1
|
Capdevila DA, Rondón JJ, Edmonds KA, Rocchio JS, Dujovne MV, Giedroc DP. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chem Rev 2024; 124:13574-13659. [PMID: 39658019 DOI: 10.1021/acs.chemrev.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Transition metals function as structural and catalytic cofactors for a large diversity of proteins and enzymes that collectively comprise the metalloproteome. Metallostasis considers all cellular processes, notably metal sensing, metalloproteome remodeling, and trafficking (or allocation) of metals that collectively ensure the functional integrity and adaptability of the metalloproteome. Bacteria employ both protein and RNA-based mechanisms that sense intracellular transition metal bioavailability and orchestrate systems-level outputs that maintain metallostasis. In this review, we contextualize metallostasis by briefly discussing the metalloproteome and specialized roles that metals play in biology. We then offer a comprehensive perspective on the diversity of metalloregulatory proteins and metal-sensing riboswitches, defining general principles within each sensor superfamily that capture how specificity is encoded in the sequence, and how selectivity can be leveraged in downstream synthetic biology and biotechnology applications. This is followed by a discussion of recent work that highlights selected metalloregulatory outputs, including metalloproteome remodeling and metal allocation by metallochaperones to both client proteins and compartments. We close by briefly discussing places where more work is needed to fill in gaps in our understanding of metallostasis.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Johnma J Rondón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Joseph S Rocchio
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Matias Villarruel Dujovne
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
2
|
Wang B, Wang Y, Zhang Z, Wen X, Xi Z. Insight into the Role of an α-Helix Cluster in Protoporphyrinogen IX Oxidase. Biochemistry 2024. [PMID: 38285491 DOI: 10.1021/acs.biochem.3c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Protoporphyrinogen IX oxidase (PPO) is the last common enzyme in chlorophyll and heme biosynthesis pathways. In humans, point mutations on PPO are responsible for the dominantly inherited disorder disease variegate porphyria (VP). It is found that several VP-causing mutation sites are located on an α-helix cluster (consisting of α-5, α-6, and α-7 helix, named the G169 helix cluster) of human PPO, although these mutation sites are outside the active site of the human PPO. In this work, we investigated the role of the G169 helix cluster via site-directed mutagenesis, enzymatic kinetics, and computational studies. Kinetic studies showed that mutations on the G169 helix cluster affect the activity of PPO. The MD simulation showed that mutations on the G169 helix cluster reduced the activity of PPO by affecting the proper orientation of substrate protoporphyrinogen within the active site of PPO and possibly the dipole moment of the G169 helix cluster. Moreover, the mutation abolished the interaction between the mutated site and other residues, thus affecting the secondary structure and hydrogen bond interactions within the G169 helix cluster. These results indicated that the integrity of the G169 helix cluster is important for the stabilization of protoporphyrinogen within the active site of PPO to facilitate the interaction between protoporphyrinogen and cofactor FAD and provide a proper electrostatic environment for the activity of PPO. Our result provides new insight into understanding the relationship between the structure and function of PPO.
Collapse
Affiliation(s)
- Baifan Wang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yiban Wang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zijuan Zhang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xin Wen
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Nankai University, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
3
|
Boral A, Mitra D. Heterogeneity in winged helix-turn-helix and substrate DNA interactions: Insights from theory and experiments. J Cell Biochem 2023; 124:337-358. [PMID: 36715571 DOI: 10.1002/jcb.30369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/31/2023]
Abstract
Specific interactions between transcription factors (TFs) and substrate DNA constitute the fundamental basis of gene expression. Unlike in TFs like basic helix-loop-helix or basic leucine zippers, prediction of substrate DNA is extremely challenging for helix-turn-helix (HTH). Experimental techniques like chromatin immunoprecipitation combined with massively parallel DNA sequencing remains a viable option. We characterize the molecular basis of heterogeneity in HTH-DNA interaction using in silico tools and thence validate them experimentally. Given the profound functional diversity in HTH, we focus primarily on winged-HTH (wHTH). We consider 180 wHTH TFs, whose experimental three-dimensional structures are available in DNA bound/unbound conformations. Starting with PDB-wide scanning and curation of data, we construct a phylogenetic tree, which distributes 180 wHTH sequences under multiple sub-groups. Structure-sequence alignment followed by detailed intra/intergroup analysis, covariation studies and extensive network theory analysis help us to gain deep insight into heterogeneous wHTH-substrate DNA interactions. A central aim of this study is to find a consensus to predict the substrate DNA sequence for wHTH, amidst heterogeneity. The strength of our exhaustive theoretical investigations including molecular docking are successfully tested through experimental characterization of wHTH TF from Sulfurimonas denitrificans.
Collapse
Affiliation(s)
- Aparna Boral
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Devrani Mitra
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
4
|
Caporaletti F, Pietras Z, Morad V, Mårtensson LG, Gabel F, Wallner B, Martel A, Sunnerhagen M. Small-angle x-ray and neutron scattering of MexR and its complex with DNA supports a conformational selection binding model. Biophys J 2023; 122:408-418. [PMID: 36474441 PMCID: PMC9892617 DOI: 10.1016/j.bpj.2022.11.2949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/02/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
In this work, we used small-angle x-ray and neutron scattering to reveal the shape of the protein-DNA complex of the Pseudomonas aeruginosa transcriptional regulator MexR, a member of the multiple antibiotics resistance regulator (MarR) family, when bound to one of its native DNA binding sites. Several MarR-like proteins, including MexR, repress the expression of efflux pump proteins by binding to DNA on regulatory sites overlapping with promoter regions. When expressed, efflux proteins self-assemble to form multiprotein complexes and actively expel highly toxic compounds out of the host organism. The mutational pressure on efflux-regulating MarR family proteins is high since deficient DNA binding leads to constitutive expression of efflux pumps and thereby supports acquired multidrug resistance. Understanding the functional outcome of such mutations and their effects on DNA binding has been hampered by the scarcity of structural and dynamic characterization of both free and DNA-bound MarR proteins. Here, we show how combined neutron and x-ray small-angle scattering of both states in solution support a conformational selection model that enhances MexR asymmetry in binding to one of its promoter-overlapping DNA binding sites.
Collapse
Affiliation(s)
- Francesca Caporaletti
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden; Large Scale Structure, Institute Laue Langevin, Grenoble, France
| | - Zuzanna Pietras
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Vivian Morad
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Lars-Göran Mårtensson
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Frank Gabel
- University Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Björn Wallner
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Anne Martel
- Large Scale Structure, Institute Laue Langevin, Grenoble, France
| | - Maria Sunnerhagen
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden.
| |
Collapse
|
5
|
Fritsch VN, Loi VV, Kuropka B, Gruhlke M, Weise C, Antelmann H. The MarR/DUF24-Family QsrR Repressor Senses Quinones and Oxidants by Thiol Switch Mechanisms in Staphylococcus aureus. Antioxid Redox Signal 2022; 38:877-895. [PMID: 36242097 DOI: 10.1089/ars.2022.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aims: The MarR/DUF24-family QsrR and YodB repressors control quinone detoxification pathways in Staphylococcus aureus and Bacillus subtilis. In S. aureus, the QsrR regulon also confers resistance to antimicrobial compounds with quinone-like elements, such as rifampicin, ciprofloxacin, and pyocyanin. Although QsrR was shown to be inhibited by thiol-S-alkylation of its conserved Cys4 residue by 1,4-benzoquinone, YodB senses quinones and diamide by the formation of reversible intermolecular disulfides. In this study, we aimed at further investigating the redox-regulation of QsrR and the role of its Cys4, Cys29, and Cys32 residues under quinone and oxidative stress in S. aureus. Results: The QsrR regulon was strongly induced by quinones and oxidants, such as diamide, allicin, hypochlorous acid (HOCl), and AGXX® in S. aureus. Transcriptional induction of catE2 by quinones and oxidants required Cys4 and either Cys29' or Cys32' of QsrR for redox sensing in vivo. DNA-binding assays revealed that QsrR is reversibly inactivated by quinones and oxidants, depending on Cys4. Using mass spectrometry, QsrR was shown to sense diamide by an intermolecular thiol-disulfide switch, involving Cys4 and Cys29' of opposing subunits in vitro. In contrast, allicin caused S-thioallylation of all three Cys residues in QsrR, leading to its dissociation from the operator sequence. Further, the QsrR regulon confers resistance against quinones and oxidants, depending on Cys4 and either Cys29' or Cys32'. Conclusion and Innovation: QsrR was characterized as a two-Cys-type redox-sensing regulator, which senses the oxidative mode of quinones and strong oxidants, such as diamide, HOCl, and the antimicrobial compound allicin via different thiol switch mechanisms.
Collapse
Affiliation(s)
| | - Vu Van Loi
- Institute of Biology-Microbiology; Berlin, Germany
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry; Freie Universität Berlin, Berlin, Germany
| | - Martin Gruhlke
- Department of Plant Physiology, RWTH Aachen University, Aachen, Germany
| | - Christoph Weise
- Institute of Chemistry and Biochemistry; Freie Universität Berlin, Berlin, Germany
| | | |
Collapse
|
6
|
McLaughlin M, Hershey DM, Reyes Ruiz LM, Fiebig A, Crosson S. A cryptic transcription factor regulates Caulobacter adhesin development. PLoS Genet 2022; 18:e1010481. [PMID: 36315598 PMCID: PMC9648850 DOI: 10.1371/journal.pgen.1010481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/10/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Alphaproteobacteria commonly produce an adhesin that is anchored to the exterior of the envelope at one cell pole. In Caulobacter crescentus this adhesin, known as the holdfast, facilitates attachment to solid surfaces and cell partitioning to air-liquid interfaces. An ensemble of two-component signal transduction (TCS) proteins controls C. crescentus holdfast biogenesis by indirectly regulating expression of HfiA, a potent inhibitor of holdfast synthesis. We performed a genetic selection to discover direct hfiA regulators that function downstream of the adhesion TCS system and identified rtrC, a hypothetical gene. rtrC transcription is directly activated by the adhesion TCS regulator, SpdR. Though its primary structure bears no resemblance to any defined protein family, RtrC binds and regulates dozens of sites on the C. crescentus chromosome via a pseudo-palindromic sequence. Among these binding sites is the hfiA promoter, where RtrC functions to directly repress transcription and thereby activate holdfast development. Either RtrC or SpdR can directly activate transcription of a second hfiA repressor, rtrB. Thus, environmental regulation of hfiA transcription by the adhesion TCS system is subject to control by an OR-gated type I coherent feedforward loop; these regulatory motifs are known to buffer gene expression against fluctuations in regulating signals. We have further assessed the functional role of rtrC in holdfast-dependent processes, including surface adherence to a cellulosic substrate and formation of pellicle biofilms at air-liquid interfaces. Strains harboring insertional mutations in rtrC have a diminished adhesion profile in a competitive cheesecloth binding assay and a reduced capacity to colonize pellicle biofilms in select media conditions. Our results add to an emerging understanding of the regulatory topology and molecular components of a complex bacterial cell adhesion control system.
