1
|
Liu X, Yang C, Lin X, Sun X, Chen H, Zhang Q, Jin M. Phosphorylation of S-S-S Motif in Nuclear Export Protein (NEP) Plays a Critical Role in Viral Ribonucleoprotein (vRNP) Nuclear Export of Influenza A and B Viruses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2309477. [PMID: 39575547 PMCID: PMC11727112 DOI: 10.1002/advs.202309477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 10/11/2024] [Indexed: 01/14/2025]
Abstract
The phosphorylation of three highly conserved serine residues S23, S24, and S25 (S-S-S motif) has been previously identified in NEP of influenza virus. However, it remains obscure whether and how this motif regulates the vRNPs nuclear export. Here the influenza A H5N6 viruses harboring NEP S23C, S24L, or S25L is generated, allowing to impair the phosphorylation on these sites without mutating viral NS1 protein. These mutations significantly inhibited vRNPs nuclear export are founded, decreased viral infectivity and attenuated virulence in mice. In addition, inhibition or knockout of ATM or CK2, two predicated Ser/Thr protein kinases that phosphorylate the S-S-S motif, impedes vRNP nuclear export and virus replication in cells and reduces the virulence in vivo. Moreover, treatment of NEP peptide mimics containing the S-S-S motif to competitively block NEP binding to the kinases reduces influenza virus replication in cells and mice. However, neither the inhibitors above nor the NEP peptide mimics significantly inhibit the replication of H5N6-DDD mutant, indicating phosphorylation of S-S-S motif is required for the vRNP nuclear export. This studies contribute to a better understanding of the mechanism by which NEP regulates vRNP nuclear export and provides novel insights into antiviral targets against influenza A and B viruses.
Collapse
Affiliation(s)
- Xiaokun Liu
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Cha Yang
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Xian Lin
- Wuhan institute of VirologyChinese academy of ScienceWuhan430070P. R. China
| | - Xiaomei Sun
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Huanchun Chen
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan430070P. R. China
- College of Veterinary Science and MedicineHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Qiang Zhang
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Meilin Jin
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan430070P. R. China
- College of Veterinary Science and MedicineHuazhong Agricultural UniversityWuhan430070P. R. China
- Hubei Jiangxia LaboratoryWuhan430200P. R. China
| |
Collapse
|
2
|
Chen YF, Adams DJ. Therapeutic targeting of exportin-1 beyond nuclear export. Trends Pharmacol Sci 2025; 46:20-31. [PMID: 39643565 PMCID: PMC11711008 DOI: 10.1016/j.tips.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 12/09/2024]
Abstract
Exportin-1 (XPO1), also known as chromosome region maintenance 1 (CRM1), directly binds to and mediates the nuclear export of hundreds of cargo proteins. Blocking nuclear export by the selective inhibitors of nuclear export (SINEs) is a validated therapeutic axis in cancer and an active area of research. However, a growing body of evidence implicates XPO1 in biological functions beyond nuclear export that include the regulation of mitosis and the epigenome. Additionally, new pharmacological classes of small molecules have emerged that degrade XPO1 or induce distinct cellular activity profiles. Here, we discuss the canonical model of nuclear export and XPO1's emergence as an anticancer target. We also spotlight the key evidence for underappreciated XPO1 functions and discuss the use of chemical probes to uncover new cellular roles for XPO1. With these growing trends, the field is poised to extend XPO1 therapeutic targeting to indications beyond oncology.
Collapse
Affiliation(s)
- Yi Fan Chen
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Chemical Biology Program, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Drew J Adams
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Chemical Biology Program, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
3
|
Omaetxebarria MJ, Sendino M, Arrizabalaga L, Mota I, Zubiaga AM, Rodríguez JA. Mutations of Key Functional Residues in CRM1/XPO1 Differently Alter Its Intranuclear Localization and the Nuclear Export of Endogenous Cargos. Biomolecules 2024; 14:1578. [PMID: 39766285 PMCID: PMC11674046 DOI: 10.3390/biom14121578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
CRM1 (XPO1) has been well-characterized as a shuttling receptor that mediates the export of protein and RNA cargos to the cytoplasm, and previous analyses have pinpointed several key residues (A541, F572, K568, S1055, and Q742) that modulate CRM1 export activity. CRM1 also has a less studied nuclear function in RNA biogenesis, which is reflected by its localization to the Cajal body and the nucleolus. Here, we have investigated how the mutation of these key residues affects the intranuclear localization of CRM1 and its ability to mediate export of endogenous cargos. We identify A541K as a separation-of-function mutant that reveals the independent nature of the Cajal body and nucleolar localizations of CRM1. We also show that the F572A mutation may have strikingly opposite effects on the export of specific cargos. Importantly, and in contrast to previous claims, our findings indicate that S1055 phosphorylation is not generally required for CRM1 function and that the Q742 is not a function-defining residue in human CRM1. Collectively, our findings provide new insights into an understudied aspect of CRM1 biology and highlight several important issues related to CRM1 function and regulation that need to be re-evaluated and addressed in more detail.
Collapse
Affiliation(s)
- Miren Josu Omaetxebarria
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Maria Sendino
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (M.S.); (L.A.); (I.M.); (A.M.Z.)
| | - Liher Arrizabalaga
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (M.S.); (L.A.); (I.M.); (A.M.Z.)
| | - Irune Mota
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (M.S.); (L.A.); (I.M.); (A.M.Z.)
| | - Ana Maria Zubiaga
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (M.S.); (L.A.); (I.M.); (A.M.Z.)
| | - José Antonio Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (M.S.); (L.A.); (I.M.); (A.M.Z.)
| |
Collapse
|
4
|
Ye Q, Ma J, Wang Z, Li L, Liu T, Wang B, Zhu L, Lei Y, Xu S, Wang K, Jian Y, Ma B, Fan Y, Liu J, Gao Y, Huang H, Li L. DTX3L-mediated TIRR nuclear export and degradation regulates DNA repair pathway choice and PARP inhibitor sensitivity. Nat Commun 2024; 15:10596. [PMID: 39632881 PMCID: PMC11618752 DOI: 10.1038/s41467-024-54978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
53BP1 plays an important role in DNA double-strand break (DSB) repair and this activity is negatively regulated by its interaction with Tudor interacting repair regulator (TIRR). However, how the TIRR-53BP1 repair axis is regulated in response to DNA damage remains elusive. Here, we demonstrate that TIRR is translocated to the cytoplasm and degraded upon DNA damage. Ubiquitination of TIRR at lysine 187 by DTX3L is a critical process that regulates NHEJ pathway activity and PARP inhibitor sensitivity by facilitating XPO1-mediated TIRR nuclear export and degradation after DNA damage. We show that DTX3L is overexpressed in prostate cancers in patients and that decreased expression of TIRR due to DTX3L overexpression impairs the negative regulatory effect of TIRR on 53BP1, which consequently induces HR deficiency and chromosomal instability and sensitizes prostate cancer cells to poly (ADP-ribose) polymerase (PARP) inhibitors. Our work reveals a dual action of DTX3L on TIRR degradation and nuclear exportation and identifies DTX3L as an upstream regulator of the TIRR-53BP1 axis that governs DNA repair pathway choice and PARP inhibitor sensitivity. These findings suggest that TIRR ubiquitination and DTX3L overexpression could be viable biomarkers predicting PARP inhibitor sensitivity in cancers.
Collapse
Affiliation(s)
- Qi Ye
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jian Ma
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Zixi Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lei Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tianjie Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bin Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lizhe Zhu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuzeshi Lei
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shan Xu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ke Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanlin Jian
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bohan Ma
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yizeng Fan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Gao
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Haojie Huang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Urologic Science and Technology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Lei Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
5
|
Cao L, She Z, Zhao Y, Cheng C, Li Y, Xu T, Mao H, Zhang Y, Hui X, Lin X, Wang T, Sun X, Huang K, Zhao L, Jin M. Inhibition of RAN attenuates influenza a virus replication and nucleoprotein nuclear export. Emerg Microbes Infect 2024; 13:2387910. [PMID: 39087696 PMCID: PMC11321118 DOI: 10.1080/22221751.2024.2387910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/21/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024]
Abstract
Nuclear export of the viral ribonucleoprotein (vRNP) is a critical step in the influenza A virus (IAV) life cycle and may be an effective target for the development of anti-IAV drugs. The host factor ras-related nuclear protein (RAN) is known to participate in the life cycle of several viruses, but its role in influenza virus replication remains unknown. In the present study, we aimed to determine the function of RAN in influenza virus replication using different cell lines and subtype strains. We found that RAN is essential for the nuclear export of vRNP, as it enhances the binding affinity of XPO1 toward the viral nuclear export protein NS2. Depletion of RAN constrained the vRNP complex in the nucleus and attenuated the replication of various subtypes of influenza virus. Using in silico compound screening, we identified that bepotastine could dissociate the RAN-XPO1-vRNP trimeric complex and exhibit potent antiviral activity against influenza virus both in vitro and in vivo. This study demonstrates the important role of RAN in IAV replication and suggests its potential use as an antiviral target.
Collapse
Affiliation(s)
- Lei Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Ziwei She
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Ya Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Chuxing Cheng
- Wuhan Keqian Biological Co. Ltd., Wuhan, People’s Republic of China
| | - Yaqin Li
- Wuhan Keqian Biological Co. Ltd., Wuhan, People’s Republic of China
| | - Ting Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Haiying Mao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Yumei Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Xianfeng Hui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Xian Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Ting Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Xiaomei Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Kun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Lianzhong Zhao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, People’s Republic of China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
- Hubei Jiangxia Laboratory, Wuhan, People’s Republic of China
| |
Collapse
|
6
|
Smith AM, Li Y, Velarde A, Cheng Y, Frankel AD. The HIV-1 Nuclear Export Complex Reveals the Role of RNA in Crm1 Cargo Recognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.22.614349. [PMID: 39345625 PMCID: PMC11430062 DOI: 10.1101/2024.09.22.614349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Crm1 is a highly conserved nuclear exportin that transports >1000 human proteins including ribonucleoprotein (RNP) complexes. The interface between Crm1 and RNP cargos is unknown. The HIV regulatory protein, Rev, was one of the first identified cargos for Crm1 and contains a prototypic nuclear export sequence (NES). We present the cryo-electron microscopy structure of the HIV-1 nuclear export complex (Crm1/Ran-GTP and the Rev/RRE RNP). Rev binds at a previously unseen protein-protein binding site that stabilizes a unique Crm1 dimer and positions two NESs within the Crm1 dimer. The orientation of Rev binding positions the RRE within a charged pocket on the inside of the Crm1 toroid, mediating direct RNA-Ran-GTP contacts, highlighting the significant role of the RRE in the interaction. Structure based mutations, combined with cell-based assays, show that Crm1 has multiple distinct cargo recognition sites and explains how Crm1 can recognize a diverse range of protein and RNP cargos.
