1
|
Kim K, Kim JH, Kim I, Seong S, Kook H, Koh JT, Kim N. Tripartite motif-containing 27 negatively regulates NF-κB activation in bone remodeling. Mol Med 2025; 31:141. [PMID: 40251491 PMCID: PMC12008848 DOI: 10.1186/s10020-025-01204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/09/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Tripartite motif-containing 27 (TRIM27) is highly expressed in the mouse thymus, spleen, and hematopoietic compartment cells and regulates cell proliferation, apoptosis, and innate immune responses. However, the role of TRIM27 in bone remodeling remains unknown. This study aimed to investigate the role of TRIM27 in the differentiation of osteoclasts and osteoblasts. METHODS We measured the effects of overexpression or knockdown of TRIM27 in osteoclasts and osteoblasts using real-time PCR and Western blot analysis to quantify the mRNA and protein levels of marker genes. Additionally, we performed an in vivo analysis of TRIM27 knockout mice through bone mineral density analysis and histological analysis. RESULTS TRIM27 deficiency decreased bone mineral density by enhancing osteoclast differentiation and inhibiting osteoblast differentiation. Overexpression of TRIM27 in osteoclast precursors suppressed osteoclast formation and resorption activity, and ectopic expression of TRIM27 in osteoblast precursors induced osteoblast differentiation and mineralization. Additionally, we found that TRIM27 attenuated NF-κB activation in both osteoclasts and osteoblasts by interacting with TAB2 and promoting TAB2 degradation through lysosomal-dependent pathways, thereby inhibiting NF-κB signaling. CONCLUSIONS Our results identify TRIM27 as a novel negative regulator of NF-κB in bone remodeling, suggesting that regulating TRIM27 may be useful in developing treatments for musculoskeletal diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Kabsun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Inyoung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Semun Seong
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyun Kook
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Jeong-Tae Koh
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
2
|
Lin L, Wang X, Chen Z, Deng T, Yan Y, Dong W, Huang Y, Zhou J. TRIM21 restricts influenza A virus replication by ubiquitination-dependent degradation of M1. PLoS Pathog 2023; 19:e1011472. [PMID: 37343022 DOI: 10.1371/journal.ppat.1011472] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/08/2023] [Indexed: 06/23/2023] Open
Abstract
Tripartite motif-containing protein 21 (TRIM21), an E3 ubiquitin ligase, plays a critical role in the host antiviral response. However, the mechanism and antiviral spectrum of TRIM21 in influenza A virus (IAV) remain unclear. Here, we report that TRIM21 inhibits the replication of various IAV subtypes by targeting matrix protein 1 (M1) from H3/H5/H9, but not H1 and H7 M1. Mechanistically, TRIM21 binds to the residue R95 of M1 and facilitates K48 ubiquitination of M1 K242 for proteasome-dependent degradation, leading to the inhibition of H3, H5, and H9 IAV replication. Interestingly, the recombinant viruses with M1 R95K or K242R mutations were resistance to TRIM21 and exhibited more robust replication and severe pathogenicity. Moreover, the amino acid sequence M1 proteins, mainly from avian influenza such as H5N1, H7N9, H9N2, ranging from 1918 to 2022, reveals a gradual dominant accumulation of the TRIM21-driven R95K mutation when the virus jumps into mammals. Thus, TRIM21 in mammals' functions as a host restriction factor and drives a host adaptive mutation of influenza A virus.
Collapse
Affiliation(s)
- Lulu Lin
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University First Affiliated Hospital, Hangzhou, China
| | - Xingbo Wang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Zhen Chen
- Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Tingjuan Deng
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Yan Yan
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Weiren Dong
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University First Affiliated Hospital, Hangzhou, China
| |
Collapse
|
3
|
Campos PC, Cunha DT, Souza-Costa LP, Shiloh MU, Franco LH. Bag it, tag it: ubiquitin ligases and host resistance to Mycobacterium tuberculosis. Trends Microbiol 2022; 30:973-985. [PMID: 35491351 PMCID: PMC9474620 DOI: 10.1016/j.tim.2022.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022]
Abstract
Infection with Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis (TB), remains a significant global epidemic. Host resistance to Mtb depends on both adaptive and innate immunity mechanisms, including development of antigen-specific CD4 and CD8 T cells, production of inflammatory cytokines, bacterial phagocytosis and destruction within phagolysosomes, host cell apoptosis, and autophagy. A key regulatory mechanism in innate immunity is the attachment of the small protein ubiquitin to protein and lipid targets by the enzymatic activity of ubiquitin ligases. Here, we summarize the latest advances on the role of ubiquitination and ubiquitin ligases in host immunity against Mtb, with a focus on innate immunity signaling, inflammation, and antimicrobial autophagy. Understanding how ubiquitin ligases mediate immunity to Mtb, and the specific substrates of distinct ubiquitin ligases in the context of Mtb infection, could facilitate development of new host-directed antimicrobials.
Collapse
Affiliation(s)
- Priscila C Campos
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9113, USA
| | - Danielle T Cunha
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil
| | - Luiz P Souza-Costa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil
| | - Michael U Shiloh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9113, USA; Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9113, USA.
| | - Luis H Franco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil.
| |
Collapse
|
4
|
Yu C, Rao D, Wang T, Song J, Zhang L, Huang W. Emerging roles of TRIM27 in cancer and other human diseases. Front Cell Dev Biol 2022; 10:1004429. [PMID: 36200036 PMCID: PMC9527303 DOI: 10.3389/fcell.2022.1004429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022] Open
Abstract
As a member of the TRIM protein family, TRIM27 is a RING-mediated E3 ubiquitin ligase that can mark other proteins for degradation. Its ubiquitination targets include PTEN, IκBα and p53, which allows it to regulate many signaling pathways to exert its functions under both physiological and pathological conditions, such as cell proliferation, differentiation and apoptosis. During the past decades, TRIM27 was reported to be involved in many diseases, including cancer, lupus nephritis, ischemia-reperfusion injury and Parkinson's disease. Although the research interest in TRIM27 is increasing, there are few reviews about the diverse roles of this protein. Here, we systematically review the roles of TRIM27 in cancer and other human diseases. Firstly, we introduce the biological functions of TRIM27. Next, we focus on the roles of TRIM27 in cancer, including ovarian cancer, breast cancer and lung cancer. At the same time, we also describe the roles of TRIM27 in other human diseases, such as lupus nephritis, ischemia-reperfusion injury and Parkinson's disease. Finally, we discuss the future directions of TRIM27 research, especially its potential roles in tumor immunity.
Collapse
Affiliation(s)
- Chengpeng Yu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Dean Rao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Tiantian Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University, Jinzhong, China
- Tongji Medical College, Shanxi Tongji Hospital, Huazhong University of Science and Technology, Taiyuan, China
| | - Wenjie Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Li S, Shi X, Li J, Zhou X. Pathogenicity of the MAGE family. Oncol Lett 2021; 22:844. [PMID: 34733362 PMCID: PMC8561213 DOI: 10.3892/ol.2021.13105] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
The melanoma antigen gene (MAGE) protein family is a group of highly conserved proteins that share a common homology domain. Under normal circumstances, numerous MAGE proteins are only expressed in reproduction-related tissues; however, abnormal expression levels are observed in a variety of tumor tissues. The MAGE family consists of type I and II proteins, several of which are cancer-testis antigens that are highly expressed in cancer and serve a critical role in tumorigenesis. Therefore, this review will use the relationship between MAGEs and tumors as a starting point, focusing on the latest developments regarding the function of MAGEs as oncogenes, and preliminarily reveal their possible mechanisms.