Collapse
Affiliation(s)
- Maeve McLaughlin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - David M. Hershey
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Leila M. Reyes Ruiz
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
7
|
Structure-based molecular characterization of the YetL transcription factor from Bacillus subtilis. Biochem Biophys Res Commun 2022; 607:146-151. [DOI: 10.1016/j.bbrc.2022.03.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/22/2022]
|
8
|
Meireles DA, da Silva Neto JF, Domingos RM, Alegria TGP, Santos LCM, Netto LES. Ohr - OhrR, a neglected and highly efficient antioxidant system: Structure, catalysis, phylogeny, regulation, and physiological roles. Free Radic Biol Med 2022; 185:6-24. [PMID: 35452809 DOI: 10.1016/j.freeradbiomed.2022.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/09/2022] [Accepted: 04/02/2022] [Indexed: 12/24/2022]
Abstract
Ohrs (organic hydroperoxide resistance proteins) are antioxidant enzymes that play central roles in the response of microorganisms to organic peroxides. Here, we describe recent advances in the structure, catalysis, phylogeny, regulation, and physiological roles of Ohr proteins and of its transcriptional regulator, OhrR, highlighting their unique features. Ohr is extremely efficient in reducing fatty acid peroxides and peroxynitrite, two oxidants relevant in host-pathogen interactions. The highly reactive Cys residue of Ohr, named peroxidatic Cys (Cp), composes together with an arginine and a glutamate the catalytic triad. The catalytic cycle of Ohrs involves a condensation between a sulfenic acid (Cp-SOH) and the thiol of the second conserved Cys, leading to the formation of an intra-subunit disulfide bond, which is then reduced by dihydrolipoamide or lipoylated proteins. A structural switch takes place during catalysis, with the opening and closure of the active site by the so-called Arg-loop. Ohr is part of the Ohr/OsmC super-family that also comprises OsmC and Ohr-like proteins. Members of the Ohr, OsmC and Ohr-like subgroups present low sequence similarities among themselves, but share a high structural conservation, presenting two Cys residues in their active site. The pattern of gene expression is also distinct among members of the Ohr/OsmC subfamilies. The expression of ohr genes increases upon organic hydroperoxides treatment, whereas the signals for the upregulation of osmC are entry into the stationary phase and/or osmotic stress. For many ohr genes, the upregulation by organic hydroperoxides is mediated by OhrR, a Cys-based transcriptional regulator that only binds to its target DNAs in its reduced state. Since Ohrs and OhrRs are involved in virulence of some microorganisms and are absent in vertebrate and vascular plants, they may represent targets for novel therapeutic approaches based on the disruption of this key bacterial organic peroxide defense system.
Collapse
Affiliation(s)
- Diogo A Meireles
- Laboratório de Fisiologia e Bioquímica de Microrganismos (LFBM) da Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - José F da Silva Neto
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Brazil
| | | | - Thiago G P Alegria
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Lene Clara M Santos
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Luis Eduardo S Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil.
| |
Collapse
|
9
|
Xia P, Dutta A, Gupta K, Batish M, Parashar V. Structural basis of cyclic oligoadenylate binding to the transcription factor Csa3 outlines cross talk between type III and type I CRISPR systems. J Biol Chem 2022; 298:101591. [PMID: 35038453 PMCID: PMC8844856 DOI: 10.1016/j.jbc.2022.101591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/28/2023] Open
Abstract
RNA interference by type III CRISPR systems results in the synthesis of cyclic oligoadenylate (cOA) second messengers, which are known to bind and regulate various CARF domain-containing nuclease receptors. The CARF domain-containing Csa3 family of transcriptional factors associated with the DNA-targeting type I CRISPR systems regulate expression of various CRISPR and DNA repair genes in many prokaryotes. In this study, we extend the known receptor repertoire of cOA messengers to include transcriptional factors by demonstrating specific binding of cyclic tetra-adenylate (cA4) to Saccharolobus solfataricus Csa3 (Csa3Sso). Our 2.0-Å resolution X-ray crystal structure of cA4-bound full-length Csa3Sso reveals the binding of its CARF domain to an elongated conformation of cA4. Using cA4 binding affinity analyses of Csa3Sso mutants targeting the observed Csa3Sso•cA4 structural interface, we identified a Csa3-specific cA4 binding motif distinct from a more widely conserved cOA-binding CARF motif. Using a rational surface engineering approach, we increased the cA4 binding affinity of Csa3Sso up to ∼145-fold over the wildtype, which has potential applications for future second messenger-driven CRISPR gene expression and editing systems. Our in-solution Csa3Sso structural analysis identified cA4-induced allosteric and asymmetric conformational rearrangement of its C-terminal winged helix-turn-helix effector domains, which could potentially be incompatible to DNA binding. However, specific in vitro binding of the purified Csa3Sso to its putative promoter (PCas4a) was found to be cA4 independent, suggesting a complex mode of Csa3Sso regulation. Overall, our results support cA4-and Csa3-mediated cross talk between type III and type I CRISPR systems.
Collapse
Affiliation(s)
- Pengjun Xia
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Anirudha Dutta
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| | - Kushol Gupta
- The Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mona Batish
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| | - Vijay Parashar
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA.
| |
Collapse
|
10
|
Permsirivisarn P, Yuenyao A, Pramanpol N, Charoenwattanasatien R, Suginta W, Chaiyen P, Pakotiprapha D. Mechanism of transcription regulation by Acinetobacter baumannii HpaR in the catabolism of p-hydroxyphenylacetate. FEBS J 2021; 289:3217-3240. [PMID: 34967505 DOI: 10.1111/febs.16340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022]
Abstract
HpaR is a transcription regulator in the MarR family that controls the expression of the gene cluster responsible for conversion of p-hydroxyphenylacetate to pyruvate and succinate for cellular metabolism. Here, we report the biochemical and structural characterization of Acinetobacter baumannii HpaR (AbHpaR) and its complex with cognate DNA. Our study revealed that AbHpaR binds upstream of the divergently transcribed hpaA gene and the meta-cleavage operon, as well as the hpaR gene, thereby repressing their transcription by blocking access of RNA polymerase. Structural analysis of AbHpaR-DNA complex revealed that the DNA binding specificity can be achieved via a combination of both direct and indirect DNA sequence readouts. DNA binding of AbHpaR is weakened by 3,4-dihydroxyphenylacetate (DHPA), which is the substrate of the meta-cleavage reactions; this likely leads to expression of the target genes. Based on our findings, we propose a model for how A. baumannii controls transcription of HPA-metabolizing genes, which highlights the independence of global catabolite repression and could be beneficial for metabolic engineering towards bioremediation applications.
Collapse
Affiliation(s)
- Permkun Permsirivisarn
- Doctor of Philosophy Program in Biochemistry (International Program), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Anan Yuenyao
- Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Nuttawan Pramanpol
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand.,National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | | | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Danaya Pakotiprapha
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
11
|
Charbonneau AA, Eckert DM, Gauvin CC, Lintner NG, Lawrence CM. Cyclic Tetra-Adenylate (cA 4) Recognition by Csa3; Implications for an Integrated Class 1 CRISPR-Cas Immune Response in Saccharolobus solfataricus. Biomolecules 2021; 11:biom11121852. [PMID: 34944496 PMCID: PMC8699464 DOI: 10.3390/biom11121852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 01/09/2023] Open
Abstract
Csa3 family transcription factors are ancillary CRISPR-associated proteins composed of N-terminal CARF domains and C-terminal winged helix-turn-helix domains. The activity of Csa3 transcription factors is thought to be controlled by cyclic oligoadenyate (cOA) second messengers produced by type III CRISPR-Cas surveillance complexes. Here we show that Saccharolobus solfataricus Csa3a recognizes cyclic tetra-adenylate (cA4) and that Csa3a lacks self-regulating "ring nuclease" activity present in some other CARF domain proteins. The crystal structure of the Csa3a/cA4 complex was also determined and the structural and thermodynamic basis for cA4 recognition are described, as are conformational changes in Csa3a associated with cA4 binding. We also characterized the effect of cA4 on recognition of putative DNA binding sites. Csa3a binds to putative promoter sequences in a nonspecific, cooperative and cA4-independent manner, suggesting a more complex mode of transcriptional regulation. We conclude the Csa3a/cA4 interaction represents a nexus between the type I and type III CRISPR-Cas systems present in S. solfataricus, and discuss the role of the Csa3/cA4 interaction in coordinating different arms of this integrated class 1 immune system to mount a synergistic, highly orchestrated immune response.
Collapse
Affiliation(s)
- Alexander A. Charbonneau
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (A.A.C.); (C.C.G.); (N.G.L.)
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
| | - Debra M. Eckert
- School of Medicine, University of Utah, Salt Lake City, UT 84112, USA;
| | - Colin C. Gauvin
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (A.A.C.); (C.C.G.); (N.G.L.)
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
| | - Nathanael G. Lintner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (A.A.C.); (C.C.G.); (N.G.L.)
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
| | - C. Martin Lawrence
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (A.A.C.); (C.C.G.); (N.G.L.)