Collapse
|
7
|
Aumann WK, Kazi R, Harrington AM, Wechsler DS. Novel-and Not So Novel-Inhibitors of the Multifunctional CRM1 Protein. Oncol Rev 2024; 18:1427497. [PMID: 39161560 PMCID: PMC11330842 DOI: 10.3389/or.2024.1427497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024] Open
Abstract
Chromosome Region Maintenance 1 (CRM1), also known as Exportin 1 (XPO1), is a protein that is critical for transport of proteins and RNA to the cytoplasm through the nuclear pore complex. CRM1 inhibition with small molecule inhibitors is currently being studied in many cancers, including leukemias, solid organ malignancies and brain tumors. We review the structure of CRM1, its role in nuclear export, the current availability of CRM1 inhibitors, and the role of CRM1 in a number of distinct cellular processes. A deeper understanding of how CRM1 functions in nuclear export as well as other cellular processes may allow for the development of additional novel CRM1 inhibitors.
Collapse
Affiliation(s)
- Waitman K. Aumann
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Rafi Kazi
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Rochester Medical Center, Rochester, NY, United States
| | - Amanda M. Harrington
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Daniel S. Wechsler
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
8
|
Lai C, Xu L, Dai S. The nuclear export protein exportin-1 in solid malignant tumours: From biology to clinical trials. Clin Transl Med 2024; 14:e1684. [PMID: 38783482 PMCID: PMC11116501 DOI: 10.1002/ctm2.1684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Exportin-1 (XPO1), a crucial protein regulating nuclear-cytoplasmic transport, is frequently overexpressed in various cancers, driving tumor progression and drug resistance. This makes XPO1 an attractive therapeutic target. Over the past few decades, the number of available nuclear export-selective inhibitors has been increasing. Only KPT-330 (selinexor) has been successfully used for treating haematological malignancies, and KPT-8602 (eltanexor) has been used for treating haematologic tumours in clinical trials. However, the use of nuclear export-selective inhibitors for the inhibition of XPO1 expression has yet to be thoroughly investigated in clinical studies and therapeutic outcomes for solid tumours. METHODS We collected numerous literatures to explain the efficacy of XPO1 Inhibitors in preclinical and clinical studies of a wide range of solid tumours. RESULTS In this review, we focus on the nuclear export function of XPO1 and results from clinical trials of its inhibitors in solid malignant tumours. We summarized the mechanism of action and therapeutic potential of XPO1 inhibitors, as well as adverse effects and response biomarkers. CONCLUSION XPO1 inhibition has emerged as a promising therapeutic strategy in the fight against cancer, offering a novel approach to targeting tumorigenic processes and overcoming drug resistance. SINE compounds have demonstrated efficacy in a wide range of solid tumours, and ongoing research is focused on optimizing their use, identifying response biomarkers, and developing effective combination therapies. KEY POINTS Exportin-1 (XPO1) plays a critical role in mediating nucleocytoplasmic transport and cell cycle. XPO1 dysfunction promotes tumourigenesis and drug resistance within solid tumours. The therapeutic potential and ongoing researches on XPO1 inhibitors in the treatment of solid tumours. Additional researches are essential to address safety concerns and identify biomarkers for predicting patient response to XPO1 inhibitors.
Collapse
Affiliation(s)
- Chuanxi Lai
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| | - Lingna Xu
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| | - Sheng Dai
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
9
|
Abstract
Recent advances in the study of virus-cell interactions have improved our understanding of how viruses that replicate their genomes in the nucleus (e.g., retroviruses, hepadnaviruses, herpesviruses, and a subset of RNA viruses) hijack cellular pathways to export these genomes to the cytoplasm where they access virion egress pathways. These findings shed light on novel aspects of viral life cycles relevant to the development of new antiviral strategies and can yield new tractable, virus-based tools for exposing additional secrets of the cell. The goal of this review is to summarize defined and emerging modes of virus-host interactions that drive the transit of viral genomes out of the nucleus across the nuclear envelope barrier, with an emphasis on retroviruses that are most extensively studied. In this context, we prioritize discussion of recent progress in understanding the trafficking and function of the human immunodeficiency virus type 1 Rev protein, exemplifying a relatively refined example of stepwise, cooperativity-driven viral subversion of multi-subunit host transport receptor complexes.
Collapse
Affiliation(s)
- Ryan T. Behrens
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Nathan M. Sherer
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
10
|
Mghezzi-Habellah M, Prochasson L, Jalinot P, Mocquet V. Viral Subversion of the Chromosome Region Maintenance 1 Export Pathway and Its Consequences for the Cell Host. Viruses 2023; 15:2218. [PMID: 38005895 PMCID: PMC10674744 DOI: 10.3390/v15112218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
In eukaryotic cells, the spatial distribution between cytoplasm and nucleus is essential for cell homeostasis. This dynamic distribution is selectively regulated by the nuclear pore complex (NPC), which allows the passive or energy-dependent transport of proteins between these two compartments. Viruses possess many strategies to hijack nucleocytoplasmic shuttling for the benefit of their viral replication. Here, we review how viruses interfere with the karyopherin CRM1 that controls the nuclear export of protein cargoes. We analyze the fact that the viral hijacking of CRM1 provokes are-localization of numerous cellular factors in a suitable place for specific steps of viral replication. While CRM1 emerges as a critical partner for viruses, it also takes part in antiviral and inflammatory response regulation. This review also addresses how CRM1 hijacking affects it and the benefits of CRM1 inhibitors as antiviral treatments.
Collapse
Affiliation(s)
| | | | | | - Vincent Mocquet
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure-Lyon, Université Claude Bernard Lyon, U1293, UMR5239, 69364 Lyon, France; (M.M.-H.); (L.P.); (P.J.)
| |
Collapse
|
11
|
Wen T, Geng M, Bai E, Wang X, Miao H, Chen Z, Zhou H, Wang J, Shi J, Zhang Y, Lei M, Zhu Y. KPT-330 and Y219 exert a synergistic antitumor effect in triple-negative breast cancer through inhibiting NF-κB signaling. FEBS Open Bio 2023; 13:751-762. [PMID: 36847599 PMCID: PMC10068319 DOI: 10.1002/2211-5463.13588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/09/2023] [Accepted: 02/24/2023] [Indexed: 03/01/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype, which has poor prognosis due to the lack of effective targeted drugs. KPT-330, an inhibitor of the nuclear export protein CRM-1, has been widely used in clinical medicine. Y219, a novel proteasome inhibitor designed by our group, shows superior efficacy, reduced toxicity, and reduced off-target effects as compared to the proteasome inhibitor bortezomib. In this study, we investigated the synergistic effect of KPT-330 and Y219 against TNBC cells, as well as the underlying mechanisms. We report that combination treatment with KPT-330 and Y219 synergistically inhibited the viability of TNBC cells in vitro and in vivo. Further analysis revealed that the combined use of KPT-330 and Y219 induced G2-M phase arrest and apoptosis in TNBC cells, and attenuated nuclear factor kappa B (NF-κB) signaling by facilitating nuclear localization of IκB-α. Collectively, these results suggest that the combined use of KPT-330 and Y219 may be an effective therapeutic strategy for the treatment of TNBC.
Collapse
Affiliation(s)
- Tiantian Wen
- College of Life Science, Nanjing Normal University, China
| | - Mengzhu Geng
- College of Life Science, Nanjing Normal University, China
| | - Enhe Bai
- College of Life Science, Nanjing Normal University, China
| | - Xueyuan Wang
- College of Life Science, Nanjing Normal University, China
| | - Hang Miao
- College of Science, Nanjing Forestry University, China
| | - Zhimeng Chen
- College of Science, Nanjing Forestry University, China
| | - Hui Zhou
- College of Life Science, Nanjing Normal University, China
| | - Jia Wang
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., Nanjing, China
| | - Jingmiao Shi
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., Nanjing, China
| | - Yin Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, China
| | - Meng Lei
- College of Science, Nanjing Forestry University, China
| | - Yongqiang Zhu
- College of Life Science, Nanjing Normal University, China
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., Nanjing, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, China
| |
Collapse
|
12
|
Sule A, Golding SE, Ahmad SF, Watson J, Ahmed MH, Kellogg GE, Bernas T, Koebley S, Reed JC, Povirk LF, Valerie K. ATM phosphorylates PP2A subunit A resulting in nuclear export and spatiotemporal regulation of the DNA damage response. Cell Mol Life Sci 2022; 79:603. [PMID: 36434396 PMCID: PMC9700600 DOI: 10.1007/s00018-022-04550-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022]
Abstract
Ataxia telangiectasia mutated (ATM) is a serine-threonine protein kinase and important regulator of the DNA damage response (DDR). One critical ATM target is the structural subunit A (PR65-S401) of protein phosphatase 2A (PP2A), known to regulate diverse cellular processes such as mitosis and cell growth as well as dephosphorylating many proteins during the recovery from the DDR. We generated mouse embryonic fibroblasts expressing PR65-WT, -S401A (cannot be phosphorylated), and -S401D (phospho-mimetic) transgenes. Significantly, S401 mutants exhibited extensive chromosomal aberrations, impaired DNA double-strand break (DSB) repair and underwent increased mitotic catastrophe after radiation. Both S401A and the S401D cells showed impaired DSB repair (nonhomologous end joining and homologous recombination repair) and exhibited delayed DNA damage recovery, which was reflected in reduced radiation survival. Furthermore, S401D cells displayed increased ERK and AKT signaling resulting in enhanced growth rate further underscoring the multiple roles ATM-PP2A signaling plays in regulating prosurvival responses. Time-lapse video and cellular localization experiments showed that PR65 was exported to the cytoplasm after radiation by CRM1, a nuclear export protein, in line with the very rapid pleiotropic effects observed. A putative nuclear export sequence (NES) close to S401 was identified and when mutated resulted in aberrant PR65 shuttling. Our study demonstrates that the phosphorylation of a single, critical PR65 amino acid (S401) by ATM fundamentally controls the DDR, and balances DSB repair quality, cell survival and growth by spatiotemporal PR65 nuclear-cytoplasmic shuttling mediated by the nuclear export receptor CRM1.
Collapse
Affiliation(s)
- Amrita Sule
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298-0058, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Sarah E Golding
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298-0058, USA
| | - Syed F Ahmad
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298-0058, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - James Watson
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298-0058, USA
| | - Mostafa H Ahmed
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Glen E Kellogg
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Tytus Bernas
- Department of Anatomy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Sean Koebley
- Department of Physics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Jason C Reed
- Department of Physics, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Lawrence F Povirk
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Kristoffer Valerie
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298-0058, USA.
