linking reveal that FliM and FliG interact through their middle domains to form both parallel and antiparallel arrangements in solution. Residue substitutions at predicted interfaces disrupt higher-order complexes that are primarily mediated by contacts between the C-terminal domain of FliG and the middle domain of a neighboring FliG molecule. Spin separations among multi-labeled components fit a self-consistent model that agree well with electron microscopy images of the C-ring. An activated form of the response regulator CheY destabilizes the parallel arrangement of FliM molecules to perturb FliG alignment in a process that may reflect the onset of rotation switching. These data suggest a model of C-ring assembly in which intermolecular contacts among FliG domains provide a template for FliM assembly and cooperative transitions.
Collapse
Affiliation(s)
- Ria Sircar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, NY 14853, USA
| | - Michael J Lynch
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jaya Bhatnagar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Matthew S Beyersdorf
- Department of Chemistry and Biochemistry, Unversity of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Christopher J Halkides
- Department of Chemistry and Biochemistry, Unversity of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, NY 14853, USA
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
16
|
Myers-Turnbull D, Bliven SE, Rose PW, Aziz ZK, Youkharibache P, Bourne PE, Prlić A. Systematic detection of internal symmetry in proteins using CE-Symm. J Mol Biol 2014; 426:2255-68. [PMID: 24681267 DOI: 10.1016/j.jmb.2014.03.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 11/26/2022]
Abstract
Symmetry is an important feature of protein tertiary and quaternary structures that has been associated with protein folding, function, evolution, and stability. Its emergence and ensuing prevalence has been attributed to gene duplications, fusion events, and subsequent evolutionary drift in sequence. This process maintains structural similarity and is further supported by this study. To further investigate the question of how internal symmetry evolved, how symmetry and function are related, and the overall frequency of internal symmetry, we developed an algorithm, CE-Symm, to detect pseudo-symmetry within the tertiary structure of protein chains. Using a large manually curated benchmark of 1007 protein domains, we show that CE-Symm performs significantly better than previous approaches. We use CE-Symm to build a census of symmetry among domain superfamilies in SCOP and note that 18% of all superfamilies are pseudo-symmetric. Our results indicate that more domains are pseudo-symmetric than previously estimated. We establish a number of recurring types of symmetry-function relationships and describe several characteristic cases in detail. With the use of the Enzyme Commission classification, symmetry was found to be enriched in some enzyme classes but depleted in others. CE-Symm thus provides a methodology for a more complete and detailed study of the role of symmetry in tertiary protein structure [availability: CE-Symm can be run from the Web at http://source.rcsb.org/jfatcatserver/symmetry.jsp. Source code and software binaries are also available under the GNU Lesser General Public License (version 2.1) at https://github.com/rcsb/symmetry. An interactive census of domains identified as symmetric by CE-Symm is available from http://source.rcsb.org/jfatcatserver/scopResults.jsp].
Collapse
Affiliation(s)
- Douglas Myers-Turnbull
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Spencer E Bliven
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Peter W Rose
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Zaid K Aziz
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Philip E Bourne
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| | - Andreas Prlić
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
17
|
Sircar R, Greenswag AR, Bilwes AM, Gonzalez-Bonet G, Crane BR. Structure and activity of the flagellar rotor protein FliY: a member of the CheC phosphatase family. J Biol Chem 2013; 288:13493-502. [PMID: 23532838 PMCID: PMC3650386 DOI: 10.1074/jbc.m112.445171] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND FliY is a flagellar rotor protein of the CheC phosphatase family. RESULTS The FliY structure resembles that of the rotor protein FliM but contains two active centers for CheY dephosphorylation. CONCLUSION FliY incorporates properties of the FliM/FliN rotor proteins and the CheC/CheX phosphatases to serve multiple functions in the flagellar switch. SIGNIFICANCE FliY distinguishes flagellar architecture and function in different types of bacteria. Rotating flagella propel bacteria toward favorable environments. Sense of rotation is determined by the intracellular response regulator CheY, which when phosphorylated (CheY-P) interacts directly with the flagellar motor. In many different types of bacteria, the CheC/CheX/FliY (CXY) family of phosphatases terminates the CheY-P signal. Unlike CheC and CheX, FliY is localized in the flagellar switch complex, which also contains the stator-coupling protein FliG and the target of CheY-P, FliM. The 2.5 Å resolution crystal structure of the FliY catalytic domain from Thermotoga maritima bears strong resemblance to the middle domain of FliM. Regions of FliM that mediate contacts within the rotor compose the phosphatase active sites in FliY. Despite the similarity between FliY and FliM, FliY does not bind FliG and thus is unlikely to be a substitute for FliM in the center of the switch complex. Solution studies indicate that FliY dimerizes through its C-terminal domains, which resemble the Escherichia coli switch complex component FliN. FliY differs topologically from the E. coli chemotaxis phosphatase CheZ but appears to utilize similar structural motifs for CheY dephosphorylation in close analogy to CheX. Recognition properties and phosphatase activities of site-directed mutants identify two pseudosymmetric active sites in FliY (Glu(35)/Asn(38) and Glu(132)/Asn(135)), with the second site (Glu(132)/Asn(135)) being more active. A putative N-terminal CheY binding domain conserved with FliM is not required for binding CheY-P or phosphatase activity.
Collapse
Affiliation(s)
- Ria Sircar
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850
| | - Anna R. Greenswag
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850
| | - Alexandrine M. Bilwes
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850
| | - Gabriela Gonzalez-Bonet
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850
| | - Brian R. Crane
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, To whom correspondence should be addressed: Dept. of Chemistry and Chemical Biology Cornell University, Ithaca, NY 14850. Tel.: 607-254-8634; E-mail:
| |
Collapse
|
18
|
Willett JW, Kirby JR. Genetic and biochemical dissection of a HisKA domain identifies residues required exclusively for kinase and phosphatase activities. PLoS Genet 2012; 8:e1003084. [PMID: 23226719 PMCID: PMC3510030 DOI: 10.1371/journal.pgen.1003084] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 09/25/2012] [Indexed: 02/04/2023] Open
Abstract
Two-component signal transduction systems, composed of histidine kinases (HK) and response regulators (RR), allow bacteria to respond to diverse environmental stimuli. The HK can control both phosphorylation and subsequent dephosphorylation of its cognate RR. The majority of HKs utilize the HisKA subfamily of dimerization and histidine phosphotransfer (DHp) domains, which contain the phospho-accepting histidine and directly contact the RR. Extensive genetics, biochemistry, and structural biology on several prototypical TCS systems including NtrB-NtrC and EnvZ-OmpR have provided a solid basis for understanding the function of HK–RR signaling. Recently, work on NarX, a HisKA_3 subfamily protein, indicated that two residues in the highly conserved region of the DHp domain are responsible for phosphatase activity. In this study we have carried out both genetic and biochemical analyses on Myxococcus xanthus CrdS, a member of the HisKA subfamily of bacterial HKs. CrdS is required for the regulation of spore formation in response to environmental stress. Following alanine-scanning mutagenesis of the α1 helix of the DHp domain of CrdS, we determined the role for each mutant protein for both kinase and phosphatase activity. Our results indicate that the conserved acidic residue (E372) immediately adjacent to the site of autophosphorylation (H371) is specifically required for kinase activity but not for phosphatase activity. Conversely, we found that the conserved Thr/Asn residue (N375) was required for phosphatase activity but not for kinase activity. We extended our biochemical analyses to two CrdS homologs from M. xanthus, HK1190 and HK4262, as well as Thermotoga maritima HK853. The results were similar for each HisKA family protein where the conserved acidic residue is required for kinase activity while the conserved Thr/Asn residue is required for phosphatase activity. These data are consistent with conserved mechanisms for kinase and phosphatase activities in the broadly occurring HisKA family of sensor kinases in bacteria. Bacterial histidine kinases (HK) serve as bifunctional enzymes capable of both phosphorylation and dephosphorylation of their cognate response regulators (RR). The majority of HKs (77%) belong to the HisKA subfamily. While both kinase and phosphatase functions have been assayed for HisKA proteins, relatively few examples have been studied to determine which residues are required for kinase and phosphatase activity. Recent studies on NarX, a HisKA_3 family protein, and the dedicated phosphatases CheZ and CheX illustrate requirements for two amino acids for phosphatase function. In this study, we undertook saturating mutagenesis of the proposed interaction surface between the HK and its cognate RR and conclude that only one residue (T/N) is required exclusively for phosphatase activity for HisKA family proteins in evolutionarily distant organisms Myxococcus xanthus and Thermotoga maritima. In addition, we identified only one residue (E/D), adjacent to the conserved site of phosphorylation, required exclusively for kinase activity within the highly conserved motif H-E/D-x-x-T/N. Because similar sequences are found in nearly all HisKA kinases, these residues provide excellent targets for dissection of kinase and phosphatase activities within this broadly occurring family of bacterial kinases.