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
- Correspondence: ; Tel.: +1-406-994-5382
| |
Collapse
|
12
|
Wu SH, Chan HH, Hsiao HC, Jou R. Primary Bedaquiline Resistance Among Cases of Drug-Resistant Tuberculosis in Taiwan. Front Microbiol 2021; 12:754249. [PMID: 34745058 PMCID: PMC8569445 DOI: 10.3389/fmicb.2021.754249] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022] Open
Abstract
Bedaquiline (BDQ), which is recommended for the treatment of drug-resistant tuberculosis (DR-TB), was introduced in Taiwan in 2014. Due to the alarming emergence of BDQ resistance, we conducted BDQ resistance analyses to strengthen our DR-TB management program. This retrospective population-based study included initial Mycobacterium tuberculosis isolates from 898 rifampicin-resistant (RR) or multidrug-resistant (MDR) TB cases never exposed to BDQ during 2008-2019. We randomly selected 65 isolates and identified 28 isolates with BDQ MIC<0.25μg/ml and MIC≥0.25μg/ml as the control and study groups, respectively. BDQ drug susceptibility testing (DST) using the MGIT960 system and Sanger sequencing of the atpE, Rv0678, and pepQ genes was conducted. Notably, 18 isolates with BDQ MIC=0.25μg/ml, 38.9% (7/18), and 61.1% (11/18) isolates were MGIT-BDQ resistant and susceptible, respectively. Consequently, we recommended redefining MIC=0.25μg/ml as an intermediate-susceptible category to resolve discordance between different DST methods. Of the 93 isolates, 22 isolates were MGIT-BDQ-resistant and 77.3% (17/22) of MGIT-BDQ-resistant isolates harbored Rv0678 mutations. After excluding 2 MGIT-BDQ-resistant isolates with borderline resistance (GU400growth control-GU100BDQ≤1day), 100% (15/15) harbored Rv0678 gene mutations, including seven novel mutations [g-14a, Ile80Ser (N=2), Phe100Tyr, Ala102Val, Ins g 181-182 frameshift mutation (N=2), Del 11-63 frameshift mutation, and whole gene deletion (N=2)]. Since the other 22.7% (5/22) MGIT-BDQ-resistant isolates with borderline resistance (GU400growth control-GU100BDQ≤1day) had no mutation in three analyzed genes. For isolates with phenotypic MGIT-BDQ borderline resistance, checking for GU differences or conducting genotypic analyses are suggested for ruling out BDQ resistance. In addition, we observed favorable outcomes among patients with BDQ-resistant isolates who received BDQ-containing regimens regardless of Rv0678 mutations. We concluded that based on MIC≥0.25μg/ml, 3.1% (28/898) of drug-resistant TB cases without BDQ exposure showed BDQ resistance, Rv0678 was not a robust marker of BDQ resistance, and its mutations were not associated with treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Ruwen Jou
- Taiwan Centers for Disease Control, Taipei, Taiwan
| |
Collapse
|
13
|
Organic Hydroperoxide Resistance Gene ohr (VPA1681) Confers Protection against Organic Peroxides in the Presence of Alkyl Hydroperoxide Reductase Genes in Vibrio parahaemolyticus. Appl Environ Microbiol 2021; 87:e0086121. [PMID: 34406834 DOI: 10.1128/aem.00861-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The marine foodborne enteropathogen Vibrio parahaemolyticus contains the chief organic peroxide reductases AphC1-AhpC2 and a putative organic hydroperoxide resistance enzyme (Ohr; VPA1681) against different peroxides. This study investigated the function of the Ohr under the presence of AhpC1-AhpC2 in this pathogen by gene mutation. Experimental results demonstrated that the ohr gene product was a weak scavenger of H2O2 only in the mutant strains that lacked the peroxide sensor/regulator oxyR and ahpC1-ahpC2 genes. The Ohr of V. parahaemolyticus was highly effective at scavenging organic peroxide, as demonstrated by assaying the defective changes in the Δohr mutant strain and determining the detoxifying activity of the purified recombinant V. parahaemolyticus Ohrvp protein in the reduced form. The Ohr and AhpC1-AhpC2 exhibited similar functions against organic peroxides; however, only the ΔahpC1ΔahpC2 mutant strain showed a significant increase in susceptibility to several disinfectants, organic acids, and antibiotics compared with the wild-type strain. The transcription of the ohr gene depended on exogenous cumene hydroperoxide (cumene) stress and was markedly enhanced in the ΔohrR (VPA1682) mutant strains. This study revealed the organic hydroperoxide reductase activity of the Ohr in V. parahaemolyticus, and its role probably depends on sophisticated regulation by OhrR. IMPORTANCE Vibrio parahaemolyticus is the most prevalent foodborne pathogen in Taiwan and some other coastal Asian countries, and its antioxidative activity contributes to the tolerance of this bacterium to different environmental stresses. This study reports on the function of the organic hydroperoxide resistance gene (ohr; VPA1681) and its gene regulator, ohrR (VPA1682), in this pathogen. The strain with the ohr gene had effective protection against organic peroxide, and the recombinant Ohrvp was active in its reduced form. The function of Ohr was significant mostly in strains in which the function of AhpC1-AhpC2 was limited. The ohrR repressor of the ohr gene was effective at low concentrations of organic peroxide. Other common Vibrio species that contain homologous ohr, ohrR, ahpC1, and ahpC2 genes, which are phylogenetically close to those of V. parahaemolyticus, may share similar functions to those revealed in this study.
Collapse
|
14
|
Fassler R, Zuily L, Lahrach N, Ilbert M, Reichmann D. The Central Role of Redox-Regulated Switch Proteins in Bacteria. Front Mol Biosci 2021; 8:706039. [PMID: 34277710 PMCID: PMC8282892 DOI: 10.3389/fmolb.2021.706039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/18/2021] [Indexed: 01/11/2023] Open
Abstract
Bacteria possess the ability to adapt to changing environments. To enable this, cells use reversible post-translational modifications on key proteins to modulate their behavior, metabolism, defense mechanisms and adaptation of bacteria to stress. In this review, we focus on bacterial protein switches that are activated during exposure to oxidative stress. Such protein switches are triggered by either exogenous reactive oxygen species (ROS) or endogenous ROS generated as by-products of the aerobic lifestyle. Both thiol switches and metal centers have been shown to be the primary targets of ROS. Cells take advantage of such reactivity to use these reactive sites as redox sensors to detect and combat oxidative stress conditions. This in turn may induce expression of genes involved in antioxidant strategies and thus protect the proteome against stress conditions. We further describe the well-characterized mechanism of selected proteins that are regulated by redox switches. We highlight the diversity of mechanisms and functions (as well as common features) across different switches, while also presenting integrative methodologies used in discovering new members of this family. Finally, we point to future challenges in this field, both in uncovering new types of switches, as well as defining novel additional functions.
Collapse
Affiliation(s)
- Rosi Fassler
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lisa Zuily
- Aix-Marseille University, CNRS, BIP, UMR 7281, IMM, Marseille, France
| | - Nora Lahrach
- Aix-Marseille University, CNRS, BIP, UMR 7281, IMM, Marseille, France
| | - Marianne Ilbert
- Aix-Marseille University, CNRS, BIP, UMR 7281, IMM, Marseille, France
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
15
|
Käppel S, Eggeling R, Rümpler F, Groth M, Melzer R, Theißen G. DNA-binding properties of the MADS-domain transcription factor SEPALLATA3 and mutant variants characterized by SELEX-seq. PLANT MOLECULAR BIOLOGY 2021; 105:543-557. [PMID: 33486697 PMCID: PMC7892521 DOI: 10.1007/s11103-020-01108-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/11/2020] [Indexed: 05/13/2023]
Abstract
We studied the DNA-binding profile of the MADS-domain transcription factor SEPALLATA3 and mutant variants by SELEX-seq. DNA-binding characteristics of SEPALLATA3 mutant proteins lead us to propose a novel DNA-binding mode. MIKC-type MADS-domain proteins, which function as essential transcription factors in plant development, bind as dimers to a 10-base-pair AT-rich motif termed CArG-box. However, this consensus motif cannot fully explain how the abundant family members in flowering plants can bind different target genes in specific ways. The aim of this study was to better understand the DNA-binding specificity of MADS-domain transcription factors. Also, we wanted to understand the role of a highly conserved arginine residue for binding specificity of the MADS-domain transcription factor family. Here, we studied the DNA-binding profile of the floral homeotic MADS-domain protein SEPALLATA3 by performing SELEX followed by high-throughput sequencing (SELEX-seq). We found a diverse set of bound sequences and could estimate the in vitro binding affinities of SEPALLATA3 to a huge number of different sequences. We found evidence for the preference of AT-rich motifs as flanking sequences. Whereas different CArG-boxes can act as SEPALLATA3 binding sites, our findings suggest that the preferred flanking motifs are almost always the same and thus mostly independent of the identity of the central CArG-box motif. Analysis of SEPALLATA3 proteins with a single amino acid substitution at position 3 of the DNA-binding MADS-domain further revealed that the conserved arginine residue, which has been shown to be involved in a shape readout mechanism, is especially important for the recognition of nucleotides at positions 3 and 8 of the CArG-box motif. This leads us to propose a novel DNA-binding mode for SEPALLATA3, which is different from that of other MADS-domain proteins known.
Collapse
Affiliation(s)
- Sandra Käppel
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743, Jena, Germany
| | - Ralf Eggeling
- Department of Computer Science, University of Helsinki, Pietari Kalmin katu 5, 00014, Helsinki, Finland
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, Sand 14, 72076, Tübingen, Germany
- Institute for Biomedical Informatics, University of Tübingen, Tübingen, Germany
| | - Florian Rümpler
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743, Jena, Germany
| | - Marco Groth
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Core Facility DNA Sequencing, Beutenbergstraße 11, 07745, Jena, Germany
| | - Rainer Melzer
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Günter Theißen
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743, Jena, Germany.
| |
Collapse
|
16
|
Structure-based functional analysis of a PadR transcription factor from Streptococcus pneumoniae and characteristic features in the PadR subfamily-2. Biochem Biophys Res Commun 2020; 532:251-257. [PMID: 32868077 DOI: 10.1016/j.bbrc.2020.08.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 11/24/2022]
Abstract
Since the first discovery of phenolic acid decarboxylase transcriptional regulator (PadR), its homologs have been identified mostly in bacterial species and constitute the PadR family. PadR family members commonly contain a winged helix-turn-helix (wHTH) motif and function as a transcription factor. However, the PadR family members are varied in terms of molecular size and structure. As a result, they are divided into PadR subfamily-1 and PadR subfamily-2. PadR subfamily-2 proteins have been reported in some pathogenic bacteria, including Listeria monocytogenes and Streptococcus pneumoniae, and implicated in drug resistance processes. Despite the growing numbers of known PadR family proteins and their critical functions in bacteria survival, biochemical and biophysical studies of the PadR subfamily-2 are limited. Here, we report the crystal structure of a PadR subfamily-2 member from Streptococcus pneumoniae (SpPadR) at a 2.40 Å resolution. SpPadR forms a dimer using its N-terminal and C-terminal helices. The two wHTH motifs of a SpPadR dimer expose their positively charged residues presumably to interact with DNA. Our structure-based mutational and biochemical study indicates that SpPadR specifically recognizes a palindromic nucleotide sequence upstream of its encoding region as a transcriptional regulator. Furthermore, comparative structural analysis of diverse PadR family members combined with a modeling study highlights the structural and regulatory features of SpPadR that are canonical to the PadR family or specific to the PadR subfamily-2.