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
13
|
Jin L, Zhang G, Yang G, Dong J. Identification of the Karyopherin Superfamily in Maize and Its Functional Cues in Plant Development. Int J Mol Sci 2022; 23:ijms232214103. [PMID: 36430578 PMCID: PMC9699179 DOI: 10.3390/ijms232214103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/06/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
Appropriate nucleo-cytoplasmic partitioning of proteins is a vital regulatory mechanism in phytohormone signaling and plant development. However, how this is achieved remains incompletely understood. The Karyopherin (KAP) superfamily is critical for separating the biological processes in the nucleus from those in the cytoplasm. The KAP superfamily is divided into Importin α (IMPα) and Importin β (IMPβ) families and includes the core components in mediating nucleocytoplasmic transport. Recent reports suggest the KAPs play crucial regulatory roles in Arabidopsis development and stress response by regulating the nucleo-cytoplasmic transport of members in hormone signaling. However, the KAP members and their associated molecular mechanisms are still poorly understood in maize. Therefore, we first identified seven IMPα and twenty-seven IMPβ genes in the maize genome and described their evolution traits and the recognition rules for substrates with nuclear localization signals (NLSs) or nuclear export signals (NESs) in plants. Next, we searched for the protein interaction partners of the ZmKAPs and selected the ones with Arabidopsis orthologs functioning in auxin biosynthesis, transport, and signaling to predict their potential function. Finally, we found that several ZmKAPs share similar expression patterns with their interacting proteins, implying their function in root development. Overall, this article focuses on the Karyopherin superfamily in maize and starts with this entry point by systematically comprehending the KAP-mediated nucleo-cytoplasmic transport process in plants, and then predicts the function of the ZmKAPs during maize development, with a perspective on a closely associated regulatory mechanism between the nucleo-cytoplasmic transport and the phytohormone network.
Collapse
Affiliation(s)
- Lu Jin
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Guobin Zhang
- College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Guixiao Yang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jiaqiang Dong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
- Correspondence:
| |
Collapse
|
14
|
Mattola S, Aho V, Bustamante‐Jaramillo LF, Pizzioli E, Kann M, Vihinen‐Ranta M. Nuclear entry and egress of parvoviruses. Mol Microbiol 2022; 118:295-308. [PMID: 35974704 PMCID: PMC9805091 DOI: 10.1111/mmi.14974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 01/09/2023]
Abstract
Parvoviruses are small non-enveloped single-stranded DNA viruses, which depend on host cell nuclear transcriptional and replication machinery. After endosomal exposure of nuclear localization sequence and a phospholipase A2 domain on the capsid surface, and escape into the cytosol, parvovirus capsids enter the nucleus. Due to the small capsid diameter of 18-26 nm, intact capsids can potentially pass into the nucleus through nuclear pore complexes (NPCs). This might be facilitated by active nuclear import, but capsids may also follow an alternative entry pathway that includes activation of mitotic factors and local transient disruption of the nuclear envelope. The nuclear entry is followed by currently undefined events of viral genome uncoating. After genome release, viral replication compartments are initiated and infection proceeds. Parvoviral genomes replicate during cellular S phase followed by nuclear capsid assembly during virus-induced S/G2 cell cycle arrest. Nuclear egress of capsids occurs upon nuclear envelope degradation during apoptosis and cell lysis. An alternative pathway for nuclear export has been described using active transport through the NPC mediated by the chromosome region maintenance 1 protein, CRM1, which is enhanced by phosphorylation of the N-terminal domain of VP2. However, other alternative but not yet uncharacterized nuclear export pathways cannot be excluded.
Collapse
Affiliation(s)
- Salla Mattola
- Department of Biological and Environmental ScienceUniversity of JyvaskylaJyvaskylaFinland
| | - Vesa Aho
- Department of Biological and Environmental ScienceUniversity of JyvaskylaJyvaskylaFinland
| | | | - Edoardo Pizzioli
- Department of Infectious Diseases, Institute of BiomedicineUniversity of GothenburgGothenburgSweden
| | - Michael Kann
- Department of Infectious Diseases, Institute of BiomedicineUniversity of GothenburgGothenburgSweden,Sahlgrenska AcademyGothenburgSweden,Department of Clinical MicrobiologyRegion Västra Götaland, Sahlgrenska University HospitalGothenburgSweden
| | - Maija Vihinen‐Ranta
- Department of Biological and Environmental ScienceUniversity of JyvaskylaJyvaskylaFinland
| |
Collapse
|
15
|
Chavan S, Khuperkar D, Lonare A, Panigrahi S, Bellare J, Rapole S, Seshadri V, Joseph J. RanGTPase links nucleo-cytoplasmic transport to the recruitment of cargoes into small extracellular vesicles. Cell Mol Life Sci 2022; 79:392. [PMID: 35779171 PMCID: PMC11071952 DOI: 10.1007/s00018-022-04422-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022]
Abstract
Small extracellular vesicle (sEV)-mediated intercellular communication regulates multiple aspects of growth and development in multicellular organisms. However, the mechanism underlying cargo recruitment into sEVs is currently unclear. We show that the key nucleo-cytoplasmic transport (NCT) protein-RanGTPase, in its GTP-bound form (RanGTP), is enriched in sEVs secreted by mammalian cells. This recruitment of RanGTP into sEVs depends on the export receptor CRM1 (also called XPO1). The recruitment of GAPDH, a candidate cargo protein, into sEVs is regulated by the RanGTP-CRM1axis in a nuclear export signal (NES)-dependent manner. Perturbation of NCT through overexpression or depletion of nuclear transport components affected the recruitment of Ran, CRM1 and GAPDH into sEVs. Our studies, thus, suggest a link between NCT, particularly the Ran-CRM1 axis, and recruitment of NES-containing cargoes into the sEVs. Collectively, these findings implicate RanGTPase as a link between NCT and sEV mediated intercellular communication.
Collapse
Affiliation(s)
- Sakalya Chavan
- National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune, 411007, India
| | - Deepak Khuperkar
- National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune, 411007, India
- UK Dementia Research Institute at King's College London, London and University of Cambridge, Cambridge, UK
| | - Akshay Lonare
- National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune, 411007, India
| | - Swagatika Panigrahi
- National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune, 411007, India
| | - Jayesh Bellare
- Department of Chemical Engineering and Wadhwani Research Centre for Bioengineering, IIT Bombay, Mumbai, 400079, India
| | - Srikanth Rapole
- National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune, 411007, India
| | - Vasudevan Seshadri
- National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune, 411007, India
| | - Jomon Joseph
- National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
16
|
Mattola S, Salokas K, Aho V, Mäntylä E, Salminen S, Hakanen S, Niskanen EA, Svirskaite J, Ihalainen TO, Airenne KJ, Kaikkonen-Määttä M, Parrish CR, Varjosalo M, Vihinen-Ranta M. Parvovirus nonstructural protein 2 interacts with chromatin-regulating cellular proteins. PLoS Pathog 2022; 18:e1010353. [PMID: 35395063 PMCID: PMC9020740 DOI: 10.1371/journal.ppat.1010353] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/20/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022] Open
Abstract
Autonomous parvoviruses encode at least two nonstructural proteins, NS1 and NS2. While NS1 is linked to important nuclear processes required for viral replication, much less is known about the role of NS2. Specifically, the function of canine parvovirus (CPV) NS2 has remained undefined. Here we have used proximity-dependent biotin identification (BioID) to screen for nuclear proteins that associate with CPV NS2. Many of these associations were seen both in noninfected and infected cells, however, the major type of interacting proteins shifted from nuclear envelope proteins to chromatin-associated proteins in infected cells. BioID interactions revealed a potential role for NS2 in DNA remodeling and damage response. Studies of mutant viral genomes with truncated forms of the NS2 protein suggested a change in host chromatin accessibility. Moreover, further studies with NS2 mutants indicated that NS2 performs functions that affect the quantity and distribution of proteins linked to DNA damage response. Notably, mutation in the splice donor site of the NS2 led to a preferred formation of small viral replication center foci instead of the large coalescent centers seen in wild-type infection. Collectively, our results provide insights into potential roles of CPV NS2 in controlling chromatin remodeling and DNA damage response during parvoviral replication. Parvoviruses are small, nonenveloped DNA viruses, that besides being noteworthy pathogens in many animal species, including humans, are also being developed as vectors for gene and cancer therapy. Canine parvovirus is an autonomously replicating parvovirus that encodes two nonstructural proteins, NS1 and NS2. NS1 is required for viral DNA replication and packaging, as well as gene expression. However, very little is known about the function of NS2. Our studies indicate that NS2 serves a previously undefined important function in chromatin modification and DNA damage responses. Therefore, it appears that although both NS1 and NS2 are needed for a productive infection they play very different roles in the process.
Collapse
Affiliation(s)
- Salla Mattola
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Kari Salokas
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Vesa Aho
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Salminen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Satu Hakanen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Einari A. Niskanen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Julija Svirskaite
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Teemu O. Ihalainen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kari J. Airenne
- Kuopio Center for Gene and Cell Therapy (KCT), Kuopio, Finland
| | | | - Colin R. Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, University of Cornell, Ithaca, New York, United States of America
| | - Markku Varjosalo
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
- * E-mail:
| |
Collapse
|
17
|
Fung HYJ, Chook YM. Binding Affinity Measurement of Nuclear Export Signal Peptides to Their Exporter CRM1. Methods Mol Biol 2022; 2502:245-256. [PMID: 35412243 DOI: 10.1007/978-1-0716-2337-4_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
CRM1 recognizes hundreds to thousands of protein cargoes by binding to the eight to fifteen residue-long nuclear export signals (NESs) within their polypeptide chains. Various assays to measure the binding affinity of NESs for CRM1 have been developed. CRM1 binds to NESs with a wide range of binding affinities, with dissociation constants that span from low nanomolar to tens of micromolar. An optimized binding affinity assay with improved throughput was recently developed to measure binding affinities of NES peptides for CRM1 in the presence of excess RanGTP. The assay can measure affinities, with multiple replicates, for up to seven different NES peptides per screening plate. Here, we present a protocol for the purification of the necessary proteins and for measuring CRM1-NES binding affinities.