Collapse
Affiliation(s)
| | - John R. Kirby
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
19
|
Glekas GD, Plutz MJ, Walukiewicz HE, Allen GM, Rao CV, Ordal GW. Elucidation of the multiple roles of CheD in Bacillus subtilis chemotaxis. Mol Microbiol 2012; 86:743-56. [PMID: 22931217 DOI: 10.1111/mmi.12015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2012] [Indexed: 10/28/2022]
Abstract
Chemotaxis by Bacillus subtilis requires the CheD protein for proper function. In a cheD mutant when McpB was the sole chemoreceptor in B. subtilis, chemotaxis to asparagine was quite good. When McpC was the sole chemoreceptor in a cheD mutant, chemotaxis to proline was very poor. The reason for the difference between the chemoreceptors is because CheD deamidates Q609 in McpC and does not deamidate McpB. When mcpC-Q609E is expressed as the sole chemoreceptor in a cheD background, chemotaxis is almost fully restored. Concomitantly, in vitro McpC activates the CheA kinase poorly, whereas McpC-Q609E activates it much more. Moreover, CheD, which activates chemoreceptors, binds better to McpC-Q609E compared with unmodified McpC. Using hydroxyl radical susceptibility in the presence or absence of CheD, the most likely sites of CheD binding were the modification sites where CheD, CheB and CheR carry out their catalytic activities. Thus, CheD appears to have two separate roles in B. subtilis chemotaxis - to bind to chemoreceptors to activate them as part of the CheC/CheD/CheYp adaptation system and to deamidate selected residues to activate the chemoreceptors and enable them to mediate amino acid chemotaxis.
Collapse
Affiliation(s)
- George D Glekas
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
20
|
Comparative structural bioinformatics analysis of Bacillus amyloliquefaciens chemotaxis proteins within Bacillus subtilis group. Appl Microbiol Biotechnol 2011; 92:997-1008. [DOI: 10.1007/s00253-011-3582-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 08/17/2011] [Accepted: 09/15/2011] [Indexed: 10/16/2022]
|
21
|
Action at a distance: amino acid substitutions that affect binding of the phosphorylated CheY response regulator and catalysis of dephosphorylation can be far from the CheZ phosphatase active site. J Bacteriol 2011; 193:4709-18. [PMID: 21764922 DOI: 10.1128/jb.00070-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Two-component regulatory systems, in which phosphorylation controls the activity of a response regulator protein, provide signal transduction in bacteria. For example, the phosphorylated CheY response regulator (CheYp) controls swimming behavior. In Escherichia coli, the chemotaxis phosphatase CheZ stimulates the dephosphorylation of CheYp. CheYp apparently binds first to the C terminus of CheZ and then binds to the active site where dephosphorylation occurs. The phosphatase activity of the CheZ(2) dimer exhibits a positively cooperative dependence on CheYp concentration, apparently because the binding of the first CheYp to CheZ(2) is inhibited compared to the binding of the second CheYp. Thus, CheZ phosphatase activity is reduced at low CheYp concentrations. The CheZ21IT gain-of-function substitution, located far from either the CheZ active site or C-terminal CheY binding site, enhances CheYp binding and abolishes cooperativity. To further explore mechanisms regulating CheZ activity, we isolated 10 intragenic suppressor mutations of cheZ21IT that restored chemotaxis. The suppressor substitutions were located along the central portion of CheZ and were not allele specific. Five suppressor mutants tested biochemically diminished the binding of CheYp and/or the catalysis of dephosphorylation, even when the suppressor substitutions were distant from the active site. One suppressor mutant also restored cooperativity to CheZ21IT. Consideration of results from this and previous studies suggests that the binding of CheYp to the CheZ active site (not to the C terminus) is rate limiting and leads to cooperative phosphatase activity. Furthermore, amino acid substitutions distant from the active site can affect CheZ catalytic activity and CheYp binding, perhaps via the propagation of structural or dynamic perturbations through a helical bundle.
Collapse
|
22
|
CheY3 of Borrelia burgdorferi is the key response regulator essential for chemotaxis and forms a long-lived phosphorylated intermediate. J Bacteriol 2011; 193:3332-41. [PMID: 21531807 DOI: 10.1128/jb.00362-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Spirochetes have a unique cell structure: These bacteria have internal periplasmic flagella subterminally attached at each cell end. How spirochetes coordinate the rotation of the periplasmic flagella for chemotaxis is poorly understood. In other bacteria, modulation of flagellar rotation is essential for chemotaxis, and phosphorylation-dephosphorylation of the response regulator CheY plays a key role in regulating this rotary motion. The genome of the Lyme disease spirochete Borrelia burgdorferi contains multiple homologues of chemotaxis genes, including three copies of cheY, referred to as cheY1, cheY2, and cheY3. To investigate the function of these genes, we targeted them separately or in combination by allelic exchange mutagenesis. Whereas wild-type cells ran, paused (flexed), and reversed, cells of all single, double, and triple mutants that contained an inactivated cheY3 gene constantly ran. Capillary tube chemotaxis assays indicated that only those strains with a mutation in cheY3 were deficient in chemotaxis, and cheY3 complementation restored chemotactic ability. In vitro phosphorylation assays indicated that CheY3 was more efficiently phosphorylated by CheA2 than by CheA1, and the CheY3-P intermediate generated was considerably more stable than the CheY-P proteins found in most other bacteria. The results point toward CheY3 being the key response regulator essential for chemotaxis in B. burgdorferi. In addition, the stability of CheY3-P may be critical for coordination of the rotation of the periplasmic flagella.