Collapse
Affiliation(s)
- Sanyan Li
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Xiang Shi
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Jingping Li
- Department of Respiratory Medicine, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Xianrong Zhou
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| |
Collapse
|
6
|
Wang W, Liu W. PCLasso: a protein complex-based, group lasso-Cox model for accurate prognosis and risk protein complex discovery. Brief Bioinform 2021; 22:6291946. [PMID: 34086850 DOI: 10.1093/bib/bbab212] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/08/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
For high-dimensional expression data, most prognostic models perform feature selection based on individual genes, which usually lead to unstable prognosis, and the identified risk genes are inherently insufficient in revealing complex molecular mechanisms. Since most genes carry out cellular functions by forming protein complexes-basic representatives of functional modules, identifying risk protein complexes may greatly improve our understanding of disease biology. Coupled with the fact that protein complexes have been shown to have innate resistance to batch effects and are effective predictors of disease phenotypes, constructing prognostic models and selecting features with protein complexes as the basic unit should improve the robustness and biological interpretability of the model. Here, we propose a protein complex-based, group lasso-Cox model (PCLasso) to predict patient prognosis and identify risk protein complexes. Experiments on three cancer types have proved that PCLasso has better prognostic performance than prognostic models based on individual genes. The resulting risk protein complexes not only contain individual risk genes but also incorporate close partners that synergize with them, which may promote the revealing of molecular mechanisms related to cancer progression from a comprehensive perspective. Furthermore, a pan-cancer prognostic analysis was performed to identify risk protein complexes of 19 cancer types, which may provide novel potential targets for cancer research.
Collapse
Affiliation(s)
- Wei Wang
- Heilongjiang Institute of Technology, Harbin 150050, China
| | - Wei Liu
- School of Science at Heilongjiang Institute of Technology, Harbin 150050, China
| |
Collapse
|
7
|
Tan Z, Liu X, Yu E, Wang H, Tang L, Wang H, Fu C. Lentivirus-mediated RNA interference of tripartite motif 68 inhibits the proliferation of colorectal cancer cell lines SW1116 and HCT116 in vitro. Oncol Lett 2017; 13:2649-2655. [PMID: 28454446 PMCID: PMC5403482 DOI: 10.3892/ol.2017.5787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/24/2016] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is one of the most common types of cancer worldwide. Previous studies have revealed that certain members of tripartite motif (TRIM) proteins are involved in carcin ogenesis regulation, but little is known about the function of TRIM68 in human colorectal cancer. To investigate the role of TRIM68 in colorectal cancer SW1116 and HCT116 cell lines, the present study conducted lentivirus-mediated knockdown against TRIM68 and demonstrated that depletion of TRIM68 notably inhibits colorectal cancer cell proliferation and colony formation ability. Cell cycle arrest in the G0/G1 phase and cycle accumulation in sub-G1 phase provided evidence that TRIM68 may participate in the regulation of colorectal cancer tumorigenesis. The results revealed the significant role of TRIM68 in regulating colorectal cancer cell mitosis and indicated that TRIM68 may be a promising therapeutic target.
Collapse
Affiliation(s)
- Zhen Tan
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China.,PLA Center of General Surgery, Chengdu Military General Hospital, Chengdu, Sichuan 610083, P.R. China
| | - Xiaoshuang Liu
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Enda Yu
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Hantao Wang
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Lijun Tang
- PLA Center of General Surgery, Chengdu Military General Hospital, Chengdu, Sichuan 610083, P.R. China
| | - Hao Wang
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Chuangang Fu
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
8
|
The ubiquitin ligase TRIM27 functions as a host restriction factor antagonized by Mycobacterium tuberculosis PtpA during mycobacterial infection. Sci Rep 2016; 6:34827. [PMID: 27698396 PMCID: PMC5048167 DOI: 10.1038/srep34827] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/19/2016] [Indexed: 11/08/2022] Open
Abstract
Macrophage-mediated innate immune responses play crucial roles in host defense against pathogens. Recent years have seen an explosion of host proteins that act as restriction factors blocking viral replication in infected cells. However, the essential factors restricting Mycobacterium tuberculosis (Mtb) and their regulatory roles during mycobacterial infection remain largely unknown. We previously reported that Mtb tyrosine phosphatase PtpA, a secreted effector protein required for intracellular survival of Mtb, inhibits innate immunity by co-opting the host ubiquitin system. Here, we identified a new PtpA-interacting host protein TRIM27, which is reported to possess a conserved RING domain and usually acts as an E3 ubiquitin ligase that interferes with various cellular processes. We further demonstrated that TRIM27 restricts survival of mycobacteria in macrophages by promoting innate immune responses and cell apoptosis. Interestingly, Mtb PtpA could antagonize TRIM27-promoted JNK/p38 MAPK pathway activation and cell apoptosis through competitively binding to the RING domain of TRIM27. TRIM27 probably works as a potential restriction factor for Mtb and its function is counteracted by Mtb effector proteins such as PtpA. Our study suggests a potential tuberculosis treatment via targeting of the TRIM27-PtpA interfaces.
Collapse
|
9
|
Zhuang XJ, Tang WH, Feng X, Liu CY, Zhu JL, Yan J, Liu DF, Liu P, Qiao J. Trim27 interacts with Slx2, is associated with meiotic processes during spermatogenesis. Cell Cycle 2016; 15:2576-2584. [PMID: 27612028 DOI: 10.1080/15384101.2016.1174796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
ABSTARCT Formation of the XY body is believed to prevent recombination between X and Y chromosomes during meiosis. We recently demonstrated that SYCP3-like X-linked 2 (Slx2) could be involved in synaptonemal complex formation as well as XY body maintenance during meiosis. In order to further investigate the role and composition of XY body protein complexes in meiotic processes and spermatogenesis, a yeast 2-hybrid screening was performed, and the tripartite motif protein 27(Trim27) was found to interact with Slx2 and co-localized in the XY body. Trim27 has a tripartite motif (TRIM) consisting of a RING finger, B-box and coiled-coil domains, and is a transcriptional regulator that is expressed in various tumor cell lines. In this study, we showed that Slx2 and Trim27 were highly expressed in meiosis of mouse testis. And the Slx2/Trim27 interaction was confirmed in vivo by co-immunoprecipitation and mammalian 2-hybrid interaction assays. Moreover, cytoimmuno localization experiments revealed that Slx2/Trim27 was co-localized to the XY body of spermatocytes during meiosis, and immunohistochemical results revealed co-localization of Trim27 and γ-H2AX in the XY body of primary spermatocytes in the mouse testis. Trim27 may therefore be a transcriptional regulation protein connecting Slx2 and γ-H2AX, thereby promoting the formation of a more potent XY body protein complex in meiotic processes and spermatogenesis. In conclusion, Trim27 connecting Slx2 may regulate meiotic processes in multiple ways by influencing XY body formation and germ cell proliferation during spermatogenesis.
Collapse
Affiliation(s)
- Xin-Jie Zhuang
- a Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital , Beijing , PR China
| | - Wen-Hao Tang
- b Department of Urology , the Third Hospital of Peking University , Beijing , PR China
| | - Xue Feng
- a Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital , Beijing , PR China
| | - Chang-Yu Liu
- a Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital , Beijing , PR China
| | - Jin-Liang Zhu
- a Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital , Beijing , PR China
| | - Jie Yan
- a Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital , Beijing , PR China
| | - De-Feng Liu
- b Department of Urology , the Third Hospital of Peking University , Beijing , PR China
| | - Ping Liu
- a Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital , Beijing , PR China
| | - Jie Qiao
- a Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital , Beijing , PR China
| |
Collapse
|
10
|
Suzuki M, Watanabe M, Nakamaru Y, Takagi D, Takahashi H, Fukuda S, Hatakeyama S. TRIM39 negatively regulates the NFκB-mediated signaling pathway through stabilization of Cactin. Cell Mol Life Sci 2016; 73:1085-101. [PMID: 26363554 PMCID: PMC11108475 DOI: 10.1007/s00018-015-2040-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 09/04/2015] [Accepted: 09/07/2015] [Indexed: 11/26/2022]
Abstract
NFκB is one of the central regulators of cell survival, immunity, inflammation, carcinogenesis and organogenesis. The activation of NFκB is strictly regulated by several posttranslational modifications including phosphorylation, neddylation and ubiquitination. Several types of ubiquitination play important roles in multi-step regulations of the NFκB pathway. Some of the tripartite motif-containing (TRIM) proteins functioning as E3 ubiquitin ligases are known to regulate various biological processes such as inflammatory signaling pathways. One of the TRIM family proteins, TRIM39, for which the gene has single nucleotide polymorphisms, has been identified as one of the genetic factors in Behcet's disease. However, the role of TRIM39 in inflammatory signaling had not been fully elucidated. In this study, to elucidate the function of TRIM39 in inflammatory signaling, we performed yeast two-hybrid screening using TRIM39 as a bait and identified Cactin, which has been reported to inhibit NFκB- and TLR-mediated transcriptions. We show that TRIM39 stabilizes Cactin protein and that Cactin is upregulated after TNFα stimulation. TRIM39 knockdown also causes activation of the NFκB signal. These findings suggest that TRIM39 negatively regulates the NFκB signal in collaboration with Cactin induced by inflammatory stimulants such as TNFα.