Collapse
Affiliation(s)
- Ho Yee Joyce Fung
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yuh Min Chook
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
18
|
Özdaş S, Canatar İ. Targeting of nucleo‑cytoplasmic transport factor exportin 1 in malignancy (Review). MEDICINE INTERNATIONAL 2022; 2:2. [PMID: 38938904 PMCID: PMC11208992 DOI: 10.3892/mi.2021.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/03/2021] [Indexed: 06/29/2024]
Abstract
Nuclear pore complexes (NPCs) regulate the entry and exit of molecules from the cell nucleus. Small molecules pass through NPCs by diffusion while large molecules enter and exit the nucleus by karyopherins, which serve as transport factors. Exportin-1 (XPO1) is a protein that is an important member of the karyopherin family and carries macromolecules from the nucleus to the cytoplasm. XPO1 is responsible for nuclear-cytoplasmic transport of protein, ribosomal RNA and certain required mRNAs for ribosomal biogenesis. Furthermore, XPO1-mediated nuclear export is associated with various types of disease, such as cancer, inflammation and viral infection. The key role of XPO1 in carcinogenesis and its potential as a therapeutic target has been demonstrated by previous studies. Clinical use of novel developed generation-specific XPO1 inhibitors and their combination with other agents to block XPO1-mediated nuclear export are a promising new treatment strategy. The aim of the present study was to explain the working mechanism of XPO1 and inhibitors that block XPO1-mediated nuclear export.
Collapse
Affiliation(s)
- Sibel Özdaş
- Department of Bioengineering, Faculty of Engineering Sciences, Adana Alparslan Türkeş Science and Technology University, Adana 01250, Turkey
| | - İpek Canatar
- Department of Bioengineering, Faculty of Engineering Sciences, Adana Alparslan Türkeş Science and Technology University, Adana 01250, Turkey
| |
Collapse
|
19
|
Staller E, Barclay WS. Host Cell Factors That Interact with Influenza Virus Ribonucleoproteins. Cold Spring Harb Perspect Med 2021; 11:a038307. [PMID: 32988980 PMCID: PMC8559542 DOI: 10.1101/cshperspect.a038307] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Influenza viruses hijack host cell factors at each stage of the viral life cycle. After host cell entry and endosomal escape, the influenza viral ribonucleoproteins (vRNPs) are released into the cytoplasm where the classical cellular nuclear import pathway is usurped for nuclear translocation of the vRNPs. Transcription takes place inside the nucleus at active host transcription sites, and cellular mRNA export pathways are subverted for export of viral mRNAs. Newly synthesized RNP components cycle back into the nucleus using various cellular nuclear import pathways and host-encoded chaperones. Replication of the negative-sense viral RNA (vRNA) into complementary RNA (cRNA) and back into vRNA requires complex interplay between viral and host factors. Progeny vRNPs assemble at the host chromatin and subsequently exit from the nucleus-processes orchestrated by sets of host and viral proteins. Finally, several host pathways appear to play a role in vRNP trafficking from the nuclear envelope to the plasma membrane for egress.
Collapse
Affiliation(s)
- Ecco Staller
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, St. Mary's Campus, London W2 1NY, United Kingdom
| | - Wendy S Barclay
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, St. Mary's Campus, London W2 1NY, United Kingdom
| |
Collapse
|
20
|
Liao Y, Ke X, Deng T, Qin Q. The Second-Generation XPO1 Inhibitor Eltanexor Inhibits Human Cytomegalovirus (HCMV) Replication and Promotes Type I Interferon Response. Front Microbiol 2021; 12:675112. [PMID: 34012430 PMCID: PMC8126617 DOI: 10.3389/fmicb.2021.675112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/12/2021] [Indexed: 02/05/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous opportunistic pathogen and can be life-threatening for immunocompromised individuals. There is currently no available vaccine for the prevention of HCMV- associated diseases and most of the available antiviral drugs that target viral DNA synthesis become ineffective in treating HCMV mutants that arise after long-term use in immunocompromised patients. Here, we examined the effects of Eltanexor, a second-generation selective inhibitor of nuclear export (SINE), on HCMV replication. Eltanexor effectively inhibits HCMV replication in human foreskin fibroblasts in a dose-dependent manner. Eltanexor does not significantly inhibit viral entry and nuclear import of viral genomic DNA, but rather suppress the transcript and protein levels of viral immediate-early (IE), early (E) and late (L) genes, and abolishes the production of infectious virions. We further found Eltanexor treatment promotes proteasome-mediated degradation of XPO1, which contributes to the nuclear retention of interferon regulatory factor 3 (IRF-3), resulting in increased expression of type I interferon as well as interferon stimulating genes ISG15 and ISG54. This study reveals a novel antiviral mechanism of Eltanexor which suggests it has potential to inhibit a broad spectrum of viral pathogens.
Collapse
Affiliation(s)
- Yueyan Liao
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, China
| | - Xiangyu Ke
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, China
| | - Tianyi Deng
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, China
| | - Qingsong Qin
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, China
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou, China
- *Correspondence: Qingsong Qin,
| |
Collapse
|
21
|
Sluzalska KD, Slawski J, Sochacka M, Lampart A, Otlewski J, Zakrzewska M. Intracellular partners of fibroblast growth factors 1 and 2 - implications for functions. Cytokine Growth Factor Rev 2020; 57:93-111. [PMID: 32475760 DOI: 10.1016/j.cytogfr.2020.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023]
Abstract
Fibroblast growth factors 1 and 2 (FGF1 and FGF2) are mainly considered as ligands of surface receptors through which they regulate a broad spectrum of biological processes. They are secreted in non-canonical way and, unlike other growth factors, they are able to translocate from the endosome to the cell interior. These unique features, as well as the role of the intracellular pool of FGF1 and FGF2, are far from being fully understood. An increasing number of reports address this problem, focusing on the intracellular interactions of FGF1 and 2. Here, we summarize the current state of knowledge of the FGF1 and FGF2 binding partners inside the cell and the possible role of these interactions. The partner proteins are grouped according to their function, including proteins involved in secretion, cell signaling, nucleocytoplasmic transport, binding and processing of nucleic acids, ATP binding, and cytoskeleton assembly. An in-depth analysis of the network of these binding partners could indicate novel, non-classical functions of FGF1 and FGF2 and uncover an additional level of a fine control of the well-known FGF-regulated cellular processes.
Collapse
Affiliation(s)
- Katarzyna Dominika Sluzalska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Martyna Sochacka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Agata Lampart
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
22
|
Allegra A, Innao V, Allegra AG, Leanza R, Musolino C. Selective Inhibitors of Nuclear Export in the Treatment of Hematologic Malignancies. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2019; 19:689-698. [PMID: 31543372 DOI: 10.1016/j.clml.2019.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/08/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
Abstract
The correct localization of molecules between nucleus and cytoplasm is fundamental for cellular homeostasis and is controlled by a bidirectional transport system. Exportin 1 (XPO1) regulates the passage of numerous cancer-related proteins. In this review, we summarize the development of a novel class of antitumor agents, known as selective inhibitors of nuclear export (SINEs). We report results of preclinical studies and clinical trials, and discuss the mechanism of action of SINEs and their effects in multiple myeloma, non-Hodgkin lymphomas, lymphoblastic leukemia, and acute and chronic myeloid leukemia. In the future, the numerous experimental studies currently underway will allow us to define the role of SINEs and will possibly permit these substances to be introduced into daily clinical practice.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi," University of Messina, Messina, Italy.
| | - Vanessa Innao
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi," University of Messina, Messina, Italy
| | - Andrea Gaetano Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi," University of Messina, Messina, Italy
| | - Rossana Leanza
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi," University of Messina, Messina, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi," University of Messina, Messina, Italy
| |
Collapse
|
23
|
Boehringer A, Bowser R. RNA Nucleocytoplasmic Transport Defects in Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2018; 20:85-101. [PMID: 29916017 DOI: 10.1007/978-3-319-89689-2_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In eukaryotic cells, transcription and translation are compartmentalized by the nuclear membrane, requiring an active transport of RNA from the nucleus into the cytoplasm. This is accomplished by a variety of transport complexes that contain either a member of the exportin family of proteins and translocation fueled by GTP hydrolysis or in the case of mRNA by complexes containing the export protein NXF1. Recent evidence indicates that RNA transport is altered in a number of different neurodegenerative diseases including Huntington's disease, Alzheimer's disease, frontotemporal dementia, and amyotrophic lateral sclerosis. Alterations in RNA transport predominately fall into three categories: Alterations in the nuclear membrane and mislocalization and aggregation of the nucleoporins that make up the nuclear pore; alterations in the Ran gradient and the proteins that control it which impacts exportin based nuclear export; and alterations of proteins that are required for the export of mRNA leading nuclear accumulation of mRNA.
Collapse
Affiliation(s)
- Ashley Boehringer
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA.,School of Life Sciences, Arizona State University, Phoenix, AZ, USA
| | - Robert Bowser
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA.
| |
Collapse
|
24
|
Tecalco-Cruz AC. Molecular pathways involved in the transport of nuclear receptors from the nucleus to cytoplasm. J Steroid Biochem Mol Biol 2018; 178:36-44. [PMID: 29107180 DOI: 10.1016/j.jsbmb.2017.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/18/2017] [Accepted: 10/25/2017] [Indexed: 12/30/2022]
Abstract
Nuclear receptors (NRs) are transcription regulators that direct the expression of many genes linked to cellular processes, such as proliferation, differentiation, and apoptosis. Additionally, some cellular events are also modulated by signaling pathways induced by NRs outside of the nucleus. Hence, the subcellular transport of NRs is dynamic and is modulated by several signals, protein-protein interactions, and posttranslational modifications. Particularly, the exit of NRs from the nucleus to cytoplasm and/or other compartments is transcendental, as it is this export event, which determines their abundance in the cells' compartments, the activation or attenuation of nuclear or extranuclear pathways, and the magnitude and duration of their effects inside or outside of the nucleus. Consequently, an adequate control of the distribution of NRs is critical for homeostasis, because a deregulation in the nucleo-cytoplasmic transport of NRs could be involved in diseases including cancer as well as metabolic and vascular alterations. In this review, we investigated the pathways and molecular and biological aspects that have been described for the nuclear export of NRs so far and their functional relevance in some diseases. This information suggests that the transport of NRs out of the nucleus is a key mechanism for the identification of new therapeutic targets for alterations associated with the deregulation of the function of NRs.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo Postal, D.F. 04510, Mexico.
| |
Collapse
|
25
|
An in silico argument for mitochondrial microRNA as a determinant of primary non function in liver transplantation. Sci Rep 2018; 8:3105. [PMID: 29449571 PMCID: PMC5814406 DOI: 10.1038/s41598-018-21091-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/29/2018] [Indexed: 02/07/2023] Open
Abstract
Mitochondria have their own genomic, transcriptomic and proteomic machinery but are unable to be autonomous, needing both nuclear and mitochondrial genomes. The aim of this work was to use computational biology to explore the involvement of Mitochondrial microRNAs (MitomiRs) and their interactions with the mitochondrial proteome in a clinical model of primary non function (PNF) of the donor after cardiac death (DCD) liver. Archival array data on the differential expression of miRNA in DCD PNF was re-analyzed using a number of publically available computational algorithms. 10 MitomiRs were identified of importance in DCD PNF, 7 with predicted interaction of their seed sequence with the mitochondrial transcriptome that included both coding, and non coding areas of the hypervariability region 1 (HVR1) and control region. Considering miRNA regulation of the nuclear encoded mitochondrial proteome, 7 hypothetical small proteins were identified with homolog function that ranged from co-factor for formation of ATP Synthase, REDOX balance and an importin/exportin protein. In silico, unconventional seed interactions, both non canonical and alternative seed sites, appear to be of greater importance in MitomiR regulation of the mitochondrial genome. Additionally, a number of novel small proteins of relevance in transplantation have been identified which need further characterization.