Collapse
|
23
|
Parashar V, Mirouze N, Dubnau DA, Neiditch MB. Structural basis of response regulator dephosphorylation by Rap phosphatases. PLoS Biol 2011; 9:e1000589. [PMID: 21346797 PMCID: PMC3035606 DOI: 10.1371/journal.pbio.1000589] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 12/22/2010] [Indexed: 01/03/2023] Open
Abstract
Bacterial Rap family proteins have been most extensively studied in Bacillus subtilis, where they regulate activities including sporulation, genetic competence, antibiotic expression, and the movement of the ICEBs1 transposon. One subset of Rap proteins consists of phosphatases that control B. subtilis and B. anthracis sporulation by dephosphorylating the response regulator Spo0F. The mechanistic basis of Rap phosphatase activity was unknown. Here we present the RapH-Spo0F X-ray crystal structure, which shows that Rap proteins consist of a 3-helix bundle and a tetratricopeptide repeat domain. Extensive biochemical and genetic functional studies reveal the importance of the observed RapH-Spo0F interactions, including the catalytic role of a glutamine in the RapH 3-helix bundle that inserts into the Spo0F active site. We show that in addition to dephosphorylating Spo0F, RapH can antagonize sporulation by sterically blocking phosphoryl transfer to and from Spo0F. Our structure-function analysis of the RapH-Spo0F interaction identified Rap protein residues critical for Spo0F phosphatase activity. This information enabled us to assign Spo0F phosphatase activity to a Rap protein based on sequence alone, which was not previously possible. Finally, as the ultimate test of our newfound understanding of the structural requirements for Rap phosphatase function, a non-phosphatase Rap protein that inhibits the binding of the response regulator ComA to DNA was rationally engineered to dephosphorylate Spo0F. In addition to revealing the mechanistic basis of response regulator dephosphorylation by Rap proteins, our studies support the previously proposed T-loop-Y allostery model of receiver domain regulation that restricts the aromatic "switch" residue to an internal position when the β4-α4 loop adopts an active-site proximal conformation.
Collapse
Affiliation(s)
- Vijay Parashar
- Department of Microbiology and Molecular Genetics, UMDNJ–New Jersey Medical School, Newark, New Jersey, United States of America
| | - Nicolas Mirouze
- Public Health Research Institute Center, UMDNJ–New Jersey Medical School, Newark, New Jersey, United States of America
| | - David A. Dubnau
- Department of Microbiology and Molecular Genetics, UMDNJ–New Jersey Medical School, Newark, New Jersey, United States of America
- Public Health Research Institute Center, UMDNJ–New Jersey Medical School, Newark, New Jersey, United States of America
| | - Matthew B. Neiditch
- Department of Microbiology and Molecular Genetics, UMDNJ–New Jersey Medical School, Newark, New Jersey, United States of America
| |
Collapse
|
24
|
Wuichet K, Zhulin IB. Origins and diversification of a complex signal transduction system in prokaryotes. Sci Signal 2010; 3:ra50. [PMID: 20587806 DOI: 10.1126/scisignal.2000724] [Citation(s) in RCA: 312] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The molecular machinery that controls chemotaxis in bacteria is substantially more complex than any other signal transduction system in prokaryotes, and its origins and variability among living species are unknown. We found that this multiprotein "chemotaxis system" is present in most prokaryotic species and evolved from simpler two-component regulatory systems that control prokaryotic transcription. We discovered, through genomic analysis, signaling systems intermediate between two-component systems and chemotaxis systems. Evolutionary genomics established central and auxiliary components of the chemotaxis system. While tracing its evolutionary history, we also developed a classification scheme that revealed more than a dozen distinct classes of chemotaxis systems, enabling future predictive modeling of chemotactic behavior in unstudied species.
Collapse
Affiliation(s)
- Kristin Wuichet
- BioEnergy Science Center and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | |
Collapse
|
25
|
Nguyen PQ, Silberg JJ. A selection that reports on protein-protein interactions within a thermophilic bacterium. Protein Eng Des Sel 2010; 23:529-36. [PMID: 20418388 DOI: 10.1093/protein/gzq024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many proteins can be split into fragments that exhibit enhanced function upon fusion to interacting proteins. While this strategy has been widely used to create protein-fragment complementation assays (PCAs) for discovering protein-protein interactions within mesophilic organisms, similar assays have not yet been developed for studying natural and engineered protein complexes at the temperatures where thermophilic microbes grow. We describe the development of a selection for protein-protein interactions within Thermus thermophilus that is based upon growth complementation by fragments of Thermotoga neapolitana adenylate kinase (AK(Tn)). Complementation studies with an engineered thermophile (PQN1) that is not viable above 75 degrees C because its adk gene has been replaced by a Geobacillus stearothermophilus ortholog revealed that growth could be restored at 78 degrees C by a vector that coexpresses polypeptides corresponding to residues 1-79 and 80-220 of AK(Tn). In contrast, PQN1 growth was not complemented by AK(Tn) fragments harboring a C156A mutation within the zinc-binding tetracysteine motif unless these fragments were fused to Thermotoga maritima chemotaxis proteins that heterodimerize (CheA and CheY) or homodimerize (CheX). This enhanced complementation is interpreted as arising from chemotaxis protein-protein interactions, since AK(Tn)-C156A fragments having only one polypeptide fused to a chemotaxis protein did not complement PQN1 to the same extent. This selection increases the maximum temperature where a PCA can be used to engineer thermostable protein complexes and to map protein-protein interactions.
Collapse
Affiliation(s)
- Peter Q Nguyen
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA
| | | |
Collapse
|
26
|
Silversmith RE. Auxiliary phosphatases in two-component signal transduction. Curr Opin Microbiol 2010; 13:177-83. [PMID: 20133180 DOI: 10.1016/j.mib.2010.01.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/05/2010] [Accepted: 01/07/2010] [Indexed: 11/18/2022]
Abstract
Signal termination in two-component systems occurs by loss of the phosphoryl group from the response regulator protein. This review explores our current understanding of the structures, catalytic mechanisms and means of regulation of the known families of phosphatases that catalyze response regulator dephosphorylation. The CheZ and CheC/CheX/FliY families, despite different overall structures, employ identical catalytic strategies using an amide side chain to orient a water molecule for in-line attack of the aspartyl phosphate. Spo0E phosphatases contain sequence and structural features that suggest a strategy similar to the chemotaxis phosphatases but the mechanism used by the Rap phosphatases is not yet elucidated. Identification of features shared by phosphatase families may aid in the identification of currently unrecognized classes of response regulator phosphatases.