Collapse
|
17
|
UbK is Involved in the Resistance of Bacillus Subtilis to Oxidative Stress. Curr Microbiol 2020; 77:4063-4071. [DOI: 10.1007/s00284-020-02239-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 10/01/2020] [Indexed: 01/08/2023]
|
18
|
CosR Is a Global Regulator of the Osmotic Stress Response with Widespread Distribution among Bacteria. Appl Environ Microbiol 2020; 86:AEM.00120-20. [PMID: 32169942 DOI: 10.1128/aem.00120-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Bacteria accumulate small, organic compounds called compatible solutes via uptake from the environment or biosynthesis from available precursors to maintain the turgor pressure of the cell in response to osmotic stress. The halophile Vibrio parahaemolyticus has biosynthesis pathways for the compatible solutes ectoine (encoded by ectABC-asp_ect) and glycine betaine (encoded by betIBA-proXWV), four betaine-carnitine-choline transporters (encoded by bccT1 to bccT4), and a second ProU transporter (encoded by proVWX). All of these systems are osmotically inducible with the exception of bccT2 Previously, it was shown that CosR, a MarR-type regulator, was a direct repressor of ectABC-asp_ect in Vibrio species. In this study, we investigated whether CosR has a broader role in the osmotic stress response. Expression analyses demonstrated that betIBA-proXWV, bccT1, bccT3, bccT4, and proVWX are repressed in low salinity. Examination of an in-frame cosR deletion mutant showed that expression of these systems is derepressed in the mutant at low salinity compared with the wild type. DNA binding assays demonstrated that purified CosR binds directly to the regulatory region of both biosynthesis systems and four transporters. In Escherichia coli green fluorescent protein (GFP) reporter assays, we demonstrated that CosR directly represses transcription of betIBA-proXWV, bccT3, and proVWX Similar to Vibrio harveyi, we showed betIBA-proXWV was directly activated by the quorum-sensing LuxR homolog OpaR, suggesting a conserved mechanism of regulation among Vibrio species. Phylogenetic analysis demonstrated that CosR is ancestral to the Vibrionaceae family, and bioinformatics analysis showed widespread distribution among Gammaproteobacteria in general. Incidentally, in Aliivibrio fischeri, Aliivibrio finisterrensis, Aliivibrio sifiae, and Aliivibrio wodanis, an unrelated MarR-type regulator gene named ectR was clustered with ectABC-asp, which suggests the presence of another novel ectoine biosynthesis regulator. Overall, these data show that CosR is a global regulator of osmotic stress response that is widespread among bacteria.IMPORTANCE Vibrio parahaemolyticus can accumulate compatible solutes via biosynthesis and transport, which allow the cell to survive in high salinity conditions. There is little need for compatible solutes under low salinity conditions, and biosynthesis and transporter systems need to be repressed. However, the mechanism(s) of this repression is not known. In this study, we showed that CosR played a major role in the regulation of multiple compatible solute systems. Phylogenetic analysis showed that CosR is present in all members of the Vibrionaceae family as well as numerous Gammaproteobacteria Collectively, these data establish CosR as a global regulator of the osmotic stress response that is widespread in bacteria, controlling many more systems than previously demonstrated.
Collapse
|
19
|
Hiraide Y, Yamamoto H, Kawajiri Y, Yamakawa H, Wada K, Fujita Y. Super-activator variants of the cyanobacterial transcriptional regulator ChlR essential for tetrapyrrole biosynthesis under low oxygen conditions. Biosci Biotechnol Biochem 2020; 84:481-490. [DOI: 10.1080/09168451.2019.1687281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
ABSTRACT
ChlR is a MarR-type transcriptional regulator that activates the transcription of the chlAII-ho2-hemN operon in response to low oxygen conditions in the cyanobacterium Synechocystis sp. PCC 6803. Upon exposure to low oxygen conditions, ChlR activates transcription of the operon that encodes enzymes critical to tetrapyrrole biosynthesis under low oxygen conditions. We previously identified a super-activator variant, D35H, of ChlR that constitutively activates transcription of the operon. To gain insight into the low-oxygen induced activation of ChlR, we obtained eight additional super-activator variants of ChlR including D35H from pseudorevertants of a chlAI-disrupted mutant. Most substitutions were located in the N-terminal region of ChlR. Mapping of the substituted amino acid residues provided valuable structural insights that uncovered the activation mechanism of ChlR.
Collapse
Affiliation(s)
- Yuto Hiraide
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Haruki Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yasushi Kawajiri
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hisanori Yamakawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kei Wada
- Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Yuichi Fujita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
20
|
The evolution of MarR family transcription factors as counter-silencers in regulatory networks. Curr Opin Microbiol 2020; 55:1-8. [PMID: 32044654 DOI: 10.1016/j.mib.2020.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/29/2019] [Accepted: 01/03/2020] [Indexed: 11/21/2022]
Abstract
Gene duplication facilitates the evolution of biological complexity, as one copy of a gene retains its original function while a duplicate copy can acquire mutations that would otherwise diminish fitness. Duplication has played a particularly important role in the evolution of regulatory networks by permitting novel regulatory interactions and responses to stimuli. The diverse MarR family of transcription factors (MFTFs) illustrate this concept, ranging from highly specific repressors of single operons to pleiotropic global regulators controlling hundreds of genes. MFTFs are often genetically and functionally linked to antimicrobial efflux systems. However, the SlyA MFTF lineage in the Enterobacteriaceae plays little or no role in regulating efflux but rather functions as transcriptional counter-silencers, which alleviate xenogeneic silencing of horizontally acquired genes and facilitate bacterial evolution by horizontal gene transfer. This review will explore recent advances in our understanding of MFTF traits that have contributed to their functional evolution.
Collapse
|
21
|
Tung QN, Busche T, Van Loi V, Kalinowski J, Antelmann H. The redox-sensing MarR-type repressor HypS controls hypochlorite and antimicrobial resistance in Mycobacterium smegmatis. Free Radic Biol Med 2020; 147:252-261. [PMID: 31887453 DOI: 10.1016/j.freeradbiomed.2019.12.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 11/16/2022]
Abstract
MarR-family transcription factors often control antioxidant enzymes, multidrug efflux pumps or virulence factors in bacterial pathogens and confer resistance towards oxidative stress and antibiotics. In this study, we have characterized the function and redox-regulatory mechanism of the MarR-type regulator HypS in Mycobacterium smegmatis. RNA-seq transcriptomics and qRT-PCR analyses of the hypS mutant revealed that hypS is autoregulated and represses transcription of the co-transcribed hypO gene which encodes a multidrug efflux pump. DNA binding activity of HypS to the 8-5-8 bp inverted repeat sequence upstream of the hypSO operon was inhibited under NaOCl stress. However, the HypSC58S mutant protein was not impaired in DNA-binding under NaOCl stress in vitro, indicating an important role of Cys58 in redox sensing of NaOCl stress. HypS was shown to be inactivated by Cys58-Cys58' intersubunit disulfide formation under HOCl stress, resulting in derepression of hypO transcription. Phenotype results revealed that the HypS regulon confers resistance towards HOCl, rifampicin and erythromycin stress. In conclusion, HypS was identified as a novel redox-sensitive repressor that contributes to mycobacterial resistance towards HOCl stress and antibiotics.
Collapse
Affiliation(s)
- Quach Ngoc Tung
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Tobias Busche
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195, Berlin, Germany; Center for Biotechnology (CeBiTec), Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Vu Van Loi
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Haike Antelmann
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195, Berlin, Germany.
| |
Collapse
|
22
|
Booth WT, Davis RR, Deora R, Hollis T. Structural mechanism for regulation of DNA binding of BpsR, a Bordetella regulator of biofilm formation, by 6-hydroxynicotinic acid. PLoS One 2019; 14:e0223387. [PMID: 31697703 PMCID: PMC6837509 DOI: 10.1371/journal.pone.0223387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022] Open
Abstract
Bordetella bacteria are respiratory pathogens of humans, birds, and livestock. Bordetella pertussis the causative agent of whopping cough remains a significant health issue. The transcriptional regulator, BpsR, represses a number of Bordetella genes relating to virulence, cell adhesion, cell motility, and nicotinic acid metabolism. DNA binding of BpsR is allosterically regulated by interaction with 6-hydroxynicotinic acid (6HNA), the first product in the nicotinic acid degradation pathway. To understand the mechanism of this regulation, we have determined the crystal structures of BpsR and BpsR in complex with 6HNA. The structures reveal that BpsR binding of 6HNA induces a conformational change in the protein to prevent DNA binding. We have also identified homologs of BpsR in other Gram negative bacteria in which the amino acids involved in recognition of 6HNA are conserved, suggesting a similar mechanism for regulating nicotinic acid degradation.
Collapse
Affiliation(s)
- William T. Booth
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Ryan R. Davis
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Rajendar Deora
- Department of Microbial Infection and Immunity, and Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Thomas Hollis
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
- * E-mail:
| |
Collapse
|
23
|
Kutnowski N, Shmulevich F, Davidov G, Shahar A, Bar-Zvi D, Eichler J, Zarivach R, Shaanan B. Specificity of protein-DNA interactions in hypersaline environment: structural studies on complexes of Halobacterium salinarum oxidative stress-dependent protein hsRosR. Nucleic Acids Res 2019; 47:8860-8873. [PMID: 31310308 PMCID: PMC7145548 DOI: 10.1093/nar/gkz604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/13/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022] Open
Abstract
Interactions between proteins and DNA are crucial for all biological systems. Many studies have shown the dependence of protein–DNA interactions on the surrounding salt concentration. How these interactions are maintained in the hypersaline environments that halophiles inhabit remains puzzling. Towards solving this enigma, we identified the DNA motif recognized by the Halobactrium salinarum ROS-dependent transcription factor (hsRosR), determined the structure of several hsRosR–DNA complexes and investigated the DNA-binding process under extreme high-salt conditions. The picture that emerges from this work contributes to our understanding of the principles underlying the interplay between electrostatic interactions and salt-mediated protein–DNA interactions in an ionic environment characterized by molar salt concentrations.