Collapse
|
26
|
Mathew C, Ghildyal R. CRM1 Inhibitors for Antiviral Therapy. Front Microbiol 2017; 8:1171. [PMID: 28702009 PMCID: PMC5487384 DOI: 10.3389/fmicb.2017.01171] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/08/2017] [Indexed: 12/22/2022] Open
Abstract
Infectious diseases are a major global concern and despite major advancements in medical research, still cause significant morbidity and mortality. Progress in antiviral therapy is particularly hindered by appearance of mutants capable of overcoming the effects of drugs targeting viral components. Alternatively, development of drugs targeting host proteins essential for completion of viral lifecycle holds potential as a viable strategy for antiviral therapy. Nucleocytoplasmic trafficking pathways in particular are involved in several pathological conditions including cancer and viral infections, where hijacking or alteration of function of key transporter proteins, such as Chromosome Region Maintenance1 (CRM1) is observed. Overexpression of CRM1-mediated nuclear export is evident in several solid and hematological malignancies. Interestingly, CRM1-mediated nuclear export of viral components is crucial in various stages of the viral lifecycle and assembly. This review summarizes the role of CRM1 in cancer and selected viruses. Leptomycin B (LMB) is the prototypical inhibitor of CRM1 potent against various cancer cell lines overexpressing CRM1 and in limiting viral infections at nanomolar concentrations in vitro. However, the irreversible shutdown of nuclear export results in high cytotoxicity and limited efficacy in vivo. This has prompted search for synthetic and natural CRM1 inhibitors that can potentially be developed as broadly active antivirals, some of which are summarized in this review.
Collapse
Affiliation(s)
| | - Reena Ghildyal
- Respiratory Virology Group, Centre for Research in Therapeutic Solutions, Health Research Institute, University of CanberraCanberra, ACT, Australia
| |
Collapse
|
27
|
Rahmani K, Dean DA. Leptomycin B alters the subcellular distribution of CRM1 (Exportin 1). Biochem Biophys Res Commun 2017; 488:253-258. [PMID: 28412356 PMCID: PMC5551409 DOI: 10.1016/j.bbrc.2017.04.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/10/2017] [Indexed: 02/04/2023]
Abstract
CRM1 (chromosome maintenance region 1, Exportin 1) binds to nuclear export signals and is required for nucleocytoplasmic transport of a large variety of proteins and RNP complexes. Leptomycin B (LMB), the first specific inhibitor of CRM1 identified, binds covalently to cysteine 528 in the nuclear export signal binding region of CRM1 leading to the inhibition of protein nuclear export. Although the biochemical mechanisms of action of CRM1 inhibitors such as LMB are well studied, the subcellular effects of inhibition on CRM1 are unknown. We have found that LMB causes CRM1 to redistribute from the nucleus to the cytoplasm in A549 cells. A significant decrease in nuclear CRM1 coupled with an increase in cytoplasmic CRM1 was sustained for up to 4 h, while there was no change in total CRM1 protein in fractionated cells. Cells expressing an LMB insensitive HA-tagged CRM1-C528S protein were unaffected by LMB treatment, whereas HA-tagged wildtype CRM1 redistributed from the nucleus to the cytoplasm with LMB treatment, similar to endogenous CRM1. GFP-tagged CRM1 protein microinjected into the cytoplasm of A549 cells distributed throughout the cell in untreated cells remained primarily cytoplasmic in LMB-treated cells. Upon nuclear microinjection, GFP-CRM1 translocated to and accumulated in the cytoplasm of LMB-treated cells. Thus, LMB binds to CRM1 and causes its redistribution to the cytoplasm by inhibiting its nuclear import. Decreasing the nuclear availability of CRM1 likely contributes to the accumulation of CRM1 cargo proteins in the nucleus, suggesting a new mechanism of action for LMB.
Collapse
Affiliation(s)
- Khatera Rahmani
- Department of Pediatrics, University of Rochester School of Medicine, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - David A Dean
- Department of Pediatrics, University of Rochester School of Medicine, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
28
|
Zhu W, He X, Hua Y, Li Q, Wang J, Gan X. The E3 ubiquitin ligase WWP2 facilitates RUNX2 protein transactivation in a mono-ubiquitination manner during osteogenic differentiation. J Biol Chem 2017; 292:11178-11188. [PMID: 28500134 DOI: 10.1074/jbc.m116.772277] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/29/2017] [Indexed: 11/06/2022] Open
Abstract
Poly-ubiquitination-mediated RUNX2 degradation is an important cause of age- and inflammation-related bone loss. NEDD4 family E3 ubiquitin protein ligases are thought to be the major regulators of RUNX2 poly-ubiquitination. However, we observed a mono-ubiquitination of RUNX2 that was catalyzed by WWP2, a member of the NEDD4 family of E3 ubiquitin ligases. WWP2 has been reported to catalyze the mono-ubiquitination of Goosecoid in chondrocytes, facilitating craniofacial skeleton development. In this study, we found that osteogenic differentiation of mesenchymal stem cells promoted WWP2 expression and nuclear accumulation. Knockdown of Wwp2 in mesenchymal stem cells and osteoblasts led to significant deficiencies of osteogenesis, including decreased mineral deposition and down-regulation of osteogenic marker genes. Co-immunoprecipitation experiments showed the interaction of WWP2 with RUNX2 in vitro and in vivo Mono-ubiquitination by WWP2 leads to RUNX2 transactivation, as evidenced by the wild type of WWP2, but not its ubiquitin ligase-dead mutant, augmenting RUNX2-reponsive reporter activity. Moreover, deletion of WWP2-dependent mono-ubiquitination resulted in striking defects of RUNX2 osteoblastic activity. In addition, ectopic expression of the constitutively active type 1A bone morphogenetic protein receptor enhanced WWP2-dependent RUNX2 ubiquitination and transactivation, demonstrating a regulatory role of bone morphogenetic protein signaling in the WWP2-RUNX2 axis. Taken together, our results provide evidence that WWP2 serves as a positive regulator of osteogenesis by augmenting RUNX2 transactivation in a non-proteolytic mono-ubiquitination manner.
Collapse
Affiliation(s)
- Wei Zhu
- From the Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xinyu He
- From the Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yue Hua
- From the Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qian Li
- From the Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jiyong Wang
- From the Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoqing Gan
- From the Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
29
|
Nucleo-cytoplasmic transport of estrogen receptor alpha in breast cancer cells. Cell Signal 2017; 34:121-132. [PMID: 28341599 DOI: 10.1016/j.cellsig.2017.03.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/19/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023]
Abstract
Approximately 70% cases of breast cancers exhibit high expression and activity levels of estrogen receptor alpha (ERα), a transcription regulator that induces the expression of genes associated with cellular proliferation and survival. These nuclear functions of the receptor are associated with the development of breast cancer. However, ERα localization is not static, but rather, dynamic with continuous shuttling between the nucleus and the cytoplasm. Interestingly, both the nuclear import and export of ERα are modulated by several stimuli that include estradiol, antiestrogens, and growth factors. As ERα nuclear accumulation is critical to the regulation of gene expression, nuclear export of this receptor modulates the intensity and duration of its transcriptional activity. Thus, the subcellular spatial distribution of ERα ensures tight modulation of its concentration in cellular compartments, as well as of its nuclear and extranuclear functions. In this review, we will discuss current findings regarding the biological importance of molecular mechanisms of, and proteins responsible for, the nuclear import and export of ERα in breast cancer cells.
Collapse
|
30
|
Gao W. Exportin 1/chromosome region maintenance 1 as a therapeutic target for lung cancer. Transl Cancer Res 2017; 6:S83-S86. [PMID: 30613477 DOI: 10.21037/tcr.2017.02.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Weimin Gao
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
31
|
Nuclear Export Signal Masking Regulates HIV-1 Rev Trafficking and Viral RNA Nuclear Export. J Virol 2017; 91:JVI.02107-16. [PMID: 27852860 DOI: 10.1128/jvi.02107-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 11/14/2016] [Indexed: 12/28/2022] Open
Abstract
HIV-1's Rev protein forms a homo-oligomeric adaptor complex linking viral RNAs to the cellular CRM1/Ran-GTP nuclear export machinery through the activity of Rev's prototypical leucine-rich nuclear export signal (NES). In this study, we used a functional fluorescently tagged Rev fusion protein as a platform to study the effects of modulating Rev NES identity, number, position, or strength on Rev subcellular trafficking, viral RNA nuclear export, and infectious virion production. We found that Rev activity was remarkably tolerant of diverse NES sequences, including supraphysiological NES (SNES) peptides that otherwise arrest CRM1 transport complexes at nuclear pores. Rev's ability to tolerate a SNES was both position and multimerization dependent, an observation consistent with a model wherein Rev self-association acts to transiently mask the NES peptide(s), thereby biasing Rev's trafficking into the nucleus. Combined imaging and functional assays also indicated that NES masking underpins Rev's well-known tendency to accumulate at the nucleolus, as well as Rev's capacity to activate optimal levels of late viral gene expression. We propose that Rev multimerization and NES masking regulates Rev's trafficking to and retention within the nucleus even prior to RNA binding. IMPORTANCE HIV-1 infects more than 34 million people worldwide causing >1 million deaths per year. Infectious virion production is activated by the essential viral Rev protein that mediates nuclear export of intron-bearing late-stage viral mRNAs. Rev's shuttling into and out of the nucleus is regulated by the antagonistic activities of both a peptide-encoded N-terminal nuclear localization signal and C-terminal nuclear export signal (NES). How Rev and related viral proteins balance strong import and export activities in order to achieve optimal levels of viral gene expression is incompletely understood. We provide evidence that multimerization provides a mechanism by which Rev transiently masks its NES peptide, thereby biasing its trafficking to and retention within the nucleus. Targeted pharmacological disruption of Rev-Rev interactions should perturb multiple Rev activities, both Rev-RNA binding and Rev's trafficking to the nucleus in the first place.