Collapse
Affiliation(s)
- Ruth E Silversmith
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599-7290, USA.
| |
Collapse
|
27
|
Identical phosphatase mechanisms achieved through distinct modes of binding phosphoprotein substrate. Proc Natl Acad Sci U S A 2010; 107:1924-9. [PMID: 20080618 DOI: 10.1073/pnas.0911185107] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Two-component signal transduction systems are widespread in prokaryotes and control numerous cellular processes. Extensive investigation of sensor kinase and response regulator proteins from many two-component systems has established conserved sequence, structural, and mechanistic features within each family. In contrast, the phosphatases which catalyze hydrolysis of the response regulator phosphoryl group to terminate signal transduction are poorly understood. Here we present structural and functional characterization of a representative of the CheC/CheX/FliY phosphatase family. The X-ray crystal structure of Borrelia burgdorferi CheX complexed with its CheY3 substrate and the phosphoryl analogue reveals a binding orientation between a response regulator and an auxiliary protein different from that shared by every previously characterized example. The surface of CheY3 containing the phosphoryl group interacts directly with a long helix of CheX which bears the conserved (E - X(2) - N) motif. Conserved CheX residues Glu96 and Asn99, separated by a single helical turn, insert into the CheY3 active site. Structural and functional data indicate that CheX Asn99 and CheY3 Thr81 orient a water molecule for hydrolytic attack. The catalytic residues of the CheX.CheY3 complex are virtually superimposable on those of the Escherichia coli CheZ phosphatase complexed with CheY, even though the active site helices of CheX and CheZ are oriented nearly perpendicular to one other. Thus, evolution has found two structural solutions to achieve the same catalytic mechanism through different helical spacing and side chain lengths of the conserved acid/amide residues in CheX and CheZ.
Collapse
|
28
|
Pazy Y, Wollish AC, Thomas SA, Miller PJ, Collins EJ, Bourret RB, Silversmith RE. Matching biochemical reaction kinetics to the timescales of life: structural determinants that influence the autodephosphorylation rate of response regulator proteins. J Mol Biol 2009; 392:1205-20. [PMID: 19646451 PMCID: PMC2773209 DOI: 10.1016/j.jmb.2009.07.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/17/2009] [Accepted: 07/22/2009] [Indexed: 11/17/2022]
Abstract
In two-component regulatory systems, covalent phosphorylation typically activates the response regulator signaling protein, and hydrolysis of the phosphoryl group reestablishes the inactive state. Despite highly conserved three-dimensional structures and active-site features, the rates of catalytic autodephosphorylation for different response regulators vary by a factor of almost 10(6). Previous studies identified two variable active-site residues, corresponding to Escherichia coli CheY residues 59 and 89, that modulate response regulator autodephosphorylation rates about 100-fold. Here, a set of five CheY mutants, which match other "model" response regulators (ArcA, CusR, DctD, FixJ, PhoB, or Spo0F) at variable active-site positions corresponding to CheY residues 14, 59, and 89, were characterized functionally and structurally in an attempt to identify mechanisms that modulate autodephosphorylation rate. As expected, the autodephosphorylation rates of the CheY mutants were reduced 6- to 40-fold relative to wild-type CheY, but all still autodephosphorylated 12- to 80-fold faster than their respective model response regulators. Comparison of X-ray crystal structures of the five CheY mutants (complexed with the phosphoryl group analogue BeF(3)(-)) to wild-type CheY or corresponding model response regulator structures gave strong evidence for steric obstruction of the phosphoryl group from the attacking water molecule as one mechanism to enhance phosphoryl group stability. Structural data also suggested that impeding the change of a response regulator from the active to the inactive conformation might retard the autodephosphorylation reaction if the two processes are coupled, and that the residue at position '58' may contribute to rate modulation. A given combination of amino acids at positions '14', '59', and '89' adopted similar conformations regardless of protein context (CheY or model response regulator), suggesting that knowledge of residue identity may be sufficient to predict autodephosphorylation rate, and hence the kinetics of the signaling response, in the response regulator family of proteins.
Collapse
Affiliation(s)
- Yael Pazy
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599-7290
| | - Amy C. Wollish
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599-7290
| | - Stephanie A. Thomas
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599-7290
| | - Peter J. Miller
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260
| | - Edward J. Collins
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599-7290
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260
| | - Robert B. Bourret
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599-7290
| | - Ruth E. Silversmith
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599-7290
| |
Collapse
|
29
|
Eshghi A, Cullen PA, Cowen L, Zuerner RL, Cameron CE. Global proteome analysis of Leptospira interrogans. J Proteome Res 2009; 8:4564-78. [PMID: 19663501 PMCID: PMC2757032 DOI: 10.1021/pr9004597] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Indexed: 11/28/2022]
Abstract
Comparative global proteome analyses were performed on Leptospira interrogans serovar Copenhageni grown under conventional in vitro conditions and those mimicking in vivo conditions (iron limitation and serum presence). Proteomic analyses were conducted using iTRAQ and LC-ESI-tandem mass spectrometry complemented with two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry. A total of 563 proteins were identified in this study. Altered expression of 65 proteins, including upregulation of the L. interrogans virulence factor Loa22 and 5 novel proteins with homology to virulence factors found in other pathogens, was observed between the comparative conditions. Immunoblot analyses confirmed upregulation of 5 of the known or putative virulence factors in L. interrogans exposed to the in vivo-like environmental conditions. Further, ELISA analyses using serum from patients with leptospirosis and immunofluorescence studies performed on liver sections derived from L. interrogans-infected hamsters verified expression of all but one of the identified proteins during infection. These studies, which represent the first documented comparative global proteome analysis of Leptospira, demonstrated proteome alterations under conditions that mimic in vivo infection and allowed for the identification of novel putative L. interrogans virulence factors.
Collapse
Affiliation(s)
| | | | | | | | - Caroline E. Cameron
- To whom correspondence should be addressed. Tel: 250-853-3189. Fax: 250-721-8855. E-mail:
| |
Collapse
|
30
|
Abstract
The high-resolution structures of nearly all the proteins that comprise the bacterial flagellar motor switch complex have been solved; yet a clear picture of the switching mechanism has not emerged. Here, we used NMR to characterize the interaction modes and solution properties of a number of these proteins, including several soluble fragments of the flagellar motor proteins FliM and FliG, and the response-regulator CheY. We find that activated CheY, the switch signal, binds to a previously unidentified region of FliM, adjacent to the FliM-FliM interface. We also find that activated CheY and FliG bind with mutual exclusivity to this site on FliM, because their respective binding surfaces partially overlap. These data support a model of CheY-driven motor switching wherein the binding of activated CheY to FliM displaces the carboxy-terminal domain of FliG (FliGC) from FliM, modulating the FliGC-MotA interaction, and causing the motor to switch rotational sense as required for chemotaxis.