Collapse
Affiliation(s)
- Masanobu Suzuki
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Masashi Watanabe
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yuji Nakamaru
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Dai Takagi
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Hidehisa Takahashi
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Satoshi Fukuda
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan.
| |
Collapse
|
11
|
Kozakova L, Vondrova L, Stejskal K, Charalabous P, Kolesar P, Lehmann AR, Uldrijan S, Sanderson CM, Zdrahal Z, Palecek JJ. The melanoma-associated antigen 1 (MAGEA1) protein stimulates the E3 ubiquitin-ligase activity of TRIM31 within a TRIM31-MAGEA1-NSE4 complex. Cell Cycle 2015; 14:920-30. [PMID: 25590999 PMCID: PMC4614679 DOI: 10.1080/15384101.2014.1000112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The MAGE (Melanoma-associated antigen) protein family members are structurally related to each other by a MAGE-homology domain comprised of 2 winged helix motifs WH/A and WH/B. This family specifically evolved in placental mammals although single homologs designated NSE3 (non-SMC element) exist in most eukaryotes. NSE3, together with its partner proteins NSE1 and NSE4 form a tight subcomplex of the structural maintenance of chromosomes SMC5–6 complex. Previously, we showed that interactions of the WH/B motif of the MAGE proteins with their NSE4/EID partners are evolutionarily conserved (including the MAGEA1-NSE4 interaction). In contrast, the interaction of the WH/A motif of NSE3 with NSE1 diverged in the MAGE paralogs. We hypothesized that the MAGE paralogs acquired new RING-finger-containing partners through their evolution and form MAGE complexes reminiscent of NSE1-NSE3-NSE4 trimers. In this work, we employed the yeast 2-hybrid system to screen a human RING-finger protein library against several MAGE baits. We identified a number of potential MAGE-RING interactions and confirmed several of them (MDM4, PCGF6, RNF166, TRAF6, TRIM8, TRIM31, TRIM41) in co-immunoprecipitation experiments. Among these MAGE-RING pairs, we chose to examine MAGEA1-TRIM31 in detail and showed that both WH/A and WH/B motifs of MAGEA1 bind to the coiled-coil domain of TRIM31 and that MAGEA1 interaction stimulates TRIM31 ubiquitin-ligase activity. In addition, TRIM31 directly binds to NSE4, suggesting the existence of a TRIM31-MAGEA1-NSE4 complex reminiscent of the NSE1-NSE3-NSE4 trimer. These results suggest that MAGEA1 functions as a co-factor of TRIM31 ubiquitin-ligase and that the TRIM31-MAGEA1-NSE4 complex may have evolved from an ancestral NSE1-NSE3-NSE4 complex.
Collapse
Affiliation(s)
- Lucie Kozakova
- a From the Mendel Center for Plant Genomics and Proteomics; Central European Institute of Technology; Masaryk University ; Brno , Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhang C, Li X, Adelmant G, Dobbins J, Geisen C, Oser MG, Wucherpfenning KW, Marto JA, Kaelin WG. Peptidic degron in EID1 is recognized by an SCF E3 ligase complex containing the orphan F-box protein FBXO21. Proc Natl Acad Sci U S A 2015; 112:15372-7. [PMID: 26631746 PMCID: PMC4687553 DOI: 10.1073/pnas.1522006112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
EP300-interacting inhibitor of differentiation 1 (EID1) belongs to a protein family implicated in the control of transcription, differentiation, DNA repair, and chromosomal maintenance. EID1 has a very short half-life, especially in G0 cells. We discovered that EID1 contains a peptidic, modular degron that is necessary and sufficient for its polyubiquitylation and proteasomal degradation. We found that this degron is recognized by an Skp1, Cullin, and F-box (SCF)-containing ubiquitin ligase complex that uses the F-box Only Protein 21 (FBXO21) as its substrate recognition subunit. SCF(FBXO21) polyubiquitylates EID1 both in vitro and in vivo and is required for the efficient degradation of EID1 in both cycling and quiescent cells. The EID1 degron partially overlaps with its retinoblastoma tumor suppressor protein-binding domain and is congruent with a previously defined melanoma-associated antigen-binding motif shared by EID family members, suggesting that binding to retinoblastoma tumor suppressor and melanoma-associated antigen family proteins could affect the polyubiquitylation and turnover of EID family members in cells.
Collapse
Affiliation(s)
- Cuiyan Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215
| | - Xiaotong Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Guillaume Adelmant
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02215; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215
| | - Jessica Dobbins
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02215
| | - Christoph Geisen
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215; Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Matthew G Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215
| | - Kai W Wucherpfenning
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02215
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02215; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215; Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
13
|
Ubiquitination-deubiquitination by the TRIM27-USP7 complex regulates tumor necrosis factor alpha-induced apoptosis. Mol Cell Biol 2013; 33:4971-84. [PMID: 24144979 DOI: 10.1128/mcb.00465-13] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tumor necrosis factor alpha (TNF-α) plays a role in apoptosis and proliferation in multiple types of cells, and defects in TNF-α-induced apoptosis are associated with various autoimmune diseases. Here, we show that TRIM27, a tripartite motif (TRIM) protein containing RING finger, B-box, and coiled-coil domains, positively regulates TNF-α-induced apoptosis. Trim27-deficient mice are resistant to TNF-α-d-galactosamine-induced hepatocyte apoptosis. Trim27-deficient mouse embryonic fibroblasts (MEFs) are also resistant to TNF-α-cycloheximide-induced apoptosis. TRIM27 forms a complex with and ubiquitinates the ubiquitin-specific protease USP7, which deubiquitinates receptor-interacting protein 1 (RIP1), resulting in the positive regulation of TNF-α-induced apoptosis. Our findings indicate that the ubiquitination-deubiquitination cascade mediated by the TRIM27-USP7 complex plays an important role in TNF-α-induced apoptosis.
Collapse
|
14
|
Hao YH, Doyle JM, Ramanathan S, Gomez TS, Jia D, Xu M, Chen ZJ, Billadeau DD, Rosen MK, Potts PR. Regulation of WASH-dependent actin polymerization and protein trafficking by ubiquitination. Cell 2013; 152:1051-64. [PMID: 23452853 DOI: 10.1016/j.cell.2013.01.051] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 11/29/2012] [Accepted: 01/24/2013] [Indexed: 02/01/2023]
Abstract
Endosomal protein trafficking is an essential cellular process that is deregulated in several diseases and targeted by pathogens. Here, we describe a role for ubiquitination in this process. We find that the E3 RING ubiquitin ligase, MAGE-L2-TRIM27, localizes to endosomes through interactions with the retromer complex. Knockdown of MAGE-L2-TRIM27 or the Ube2O E2 ubiquitin-conjugating enzyme significantly impaired retromer-mediated transport. We further demonstrate that MAGE-L2-TRIM27 ubiquitin ligase activity is required for nucleation of endosomal F-actin by the WASH regulatory complex, a known regulator of retromer-mediated transport. Mechanistic studies showed that MAGE-L2-TRIM27 facilitates K63-linked ubiquitination of WASH K220. Significantly, disruption of WASH ubiquitination impaired endosomal F-actin nucleation and retromer-dependent transport. These findings provide a cellular and molecular function for MAGE-L2-TRIM27 in retrograde transport, including an unappreciated role of K63-linked ubiquitination and identification of an activating signal of the WASH regulatory complex.