Collapse
|
32
|
Hong SK, Kim KH, Song EJ, Kim EE. Structural Basis for the Interaction between the IUS-SPRY Domain of RanBPM and DDX-4 in Germ Cell Development. J Mol Biol 2016; 428:4330-4344. [PMID: 27622290 DOI: 10.1016/j.jmb.2016.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 02/08/2023]
Abstract
RanBPM and RanBP10 are non-canonical members of the Ran binding protein family that lack the Ran binding domain and do not associate with Ran GTPase in vivo. Rather, they have been shown to be scaffolding proteins that are important for a variety of cellular processes, and both of these proteins contain a SPRY domain, which has been implicated in mediating protein-protein interactions with a variety of targets including the DEAD-box containing ATP-dependent RNA helicase (DDX-4). In this study, we have determined the crystal structures of the SPIa and the ryanodine receptor domain and of approximately 70 upstream residues (immediate upstream to SPRY motif) of both RanBPM and RanBP10. They are almost identical, composed of a β-sandwich fold with a set of two helices on each side located at the edge of the sheets. A unique shallow binding surface is formed by highly conserved loops on the surface of the β-sheet with two aspartates on one end, a positive patch on the opposite end, and a tryptophan lining at the bottom of the surface. The 20-mer peptide (residues 228-247) of human DDX-4, an ATP-dependent RNA helicase known to regulate germ cell development, binds to this surface with a KD of ~13μM. The crystal structure of the peptide complex and the mutagenesis studies elucidate how RanBPM can recognize its interaction partners to function in gametogenesis.
Collapse
Affiliation(s)
- Seung Kon Hong
- Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-gu Hwarang-ro 14-gil 5, Seoul 02792, Republic of Korea
| | - Kook-Han Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-gu Hwarang-ro 14-gil 5, Seoul 02792, Republic of Korea
| | - Eun Joo Song
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seongbuk-gu Hwarang-ro 14-gil 5, Seoul 02792, Republic of Korea
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-gu Hwarang-ro 14-gil 5, Seoul 02792, Republic of Korea.
| |
Collapse
|
33
|
Kheirabadi M, Taghdir M. Is unphosphorylated Rex, as multifunctional protein of HTLV-1, a fully intrinsically disordered protein? An in silico study. Biochem Biophys Rep 2016; 8:14-22. [PMID: 28955936 PMCID: PMC5613702 DOI: 10.1016/j.bbrep.2016.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 02/01/2023] Open
Abstract
Intracellularlocation of a viral unspliced mRNA in host cell is a crucial factor for normal life of the virus. Rex is a neucleo-cytoplasmic shuffling protein of Human T-cell Leukemia Virus-1(HTLV-1)which has important role in active transport of cargo-containing RNA from nucleus to cytoplasm. Therefore, it plays a crucial role in the disease development by the virus. In spite of its importance, the 3d-structurephosphorylated and unphosphorylated of this protein has not been determined. In this study, first we predicted whether Rex protein is an ordered or disordered protein. In second step protein 3Dstructure of Rex was obtained. The content of disorder-promoting amino acids, flexibility, hydrophobicity, short linear motifs (SLiMs) and protein binding regions and probability of Rex crystallization were calculated by various In Silico methods. The3D models of Rex protein were obtained by various In Silico methods, such as homology modeling, threading and ab initio, including; I-TASSER, LOMETS, SPARSKS, ROBBETA and QUARK servers. By comparing and analyzing Qmean, z-scores and energy levels of selected models, the best structures with highest favored region in Ramachandran plot (higher than 90%) was refined with MODREFINER software. In silico analysis of Rex physicochemical properties and also predicted SLiMs and binding regions sites confirms that unphosphorylated Rex protein in HTLV-1 as Rev protin in HIV is wholly disordered protein belongs to the class of intrinsically disordered proteins with extended disorder (native coils, native pre-molten globules). Physico-chemical properties of Rex protein were confirmed unphosphorilated Rex protein is a wholly intrinsically disordered protein. The 3d-structure model of Rex protein was determined.
Collapse
Affiliation(s)
- Mitra Kheirabadi
- Department of Biology, Faculty of Basic Science, Hakim Sabzevari University, 9617976487 Sabzevar, Iran
| | - Majid Taghdir
- Departmentof Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
34
|
RECEPTORES NUCLEARES: DEL NÚCLEO AL CITOPLASMA. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2015. [DOI: 10.1016/j.recqb.2015.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
35
|
Dickmanns A, Monecke T, Ficner R. Structural Basis of Targeting the Exportin CRM1 in Cancer. Cells 2015; 4:538-68. [PMID: 26402707 PMCID: PMC4588050 DOI: 10.3390/cells4030538] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/07/2015] [Accepted: 09/11/2015] [Indexed: 12/19/2022] Open
Abstract
Recent studies have demonstrated the interference of nucleocytoplasmic trafficking with the establishment and maintenance of various cancers. Nucleocytoplasmic transport is highly regulated and coordinated, involving different nuclear transport factors or receptors, importins and exportins, that mediate cargo transport from the cytoplasm into the nucleus or the other way round, respectively. The exportin CRM1 (Chromosome region maintenance 1) exports a plethora of different protein cargoes and ribonucleoprotein complexes. Structural and biochemical analyses have enabled the deduction of individual steps of the CRM1 transport cycle. In addition, CRM1 turned out to be a valid target for anticancer drugs as it exports numerous proto-oncoproteins and tumor suppressors. Clearly, detailed understanding of the flexibility, regulatory features and cooperative binding properties of CRM1 for Ran and cargo is a prerequisite for the design of highly effective drugs. The first compound found to inhibit CRM1-dependent nuclear export was the natural drug Leptomycin B (LMB), which blocks export by competitively interacting with a highly conserved cleft on CRM1 required for nuclear export signal recognition. Clinical studies revealed serious side effects of LMB, leading to a search for alternative natural and synthetic drugs and hence a multitude of novel therapeutics. The present review examines recent progress in understanding the binding mode of natural and synthetic compounds and their inhibitory effects.
Collapse
Affiliation(s)
- Achim Dickmanns
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, GZMB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, Göttingen 37077, Germany.
| | - Thomas Monecke
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, GZMB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, Göttingen 37077, Germany.
| | - Ralf Ficner
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, GZMB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, Göttingen 37077, Germany.
| |
Collapse
|
36
|
Gao W, Lu C, Chen L, Keohavong P. Overexpression of CRM1: A Characteristic Feature in a Transformed Phenotype of Lung Carcinogenesis and a Molecular Target for Lung Cancer Adjuvant Therapy. J Thorac Oncol 2015; 10:815-825. [PMID: 25629636 DOI: 10.1097/jto.0000000000000485] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Our previous study showed that chromosome region maintenance 1 (CRM1), a nuclear export receptor for various cancer-associated "cargo" proteins, was important in regulating lung carcinogenesis in response to a tobacco carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). The objectives of this study are to comprehensively evaluate the significance of CRM1 in lung cancer development and investigate the therapeutic potential of targeting CRM1 for lung cancer treatment using both in vitro and in vivo models. We showed that CRM1 was overexpressed not only in lung tumor tissues from both lung cancer patients and mice treated with NNK but also in NNK-transformed BEAS-2B human bronchial epithelial cells. Furthermore, stable overexpression of CRM1 in BEAS-2B cells by plasmid vector transfection led to malignant cellular transformation. Moreover, a decreased CRM1 expression level in A549 cells by short hairpin siRNA transfection led to a decreased tumorigenic activity both in vitro and in nude mice, suggesting the potential to target CRM1 for lung cancer treatment. Indeed, we showed that the cytotoxic effects of cisplatin on A549 cells with CRM1 down-regulated by short hairpin siRNA were significantly increased, compared with A549 cells, and the cytotoxic effects of cisplatin became further enhanced when the drug was used in combination with leptomycin B, a CRM1 inhibitor, in both in vitro and in vivo models. Cancer target genes were significantly involved in these processes. These data suggest that CRM1 plays an important role in lung carcinogenesis and provides a novel target for lung cancer adjuvant therapy.
Collapse
MESH Headings
- Adenocarcinoma/chemistry
- Adenocarcinoma/genetics
- Adult
- Aged
- Aged, 80 and over
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Antineoplastic Agents/pharmacology
- Carcinoma, Non-Small-Cell Lung/chemistry
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Squamous Cell/chemistry
- Carcinoma, Squamous Cell/genetics
- Cell Cycle Checkpoints/drug effects
- Cell Survival/drug effects
- Cell Transformation, Neoplastic/drug effects
- Cells, Cultured
- Cisplatin/pharmacology
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Fatty Acids, Unsaturated/pharmacology
- Female
- Gene Expression/drug effects
- Gene Silencing
- Humans
- Inhibitor of Apoptosis Proteins/metabolism
- Karyopherins/analysis
- Karyopherins/genetics
- Karyopherins/metabolism
- Lung/chemistry
- Lung Neoplasms/chemistry
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Mice
- Mice, Nude
- Middle Aged
- Nitrosamines/pharmacology
- Phosphorylation
- Poly (ADP-Ribose) Polymerase-1
- Poly(ADP-ribose) Polymerases/metabolism
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/analysis
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Smoking
- Survivin
- Transfection
- Tumor Stem Cell Assay
- Tumor Suppressor Protein p53/metabolism
- Exportin 1 Protein
Collapse
Affiliation(s)
- Weimin Gao
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX.
| | - Chuanwen Lu
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX
| | - Lixia Chen
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX
| | - Phouthone Keohavong
- Department Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
37
|
Fischer U, Schäuble N, Schütz S, Altvater M, Chang Y, Boulos Faza M, Panse VG. A non-canonical mechanism for Crm1-export cargo complex assembly. eLife 2015; 4:e05745. [PMID: 25895666 PMCID: PMC4402694 DOI: 10.7554/elife.05745] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/26/2015] [Indexed: 01/19/2023] Open
Abstract
The transport receptor Crm1 mediates the export of diverse cargos containing leucine-rich nuclear export signals (NESs) through complex formation with RanGTP. To ensure efficient cargo release in the cytoplasm, NESs have evolved to display low affinity for Crm1. However, mechanisms that overcome low affinity to assemble Crm1-export complexes in the nucleus remain poorly understood. In this study, we reveal a new type of RanGTP-binding protein, Slx9, which facilitates Crm1 recruitment to the 40S pre-ribosome-associated NES-containing adaptor Rio2. In vitro, Slx9 binds Rio2 and RanGTP, forming a complex. This complex directly loads Crm1, unveiling a non-canonical stepwise mechanism to assemble a Crm1-export complex. A mutation in Slx9 that impairs Crm1-export complex assembly inhibits 40S pre-ribosome export. Thus, Slx9 functions as a scaffold to optimally present RanGTP and the NES to Crm1, therefore, triggering 40S pre-ribosome export. This mechanism could represent one solution to the paradox of weak binding events underlying rapid Crm1-mediated export.