Collapse
Affiliation(s)
- Collin M. Dyer
- Departments of Chemistry and Biochemistry; Molecular, Cellular, and Developmental Biology; and the Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106
| | - Armand S. Vartanian
- Departments of Chemistry and Biochemistry; Molecular, Cellular, and Developmental Biology; and the Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106
| | - Hongjun Zhou
- Departments of Chemistry and Biochemistry; Molecular, Cellular, and Developmental Biology; and the Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106
| | - Frederick W. Dahlquist
- Departments of Chemistry and Biochemistry; Molecular, Cellular, and Developmental Biology; and the Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106
| |
Collapse
|
31
|
Miller LD, Russell MH, Alexandre G. Diversity in bacterial chemotactic responses and niche adaptation. ADVANCES IN APPLIED MICROBIOLOGY 2009; 66:53-75. [PMID: 19203648 DOI: 10.1016/s0065-2164(08)00803-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ability of microbes to rapidly sense and adapt to environmental changes plays a major role in structuring microbial communities, in affecting microbial activities, as well as in influencing various microbial interactions with the surroundings. The bacterial chemotaxis signal transduction system is the sensory perception system that allows motile cells to respond optimally to changes in environmental conditions by allowing cells to navigate in gradients of diverse physicochemical parameters that can affect their metabolism. The analysis of complete genome sequences from microorganisms that occupy diverse ecological niches reveal the presence of multiple chemotaxis pathways and a great diversity of chemoreceptors with novel sensory specificities. Owing to its role in mediating rapid responses of bacteria to changes in the surroundings, bacterial chemotaxis is a behavior of interest in applied microbiology as it offers a unique opportunity for understanding the environmental cues that contribute to the survival of bacteria. This chapter explores the diversity of bacterial chemotaxis and suggests how gaining further insights into such diversity may potentially impact future drug and pesticides development and could inform bioremediation strategies.
Collapse
Affiliation(s)
- Lance D Miller
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | |
Collapse
|
32
|
Schlesner M, Miller A, Streif S, Staudinger WF, Müller J, Scheffer B, Siedler F, Oesterhelt D. Identification of Archaea-specific chemotaxis proteins which interact with the flagellar apparatus. BMC Microbiol 2009; 9:56. [PMID: 19291314 PMCID: PMC2666748 DOI: 10.1186/1471-2180-9-56] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 03/16/2009] [Indexed: 11/21/2022] Open
Abstract
Background Archaea share with bacteria the ability to bias their movement towards more favorable locations, a process known as taxis. Two molecular systems drive this process: the motility apparatus and the chemotaxis signal transduction system. The first consists of the flagellum, the flagellar motor, and its switch, which allows cells to reverse the rotation of flagella. The second targets the flagellar motor switch in order to modulate the switching frequency in response to external stimuli. While the signal transduction system is conserved throughout archaea and bacteria, the archaeal flagellar apparatus is different from the bacterial one. The proteins constituting the flagellar motor and its switch in archaea have not yet been identified, and the connection between the bacterial-like chemotaxis signal transduction system and the archaeal motility apparatus is unknown. Results Using protein-protein interaction analysis, we have identified three proteins in Halobacterium salinarum that interact with the chemotaxis (Che) proteins CheY, CheD, and CheC2, as well as the flagella accessory (Fla) proteins FlaCE and FlaD. Two of the proteins belong to the protein family DUF439, the third is a HEAT_PBS family protein. In-frame deletion strains for all three proteins were generated and analyzed as follows: a) photophobic responses were measured by a computer-based cell tracking system b) flagellar rotational bias was determined by dark-field microscopy, and c) chemotactic behavior was analyzed by a swarm plate assay. Strains deleted for the HEAT_PBS protein or one of the DUF439 proteins proved unable to switch the direction of flagellar rotation. In these mutants, flagella rotate only clockwise, resulting in exclusively forward swimming cells that are unable to respond to tactic signals. Deletion of the second DUF439 protein had only minimal effects. HEAT_PBS proteins could be identified in the chemotaxis gene regions of all motile haloarchaea sequenced so far, but not in those of other archaeal species. Genes coding for DUF439 proteins, however, were found to be integral parts of chemotaxis gene regions across the archaeal domain, and they were not detected in other genomic context. Conclusion Altogether, these results demonstrate that, in the archaeal domain, previously unrecognized archaea-specific Che proteins are essential for relaying taxis signaling to the flagellar apparatus.
Collapse
Affiliation(s)
- Matthias Schlesner
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
A new class of protein phosphatases has emerged in the study of bacterial/archaeal chemotaxis, the CheC-type phosphatases. These proteins are distinct and unrelated to the well-known CheY-P phosphatase CheZ, though they have convergently evolved to dephosphorylate the same target. The family contains a common consensus sequence D/S-X(3)-E-X(2)-N-X(22)-P that defines the phosphatase active site, of which there are often two per protein. Three distinct subgroups make up the family: CheC, FliY and CheX. Further, the CheC subgroup can be divided into three classes. Bacillus subtilis CheC typifies the first class and might function as a regulator of CheD. Class II CheCs likely function as phosphatases in systems other than chemotaxis. Class III CheCs are found in the archaeal class Halobacteria and might function as class I CheCs. FliY is the main phosphatase in the B. subtilis chemotaxis system. CheX is quite divergent from the rest of the family, forms a dimer and some may function outside chemotaxis. A model for the evolution of the family is discussed.
Collapse
Affiliation(s)
- Travis J Muff
- Department of Biochemistry, Colleges of Medicine and Liberal Arts and Sciences, University of Illinois, Urbana, IL 61801, USA.
| | | |
Collapse
|
34
|
Motaleb MA, Miller MR, Li C, Charon NW. Phosphorylation assays of chemotaxis two-component system proteins in Borrelia burgdorferi. Methods Enzymol 2008; 422:438-47. [PMID: 17628153 DOI: 10.1016/s0076-6879(06)22022-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Borrelia burgdorferi has a complex chemotaxis signal transduction system with multiple chemotaxis gene homologs similar to those found in Escherichia coli and Bacillus subtilis. The B. burgdorferi genome sequence encodes two cheA, three cheY, three cheW, two cheB, two cheR, but no cheZ genes. Instead of cheZ, B. burgdorferi contains a different CheY-P phosphatase, referred to as cheX. The multiple B. burgdorferi histidine kinases (CheA1 and CheA2) and response regulators (CheY1, CheY2, and CheY3) possess all the domains and functional residues found in E. coli CheA and CheY, respectively. Understanding protein phosphorylation is critical to unraveling many biological processes, including chemotaxis signal transduction, motility, growth control, metabolism, and disease processes. E. coli, Salmonella enterica serovar Typhimurium, and B. subtilis chemotaxis systems have been studied extensively, providing models to understand chemotaxis signaling in the Lyme disease spirochete B. burgdorferi. Both genetic approaches and biochemical analyses are essential in understanding its complex two-component chemotaxis systems. Specifically, gene inactivation studies assess the importance of specific genes in chemotaxis and motility under certain conditions. Furthermore, biochemical approaches help determine the following in vitro reactions: (1) the extent that the histidine kinases, CheA1 and CheA2, are autophosphorylated using ATP; (2) the transfer of phosphate from CheA1-P and CheA2-P to each CheY species; and (3) the dephosphorylation of each CheY-P species by CheX. We hypothesize that characterizing protein phosphorylation in the B. burgdorferi two-component chemotaxis system will facilitate understanding of how the periplasmic flagellar bundles located near each end of B. burgdorferi cells are coordinately regulated for chemotaxis. During chemotaxis, these bacteria run, pause (stop/flex), and reverse (run again). This chapter describes protocols for assessing B. burgdorferi CheA autophosphorylation, transfer of phosphate from CheA-P to CheY, and CheY-P dephosphorylation.