Collapse
Affiliation(s)
- Yi-Heng Hao
- Department of Physiology, UT Southwestern Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Exploring the diversity of SPRY/B30.2-mediated interactions. Trends Biochem Sci 2012; 38:38-46. [PMID: 23164942 DOI: 10.1016/j.tibs.2012.10.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/02/2012] [Accepted: 10/05/2012] [Indexed: 11/21/2022]
Abstract
The SPla/Ryanodine receptor (SPRY)/B30.2 domain is one of the most common folds in higher eukaryotes. The human genome encodes 103 SPRY/B30.2 domains, several of which are involved in the immune response. Approximately 45% of human SPRY/B30.2-containing proteins are E3 ligases. The role and function of the majority of SPRY/B30.2 domains are still poorly understood, however, in several cases mutations in this domain have been linked to congenital disorders. The recent characterization of SPRY/B30.2-mediated protein interactions has provided evidence for a role of this domain as an adaptor module to assemble macromolecular complexes, analogous to Src homology (SH)2, SH3, and WW domains. However, functional and structural evidence suggests that SPRY/B30.2 is a more versatile fold, allowing a wide range of binding modes.
Collapse
|
16
|
Horio M, Kato T, Mii S, Enomoto A, Asai M, Asai N, Murakumo Y, Shibata K, Kikkawa F, Takahashi M. Expression of RET finger protein predicts chemoresistance in epithelial ovarian cancer. Cancer Med 2012; 1:218-29. [PMID: 23342271 PMCID: PMC3544444 DOI: 10.1002/cam4.32] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/20/2012] [Accepted: 08/20/2012] [Indexed: 12/14/2022] Open
Abstract
Resistance to platinum- and taxane-based chemotherapy is a major cause of treatment failure in ovarian cancer. Thus, it is necessary to develop a predictive marker and molecular target for overcoming drug resistance in ovarian cancer treatment. In a previous report, using an in vitro model, we found that the RET finger protein (RFP) (also known as tripartite motif-containing protein 27, TRIM27) confers cancer cell resistance to anticancer drugs. However, the significance of RFP expression in cancer patients remains elusive. In this study, we showed that RFP was expressed in 62% of ovarian cancer patients and its positivity significantly correlated with drug resistance. Consistent with clinical data, depletion of RFP by RNA interference (RNAi) in ovarian cancer cell lines, SKOV3 and HEY, significantly increased carboplatin- or paclitaxel-induced apoptosis and resulted in reduced anticancer drug resistance. In a nude mouse tumor xenograft model, inoculated RFP-knockdown ovarian cancer cells exhibited lower carboplatin resistance than control cells. These findings suggest that RFP could be a predictive marker for chemoresistance in ovarian cancer patients and also a candidate for a molecular-targeted agent.
Collapse
Affiliation(s)
- Maiko Horio
- Department of Pathology, Nagoya University Graduate School of Medicine Nagoya, Japan; Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zoumpoulidou G, Broceño C, Li H, Bird D, Thomas G, Mittnacht S. Role of the tripartite motif protein 27 in cancer development. J Natl Cancer Inst 2012; 104:941-52. [PMID: 22556269 DOI: 10.1093/jnci/djs224] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND The tripartite motif family protein 27 (TRIM27) is a transcriptional repressor that interacts with, and attenuates senescence induction by, the retinoblastoma-associated protein (RB1). High expression of TRIM27 was noted in several human cancer types including breast and endometrial cancer, where elevated TRIM27 expression predicts poor prognosis. Here, we investigated the role of TRIM27 expression in cancer development. METHODS We assessed TRIM27 expression in human cancer using cancer profiling arrays containing paired tumor and normal cRNA (n = 261) as well as in murine skin cancer induced by 7, 12-dimethylbenzanthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA). We generated mice with disrupted expression of murine TRIM27 (Trim27(-/-)) and assessed their susceptibility to DMBA/TPA-induced skin tumor development compared with isogenic littermates (n = 26 mice per group). We assessed the effect of Trim27 loss on senescence propensity in mouse embryonic fibroblasts (MEFs) by quantifying cell proliferation alongside senescence markers (senescence-associated β-galactosidase [SA-β-gal] activity and hypertrophic cell morphology). The contribution of RB1 on senescence and cancer susceptibility (n > 20 mice per group) in Trim27(-/-) backgrounds was also assessed. Data were analyzed using the Student's t, χ(2), or log-rank test as indicated. All statistical tests were two-sided. RESULTS TRIM27 transcript levels are statistically significantly increased in common human cancers, including colon and lung, vs normal tissues (TRIM27 expression relative to ubiquitin: cancers vs normal tissues, mean = 0.59, 95% confidence interval [CI] = 0.55 to 0.63 vs mean = 0.46, 95% CI =0.43 to 0.49, P < .001) as well as in chemically induced mouse skin cancer compared with matched normal tissue (Trim27 expression relative to Gapdh control: tumor vs normal skin, mean = 4.2, 95% CI = 3.97 to 4.43 vs mean = 0.96, 95% CI = 0.69 to 1.2, P < .001). Trim27(-/-) mice (n = 14) were resistant to chemically induced skin cancer development (eight [57.2%] of 14 mice were tumor free) compared with Trim27(+/+) wild-type littermates (n = 13) (one [7.7%] of 13 mice was tumor free). Trim27(-/-) MEFs show enhanced senescence propensity in response to replicative (percentage of SA-β-gal-positive cells: Trim27(+/+) MEFs vs Trim27(-/-) MEFs, mean = 14.2%, 95% CI = 11.1% to 17.4% vs mean = 53.3%, 95% CI = 48.7% to 57.9%, P < .001) or oncogenic stress (percentage of SA-β-gal-positive cells: Trim27(+/+) MEFs + Ras vs Trim27(-/-) MEFs + Ras, mean = 24.0%, 95% CI = 19.9% to 28.1% vs mean = 37.3%, 95% CI = 32.2% to 42.4%, P < .05) compared with Trim27(+/+) MEFs. These responses were alleviated following inactivation of murine RB1 (Rb1). Furthermore, Trim27(-/-) mice are not protected from cancers arising as a consequence of Rb1 deletion (median survival: Trim27(-/-)Rb(+/-) vs Trim27(+/+)Rb(+/-), 14 vs 13 months; difference = 1.0 month, 95% CI = 0.5 to 1.6 months, P = .14). CONCLUSION TRIM27 expression is a modifier of disease incidence and progression relevant to the development of common human cancers and is a potential target for intervention in cancer.
Collapse
Affiliation(s)
- Georgia Zoumpoulidou
- Section of Cancer Biology, University College London Cancer Institute, University College London, 72 Huntley St, London WC1E 6DD, UK.
| | | | | | | | | | | |
Collapse
|
18
|
Iwakoshi A, Murakumo Y, Kato T, Kitamura A, Mii S, Saito S, Yatabe Y, Takahashi M. RET finger protein expression is associated with prognosis in lung cancer with epidermal growth factor receptor mutations. Pathol Int 2012; 62:324-30. [DOI: 10.1111/j.1440-1827.2012.02797.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
TRIM involvement in transcriptional regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 770:59-76. [PMID: 23631000 DOI: 10.1007/978-1-4614-5398-7_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Members of the tripartite motif (TRIM) protein family are found in all multicellular eukaryotes and function in a wide range of cellular processes such as cell cycle regulation, differentiation, development, oncogenesis and viral response. Over the past few years, several TRIM proteins have been reported to control gene expression through regulation of the transcriptional activity of numerous sequence-specific transcription factors. These proteins include the transcriptional intermediary factor 1 (TIF1) regulators, the promyelocytic leukemia tumor suppressor PML and the RET finger protein (RFP). In this chapter, we will consider the molecular interactions made by these TRIM proteins and will attempt to clarify some of the molecular mechanisms underlying their regulatory effect on transcription.