Collapse
Affiliation(s)
- Nitzan Kutnowski
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel
| | - Fania Shmulevich
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel
| | - Geula Davidov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel.,National Institute of Biotechnology in the Negev, Ben-Gurion University, Beer Sheva 8410510, Israel
| | - Anat Shahar
- Macromolecular Crystallography Research Center, National Institute of Biotechnology in the Negev, Ben-Gurion University, Beer Sheva 8410510, Israel
| | - Dudy Bar-Zvi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel
| | - Jerry Eichler
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel.,National Institute of Biotechnology in the Negev, Ben-Gurion University, Beer Sheva 8410510, Israel
| | - Boaz Shaanan
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel
| |
Collapse
|
24
|
Si M, Su T, Chen C, Wei Z, Gong Z, Li G. OsmC in Corynebacterium glutamicum was a thiol-dependent organic hydroperoxide reductase. Int J Biol Macromol 2019; 136:642-652. [PMID: 31195044 DOI: 10.1016/j.ijbiomac.2019.06.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/08/2019] [Accepted: 06/08/2019] [Indexed: 11/26/2022]
Abstract
Bacterial antioxidants play a vital role in the detoxification of exogenous peroxides. Several antioxidant defenses including low-molecular-weight thiols (LMWTs) and protective enzymes were developed to help the bacterium withstand the adverse stress. Although osmotically induced bacterial protein C (OsmC), classified as the organic hydroperoxide reductase (Ohr)/OsmC superfamily, has been demonstrated in some mycobacterial species, including M. tuberculosis and M. smegmatis, its physiological and biochemical functions in C. glutamicum remained elusive. Here we found the lack of C. glutamicum osmC gene resulted in decreased cell viability and increased intracellular reactive oxygen species accumulation under organic hydroperoxides (OHPs) stress conditions. The osmC expression was induced in the multiple antibiotic resistance regulator MarR-dependent manner by OHPs, and not by other oxidants or osmotic stress. Peroxide reductase activity showed that OsmC had a narrow range of substrates-only degrading OHPs, and detoxified OHPs mainly by linking the alkyl hydroperoxide reductase (AhpD) system (AhpD/dihydrolipoamide dehydrogenase (Lpd)/dihydrolipoamide acyltransferase (SucB)). Site-directed mutagenesis confirmed Cys48 was the peroxidatic cysteine, while Cys114 was the resolving Cys residue that formed an intramolecular disulfide bond with oxidized Cys48. Therefore, C. glutamicum OsmC was a thiol-dependent OHP reductase and played important role of protection against OHPs together with Ohr.
Collapse
Affiliation(s)
- Meiru Si
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China.
| | - Tao Su
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Can Chen
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China.
| | - Zengfan Wei
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Zhijin Gong
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Guizhi Li
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| |
Collapse
|
25
|
Sevilla E, Bes MT, González A, Peleato ML, Fillat MF. Redox-Based Transcriptional Regulation in Prokaryotes: Revisiting Model Mechanisms. Antioxid Redox Signal 2019; 30:1651-1696. [PMID: 30073850 DOI: 10.1089/ars.2017.7442] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE The successful adaptation of microorganisms to ever-changing environments depends, to a great extent, on their ability to maintain redox homeostasis. To effectively maintain the redox balance, cells have developed a variety of strategies mainly coordinated by a battery of transcriptional regulators through diverse mechanisms. Recent Advances: This comprehensive review focuses on the main mechanisms used by major redox-responsive regulators in prokaryotes and their relationship with the different redox signals received by the cell. An overview of the corresponding regulons is also provided. CRITICAL ISSUES Some regulators are difficult to classify since they may contain several sensing domains and respond to more than one signal. We propose a classification of redox-sensing regulators into three major groups. The first group contains one-component or direct regulators, whose sensing and regulatory domains are in the same protein. The second group comprises the classical two-component systems involving a sensor kinase that transduces the redox signal to its DNA-binding partner. The third group encompasses a heterogeneous group of flavin-based photosensors whose mechanisms are not always fully understood and are often involved in more complex regulatory networks. FUTURE DIRECTIONS Redox-responsive transcriptional regulation is an intricate process as identical signals may be sensed and transduced by different transcription factors, which often interplay with other DNA-binding proteins with or without regulatory activity. Although there is much information about some key regulators, many others remain to be fully characterized due to the instability of their clusters under oxygen. Understanding the mechanisms and the regulatory networks operated by these regulators is essential for the development of future applications in biotechnology and medicine.
Collapse
Affiliation(s)
- Emma Sevilla
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - María Teresa Bes
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - Andrés González
- 2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain.,4 Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - María Luisa Peleato
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - María F Fillat
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| |
Collapse
|
26
|
Gong Z, Li H, Cai Y, Stojkoska A, Xie J. Biology of MarR family transcription factors and implications for targets of antibiotics against tuberculosis. J Cell Physiol 2019; 234:19237-19248. [PMID: 31012115 DOI: 10.1002/jcp.28720] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022]
Abstract
The emergence of multidrug resistant (MDR) Mycobacterium tuberculosis strains and increased incidence of HIV coinfection fueled the difficulty in controlling tuberculosis (TB). MarR (multiple antibiotic resistance regulator) family transcription factors can regulate marRAB operon and are involved in resistance to multiple environmental stresses. We have summarized the structure, function, distribution, and regulation of the MarR family proteins, as well as their implications for novel targets for antibiotics, especially for tuberculosis.
Collapse
Affiliation(s)
- Zhen Gong
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Hui Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yuhua Cai
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Andrea Stojkoska
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
27
|
Lee C, Kim MI, Park J, Hong M. Structure-based molecular characterization and regulatory mechanism of the LftR transcription factor from Listeria monocytogenes: Conformational flexibilities and a ligand-induced regulatory mechanism. PLoS One 2019; 14:e0215017. [PMID: 30970033 PMCID: PMC6457526 DOI: 10.1371/journal.pone.0215017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/25/2019] [Indexed: 12/28/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that causes listeriosis and can lead to serious clinical problems, such as sepsis and meningitis, in immunocompromised patients and neonates. Due to a growing number of antibiotic-resistant L. monocytogenes strains, listeriosis can steadily become refractory to antibiotic treatment. To develop novel therapeutics against listeriosis, the drug resistance mechanism of L. monocytogenes needs to be determined. The transcription factor LftR from L. monocytogenes regulates the expression of a putative multidrug resistance transporter, LieAB, and belongs to the PadR-2 subfamily of the PadR family. Despite the functional significance of LftR, our molecular understanding of the transcriptional regulatory mechanism for LftR and even for the PadR-2 subfamily is highly limited. Here, we report the crystal structure of LftR, which forms a dimer and protrudes two winged helix-turn-helix motifs for DNA recognition. Structure-based mutational and comparative analyses showed that LftR interacts with operator DNA through a LftR-specific mode as well as a common mechanism used by the PadR family. Moreover, the LftR dimer harbors one intersubunit cavity in the center of the dimeric structure as a putative ligand-binding site. Finally, conformational flexibilities in the LftR dimer and in the cavity suggest that a ligand-induced regulatory mechanism would be used by the LftR transcription factor.
Collapse
Affiliation(s)
- Choongdeok Lee
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Meong Il Kim
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Jaewan Park
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Minsun Hong
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
- * E-mail:
| |
Collapse
|
28
|
Will WR, Brzovic P, Le Trong I, Stenkamp RE, Lawrenz MB, Karlinsey JE, Navarre WW, Main-Hester K, Miller VL, Libby SJ, Fang FC. The Evolution of SlyA/RovA Transcription Factors from Repressors to Countersilencers in Enterobacteriaceae. mBio 2019; 10:e00009-19. [PMID: 30837332 PMCID: PMC6401476 DOI: 10.1128/mbio.00009-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/29/2019] [Indexed: 02/02/2023] Open
Abstract
Gene duplication and subsequent evolutionary divergence have allowed conserved proteins to develop unique roles. The MarR family of transcription factors (TFs) has undergone extensive duplication and diversification in bacteria, where they act as environmentally responsive repressors of genes encoding efflux pumps that confer resistance to xenobiotics, including many antimicrobial agents. We have performed structural, functional, and genetic analyses of representative members of the SlyA/RovA lineage of MarR TFs, which retain some ancestral functions, including repression of their own expression and that of divergently transcribed multidrug efflux pumps, as well as allosteric inhibition by aromatic carboxylate compounds. However, SlyA and RovA have acquired the ability to countersilence horizontally acquired genes, which has greatly facilitated the evolution of Enterobacteriaceae by horizontal gene transfer. SlyA/RovA TFs in different species have independently evolved novel regulatory circuits to provide the enhanced levels of expression required for their new role. Moreover, in contrast to MarR, SlyA is not responsive to copper. These observations demonstrate the ability of TFs to acquire new functions as a result of evolutionary divergence of both cis-regulatory sequences and in trans interactions with modulatory ligands.IMPORTANCE Bacteria primarily evolve via horizontal gene transfer, acquiring new traits such as virulence and antibiotic resistance in single transfer events. However, newly acquired genes must be integrated into existing regulatory networks to allow appropriate expression in new hosts. This is accommodated in part by the opposing mechanisms of xenogeneic silencing and countersilencing. An understanding of these mechanisms is necessary to understand the relationship between gene regulation and bacterial evolution. Here we examine the functional evolution of an important lineage of countersilencers belonging to the ancient MarR family of classical transcriptional repressors. We show that although members of the SlyA lineage retain some ancestral features associated with the MarR family, their cis-regulatory sequences have evolved significantly to support their new function. Understanding the mechanistic requirements for countersilencing is critical to understanding the pathoadaptation of emerging pathogens and also has practical applications in synthetic biology.
Collapse
Affiliation(s)
- W Ryan Will
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Peter Brzovic
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Isolde Le Trong
- Department of Biological Structure, University of Washington, Seattle, Washington, USA
| | - Ronald E Stenkamp
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Department of Biological Structure, University of Washington, Seattle, Washington, USA
| | - Matthew B Lawrenz
- Department of Microbiology and Immunology and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Joyce E Karlinsey
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - William W Navarre
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Kara Main-Hester
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Virginia L Miller
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Stephen J Libby
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Ferric C Fang
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
29
|
Varela PF, Velours C, Aumont-Niçaise M, Pineau B, Legrand P, Poquet I. Biophysical and structural characterization of a zinc-responsive repressor of the MarR superfamily. PLoS One 2019; 14:e0210123. [PMID: 30753183 PMCID: PMC6372160 DOI: 10.1371/journal.pone.0210123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/17/2018] [Indexed: 11/18/2022] Open
Abstract
The uptake of zinc, which is vital in trace amounts, is tightly controlled in bacteria. For this control, bacteria of the Streptococcaceae group use a Zn(II)-binding repressor named ZitR in lactococci and AdcR in streptococci, while other bacteria use a Zur protein of the Ferric uptake regulator (Fur) superfamily. ZitR and AdcR proteins, characterized by a winged helix-turn-helix DNA-binding domain, belong to the multiple antibiotic resistance (MarR) superfamily, where they form a specific group of metallo-regulators. Here, one such Zn(II)-responsive repressor, ZitR of Lactococcus lactis subspecies cremoris strain MG1363, is characterized. Size Exclusion Chromatography-coupled to Multi Angle Light Scattering, Circular Dichroism and Isothermal Titration Calorimetry show that purified ZitR is a stable dimer complexed to Zn(II), which is able to bind its two palindromic operator sites on DNA fragments. The crystal structure of ZitR holo-form (Zn(II)4-ZitR2), has been determined at 2.8 Å resolution. ZitR is the fourth member of the MarR metallo-regulator subgroup whose structure has been determined. The folding of ZitR/AdcR metallo-proteins is highly conserved between both subspecies (cremoris or lactis) in the Lactococcus lactis species and between species (Lactococcus lactis and Streptococcus pneumoniae or pyogenes) in the Streptococcaceae group. It is also similar to the folding of other MarR members, especially in the DNA-binding domain. Our study contributes to better understand the biochemical and structural properties of metallo-regulators in the MarR superfamily.