Collapse
Affiliation(s)
- Md A Motaleb
- Department of Microbiology, West Virginia University, Morgantown, West Virginia, USA
| | | | | | | |
Collapse
|
35
|
Porter SL, Wadhams GH, Armitage JP. Rhodobacter sphaeroides: complexity in chemotactic signalling. Trends Microbiol 2008; 16:251-60. [PMID: 18440816 DOI: 10.1016/j.tim.2008.02.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 02/06/2008] [Accepted: 02/27/2008] [Indexed: 10/22/2022]
Abstract
Most bacteria have much more complex chemosensory systems than those of the extensively studied Escherichia coli. Rhodobacter sphaeroides, for example, has multiple homologues of the E. coli chemosensory proteins. The roles of these homologues have been extensively investigated using a combination of deletion, subcellular localization and phosphorylation assays. These studies have shown that the homologues have specific roles in the sensory pathway, and they differ in their cellular localization and interactions with other components of the pathway. The presence of multiple chemosensory pathways might enable bacteria to tune their tactic responses to different environmental conditions.
Collapse
Affiliation(s)
- Steven L Porter
- Microbiology Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | | | | |
Collapse
|
36
|
Muff TJ, Foster RM, Liu PJY, Ordal GW. CheX in the three-phosphatase system of bacterial chemotaxis. J Bacteriol 2007; 189:7007-13. [PMID: 17675386 PMCID: PMC2045203 DOI: 10.1128/jb.00896-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial chemotaxis involves the regulation of motility by a modified two-component signal transduction system. In Escherichia coli, CheZ is the phosphatase of the response regulator CheY but many other bacteria, including Bacillus subtilis, use members of the CheC-FliY-CheX family for this purpose. While Bacillus subtilis has only CheC and FliY, many systems also have CheX. The effect of this three-phosphatase system on chemotaxis has not been studied previously. CheX was shown to be a stronger CheY-P phosphatase than either CheC or FliY. In Bacillus subtilis, a cheC mutant strain was nearly complemented by heterologous cheX expression. CheX was shown to overcome the DeltacheC adaptational defect but also generally lowered the counterclockwise flagellar rotational bias. The effect on rotational bias suggests that CheX reduced the overall levels of CheY-P in the cell and did not truly replicate the adaptational effects of CheC. Thus, CheX is not functionally redundant to CheC and, as outlined in the discussion, may be more analogous to CheZ.
Collapse
Affiliation(s)
- Travis J Muff
- Department of Biochemistry, Colleges of Medicine and Liberal Arts and Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
37
|
Wuichet K, Alexander RP, Zhulin IB. Comparative genomic and protein sequence analyses of a complex system controlling bacterial chemotaxis. Methods Enzymol 2007; 422:1-31. [PMID: 17628132 PMCID: PMC2754700 DOI: 10.1016/s0076-6879(06)22001-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Molecular machinery governing bacterial chemotaxis consists of the CheA-CheY two-component system, an array of specialized chemoreceptors, and several auxiliary proteins. It has been studied extensively in Escherichia coli and, to a significantly lesser extent, in several other microbial species. Emerging evidence suggests that homologous signal transduction pathways regulate not only chemotaxis, but several other cellular functions in various bacterial species. The availability of genome sequence data for hundreds of organisms enables productive study of this system using comparative genomics and protein sequence analysis. This chapter describes advances in genomics of the chemotaxis signal transduction system, provides information on relevant bioinformatics tools and resources, and outlines approaches toward developing a computational framework for predicting important biological functions from raw genomic data based on available experimental evidence.
Collapse
Affiliation(s)
- Kristin Wuichet
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | | |
Collapse
|
38
|
Muff TJ, Ordal GW. Assays for CheC, FliY, and CheX as Representatives of Response Regulator Phosphatases. Methods Enzymol 2007; 423:336-48. [PMID: 17609139 DOI: 10.1016/s0076-6879(07)23015-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Much study of two-component systems deals with the excitation of the histidine kinase, activation of the response regulator, and the ultimate target of the signal. Removal of the message is of great importance to these signaling systems. Many methods have evolved in two-component systems to this end. These include autodephosphorylation of the response regulator, hydrolysis of the phosphoryl group by the kinase, or a dedicated phosphatase protein. It has long been known that CheZ is the phosphatase in the chemotaxis system of Escherichia coli and related bacteria. Most bacteria and archaea, however, do not have a cheZ gene, but instead rely on the CheC, CheX, and FliY family of CheY-P phosphatases. Here, we describe assays to test these chemotactic phosphatases, applicable to many other response regulator phosphatases.
Collapse
Affiliation(s)
- Travis J Muff
- Department of Biochemistry, University of Illinois, Urbana, IL, USA
| | | |
Collapse
|
39
|
Perez E, Stock AM. Characterization of the Thermotoga maritima chemotaxis methylation system that lacks pentapeptide-dependent methyltransferase CheR:MCP tethering. Mol Microbiol 2007; 63:363-78. [PMID: 17163981 PMCID: PMC3645907 DOI: 10.1111/j.1365-2958.2006.05518.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sensory adaptation in bacterial chemotaxis is mediated by covalent modifications of specific glutamate and glutamine residues within the cytoplasmic domains of methyl-accepting chemotaxis proteins (MCPs). In Escherichia coli and Salmonella enterica, efficient methylation of MCPs depends on the localization of methyltransferase CheR to MCP clusters through an interaction between the CheR beta-subdomain and a pentapeptide sequence (NWETF or NWESF) at the C-terminus of the MCP. In vitro methylation analyses utilizing S. enterica and Thermotoga maritima CheR proteins and MCPs indicate that MCP methylation in T. maritima occurs independently of a pentapeptide-binding motif. Kinetic and binding measurements demonstrate that despite efficient methylation, the interaction between T. maritima CheR and T. maritima MCPs is of relatively low affinity. Comparative protein sequence analyses of CheR beta-subdomains from organisms having MCPs that contain and/or lack pentapeptide-binding motifs identified key similarities and differences in residue conservation, suggesting the existence of two distinct classes of CheR proteins: pentapeptide-dependent and pentapeptide-independent methyltransferases. Analysis of MCP C-terminal ends showed that only approximately 10% of MCPs contain a putative C-terminal binding motif, the majority of which are restricted to the different proteobacteria classes (alpha, beta, gamma, delta). These findings suggest that tethering of CheR to MCPs is a relatively recent event in evolution and that the pentapeptide-independent methylation system is more common than the well-characterized pentapeptide-dependent methylation system.