Collapse
Affiliation(s)
- Ute Fischer
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Nico Schäuble
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Sabina Schütz
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
- Molecular Life Science, Graduate School, Zurich, Switzerland
| | - Martin Altvater
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
- Molecular Life Science, Graduate School, Zurich, Switzerland
| | - Yiming Chang
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Marius Boulos Faza
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Vikram Govind Panse
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
38
|
Hu Y, Liu X, Zhang A, Zhou H, Liu Z, Chen H, Jin M. CHD3 facilitates vRNP nuclear export by interacting with NES1 of influenza A virus NS2. Cell Mol Life Sci 2015; 72:971-82. [PMID: 25213355 PMCID: PMC4323543 DOI: 10.1007/s00018-014-1726-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 11/23/2022]
Abstract
NS2 from influenza A virus mediates Crm1-dependent vRNP nuclear export through interaction with Crm1. However, even though the nuclear export signal 1 (NES1) of NS2 does not play a requisite role in NS2-Crm1 interaction, there is no doubt that NES1 is crucial for vRNP nuclear export. While the mechanism of the NES1 is still unclear, it is speculated that certain host partners might mediate the NES1 function through their interaction with NES1. In the present study, chromodomain-helicase-DNA-binding protein 3 (CHD3) was identified as a novel host nuclear protein for locating NS2 and Crm1 on dense chromatin for NS2 and Crm1-dependent vRNP nuclear export. CHD3 was confirmed to interact with NES1 in NS2, and a disruption to this interaction by mutation in NES1 significantly delayed viral vRNPs export and viral propagation. Further, the knockdown of CHD3 would affect the propagation of the wild-type virus but not the mutant with the weakened NS2-CHD3 interaction. Therefore, this study demonstrates that NES1 is required for maximal binding of NS2 to CHD3, and that the NS2-CHD3 interaction on the dense chromatin contributed to the NS2-mediated vRNP nuclear export.
Collapse
Affiliation(s)
- Yong Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- Hubei Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan, 430070 People’s Republic of China
| | - Xiaokun Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Ziduo Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
39
|
Das A, Wei G, Parikh K, Liu D. Selective inhibitors of nuclear export (SINE) in hematological malignancies. Exp Hematol Oncol 2015; 4:7. [PMID: 25745591 PMCID: PMC4350974 DOI: 10.1186/s40164-015-0002-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/03/2015] [Indexed: 11/10/2022] Open
Abstract
Regulated nucleo-cytoplasmic transport plays a major role in maintaining cellular homeostasis. CRM1 (chromosome region maintenance 1 or exportin 1 or XPO 1) is responsible for the nucleo-cytoplasmic transport of more than 200 proteins, including most of the tumor suppressor proteins (TSP). CRM1 is overexpressed in pancreatic cancer, osteosarcoma, glioma, cervical and hematological malignancies. This inspired the development of novel agents that selectively inhibit nuclear exportins (SINEs). In this review we focus on the significance of CRM1 in carcinogenesis and review the new development of SINE inhibitiors in hematological malignancies. Selinexor (KPT-330) as the first-in-human SINE agent represents this novel class of anti-cancer agents.
Collapse
Affiliation(s)
- Arundhati Das
- Department of Medicine, Westchester Medical Center, Valhalla, NY 10595 USA
| | - Guoqing Wei
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaushal Parikh
- Department of Medicine, Westchester Medical Center, Valhalla, NY 10595 USA
| | - Delong Liu
- Henan Cancer Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
40
|
β-Catenin-related protein WRM-1 is a multifunctional regulatory subunit of the LIT-1 MAPK complex. Proc Natl Acad Sci U S A 2014; 112:E137-46. [PMID: 25548171 DOI: 10.1073/pnas.1416339112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vertebrate β-catenin has two functions, as a structural component of the adherens junction in cell adhesion and as the T-cell factor (TCF) transcriptional coactivator in canonical Wnt (wingless-related integration site) signaling. These two functions are split between three of the four β-catenin-related proteins present in the round worm Caenorhabditis elegans. The fourth β-catenin-related protein, WRM-1, exhibits neither of these functions. Instead, WRM-1 binds the MAPK loss of intestine 1 (LIT-1), and these two proteins have been shown to be essential for the transcription of Wnt target genes by phosphorylating and regulating the nuclear level of the sole worm TCF protein. We showed previously that WRM-1 binds to worm TCF and functions as the substrate-binding subunit for LIT-1. In this study, we show that phosphorylation of T220 in the activation loop is essential for LIT-1 kinase activity in vivo and in vitro. T220 can be phosphorylated either through LIT-1 autophosphorylation or directly by the upstream MAP3K MOM-4. Our data support a model in which WRM-1, which can undergo homotypic interaction, binds LIT-1 and thereby generates a kinase complex in which LIT-1 molecules are situated in a conformation enabling autophosphorylation as well as promoting phosphorylation of the T220 residue by MOM-4. In addition, we show that WRM-1 is essential for the translocation of the LIT-1 kinase complex to the nucleus, the site of its TCF substrate. To our knowledge, this is the first report of a MAP3K directly activating a MAPK by phosphorylation within the activation loop. This study should help uncover novel and as yet underappreciated functions of vertebrate β-catenin.
Collapse
|
41
|
Monecke T, Dickmanns A, Ficner R. Allosteric control of the exportin CRM1 unraveled by crystal structure analysis. FEBS J 2014; 281:4179-94. [PMID: 24823279 PMCID: PMC4231977 DOI: 10.1111/febs.12842] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/02/2014] [Accepted: 05/12/2014] [Indexed: 01/07/2023]
Abstract
Nucleocytoplasmic trafficking in eukaryotic cells is a highly regulated and coordinated process which involves an increasing variety of soluble nuclear transport receptors. Generally, transport receptors specifically bind their cargo and facilitate its transition through nuclear pore complexes, aqueous channels connecting the two compartments. Directionality of such transport events by receptors of the importin β superfamily requires the interaction with the small GTPase Ras-related nuclear antigen (Ran). While importins need RanGTP to release their cargo in the nucleus and thus to terminate import, exportins recruit cargo in the RanGTP-bound state. The exportin chromosome region maintenance 1 (CRM1) is a highly versatile transport receptor that exports a plethora of different protein and RNP cargoes. Moreover, binding of RanGTP and of cargo to CRM1 are highly cooperative events despite the fact that cargo and RanGTP do not interact directly in crystal structures of assembled export complexes. Integrative approaches have recently unraveled the individual steps of the CRM1 transport cycle at a structural level and explained how the HEAT-repeat architecture of CRM1 provides a framework for the key elements to mediate allosteric interactions with RanGTP, Ran binding proteins and cargo. Moreover, during the last decade, CRM1 has become a more and more appreciated target for anti-cancer drugs. Hence, detailed understanding of the flexibility, the regulatory features and the positive binding cooperativity between CRM1, Ran and cargo is a prerequisite for the development of highly effective drugs. Here we review recent structural advances in the characterization of CRM1 and CRM1-containing complexes with a special emphasis on X-ray crystallographic studies.
Collapse
Affiliation(s)
- Thomas Monecke
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August-Universität Göttingen, Germany
| | | | | |
Collapse
|
42
|
Fung HYJ, Chook YM. Atomic basis of CRM1-cargo recognition, release and inhibition. Semin Cancer Biol 2014; 27:52-61. [PMID: 24631835 PMCID: PMC4108548 DOI: 10.1016/j.semcancer.2014.03.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/01/2014] [Indexed: 11/19/2022]
Abstract
CRM1 or XPO1 is the major nuclear export receptor in the cell, which controls the nuclear-cytoplasmic localization of many proteins and RNAs. CRM1 is also a promising cancer drug target as the transport receptor is overexpressed in many cancers where some of its cargos are misregulated and mislocalized to the cytoplasm. Atomic level understanding of CRM1 function has greatly facilitated recent drug discovery and development of CRM1 inhibitors to target a variety of malignancies. Numerous atomic resolution CRM1 structures are now available, explaining how the exporter recognizes nuclear export signals in its cargos, how RanGTP and cargo bind with positive cooperativity, how RanBP1 causes release of export cargos in the cytoplasm and how diverse inhibitors such as Leptomycin B and the new KPT-SINE compounds block nuclear export. This review summarizes structure-function studies that explain CRM1-cargo recognition, release and inhibition.
Collapse
Affiliation(s)
- Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park, Dallas, TX 75390-9041, USA.
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park, Dallas, TX 75390-9041, USA.
| |
Collapse
|
43
|
Kim S, Elbaum M. Enzymatically driven transport: a kinetic theory for nuclear export. Biophys J 2014; 105:1997-2005. [PMID: 24209844 DOI: 10.1016/j.bpj.2013.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 11/29/2022] Open
Abstract
Nuclear import and export are often considered inverse processes whereby transport receptors ferry protein cargo through the nuclear pore. In contrast to import, where the reversible binding of receptor to nuclear RanGTP leads to a balanced bidirectional exchange, termination of export by physiologically irreversible hydrolysis of the Ran-bound GTP leads to unidirectional transport. We present a concise mathematical model that predicts protein distributions and kinetic rates for receptor-mediated nuclear export, which further exhibit an unexpected pseudolinear relation one to the other. Predictions of the model are verified with permeabilized and live cell measurements.
Collapse
Affiliation(s)
- Sanghyun Kim
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
44
|
Yasunaga A, Hanna SL, Li J, Cho H, Rose PP, Spiridigliozzi A, Gold B, Diamond MS, Cherry S. Genome-wide RNAi screen identifies broadly-acting host factors that inhibit arbovirus infection. PLoS Pathog 2014; 10:e1003914. [PMID: 24550726 PMCID: PMC3923753 DOI: 10.1371/journal.ppat.1003914] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 12/18/2013] [Indexed: 01/12/2023] Open
Abstract
Vector-borne viruses are an important class of emerging and re-emerging pathogens; thus, an improved understanding of the cellular factors that modulate infection in their respective vertebrate and insect hosts may aid control efforts. In particular, cell-intrinsic antiviral pathways restrict vector-borne viruses including the type I interferon response in vertebrates and the RNA interference (RNAi) pathway in insects. However, it is likely that additional cell-intrinsic mechanisms exist to limit these viruses. Since insects rely on innate immune mechanisms to inhibit virus infections, we used Drosophila as a model insect to identify cellular factors that restrict West Nile virus (WNV), a flavivirus with a broad and expanding geographical host range. Our genome-wide RNAi screen identified 50 genes that inhibited WNV infection. Further screening revealed that 17 of these genes were antiviral against additional flaviviruses, and seven of these were antiviral against other vector-borne viruses, expanding our knowledge of invertebrate cell-intrinsic immunity. Investigation of two newly identified factors that restrict diverse viruses, dXPO1 and dRUVBL1, in the Tip60 complex, demonstrated they contributed to antiviral defense at the organismal level in adult flies, in mosquito cells, and in mammalian cells. These data suggest the existence of broadly acting and functionally conserved antiviral genes and pathways that restrict virus infections in evolutionarily divergent hosts.