Collapse
Affiliation(s)
- Paloma Fernández Varela
- Synchrotron SOLEIL, L’Orme des Merisiers, Gif-sur-Yvette, France
- Laboratoire d’Enzymologie et Biochimie Structurales, CNRS Gif-sur-Yvette, France
- * E-mail:
| | | | - Magali Aumont-Niçaise
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Université Paris-Sud, Orsay, France
| | - Blandine Pineau
- Synchrotron SOLEIL, L’Orme des Merisiers, Gif-sur-Yvette, France
| | - Pierre Legrand
- Synchrotron SOLEIL, L’Orme des Merisiers, Gif-sur-Yvette, France
| | - Isabelle Poquet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
30
|
Martin HA, Porter KE, Vallin C, Ermi T, Contreras N, Pedraza-Reyes M, Robleto EA. Mfd protects against oxidative stress in Bacillus subtilis independently of its canonical function in DNA repair. BMC Microbiol 2019; 19:26. [PMID: 30691388 PMCID: PMC6350366 DOI: 10.1186/s12866-019-1394-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/16/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Previous reports showed that mutagenesis in nutrient-limiting conditions is dependent on Mfd in Bacillus subtilis. Mfd initiates one type of transcription-coupled repair (TCR); this type of repair is known to target bulky lesions, like those associated with UV exposure. Interestingly, the roles of Mfd in repair of oxidative-promoted DNA damage and regulation of transcription differ. Here, we used a genetic approach to test whether Mfd protected B. subtilis from exposure to two different oxidants. RESULTS Wild-type cells survived tert-butyl hydroperoxide (t-BHP) exposure significantly better than Mfd-deficient cells. This protective effect was independent of UvrA, a component of the canonical TCR/nucleotide excision repair (NER) pathway. Further, our results suggest that Mfd and MutY, a DNA glycosylase that processes 8-oxoG DNA mismatches, work together to protect cells from lesions generated by oxidative damage. We also tested the role of Mfd in mutagenesis in starved cells exposed to t-BHP. In conditions of oxidative stress, Mfd and MutY may work together in the formation of mutations. Unexpectedly, Mfd increased survival when cells were exposed to the protein oxidant diamide. Under this type of oxidative stress, cells survival was not affected by MutY or UvrA. CONCLUSIONS These results are significant because they show that Mfd mediates error-prone repair of DNA and protects cells against oxidation of proteins by affecting gene expression; Mfd deficiency resulted in increased gene expression of the OhrR repressor which controls the cellular response to organic peroxide exposure. These observations point to Mfd functioning beyond a DNA repair factor in cells experiencing oxidative stress.
Collapse
Affiliation(s)
- Holly Anne Martin
- School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, Nevada, 89154, USA
| | - Katelyn E Porter
- School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, Nevada, 89154, USA
| | - Carmen Vallin
- School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, Nevada, 89154, USA
| | - Tatiana Ermi
- School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, Nevada, 89154, USA
| | - Natalie Contreras
- School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, Nevada, 89154, USA
| | - Mario Pedraza-Reyes
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, P.O. Box 187, Gto. 36050, Guanajuato, Mexico
| | - Eduardo A Robleto
- School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, Nevada, 89154, USA.
| |
Collapse
|
31
|
CosR is an oxidative stress sensing a MarR-type transcriptional repressor in Corynebacterium glutamicum. Biochem J 2018; 475:3979-3995. [PMID: 30478154 DOI: 10.1042/bcj20180677] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/12/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023]
Abstract
The MarR family is unique to both bacteria and archaea. The members of this family, one of the most prevalent families of transcriptional regulators in bacteria, enable bacteria to adapt to changing environmental conditions, such as the presence of antibiotics, toxic chemicals, or reactive oxygen species (ROS), mainly by thiol-disulfide switches. Although the genome of Corynebacterium glutamicum encodes a large number of the putative MarR-type transcriptional regulators, their physiological and biochemical functions have so far been limited to only two proteins, regulator of oxidative stress response RosR and quinone oxidoreductase regulator QosR. Here, we report that the ncgl2617 gene (cosR) of C. glutamicum encoding an MarR-type transcriptional regulator plays an important role in oxidative stress resistance. The cosR null mutant is found to be more resistant to various oxidants and antibiotics, accompanied by a decrease in ROS production and protein carbonylation levels under various stresses. Protein biochemical function analysis shows that two Cys residues presenting at 49 and 62 sites in CosR are redox-active. They form intermolecular disulfide bonds in CosR under oxidative stress. This CosR oxidation leads to its dissociation from promoter DNA, depression of the target DNA, and increased oxidative stress resistance of C. glutamicum. Together, the results reveal that CosR is a redox-sensitive regulator that senses peroxide stress to mediate oxidative stress resistance in C. glutamicum.
Collapse
|
32
|
Capdevila DA, Huerta F, Edmonds KA, Le MT, Wu H, Giedroc DP. Tuning site-specific dynamics to drive allosteric activation in a pneumococcal zinc uptake regulator. eLife 2018; 7:37268. [PMID: 30328810 PMCID: PMC6224198 DOI: 10.7554/elife.37268] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 10/16/2018] [Indexed: 11/25/2022] Open
Abstract
MarR (multiple antibiotic resistance repressor) family proteins are bacterial repressors that regulate transcription in response to a wide range of chemical signals. Although specific features of MarR family function have been described, the role of atomic motions in MarRs remains unexplored thus limiting insights into the evolution of allostery in this ubiquitous family of repressors. Here, we provide the first experimental evidence that internal dynamics play a crucial functional role in MarR proteins. Streptococcus pneumoniae AdcR (adhesin-competence repressor) regulates ZnII homeostasis and ZnII functions as an allosteric activator of DNA binding. ZnII coordination triggers a transition from somewhat independent domains to a more compact structure. We identify residues that impact allosteric activation on the basis of ZnII-induced perturbations of atomic motions over a wide range of timescales. These findings appear to reconcile the distinct allosteric mechanisms proposed for other MarRs and highlight the importance of conformational dynamics in biological regulation.
Collapse
Affiliation(s)
| | - Fidel Huerta
- Department of Chemistry, Indiana University, Bloomington, United States.,Graduate Program in Biochemistry, Indiana University, Bloomington, United States
| | | | - My Tra Le
- Department of Chemistry, Indiana University, Bloomington, United States
| | - Hongwei Wu
- Department of Chemistry, Indiana University, Bloomington, United States
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, United States.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, United States
| |
Collapse
|
33
|
Structure-specific DNA replication-fork recognition directs helicase and replication restart activities of the PriA helicase. Proc Natl Acad Sci U S A 2018; 115:E9075-E9084. [PMID: 30201718 DOI: 10.1073/pnas.1809842115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA replication restart, the essential process that reinitiates prematurely terminated genome replication reactions, relies on exquisitely specific recognition of abandoned DNA replication-fork structures. The PriA DNA helicase mediates this process in bacteria through mechanisms that remain poorly defined. We report the crystal structure of a PriA/replication-fork complex, which resolves leading-strand duplex DNA bound to the protein. Interaction with PriA unpairs one end of the DNA and sequesters the 3'-most nucleotide from the nascent leading strand into a conserved protein pocket. Cross-linking studies reveal a surface on the winged-helix domain of PriA that binds to parental duplex DNA. Deleting the winged-helix domain alters PriA's structure-specific DNA unwinding properties and impairs its activity in vivo. Our observations lead to a model in which coordinated parental-, leading-, and lagging-strand DNA binding provide PriA with the structural specificity needed to act on abandoned DNA replication forks.
Collapse
|
34
|
Gene Regulation by Redox-Sensitive Burkholderia thailandensis OhrR and Its Role in Bacterial Killing of Caenorhabditis elegans. Infect Immun 2018; 86:IAI.00322-18. [PMID: 29967095 DOI: 10.1128/iai.00322-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/26/2018] [Indexed: 12/16/2022] Open
Abstract
Fatty acid hydroperoxides are involved in host-pathogen interactions. In both plants and mammals, polyunsaturated fatty acids are liberated during infection and enzymatically oxidized to the corresponding toxic hydroperoxides during the defensive oxidative burst that is designed to thwart the infection. The bacterial transcription factor OhrR (organic hydroperoxide reductase regulator) is oxidized by organic hydroperoxides, as a result of which the ohr gene encoding organic hydroperoxide reductase is induced. This enzyme converts the hydroperoxides to less toxic alcohols. We show here that OhrR from Burkholderia thailandensis represses expression of ohr Gene expression is induced by cumene hydroperoxide and to a lesser extent by inorganic oxidants; however, Ohr contributes to degradation only of the organic hydroperoxide. B. thailandensis OhrR, which binds specific sites in both ohr and ohrR promoters, as evidenced by DNase I footprinting, belongs to the 2-Cys subfamily of OhrR proteins, and its oxidation leads to reversible disulfide bond formation between conserved N- and C-terminal cysteines in separate monomers. Oxidation of the N-terminal Cys is sufficient for attenuation of DNA binding in vitro, with complete restoration of DNA binding occurring on addition of a reducing agent. Surprisingly, both overexpression of ohr and deletion of ohr results in enhanced survival on exposure to organic hydroperoxide in vitro While Δohr cells are more virulent in a Caenorhabditis elegans model of infection, ΔohrR cells are less so. Taken together, our data suggest that B. thailandensis OhrR has several unconventional features and that both OhrR and organic hydroperoxides may contribute to virulence.