Collapse
Affiliation(s)
- Eduardo Perez
- Center for Advanced Biotechnology and Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
- Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Ann M. Stock
- Center for Advanced Biotechnology and Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
- Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
- Howard Hughes Medical Institute, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| |
Collapse
|
40
|
Abstract
Myxococcus xanthus is a surface-motile bacterium that has adapted at least one chemosensory system to allow directed movement towards the slowly diffusible lipid phosphatidylethanolamine (PE). The Dif chemosensory pathway is remarkable because it has at least three inputs coupled to outputs that control extracellular matrix (ECM) production and lipid chemotaxis. The methyl-accepting chemotaxis protein, DifA, has two different sensor inputs that have been localized by mutagenesis. The Dif chemosensory pathway employs a novel protein that slows adaptation. Lipid chemotaxis may play important roles in the M. xanthus life cycle where prey-specific and development-specific attractants have been identified. Lipid chemotaxis may also be an important mechanism for locating nutrients by lung pathogens such as Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Pamela J Bonner
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
41
|
Park SY, Lowder B, Bilwes AM, Blair DF, Crane BR. Structure of FliM provides insight into assembly of the switch complex in the bacterial flagella motor. Proc Natl Acad Sci U S A 2006; 103:11886-91. [PMID: 16882724 PMCID: PMC1567671 DOI: 10.1073/pnas.0602811103] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bacteria switch the direction their flagella rotate to control movement. FliM, along with FliN and FliG, compose a complex in the motor that, upon binding phosphorylated CheY, reverses the sense of flagellar rotation. The 2.0-A resolution structure of the FliM middle domain (FliM(M)) from Thermotoga maritima reveals a pseudo-2-fold symmetric topology similar to the CheY phosphatases CheC and CheX. A variable structural element, which, in CheC, mediates binding to CheD (alpha2') and, in CheX, mediates dimerization (beta'(x)), has a truncated structure unique to FliM (alpha2'). An exposed helix of FliM(M) (alpha1) does not contain the catalytic residues of CheC and CheX but does include positions conserved in FliM sequences. Cross-linking experiments with site-directed cysteine mutants show that FliM self-associates through residues on alpha1 and alpha2'. CheY activated by BeF(3)(-) binds to FliM with approximately 40-fold higher affinity than CheY (K(d) = 0.04 microM vs. 2 microM). Mapping residue conservation, suppressor mutation sites, binding data, and deletion analysis onto the FliM(M) surface defines regions important for contacts with the stator-interacting protein FliG and for either counterclockwise or clockwise rotation. Association of 33-35 FliM subunits would generate a 44- to 45-nm-diameter disk, consistent with the known dimensions of the C-ring. The localization of counterclockwise- and clockwise-biasing mutations to distinct surfaces suggests that the binding of phosphorylated CheY cooperatively realigns FliM around the ring.
Collapse
Affiliation(s)
- Sang-Youn Park
- *Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850; and
| | - Bryan Lowder
- Department of Biology, University of Utah, Salt Lake City, UT 84112
| | - Alexandrine M. Bilwes
- *Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850; and
| | - David F. Blair
- Department of Biology, University of Utah, Salt Lake City, UT 84112
| | - Brian R. Crane
- *Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Perez E, Zheng H, Stock AM. Identification of methylation sites in Thermotoga maritima chemotaxis receptors. J Bacteriol 2006; 188:4093-100. [PMID: 16707700 PMCID: PMC1482916 DOI: 10.1128/jb.00181-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 03/17/2006] [Indexed: 11/20/2022] Open
Abstract
Adaptation in bacterial chemotaxis involves reversible methylation of specific glutamate residues within the cytoplasmic domains of methyl-accepting chemotaxis proteins. The specific sites of methylation in Salmonella enterica and Escherichia coli chemoreceptors, identified 2 decades ago, established a consensus sequence for methylation by methyltransferase CheR. Here we report the in vitro methylation of chemoreceptors from Thermotoga maritima, a hyperthermophile that has served as a useful source of chemotaxis proteins for structural analysis. Sites of methylation have been identified by liquid chromatography-mass spectrometry/mass spectrometry. Fifteen sites of methylation were identified within the cytoplasmic domains of four different T. maritima chemoreceptors. The results establish a consensus sequence for chemoreceptor methylation sites in T. maritima that is distinct from the previously identified consensus sequence for E. coli and S. enterica. These findings suggest that consensus sequences for posttranslational modifications in one organism may not be directly extrapolated to analogous modifications in other bacteria.
Collapse
Affiliation(s)
- Eduardo Perez
- Department of Biochemistry, Center for Advanced Biotechnology and Medicine, UMDNJ-Robert Wood Johnson Medical School, 679 Hoes Lane, Piscataway, NJ 08854-5627, USA
| | | | | |
Collapse
|
43
|
Galperin MY. Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol 2006; 188:4169-82. [PMID: 16740923 PMCID: PMC1482966 DOI: 10.1128/jb.01887-05] [Citation(s) in RCA: 381] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 03/28/2006] [Indexed: 11/20/2022] Open
Abstract
CheY-like phosphoacceptor (or receiver [REC]) domain is a common module in a variety of response regulators of the bacterial signal transduction systems. In this work, 4,610 response regulators, encoded in complete genomes of 200 bacterial and archaeal species, were identified and classified by their domain architectures. Previously uncharacterized output domains were analyzed and, in some cases, assigned to known domain families. Transcriptional regulators of the OmpR, NarL, and NtrC families were found to comprise almost 60% of all response regulators; transcriptional regulators with other DNA-binding domains (LytTR, AraC, Spo0A, Fis, YcbB, RpoE, and MerR) account for an additional 6%. The remaining one-third is represented by the stand-alone REC domain (approximately 14%) and its combinations with a variety of enzymatic (GGDEF, EAL, HD-GYP, CheB, CheC, PP2C, and HisK), RNA-binding (ANTAR and CsrA), protein- or ligand-binding (PAS, GAF, TPR, CAP_ED, and HPt) domains, or newly described domains of unknown function. The diversity of domain architectures and the abundance of alternative domain combinations suggest that fusions between the REC domain and various output domains is a widespread evolutionary mechanism that allows bacterial cells to regulate transcription, enzyme activity, and/or protein-protein interactions in response to environmental challenges. The complete list of response regulators encoded in each of the 200 analyzed genomes is available online at http://www.ncbi.nlm.nih.gov/Complete_Genomes/RRcensus.html.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
44
|
Abstract
FliN is a major constituent of the C ring in the flagellar basal body of many bacteria. It is present in >100 copies per flagellum and together with FliM and FliG forms the switch complex that functions in flagellar assembly, rotation, and clockwise-counterclockwise switching. FliN is essential for flagellar assembly and switching, but its precise functions are unknown. The C-terminal part of the protein is best conserved and most important for function; a crystal structure of this C-terminal domain of FliN from Thermotoga maritima revealed a saddle-shaped dimer formed mainly from beta strands (P. N. Brown, M. A. A. Mathews, L. A. Joss, C. P. Hill, and D. F. Blair, J. Bacteriol. 187:2890-2902, 2005). Equilibrium sedimentation studies showed that FliN can form stable tetramers and that a FliM1FliN4 complex is also stable. Here, we have examined the organization of FliN subunits by using targeted cross-linking. Cys residues were introduced at various positions in FliN, singly or in pairs, and disulfide cross-linking was induced by oxidation. Efficient cross-linking was observed for certain positions near the ends of the dimer and for some positions in the structurally uncharacterized N-terminal domain. Certain combinations of two Cys replacements gave a high yield of cross-linked tetramer. The results support a model in which FliN is organized in doughnut-shaped tetramers, stabilized in part by contacts involving the N-terminal domain. Electron microscopic reconstructions show a bulge at the bottom of the C-ring whose size and shape are a close match for the hypothesized FliN tetramer.