Collapse
|
20
|
Menicali E, Moretti S, Voce P, Romagnoli S, Avenia N, Puxeddu E. Intracellular signal transduction and modification of the tumor microenvironment induced by RET/PTCs in papillary thyroid carcinoma. Front Endocrinol (Lausanne) 2012; 3:67. [PMID: 22661970 PMCID: PMC3357465 DOI: 10.3389/fendo.2012.00067] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 04/30/2012] [Indexed: 01/06/2023] Open
Abstract
RET gene rearrangements (RET/PTCs) represent together with BRAF point mutations the two major groups of mutations involved in papillary thyroid carcinoma (PTC) initiation and progression. In this review, we will examine the mechanisms involved in RET/PTC-induced thyroid cell transformation. In detail, we will summarize the data on the molecular mechanisms involved in RET/PTC formation and in its function as a dominant oncogene, on the activated signal transduction pathways and on the induced gene expression modifications. Moreover, we will report on the effects of RET/PTCs on the tumor microenvironment. Finally, a short review of the literature on RET/PTC prognostic significance will be presented.
Collapse
Affiliation(s)
- Elisa Menicali
- Dipartimento di Medicina, University of PerugiaPerugia, Italy
- Centro di Proteomica e Genomica della Tiroide, University of PerugiaPerugia and Terni, Italy
| | - Sonia Moretti
- Dipartimento di Medicina, University of PerugiaPerugia, Italy
- Centro di Proteomica e Genomica della Tiroide, University of PerugiaPerugia and Terni, Italy
| | - Pasquale Voce
- Dipartimento di Medicina, University of PerugiaPerugia, Italy
- Centro di Proteomica e Genomica della Tiroide, University of PerugiaPerugia and Terni, Italy
| | | | - Nicola Avenia
- Centro di Proteomica e Genomica della Tiroide, University of PerugiaPerugia and Terni, Italy
- Dipartimento di Chirurgia, University of PerugiaPerugia, Italy
| | - Efisio Puxeddu
- Dipartimento di Medicina, University of PerugiaPerugia, Italy
- Centro di Proteomica e Genomica della Tiroide, University of PerugiaPerugia and Terni, Italy
- *Correspondence: Efisio Puxeddu, Dipartimento di Medicina, Sezione MIENDO, Via Enrico dal Pozzo – Padiglione X, 06126 Perugia, Italy. e-mail:
| |
Collapse
|
21
|
Abstract
Some members of the tripartite motif (TRIM/RBCC) protein family are thought to be important regulators of carcinogenesis. This is not surprising as the TRIM proteins are involved in several biological processes, such as cell growth, development and cellular differentiation and alteration of these proteins can affect transcriptional regulation, cell proliferation and apoptosis. In particular, four TRIM family genes are frequently translocated to other genes, generating fusion proteins implicated in cancer initiation and progression. Among these the most famous is the promyelocytic leukaemia gene PML, which encodes the protein TRIM19. PML is involved in the t(15;17) translocation that specifically occurs in Acute Promyelocytic Leukaemia (APL), resulting in a PML-retinoic acid receptor-alpha (PML-RARalpha) fusion protein. Other members of the TRIM family are linked to cancer development without being involved in chromosomal re-arrangements, possibly through ubiquitination or loss of tumour suppression functions. This chapter discusses the biological functions of TRIM proteins in cancer.
Collapse
|
22
|
Liu R, Lei JX, Luo C, Lan X, Chi L, Deng P, Lei S, Ghribi O, Liu QY. Increased EID1 nuclear translocation impairs synaptic plasticity and memory function associated with pathogenesis of Alzheimer's disease. Neurobiol Dis 2011; 45:902-12. [PMID: 22186421 DOI: 10.1016/j.nbd.2011.12.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 10/26/2011] [Accepted: 12/04/2011] [Indexed: 10/14/2022] Open
Abstract
Though loss of function in CBP/p300, a family of CREB-binding proteins, has been causally associated with a variety of human neurological disorders, such as Rubinstein-Taybi syndrome, Huntington's disease and drug addiction, the role of EP300 interacting inhibitor of differentiation 1 (EID1), a CBP/p300 inhibitory protein, in modulating neurological functions remains completely unknown. Through the examination of EID1 expression and cellular distribution, we discovered that there is a significant increase of EID1 nuclear translocation in the cortical neurons of Alzheimer's disease (AD) patient brains compared to that of control brains. To study the potential effects of EID1 on neurological functions associated with learning and memory, we generated a transgenic mouse model with a neuron-specific expression of human EID1 gene in the brain. Overexpression of EID1 led to an increase in its nuclear localization in neurons mimicking that seen in human AD brains. The transgenic mice had a disrupted neurofilament organization and increase of astrogliosis in the cortex and hippocampus. Furthermore, we demonstrated that overexpression of EID1 reduced hippocampal long-term potentiation and impaired spatial learning and memory function in the transgenic mice. Our results indicated that the negative effects of extra nuclear EID1 in transgenic mouse brains are likely due to its inhibitory function on CBP/p300 mediated histone and p53 acetylation, thus affecting the expression of downstream genes involved in the maintenance of neuronal structure and function. Together, our data raise the possibility that alteration of EID1 expression, particularly the increase of EID1 nuclear localization that inhibits CBP/p300 activity in neuronal cells, may play an important role in AD pathogenesis.
Collapse
Affiliation(s)
- Rugao Liu
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Emerging clinical evidence shows that the deregulation of ubiquitin-mediated degradation of oncogene products or tumour suppressors is likely to be involved in the aetiology of carcinomas and leukaemias. Recent studies have indicated that some members of the tripartite motif (TRIM) proteins (one of the subfamilies of the RING type E3 ubiquitin ligases) function as important regulators for carcinogenesis. This Review focuses on TRIM proteins that are involved in tumour development and progression.
Collapse
Affiliation(s)
- Shigetsugu Hatakeyama
- Department of Biochemistry, Institute for Animal Experimentation, and Central Institute of Isotope Science, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
| |
Collapse
|
24
|
Kee HJ, Kim JR, Joung H, Choe N, Lee SE, Eom GH, Kim JC, Geyer SH, Jijiwa M, Kato T, Kawai K, Weninger WJ, Seo SB, Nam KI, Jeong MH, Takahashi M, Kook H. Ret finger protein inhibits muscle differentiation by modulating serum response factor and enhancer of polycomb1. Cell Death Differ 2011; 19:121-31. [PMID: 21637294 DOI: 10.1038/cdd.2011.72] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Skeletal myogenesis is precisely regulated by multiple transcription factors. Previously, we demonstrated that enhancer of polycomb 1 (Epc1) induces skeletal muscle differentiation by potentiating serum response factor (SRF)-dependent muscle gene activation. Here, we report that an interacting partner of Epc1, ret finger protein (RFP), blocks skeletal muscle differentiation. Our findings show that RFP was highly expressed in skeletal muscles and was downregulated during myoblast differentiation. Forced expression of RFP delayed myoblast differentiation, whereas knockdown enhanced it. Epc1-induced enhancements of SRF-dependent multinucleation, transactivation of the skeletal α-actin promoter, binding of SRF to the serum response element, and muscle-specific gene induction were blocked by RFP. RFP interfered with the physical interaction between Epc1 and SRF. Muscles from rfp knockout mice (Rfp(-/-)) mice were bigger than those from wild-type mice, and the expression of SRF-dependent muscle-specific genes was upregulated. Myotube formation and myoblast differentiation were enhanced in Rfp(-/-) mice. Taken together, our findings highlight RFP as a novel regulator of muscle differentiation that acts by modulating the expression of SRF-dependent skeletal muscle-specific genes.