Collapse
|
35
|
The 3-D structure of VNG0258H/RosR - A haloarchaeal DNA-binding protein in its ionic shell. J Struct Biol 2018; 204:191-198. [PMID: 30110657 DOI: 10.1016/j.jsb.2018.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/05/2018] [Accepted: 08/09/2018] [Indexed: 11/21/2022]
Abstract
Protein-DNA interactions are highly dependent on salt concentration. To gain insight into how such interactions are maintained in the highly saline cytoplasm of halophilic archaea, we determined the 3-D structure of VNG0258H/RosR, the first haloarchaeal DNA-binding protein from the extreme halophilic archaeon Halobactrium salinarum. It is a dimeric winged-helix-turn-helix (wHTH) protein with unique features due to adaptation to the halophilic environment. As ions are major players in DNA binding processes, particularly in halophilic environments, we investigated the solution structure of the ionic envelope and located anions in the first shell around the protein in the crystal using anomalous scattering. Anions that were found to be tightly bound to residues in the positively charged DNA-binding site would probably be released upon DNA binding and will thus make significant contribution to the driving force of the binding process. Unexpectedly, ions were also found in a buried internal cavity connected to the external medium by a tunnel. Our structure lays a solid groundwork for future structural, computational and biochemical studies on complexes of the protein with cognate DNA sequences, with implications to protein-DNA interactions in hyper-saline environments.
Collapse
|
36
|
Sun M, Lyu M, Wen Y, Song Y, Li J, Chen Z. Organic Peroxide-Sensing Repressor OhrR Regulates Organic Hydroperoxide Stress Resistance and Avermectin Production in Streptomyces avermitilis. Front Microbiol 2018; 9:1398. [PMID: 30008703 PMCID: PMC6034001 DOI: 10.3389/fmicb.2018.01398] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 06/07/2018] [Indexed: 11/13/2022] Open
Abstract
The bacterium Streptomyces avermitilis is an industrial-scale producer of avermectins, which are important anthelmintic agents widely used in agriculture, veterinary medicine, and human medicine. During the avermectin fermentation process, S. avermitilis is exposed to organic peroxides generated by aerobic respiration. We investigated the role of MarR-family transcriptional regulator OhrR in oxidative stress response and avermectin production in S. avermitilis. The S. avermitilis genome encodes two organic hydroperoxide resistance proteins: OhrB1 and OhrB2. OhrB2 is the major resistance protein in organic peroxide stress responses. In the absence of organic peroxide, the reduced form of OhrR represses the expression of ohrB2 gene by binding to the OhrR box in the promoter region. In the presence of organic peroxide, the oxidized form of OhrR dissociates from the OhrR box and the expression of ohrB2 is increased by derepression. OhrR also acts as a repressor to regulate its own expression. An ohrR-deletion mutant (termed DohrR) displayed enhanced avermectin production. Our findings demonstrate that OhrR in S. avermitilis represses avermectin production by regulating the expression of pathway-specific regulatory gene aveR. OhrR also plays a regulatory role in glycolysis and the pentose phosphate (PP) pathway by negatively controlling the expression of pykA2 and ctaB/tkt2-tal2-zwf2-opcA2-pgl.
Collapse
Affiliation(s)
- Meng Sun
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Mengya Lyu
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Wen
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuan Song
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jilun Li
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhi Chen
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
37
|
Cogan DP, Baraquet C, Harwood CS, Nair SK. Structural basis of transcriptional regulation by CouR, a repressor of coumarate catabolism, in Rhodopseudomonas palustris. J Biol Chem 2018; 293:11727-11735. [PMID: 29794028 DOI: 10.1074/jbc.ra118.003561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/21/2018] [Indexed: 12/13/2022] Open
Abstract
The MarR family transcriptional regulator CouR, from the soil bacterium Rhodopseudomonas palustris CGA009, has recently been shown to negatively regulate a p-coumarate catabolic operon. Unlike most characterized MarR repressors that respond to small metabolites at concentrations in the millimolar range, repression by CouR is alleviated by the 800-Da ligand p-coumaroyl-CoA with high affinity and specificity. Here we report the crystal structures of ligand-free CouR as well as the complex with p-coumaroyl-CoA, each to 2.1-Å resolution, and the 2.85-Å resolution cocrystal structure of CouR bound to an oligonucleotide bearing the cognate DNA operator sequence. In combination with binding experiments that uncover specific residues important for ligand and DNA recognition, these structures provide glimpses of a MarR family repressor in all possible states, providing an understanding of the molecular basis of DNA binding and the conformation alterations that accompany ligand-induced dissociation for activation of the operon.
Collapse
Affiliation(s)
- Dillon P Cogan
- From the Department of Biochemistry.,Institute for Genomic Biology, and
| | - Claudine Baraquet
- the Department of Microbiology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Caroline S Harwood
- the Department of Microbiology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Satish K Nair
- From the Department of Biochemistry, .,Institute for Genomic Biology, and.,Center for Biophysics and Computational Biology, University of Illinois at Urbana Champaign, Urbana, Illinois 61801 and
| |
Collapse
|
38
|
Lee SJ, Kim DG, Lee KY, Koo JS, Lee BJ. Regulatory mechanisms of thiol-based redox sensors: lessons learned from structural studies on prokaryotic redox sensors. Arch Pharm Res 2018; 41:583-593. [PMID: 29777359 DOI: 10.1007/s12272-018-1036-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/01/2018] [Indexed: 01/29/2023]
Abstract
Oxidative stresses, such as reactive oxygen species, reactive electrophilic species, reactive nitrogen species, and reactive chlorine species, can damage cellular components, leading to cellular malfunction and death. In response to oxidative stress, bacteria have evolved redox-responsive sensors that enable them to simultaneously monitor and eradicate potential oxidative stress. Specifically, redox-sensing transcription regulators react to oxidative stress by means of modifying the thiol groups of cysteine residues, functioning as part of an efficient survival mechanism for many bacteria. In general, oxidative molecules can induce changes in the three-dimensional structures of redox sensors, which, in turn, affects the transcription of specific genes in detoxification pathways and defense mechanisms. Moreover, pathogenic bacteria utilize these redox sensors for adaptation and to evade subsequent oxidative attacks from host immune defense. For this reason, the redox sensors of pathogenic bacteria are potential antibiotic targets. Understanding the regulatory mechanisms of thiol-based redox sensors in bacteria will provide insight and knowledge into the discovery of new antibiotics.
Collapse
Affiliation(s)
- Sang Jae Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Dong-Gyun Kim
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Kyu-Yeon Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Ji Sung Koo
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
39
|
Glanville DG, Han L, Maule AF, Woodacre A, Thanki D, Abdullah IT, Morrissey JA, Clarke TB, Yesilkaya H, Silvaggi NR, Ulijasz AT. RitR is an archetype for a novel family of redox sensors in the streptococci that has evolved from two-component response regulators and is required for pneumococcal colonization. PLoS Pathog 2018; 14:e1007052. [PMID: 29750817 PMCID: PMC5965902 DOI: 10.1371/journal.ppat.1007052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/23/2018] [Accepted: 04/23/2018] [Indexed: 01/07/2023] Open
Abstract
To survive diverse host environments, the human pathogen Streptococcus pneumoniae must prevent its self-produced, extremely high levels of peroxide from reacting with intracellular iron. However, the regulatory mechanism(s) by which the pneumococcus accomplishes this balance remains largely enigmatic, as this pathogen and other related streptococci lack all known redox-sensing transcription factors. Here we describe a two-component-derived response regulator, RitR, as the archetype for a novel family of redox sensors in a subset of streptococcal species. We show that RitR works to both repress iron transport and enable nasopharyngeal colonization through a mechanism that exploits a single cysteine (Cys128) redox switch located within its linker domain. Biochemical experiments and phylogenetics reveal that RitR has diverged from the canonical two-component virulence regulator CovR to instead dimerize and bind DNA only upon Cys128 oxidation in air-rich environments. Atomic structures show that Cys128 oxidation initiates a "helical unravelling" of the RitR linker region, suggesting a mechanism by which the DNA-binding domain is then released to interact with its cognate regulatory DNA. Expanded computational studies indicate this mechanism could be shared by many microbial species outside the streptococcus genus.
Collapse
Affiliation(s)
- David G. Glanville
- Department of Microbiology and Immunology, Loyola University Chicago; Maywood, IL, United States of America
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
| | - Lanlan Han
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Andrew F. Maule
- Department of Horticulture, University of Wisconsin–Madison, Linden Drive, Madison, Wisconsin, United States of America
| | - Alexandra Woodacre
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Devsaagar Thanki
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Iman Tajer Abdullah
- Department of Infection and Immunity, University of Leicester, Leicester, United Kingdom
| | - Julie A. Morrissey
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Thomas B. Clarke
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
| | - Hasan Yesilkaya
- Department of Infection and Immunity, University of Leicester, Leicester, United Kingdom
| | - Nicholas R. Silvaggi
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Andrew T. Ulijasz
- Department of Microbiology and Immunology, Loyola University Chicago; Maywood, IL, United States of America
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
40
|
Fan JR, Zhang HX, Mu YG, Zheng QC. Studying the recognition mechanism of TcaR and ssDNA using molecular dynamic simulations. J Mol Graph Model 2018; 80:67-75. [DOI: 10.1016/j.jmgm.2017.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 10/18/2022]
|
41
|
Pan Y, Liang F, Li RJ, Qian W. MarR-Family Transcription Factor HpaR Controls Expression of the vgrR-vgrS Operon of Xanthomonas campestris pv. campestris. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:299-310. [PMID: 29077520 DOI: 10.1094/mpmi-07-17-0187-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
MarR (multiple antibiotic resistance regulator)-family transcription factors (TFs), which regulate the expression of virulence factors and other physiological pathways in pathogenic bacteria, are regarded as ideal molecular targets for the development of novel antimicrobial strategies. In the plant bacterial pathogen Xanthomonas campestris pv. campestris, HpaR, a typical MarR-family TF, is associated with bacterial virulence, but its mechanism of virulence regulation remains unclear. Here, we dissected the HpaR regulon using high-throughput RNA sequencing and chromatin immunoprecipitation sequencing. HpaR directly or indirectly controls the expression of approximately 448 genes; it acts both as a transcriptional activator and a repressor to control the expression of downstream genes by directly binding to their promoter regions. The consensus HpaR-binding DNA motifs contain imperfect palindromic sequences similar to [G/T]CAACAATT[C/T]TTG. In-depth analysis revealed that HpaR positively modulates transcription level of the vgrR-vgrS operon that encodes an important two-component signal transduction system to sense iron depletion and regulate bacterial virulence. Epistasis analysis demonstrated that vgrR-vgrS is a core downstream component of HpaR regulation, as overexpression of vgrR restored the phenotypic deficiencies caused by a hpaR mutation. This dissection of the HpaR regulon should facilitate future studies focused on the activating mechanism of HpaR during bacterial infection.