Collapse
Affiliation(s)
- Koushik Paul
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
45
|
Huang F, Fulda S, Hagemann M, Norling B. Proteomic screening of salt-stress-induced changes in plasma membranes of Synechocystis sp. strain PCC 6803. Proteomics 2006; 6:910-20. [PMID: 16400685 DOI: 10.1002/pmic.200500114] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The plasma membrane of a cyanobacterial cell is crucial as barrier against the outer medium. It is also an energy-transducing membrane as well as essential for biogenesis of cyanobacterial photosystems and the endo-membrane system. Previously we have identified 57 different proteins in the plasma membrane of control cells from Synechocystis sp. strain PCC6803. In the present work, proteomic screening of salt-stress proteins in the plasma membrane resulted in identification of 109 proteins corresponding to 66 different gene products. Differential and quantitative analyses of 2-DE profiles of plasma membranes isolated from both control and salt-acclimated cells revealed that twenty proteins were enhanced/induced and five reduced during salt stress. More than half of the enhanced/induced proteins were periplasmic binding proteins of ABC-transporters or hypothetical proteins. Proteins that exhibited the highest enhancement during salt stress include FutA1 (Slr1295) and Vipp1 (Sll0617), which have been suggested to be involved in protection of photosystem II under iron deficiency and in thylakoid membrane formation, respectively. Other salt-stress proteins were regulatory proteins such as PII protein, LrtA, and a protein that belongs to CheY subfamily. The physiological significance of the identified salt-stress proteins in the plasma membrane is discussed integrating our current knowledge on cyanobacterial stress physiology.
Collapse
Affiliation(s)
- Fang Huang
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | | | | | | |
Collapse
|
46
|
Chao X, Muff TJ, Park SY, Zhang S, Pollard AM, Ordal GW, Bilwes AM, Crane BR. A receptor-modifying deamidase in complex with a signaling phosphatase reveals reciprocal regulation. Cell 2006; 124:561-71. [PMID: 16469702 DOI: 10.1016/j.cell.2005.11.046] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2005] [Revised: 09/22/2005] [Accepted: 11/15/2005] [Indexed: 12/30/2022]
Abstract
Signal transduction underlying bacterial chemotaxis involves excitatory phosphorylation and feedback control through deamidation and methylation of sensory receptors. The structure of a complex between the signal-terminating phosphatase, CheC, and the receptor-modifying deamidase, CheD, reveals how CheC mimics receptor substrates to inhibit CheD and how CheD stimulates CheC phosphatase activity. CheD resembles other cysteine deamidases from bacterial pathogens that inactivate host Rho-GTPases. CheD not only deamidates receptor glutamine residues contained within a conserved structural motif but also hydrolyzes glutamyl-methyl-esters at select regulatory positions. Substituting Gln into the receptor motif of CheC turns the inhibitor into a CheD substrate. Phospho-CheY, the intracellular signal and CheC target, stabilizes the CheC:CheD complex and reduces availability of CheD. A point mutation that dissociates CheC from CheD impairs chemotaxis in vivo. Thus, CheC incorporates an element of an upstream receptor to influence both its own effect on receptor output and that of its binding partner, CheD.
Collapse
Affiliation(s)
- Xingjuan Chao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Motaleb MA, Miller MR, Li C, Bakker RG, Goldstein SF, Silversmith RE, Bourret RB, Charon NW. CheX is a phosphorylated CheY phosphatase essential for Borrelia burgdorferi chemotaxis. J Bacteriol 2005; 187:7963-9. [PMID: 16291669 PMCID: PMC1291287 DOI: 10.1128/jb.187.23.7963-7969.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Motility and chemotaxis are believed to be important in the pathogenesis of Lyme disease caused by the spirochete Borrelia burgdorferi. Controlling the phosphorylation state of CheY, a response regulator protein, is essential for regulating bacterial chemotaxis and motility. Rapid dephosphorylation of phosphorylated CheY (CheY-P) is crucial for cells to respond to environmental changes. CheY-P dephosphorylation is accomplished by one or more phosphatases in different species, including CheZ, CheC, CheX, FliY, and/or FliY/N. Only a cheX phosphatase homolog has been identified in the B. burgdorferi genome. However, a role for cheX in chemotaxis has not been established in any bacterial species. Inactivating B. burgdorferi cheX by inserting a flgB-kan cassette resulted in cells (cheX mutant cells) with a distinct motility phenotype. While wild-type cells ran, paused (stopped or flexed), and reversed, the cheX mutant cells continuously flexed and were not able to run or reverse. Furthermore, swarm plate and capillary tube chemotaxis assays demonstrated that cheX mutant cells were deficient in chemotaxis. Wild-type chemotaxis and motility were restored when cheX mutant cells were complemented with a shuttle vector expressing CheX. Furthermore, CheX dephosphorylated CheY3-P in vitro and eluted as a homodimer in gel filtration chromatography. These findings demonstrated that B. burgdorferi CheX is a CheY-P phosphatase that is essential for chemotaxis and motility, which is consistent with CheX being the only CheY-P phosphatase in the B. burgdorferi chemotaxis signal transduction pathway.
Collapse
Affiliation(s)
- M A Motaleb
- Department of Microbiology, Immunology, and Cell Biology, Health Sciences Center, West Virginia University, Morgantown, 26506-9177, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Jenal U, Silversmith RE, Sogaard-Andersen L, Sockett L. Sense and sensibility in bacteria. VIIIth International Conference on Bacterial Locomotion and Sensory Transduction. EMBO Rep 2005; 6:615-9. [PMID: 15976817 PMCID: PMC1369117 DOI: 10.1038/sj.embor.7400459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 05/19/2005] [Indexed: 11/09/2022] Open
Affiliation(s)
- Urs Jenal
- Division of Molecular Microbiology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Ruth E. Silversmith
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599-7290, USA
| | - Lotte Sogaard-Andersen
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 35043 Marburg, Germany
| | - Liz Sockett
- Lab C15, Institute of Genetics, School of Biology, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
- Tel: +44 115 919 4496; Fax: +44 115 970 9906;
| |
Collapse
|
49
|
Abstract
Recent studies identified c-di-GMP as a universal bacterial secondary messenger regulating biofilm formation, motility, production of extracellular polysaccharide and multicellular behavior in diverse bacteria. However, except for cellulose synthase, no protein has been shown to bind c-di-GMP and the targets for c-di-GMP action remain unknown. Here we report identification of the PilZ ("pills") domain (Pfam domain PF07238) in the sequences of bacterial cellulose synthases, alginate biosynthesis protein Alg44, proteins of enterobacterial YcgR and firmicute YpfA families, and other proteins encoded in bacterial genomes and present evidence indicating that this domain is (part of) the long-sought c-di-GMP-binding protein. Association of the PilZ domain with a variety of other domains, including likely components of bacterial multidrug secretion system, could provide clues to multiple functions of the c-di-GMP in bacterial pathogenesis and cell development.
Collapse
Affiliation(s)
- Dorit Amikam
- Department of Biotechnology and Environmental Sciences, Tel-Hai Academic College Tel-Hai, Israel
| | | |
Collapse
|