Collapse
Affiliation(s)
- H J Kee
- Department of Pharmacology and Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Clinicopathological significance of cell cycle regulatory factors and differentiation-related factors in pancreatic neoplasms. Pancreas 2010; 39:345-52. [PMID: 20335778 DOI: 10.1097/mpa.0b013e3181bb9204] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVES The aim of the present study was to compare the expression levels of the cyclins and the differentiation-related factors in pancreatic neoplasms. METHODS The expression levels of cyclins A and B1, E1A-like inhibitor of differentiation 1 (EID-1), p300, 3'-5'-cyclic sdenosine monophosphate response element binding protein (CREB) binding protein (CBP), and acetylated histone H3 (AcH3) in ordinary ductal carcinoma (ODC) and intraductal papillary mucinous neoplasms (IPMNs) of the pancreas were investigated. RESULTS More cells positive for cyclin A and EID-1 were present in the ODC than in the IPMNs. Cells positive for both cyclins and EID-1 were observed more frequently in invasive carcinoma derived from the IPMN than from the IP mucinous carcinoma. Multivariate regression analysis revealed that EID-1 and cyclin A overexpressions were independent factors associated with poor prognosis. Overall survival was significantly lower in ODC patients with overexpressions of cyclin A, EID-1, and AcH3 than in those without such overexpressions. There were significant differences in the survival curves between patients with ODC and invasive carcinoma derived from IPMN, regarding high frequency for cyclin A or B1. CONCLUSIONS These results indicated that the expressions of cyclins A and B1, EID-1, and AcH3 may be correlated with a malignant potential in IPMNs. Invasive carcinoma derived from IPMN may be slow growing as compared with ODC.
Collapse
|
26
|
Hirabayashi Y, Inoue T. Benzene-induced bone-marrow toxicity: A hematopoietic stem-cell-specific, aryl hydrocarbon receptor-mediated adverse effect. Chem Biol Interact 2010; 184:252-8. [DOI: 10.1016/j.cbi.2009.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/07/2009] [Accepted: 12/15/2009] [Indexed: 10/20/2022]
|
27
|
Ret Finger Protein: An E3 Ubiquitin Ligase Juxtaposed to the XY Body in Meiosis. Int J Cell Biol 2010; 2009:524858. [PMID: 20145714 PMCID: PMC2817382 DOI: 10.1155/2009/524858] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 10/15/2009] [Indexed: 11/28/2022] Open
Abstract
During prophase I of male meiosis, the sex chromosomes form a compact structure called XY body that associates with the nuclear membrane of pachytene spermatocytes. Ret Finger Protein is a transcriptional repressor, able to interact with both nuclear matrix-associated proteins and double-stranded DNA. We report the precise and unique localization of Ret Finger Protein in pachytene spermatocytes, in which Ret Finger Protein takes place of lamin B1, between the XY body and the inner nuclear membrane. This localization of Ret Finger Protein does not seem to be associated with O-glycosylation or sumoylation. In addition, we demonstrate that Ret Finger Protein contains an E3 ubiquitin ligase activity. These observations lead to an attractive hypothesis in which Ret Finger Protein would be involved in the positioning and the attachment of XY body to the nuclear lamina of pachytene spermatocytes.
Collapse
|
28
|
TRIM39 is a MOAP-1-binding protein that stabilizes MOAP-1 through inhibition of its poly-ubiquitination process. Exp Cell Res 2008; 315:1313-25. [PMID: 19100260 DOI: 10.1016/j.yexcr.2008.11.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 11/26/2008] [Accepted: 11/26/2008] [Indexed: 12/26/2022]
Abstract
Bax, a multi-domain pro-apoptotic Bcl-2 family member, is a key regulator for the release of apoptogenic factors from mitochondria. MOAP-1, which was first isolated from a screen for Bax-associating proteins, interacts with Bax upon apoptotic induction. MOAP-1 is a short-lived protein that is constitutively degraded by the ubiquitin-proteasome system. Apoptotic stimuli upregulate MOAP-1 rapidly through inhibition of its poly-ubiquitination process. However, cellular factors that regulate the stability of MOAP-1 have not yet been identified. In this study, we report the identification of TRIM39 as a MOAP-1-binding protein. TRIM39 belongs to a family of proteins characterized by a Tripartite Motif (TRIM), consisting of RING domain, B-box and coiled-coil domain. Several TRIM family members are known to demonstrate E3 ubiquitin ligase activity. Surprisingly, TRIM39 significantly extends the half-life of MOAP-1 by inhibiting its poly-ubiquitination process. In agreement with its effect on enhancing MOAP-1 stability, TRIM39 sensitizes cells to etoposide-induced apoptosis. Conversely, knockdown of TRIM39 reduces the sensitivity of cells to etoposide-stimulated apoptosis. Furthermore, TRIM39 elevates the level of MOAP-1 in mitochondria and promotes cytochrome c release from isolated mitochondria stimulated by recombinant Bax. Together, these data suggest that TRIM39 can promote apoptosis signalling through stabilization of MOAP-1.
Collapse
|
29
|
Ozato K, Shin DM, Chang TH, Morse HC. TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol 2008; 8:849-60. [PMID: 18836477 PMCID: PMC3433745 DOI: 10.1038/nri2413] [Citation(s) in RCA: 863] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The superfamily of tripartite motif-containing (TRIM) proteins is conserved throughout the metazoan kingdom and has expanded rapidly during vertebrate evolution; there are now more than 60 TRIM proteins known in humans and mice. Many TRIM proteins are induced by type I and type II interferons, which are crucial for many aspects of resistance to pathogens, and several are known to be required for the restriction of infection by lentiviruses. In this Review, we describe recent data that reveal broader antiviral and antimicrobial activities of TRIM proteins and discuss their involvement in the regulation of pathogen-recognition and transcriptional pathways in host defence.
Collapse
Affiliation(s)
- Keiko Ozato
- Program of Genomics and Differentiation, National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland 20892-2753, USA.
| | | | | | | |
Collapse
|
30
|
Bush JR, Wevrick R. The Prader–Willi syndrome protein necdin interacts with the E1A-like inhibitor of differentiation EID-1 and promotes myoblast differentiation. Differentiation 2008; 76:994-1005. [DOI: 10.1111/j.1432-0436.2008.00281.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Abstract
The retinoblastoma (RB) tumour suppressor gene is functionally inactivated in a broad range of paediatric and adult cancers, and a plethora of cellular functions and partners have been identified for the RB protein. Data from human tumours and studies from mouse models indicate that loss of RB function contributes to both cancer initiation and progression. However, we still do not know the identity of the cell types in which RB normally prevents cancer initiation in vivo, and the specific functions of RB that suppress distinct aspects of the tumorigenic process are poorly understood.
Collapse
Affiliation(s)
- Deborah L Burkhart
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
32
|
Abstract
Numerous biologic processes and such diseases as cancer depend on activation of tyrosine kinase receptors. The RET tyrosine kinase receptor was discovered two decades ago as a transforming gene and was subsequently implicated in the formation of papillary and medullary thyroid carcinoma. This article examines the data about the mechanism of activation of downstream signal transduction pathways by RET oncoproteins. Collectively, these findings have advanced the understanding of the processes underlying thyroid carcinoma formation.