Collapse
Affiliation(s)
- Ari Yasunaga
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sheri L. Hanna
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jianqing Li
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Hyelim Cho
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Patrick P. Rose
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Anna Spiridigliozzi
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Beth Gold
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael S. Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
45
|
Structural basis for nuclear import of splicing factors by human Transportin 3. Proc Natl Acad Sci U S A 2014; 111:2728-33. [PMID: 24449914 DOI: 10.1073/pnas.1320755111] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Transportin 3 (Tnpo3, Transportin-SR2) is implicated in nuclear import of splicing factors and HIV-1 replication. Herein, we show that the majority of cellular Tnpo3 binding partners contain arginine-serine (RS) repeat domains and present crystal structures of human Tnpo3 in its free as well as GTPase Ran- and alternative splicing factor/splicing factor 2 (ASF/SF2)-bound forms. The flexible β-karyopherin fold of Tnpo3 embraces the RNA recognition motif and RS domains of the cargo. A constellation of charged residues on and around the arginine-rich helix of Tnpo3 HEAT repeat 15 engage the phosphorylated RS domain and are critical for the recognition and nuclear import of ASF/SF2. Mutations in the same region of Tnpo3 impair its interaction with the cleavage and polyadenylation specificity factor 6 (CPSF6) and its ability to support HIV-1 replication. Steric incompatibility of the RS domain and RanGTP engagement by Tnpo3 provides the mechanism for cargo release in the nucleus. Our results elucidate the structural bases for nuclear import of splicing factors and the Tnpo3-CPSF6 nexus in HIV-1 biology.
Collapse
|
46
|
Ran GTPase in nuclear envelope formation and cancer metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:323-51. [PMID: 24563355 DOI: 10.1007/978-1-4899-8032-8_15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ran is a small ras-related GTPase that controls the nucleocytoplasmic exchange of macromolecules across the nuclear envelope. It binds to chromatin early during nuclear formation and has important roles during the eukaryotic cell cycle, where it regulates mitotic spindle assembly, nuclear envelope formation and cell cycle checkpoint control. Like other GTPases, Ran relies on the cycling between GTP-bound and GDP-bound conformations to interact with effector proteins and regulate these processes. In nucleocytoplasmic transport, Ran shuttles across the nuclear envelope through nuclear pores. It is concentrated in the nucleus by an active import mechanism where it generates a high concentration of RanGTP by nucleotide exchange. It controls the assembly and disassembly of a range of complexes that are formed between Ran-binding proteins and cellular cargo to maintain rapid nuclear transport. Ran also has been identified as an essential protein in nuclear envelope formation in eukaryotes. This mechanism is dependent on importin-β, which regulates the assembly of further complexes important in this process, such as Nup107-Nup160. A strong body of evidence is emerging implicating Ran as a key protein in the metastatic progression of cancer. Ran is overexpressed in a range of tumors, such as breast and renal, and these perturbed levels are associated with local invasion, metastasis and reduced patient survival. Furthermore, tumors with oncogenic KRAS or PIK3CA mutations are addicted to Ran expression, which yields exciting future therapeutic opportunities.
Collapse
|
47
|
Santiago A, Li D, Zhao LY, Godsey A, Liao D. p53 SUMOylation promotes its nuclear export by facilitating its release from the nuclear export receptor CRM1. Mol Biol Cell 2013; 24:2739-52. [PMID: 23825024 PMCID: PMC3756925 DOI: 10.1091/mbc.e12-10-0771] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 06/24/2013] [Accepted: 06/24/2013] [Indexed: 12/11/2022] Open
Abstract
Chromosomal region maintenance 1 (CRM1) mediates p53 nuclear export. Although p53 SUMOylation promotes its nuclear export, the underlying mechanism is unclear. Here we show that tethering of a small, ubiquitin-like modifier (SUMO) moiety to p53 markedly increases its cytoplasmic localization. SUMO attachment to p53 does not affect its oligomerization, suggesting that subunit dissociation required for exposing p53's nuclear export signal (NES) is unnecessary for p53 nuclear export. Surprisingly, SUMO-mediated p53 nuclear export depends on the SUMO-interacting motif (SIM)-binding pocket of SUMO-1. The CRM1 C-terminal domain lacking the NES-binding groove interacts with tetrameric p53, and the proper folding of the p53 core domain, rather than the presence of the N- or C-terminal tails, appears to be important for p53-CRM1 interaction. The CRM1 Huntington, EF3, a subunit of PP2A, and TOR1 9 (HEAT9) loop, which regulates GTP-binding nuclear protein Ran binding and cargo release, contains a prototypical SIM. Remarkably, disruption of this SIM in conjunction with a mutated SIM-binding groove of SUMO-1 markedly enhances the binding of CRM1 to p53-SUMO-1 and their accumulation in the nuclear pore complexes (NPCs), as well as their persistent association in the cytoplasm. We propose that SUMOylation of a CRM1 cargo such as p53 at the NPCs unlocks the HEAT9 loop of CRM1 to facilitate the disassembly of the transporting complex and cargo release to the cytoplasm.
Collapse
Affiliation(s)
- Aleixo Santiago
- Department of Anatomy and Cell Biology, UF Health Cancer Center, and UF Genetics Institute, University of Florida College of Medicine, Gainesville, FL 32610
| | - Dawei Li
- Department of Anatomy and Cell Biology, UF Health Cancer Center, and UF Genetics Institute, University of Florida College of Medicine, Gainesville, FL 32610
- Department of Urology, Qilu Hospital, Shandong University, Jinan 250012, Shandong, China
| | - Lisa Y. Zhao
- Department of Anatomy and Cell Biology, UF Health Cancer Center, and UF Genetics Institute, University of Florida College of Medicine, Gainesville, FL 32610
| | - Adam Godsey
- Department of Anatomy and Cell Biology, UF Health Cancer Center, and UF Genetics Institute, University of Florida College of Medicine, Gainesville, FL 32610
| | - Daiqing Liao
- Department of Anatomy and Cell Biology, UF Health Cancer Center, and UF Genetics Institute, University of Florida College of Medicine, Gainesville, FL 32610
| |
Collapse
|
48
|
Dölker N, Blanchet CE, Voß B, Haselbach D, Kappel C, Monecke T, Svergun DI, Stark H, Ficner R, Zachariae U, Grubmüller H, Dickmanns A. Structural determinants and mechanism of mammalian CRM1 allostery. Structure 2013; 21:1350-60. [PMID: 23850451 DOI: 10.1016/j.str.2013.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 05/07/2013] [Accepted: 05/26/2013] [Indexed: 10/26/2022]
Abstract
Proteins carrying nuclear export signals cooperatively assemble with the export factor CRM1 and the effector protein RanGTP. In lower eukaryotes, this cooperativity is coupled to CRM1 conformational changes; however, it is unknown if mammalian CRM1 maintains its compact conformation or shows similar structural flexibility. Here, combinations of small-angle X-ray solution scattering and electron microscopy experiments with molecular dynamics simulations reveal pronounced conformational flexibility in mammalian CRM1 and demonstrate that RanGTP binding induces association of its N- and C-terminal regions to form a toroid structure. The CRM1 toroid is stabilized mainly by local interactions between the terminal regions, rather than by global strain. The CRM1 acidic loop is key in transmitting the effect of this RanGTP-induced global conformational change to the NES-binding cleft by shifting its population to the open state, which displays enhanced cargo affinity. Cooperative CRM1 export complex assembly thus constitutes a highly dynamic process, encompassing an intricate interplay of global and local structural changes.
Collapse
Affiliation(s)
- Nicole Dölker
- Abteilung für Theoretische und Computergestützte Biophysik, Max-Planck-Institut für Biophysikalische Chemie, Am Faßberg 11, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Dian C, Bernaudat F, Langer K, Oliva MF, Fornerod M, Schoehn G, Müller CW, Petosa C. Structure of a truncation mutant of the nuclear export factor CRM1 provides insights into the auto-inhibitory role of its C-terminal helix. Structure 2013; 21:1338-49. [PMID: 23850454 DOI: 10.1016/j.str.2013.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 11/23/2022]
Abstract
Chromosome region maintenance 1/exportin1/Xpo1 (CRM1) associates with the GTPase Ran to mediate the nuclear export of proteins bearing a leucine-rich nuclear export signal (NES). CRM1 consists of helical hairpin HEAT repeats and a C-terminal helical extension (C-extension) that inhibits the binding of NES-bearing cargos. We report the crystal structure and small-angle X-ray scattering analysis of a human CRM1 mutant with enhanced NES-binding activity due to deletion of the C-extension. We show that loss of the C-extension leads to a repositioning of CRM1's C-terminal repeats and to a more extended overall conformation. Normal mode analysis predicts reduced rigidity for the deletion mutant, consistent with an observed decrease in thermal stability. Point mutations that destabilize the C-extension shift CRM1 to the more extended conformation, reduce thermal stability, and enhance NES-binding activity. These findings suggest that an important mechanism by which the C-extension regulates CRM1's cargo-binding affinity is by modulating the conformation and flexibility of its HEAT repeats.
Collapse
Affiliation(s)
- Cyril Dian
- Université de Grenoble Alpes, Institut de Biologie Structurale, 38027 Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Influenza A virus vRNP nuclear export is CRM1-dependent. Ran-binding protein 3 (RanBP3) is a Ran-interacting protein that is best known for its role as a cofactor of CRM1-mediated cargo nuclear export. In this study, we investigated the role of RanBP3 during the influenza A virus life cycle. We found that RanBP3 was phosphorylated at Ser58 in the early and late phases of infection. Knockdown of RanBP3 expression led to vRNP nuclear retention, suggesting that RanBP3 is involved in vRNP nuclear export. Moreover, we demonstrated that the function of RanBP3 during vRNP nuclear export is regulated by phosphorylation at Ser58, and that RanBP3 phosphorylation is modulated by both PI3K/Akt and Ras/ERK/RSK pathways in the late phase of viral infection.
Collapse
Affiliation(s)
- Rey Predicala
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada
| | - Yan Zhou
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada
| |
Collapse
|