Collapse
Affiliation(s)
- Maria Domenica Castellone
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Istituto di Endocrinologia ed Oncologia Sperimentale del CNR G Salvatore, Università di Napoli Federico II, Naples, Italy
| | | |
Collapse
|
33
|
Hassler M, Singh S, Yu WW, Luczynski M, Lakbir R, Sanchez-Sanchez F, Bader T, Pearl LH, Mittnacht S. Crystal structure of the retinoblastoma protein N domain provides insight into tumor suppression, ligand interaction, and holoprotein architecture. Mol Cell 2007; 28:371-85. [PMID: 17996702 PMCID: PMC4944837 DOI: 10.1016/j.molcel.2007.08.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 05/21/2007] [Accepted: 08/27/2007] [Indexed: 01/29/2023]
Abstract
The retinoblastoma susceptibility protein, Rb, has a key role in regulating cell-cycle progression via interactions involving the central "pocket" and C-terminal regions. While the N-terminal domain of Rb is dispensable for this function, it is nonetheless strongly conserved and harbors missense mutations found in hereditary retinoblastoma, indicating that disruption of its function is oncogenic. The crystal structure of the Rb N-terminal domain (RbN), reveals a globular entity formed by two rigidly connected cyclin-like folds. The similarity of RbN to the A and B boxes of the Rb pocket domain suggests that Rb evolved through domain duplication. Structural and functional analysis provides insight into oncogenicity of mutations in RbN and identifies a unique phosphorylation-regulated site of protein interaction. Additionally, this analysis suggests a coherent conformation for the Rb holoprotein in which RbN and pocket domains directly interact, and which can be modulated through ligand binding and possibly Rb phosphorylation.
Collapse
Affiliation(s)
- Markus Hassler
- The Institute of Cancer Research, Cancer Research UK Centre for Cell and Molecular Biology, Chester Beatty Laboratories, 237 Fulham Road, London, UK
- The Institute of Cancer Research, Section for Structural Biology, Chester Beatty Laboratories, 237 Fulham Road, London, UK
| | - Shradha Singh
- The Institute of Cancer Research, Cancer Research UK Centre for Cell and Molecular Biology, Chester Beatty Laboratories, 237 Fulham Road, London, UK
| | - Wyatt W. Yu
- The Institute of Cancer Research, Section for Structural Biology, Chester Beatty Laboratories, 237 Fulham Road, London, UK
| | - Maciej Luczynski
- The Institute of Cancer Research, Cancer Research UK Centre for Cell and Molecular Biology, Chester Beatty Laboratories, 237 Fulham Road, London, UK
| | - Rachid Lakbir
- The Institute of Cancer Research, Cancer Research UK Centre for Cell and Molecular Biology, Chester Beatty Laboratories, 237 Fulham Road, London, UK
| | - Francisco Sanchez-Sanchez
- Área de Genética, Facultad de Medicina/Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Thomas Bader
- Institut Cochin, Maladies infectieuses, Bât. G. Roussy, 6e27, 75014 Paris, FRANCE
| | - Laurence H. Pearl
- The Institute of Cancer Research, Section for Structural Biology, Chester Beatty Laboratories, 237 Fulham Road, London, UK
| | - Sibylle Mittnacht
- The Institute of Cancer Research, Cancer Research UK Centre for Cell and Molecular Biology, Chester Beatty Laboratories, 237 Fulham Road, London, UK
| |
Collapse
|
34
|
Kosaka Y, Inoue H, Ohmachi T, Yokoe T, Matsumoto T, Mimori K, Tanaka F, Watanabe M, Mori M. Tripartite motif-containing 29 (TRIM29) is a novel marker for lymph node metastasis in gastric cancer. Ann Surg Oncol 2007; 14:2543-9. [PMID: 17597343 DOI: 10.1245/s10434-007-9461-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 04/23/2007] [Indexed: 01/16/2023]
Abstract
BACKGROUND Tripartite motif-containing 29 (TRIM29) belongs to the TRIM protein family, which has unique structural characteristics, including multiple zinc finger motifs and a leucine zipper motif. TRIM29, also known as ataxia telangiectasia group D complementing gene, possesses radiosensitivity suppressor functions. Although TRIM29 has been reported to be underexpressed in prostate and breast cancer, its expression in gastrointestinal cancer has not been studied. METHODS By use of real-time reverse transcriptase-polymerase chain reaction, we analyzed TRIM29 mRNA expression status with respect to various clinicopathological parameters in 124 patients with gastric cancer. An immunohistochemical study was also conducted. RESULTS The expression of TRIM29 was far higher in gastric cancer tumor tissue. Increased TRIM29 mRNA expression was markedly associated with such parameters as histological grade, large tumor size, extent of tumor invasion, and lymph node metastasis. In the TRIM29 high-expression group, it was an independent predictor for lymph node metastasis. Furthermore, patients with high TRIM29 mRNA expression showed a far poorer survival rate than those with low TRIM29 mRNA expression. CONCLUSIONS TRIM29 expression may serve as a good marker of lymph node metastasis in gastric cancer.
Collapse
Affiliation(s)
- Yoshimasa Kosaka
- Department of Surgical Oncology, Medical Institute of Bioregulation, Kyushu University, 4546, Tsurumihara, Beppu, 874-0838, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bender AM, Kirienko NV, Olson SK, Esko JD, Fay DS. lin-35/Rb and the CoREST ortholog spr-1 coordinately regulate vulval morphogenesis and gonad development in C. elegans. Dev Biol 2007; 302:448-62. [PMID: 17070797 PMCID: PMC1933485 DOI: 10.1016/j.ydbio.2006.09.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 08/28/2006] [Accepted: 09/30/2006] [Indexed: 11/21/2022]
Abstract
Using a genetic screen to identify genes that carry out redundant functions during development with lin-35/Rb, the C. elegans Retinoblastoma family ortholog, we have identified a mutation in spr-1. spr-1 encodes the C. elegans ortholog of human CoREST, a protein containing Myb-like SANT and ELM2 domains, which functions as part of a transcriptional regulatory complex. CoREST recruits mediators of transcriptional repression, including histone deacetylase, and demethylase, and interacts with the tumor suppression protein REST. spr-1/CoREST was previously shown in C. elegans to suppress defects associated with loss of the presenilin sel-12, which functions in the proteolytic processing of LIN-12/Notch. Here we show that lin-35 and spr-1 coordinately regulate several developmental processes in C. elegans including the ingression of vulval cells as well as germline proliferation. We also show that loss of lin-35 and spr-1 hypersensitizes animals to a reduction in LIN-12/Notch activity, leading to the generation of proximal germline tumors. This defect, which is observed in lin-35; spr-1; lin-12(RNAi) and lin-35; spr-1; hop-1(RNAi) triple mutants is likely due to a delay in the entry of germ cells into meiosis.
Collapse
Affiliation(s)
- Aaron M. Bender
- University of Wyoming, College of Agriculture, Department of Molecular Biology Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - Natalia V. Kirienko
- University of Wyoming, College of Agriculture, Department of Molecular Biology Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - Sara K. Olson
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla CA 92093
| | - Jeffery D. Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla CA 92093
| | - David S Fay
- University of Wyoming, College of Agriculture, Department of Molecular Biology Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| |
Collapse
|
36
|
Naviglio S, Spina A, Chiosi E, Fusco A, Illiano F, Pagano M, Romano M, Senatore G, Sorrentino A, Sorvillo L, Illiano G. Inorganic phosphate inhibits growth of human osteosarcoma U2OS cells via adenylate cyclase/cAMP pathway. J Cell Biochem 2006; 98:1584-96. [PMID: 16552724 DOI: 10.1002/jcb.20892] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In order to elucidate how phosphate regulates cellular functions, we investigated the effects of inorganic phosphate (Pi) on adenylate cyclase (AC)/cyclic AMP (cAMP) axis. Here we describe that Pi treatment of human osteosarcoma U2OS cells results in a decrease of both intracellular cAMP levels and AC activity, and in a cell growth inhibition. The phosphate-triggered effects observed in U2OS cells are not a widespread phenomenon regarding all cell lines, since other cell lines screened respond differently to parallel Pi treatments. In U2OS cell line, the AC activity/cAMP downregulation is accompanied by significant variations in the levels of some membrane proteins belonging to the AC system. Remarkably, the above effects are blunted by pharmacological inhibition of sodium-dependent phosphate transport. Moreover, 8-Br-cAMP and other cAMP-elevating agents, such as IBMX and forskolin, interestingly, prevent the cell growth inhibition in response to phosphate. Our results enforce the increasing evidences of phosphate as a signaling molecule, identifying in U2OS cell line the AC/cAMP axis, as a novel-signaling pathway modulated by phosphate to ultimately affect cell growth.
Collapse
Affiliation(s)
- Silvio Naviglio
- Department of Biochemistry and Biophysics, Second University of Naples, Medical School, 80138 Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Townson SM, Kang K, Lee AV, Oesterreich S. Novel role of the RET finger protein in estrogen receptor-mediated transcription in MCF-7 cells. Biochem Biophys Res Commun 2006; 349:540-8. [PMID: 16945332 PMCID: PMC1950156 DOI: 10.1016/j.bbrc.2006.08.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 08/11/2006] [Indexed: 01/17/2023]
Abstract
The Scaffold attachment factor B1 (SAFB1) is an estrogen receptor (ESR1) repressor that has been proposed to inhibit breast tumorigenesis. To obtain insight into the functions of SAFB1 we utilized a yeast two-hybrid screen and identified the Ret finger protein (RFP) as interacting with the SAFB1 C-terminus. RFP is a member of the trimotif (TRIM) family of proteins, which we found widely expressed in a series of breast cancer cell lines. We confirmed the interaction between SAFB1 and RFP through in vitro (GST-pull-down) and in vivo (coimmunoprecipitations) assays. We hypothesized that SAFB1 functions as a scaffolding protein to recruit proteins such as RFP into proximity with ESR1. Consequently, we asked whether RFP would modulate ESR1 activity and we discovered that RFP was important for the ESR1-dependent expression of cyclin D1 (CCND1) and the progesterone receptor (PR), but not IRS1 or MYC. Although RFP did not interact with ESR1 directly, it does coimmunoprecipitate with ESR1, demonstrating that RFP is found within the same protein complex. Chromatin immunoprecipitation assays (ChIP) located RFP to the TFF1 promoter, a known ESR1-regulated gene. Taken together, our study provides further evidence that coactivation and corepression are integrally linked processes and that RFP is a component of an ESR1 regulatory complex.
Collapse
Affiliation(s)
- Steven M Townson
- Department of Human Genetics, Virginia Commonwealth University and Massey Cancer Center, Sanger Hall, Richmond, VA 23219, USA.
| | | | | | | |
Collapse
|
38
|
Abstract
The retinoblastoma susceptibility gene was the first tumor suppressor gene identified in humans and the first tumor suppressor gene knocked out by targeted deletion in mice. RB serves as a transducer between the cell cycle machinery and promoter-specific transcription factors, its most documented activity being the repression of the E2F family of transcription factors, which regulate the expression of genes involved in cell proliferation and survival. Recent investigations of RB function suggest that it works as a fundamental regulator to coordinate pathways of cellular growth and differentiation. In this review, we unravel the novel role of an equally important aspect of RB in downregulating the differentiation inhibitor EID-1 during cellular differentiation by teasing apart the signal, which elicit differentiation and limit cell cycle progression, since the molecular mechanisms relating to RB activation of differentiation is much less understood. We review the various roles for RB in differentiation of neurons, muscle, adipose tissue, and the retina. In addition, we provide an update for the current models of the role of RB in cell cycle to entry and exit, extending the view toward chromatin remodeling and expose the dichotomies in the regulation of RB family members. We conclude with a discussion of a novel RB regulatory network, incorporating the dynamic contribution of EID family proteins.
Collapse
Affiliation(s)
- L Khidr
- Department of Biological Chemistry, University of California-Irvine Med Sci 1, Irvine, CA 92697, USA
| | | |
Collapse
|
39
|
Abstract
The retinoblastoma tumor-suppressor gene (Rb1) is centrally important in cancer research. Mutational inactivation of Rb1 causes the pediatric cancer retinoblastoma, while deregulation of the pathway in which it functions is common in most types of human cancer. The Rb1-encoded protein (pRb) is well known as a general cell cycle regulator, and this activity is critical for pRb-mediated tumor suppression. The main focus of this review, however, is on more recent evidence demonstrating the existence of additional, cell type-specific pRb functions in cellular differentiation and survival. These additional functions are relevant to carcinogenesis suggesting that the net effect of Rb1 loss on the behavior of resulting tumors is highly dependent on biological context. The molecular mechanisms underlying pRb functions are based on the cellular proteins it interacts with and the functional consequences of those interactions. Better insight into pRb-mediated tumor suppression and clinical exploitation of pRb as a therapeutic target will require a global view of the complex, interdependent network of pocket protein complexes that function simultaneously within given tissues.
Collapse
Affiliation(s)
- D W Goodrich
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| |
Collapse
|
40
|
Korenjak M, Brehm A. E2F-Rb complexes regulating transcription of genes important for differentiation and development. Curr Opin Genet Dev 2006; 15:520-7. [PMID: 16081278 DOI: 10.1016/j.gde.2005.07.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 07/21/2005] [Indexed: 01/22/2023]
Abstract
Inactivation of the retinoblastoma tumour suppressor protein (pRb) is a hallmark of most human cancers. Accordingly, pRb is serving as a paradigm in our quest to understand tumour suppressor function. The role played by pRb and the related 'pocket proteins', p107 and p130, in regulating cell cycle progression has been extensively studied over the past two decades. The function of pRb in regulating transcriptional programmes in differentiating cells is less well understood. Recently, the use of a variety of different cell, animal and plant model systems has allowed us a first glimpse at some of the molecular mechanisms underlying pRb-mediated transcriptional regulation during differentiation and development.
Collapse
Affiliation(s)
- Michael Korenjak
- Lehrstuhl für Molekularbiologie, Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität, Schillerstrasse 44, 80336 München, Germany
| | | |
Collapse
|
41
|
Tu Z, Prajapati S, Park KJ, Kelly NJ, Yamamoto Y, Gaynor RB. IKK alpha regulates estrogen-induced cell cycle progression by modulating E2F1 expression. J Biol Chem 2006; 281:6699-706. [PMID: 16407216 DOI: 10.1074/jbc.m512439200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The IkappaB kinase (IKK) complex consists of the catalytic subunits IKKalpha and IKKbeta and a regulatory subunit, IKKgamma/NEMO. Even though IKKalpha and IKKbeta share significant sequence similarity, they have distinct biological roles. It has been demonstrated that IKKs are involved in regulating the proliferation of both normal and tumor cells, although the mechanisms by which they function in this process remain to be better defined. In this study, we demonstrate that IKKalpha, but not IKKbeta, is important for estrogen-induced cell cycle progression by regulating the transcription of the E2F1 gene as well as other E2F1-responsive genes, including thymidine kinase 1, proliferating cell nuclear antigen, cyclin E, and cdc25A. The role of IKKalpha in regulating E2F1 was not the result of reduced levels of cyclin D1, as overexpression of this gene could not overcome the effects of IKKalpha knock-down. Furthermore, estrogen treatment increased the association of endogenous IKKalpha and E2F1, and this interaction occurred on promoters bound by E2F1. IKKalpha also potentiated the ability of p300/CBP-associated factor to acetylate E2F1. Taken together, these data suggest a novel mechanism by which IKKalpha can influence estrogen-mediated cell cycle progression through its regulation of E2F1.
Collapse
Affiliation(s)
- Zheng Tu
- Lilly Research Laboratories, Indianapolis, Indiana 46285, USA
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
The retinoblastoma protein or its regulators are altered in most human cancers. Although commonly thought of as solely a repressor of E2F-dependent transcription and cell cycle progression, pRb has gained notoriety in recent years as a key actor in cellular differentiation programs. In the June issue of Molecular Cell, Benevolenskaya et al. report that a long-known but poorly understood pRb interactor, RBP2, acts as an inhibitor of differentiation contributing to pRb's role as a coordinator of differentiation and cell cycle exit. Loss of pRb may unleash RBP2, maintaining cells in a poorly differentiated progenitor state that is prerequisite to tumor formation.
Collapse
Affiliation(s)
- Gabriel M Gutierrez
- Molecular Oncology Research Institute, Department of Radiation Oncology, Tufts-New England Medical Center, Boston, MA 02115, USA
| | | | | |
Collapse
|