Collapse
Affiliation(s)
- Yue Pan
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- 2 School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; and
| | - Fang Liang
- 3 Beijing Institute of Genomics, Chinese Academy of Sciences
| | - Ru-Jiao Li
- 3 Beijing Institute of Genomics, Chinese Academy of Sciences
| | - Wei Qian
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
42
|
Heat-Stable Antifungal Factor (HSAF) Biosynthesis in Lysobacter enzymogenes Is Controlled by the Interplay of Two Transcription Factors and a Diffusible Molecule. Appl Environ Microbiol 2018; 84:AEM.01754-17. [PMID: 29101199 DOI: 10.1128/aem.01754-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/01/2017] [Indexed: 01/15/2023] Open
Abstract
Lysobacter enzymogenes is a Gram-negative, environmentally ubiquitous bacterium that produces a secondary metabolite, called heat-stable antifungal factor (HSAF), as an antifungal factor against plant and animal fungal pathogens. 4-Hydroxybenzoic acid (4-HBA) is a newly identified diffusible factor that regulates HSAF synthesis via L. enzymogenes LysR (LysRLe), an LysR-type transcription factor (TF). Here, to identify additional TFs within the 4-HBA regulatory pathway that control HSAF production, we reanalyzed the LenB2-based transcriptomic data, in which LenB2 is the enzyme responsible for 4-HBA production. This survey led to identification of three TFs (Le4806, Le4969, and Le3904). Of them, LarR (Le4806), a member of the MarR family proteins, was identified as a new TF that participated in the 4-HBA-dependent regulation of HSAF production. Our data show the following: (i) that LarR is a downstream component of the 4-HBA regulatory pathway controlling the HSAF level, while LysRLe is the receptor of 4-HBA; (ii) that 4-HBA and LysRLe have opposite regulatory effects on larR transcription whereby larR transcript is negatively modulated by 4-HBA while LysRLe, in contrast, exerts positive transcriptional regulation by directly binding to the larR promoter without being affected by 4-HBA in vitro; (iii) that LarR, similar to LysRLe, can bind to the promoter of the HSAF biosynthetic gene operon, leading to positive regulation of HSAF production; and (iv) that LarR and LysRLe cannot interact and instead control HSAF biosynthesis independently. These results outline a previously uncharacterized mechanism by which biosynthesis of the antibiotic HSAF in L. enzymogenes is modulated by the interplay of 4-HBA, a diffusible molecule, and two different TFs.IMPORTANCE Bacteria use diverse chemical signaling molecules to regulate a wide range of physiological and cellular processes. 4-HBA is an "old" chemical molecule that is produced by diverse bacterial species, but its regulatory function and working mechanism remain largely unknown. We previously found that 4-HBA in L. enzymogenes could serve as a diffusible factor regulating HSAF synthesis via LysRLe Here, we further identified LarR, an MarR family protein, as a second TF that participates in the 4-HBA-dependent regulation of HSAF biosynthesis. Our results dissected how LarR acts as a protein linker to connect 4-HBA and HSAF synthesis, whereby LarR also has cross talk with LysRLe Thus, our findings not only provide fundamental insight regarding how a diffusible molecule (4-HBA) adopts two different types of TFs for coordinating HSAF biosynthesis but also show the use of applied microbiology to increase the yield of the antibiotic HSAF by modification of the 4-HBA regulatory pathway in L. enzymogenes.
Collapse
|
43
|
Park SC, Kwak YM, Song WS, Hong M, Yoon SI. Structural basis of effector and operator recognition by the phenolic acid-responsive transcriptional regulator PadR. Nucleic Acids Res 2018; 45:13080-13093. [PMID: 29136175 PMCID: PMC5728393 DOI: 10.1093/nar/gkx1055] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 10/19/2017] [Indexed: 12/24/2022] Open
Abstract
The PadR family is a large group of transcriptional regulators that function as environmental sensors. PadR negatively controls the expression of phenolic acid decarboxylase, which detoxifies harmful phenolic acids. To identify the mechanism by which PadR regulates phenolic acid-mediated gene expression, we performed structural and mutational studies of effector and operator recognition by Bacillus subtilis PadR. PadR contains an N-terminal winged helix-turn-helix (wHTH) domain (NTD) and a C-terminal homodimerization domain (CTD) and dimerizes into a dolmen shape. The PadR dimer interacts with the palindromic sequence of the operator DNA using the NTD. Two tyrosine residues and a positively charged residue in the NTD provide major DNA-binding energy and are highly conserved in the PadR family, suggesting that these three residues represent the canonical DNA-binding motif of the PadR family. PadR directly binds a phenolic acid effector molecule using a unique interdomain pocket created between the NTD and the CTD. Although the effector-binding site of PadR is positionally segregated from the DNA-binding site, effector binding to the interdomain pocket causes PadR to be rearranged into a DNA binding-incompatible conformer through an allosteric interdomain-reorganization mechanism.
Collapse
Affiliation(s)
- Sun Cheol Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yun Mi Kwak
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Wan Seok Song
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Minsun Hong
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Sung-Il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea.,Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
44
|
Chiu TP, Rao S, Mann RS, Honig B, Rohs R. Genome-wide prediction of minor-groove electrostatic potential enables biophysical modeling of protein-DNA binding. Nucleic Acids Res 2017; 45:12565-12576. [PMID: 29040720 PMCID: PMC5716191 DOI: 10.1093/nar/gkx915] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 09/28/2017] [Indexed: 12/16/2022] Open
Abstract
Protein–DNA binding is a fundamental component of gene regulatory processes, but it is still not completely understood how proteins recognize their target sites in the genome. Besides hydrogen bonding in the major groove (base readout), proteins recognize minor-groove geometry using positively charged amino acids (shape readout). The underlying mechanism of DNA shape readout involves the correlation between minor-groove width and electrostatic potential (EP). To probe this biophysical effect directly, rather than using minor-groove width as an indirect measure for shape readout, we developed a methodology, DNAphi, for predicting EP in the minor groove and confirmed the direct role of EP in protein–DNA binding using massive sequencing data. The DNAphi method uses a sliding-window approach to mine results from non-linear Poisson–Boltzmann (NLPB) calculations on DNA structures derived from all-atom Monte Carlo simulations. We validated this approach, which only requires nucleotide sequence as input, based on direct comparison with NLPB calculations for available crystal structures. Using statistical machine-learning approaches, we showed that adding EP as a biophysical feature can improve the predictive power of quantitative binding specificity models across 27 transcription factor families. High-throughput prediction of EP offers a novel way to integrate biophysical and genomic studies of protein–DNA binding.
Collapse
Affiliation(s)
- Tsu-Pei Chiu
- Computational Biology and Bioinformatics Program, Departments of Biological Sciences, Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Satyanarayan Rao
- Computational Biology and Bioinformatics Program, Departments of Biological Sciences, Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Richard S Mann
- Departments of Systems Biology and Biochemistry & Molecular Biophysics, Mortimer B. Zuckerman Institute, Columbia University, New York, NY 10032, USA
| | - Barry Honig
- Departments of Systems Biology and Biochemistry & Molecular Biophysics, Mortimer B. Zuckerman Institute, Columbia University, New York, NY 10032, USA.,Howard Hughes Medical Institute, New York, NY 10032, USA
| | - Remo Rohs
- Computational Biology and Bioinformatics Program, Departments of Biological Sciences, Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
45
|
The Novel Transcriptional Regulator LmbU Promotes Lincomycin Biosynthesis through Regulating Expression of Its Target Genes in Streptomyces lincolnensis. J Bacteriol 2017; 200:JB.00447-17. [PMID: 29038257 DOI: 10.1128/jb.00447-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022] Open
Abstract
Lincomycin A is a clinically important antimicrobial agent produced by Streptomyces lincolnensis In this study, a new regulator designated LmbU (GenBank accession no. ABX00623.1) was identified and characterized to regulate lincomycin biosynthesis in S. lincolnensis wild-type strain NRRL 2936. Both inactivation and overexpression of lmbU resulted in significant influences on lincomycin production. Transcriptional analysis and in vivo neomycin resistance (Neor) reporter assays demonstrated that LmbU activates expression of the lmbA, lmbC, lmbJ, and lmbW genes and represses expression of the lmbK and lmbU genes. Electrophoretic mobility shift assays (EMSAs) demonstrated that LmbU can bind to the regions upstream of the lmbA and lmbW genes through the consensus and palindromic sequence 5'-CGCCGGCG-3'. However, LmbU cannot bind to the regions upstream of the lmbC, lmbJ, lmbK, and lmbU genes as they lack this motif. These data indicate a complex transcriptional regulatory mechanism of LmbU. LmbU homologues are present in the biosynthetic gene clusters of secondary metabolites of many other actinomycetes. Furthermore, the LmbU homologue from Saccharopolyspora erythraea (GenBank accession no. WP_009944629.1) also binds to the regions upstream of lmbA and lmbW, which suggests widespread activity for this regulator. LmbU homologues have no significant structural similarities to other known cluster-situated regulators (CSRs), which indicates that they belong to a new family of regulatory proteins. In conclusion, the present report identifies LmbU as a novel transcriptional regulator and provides new insights into regulation of lincomycin biosynthesis in S. lincolnensisIMPORTANCE Although lincomycin biosynthesis has been extensively studied, its regulatory mechanism remains elusive. Here, a novel regulator, LmbU, which regulates transcription of its target genes in the lincomycin biosynthetic gene cluster (lmb gene cluster) and therefore promotes lincomycin biosynthesis, was identified in S. lincolnensis strain NRRL 2936. Importantly, we show that this new regulatory element is relatively widespread across diverse actinomycetes species. In addition, our findings provide a new strategy for improvement of yield of lincomycin through manipulation of LmbU, and this approach could also be evaluated in other secondary metabolite gene clusters containing this regulatory protein.
Collapse
|
46
|
Allosteric histidine switch for regulation of intracellular zinc(II) fluctuation. Proc Natl Acad Sci U S A 2017; 114:13661-13666. [PMID: 29229866 DOI: 10.1073/pnas.1708563115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Metalloregulators allosterically control transcriptional activity through metal binding-induced reorganization of ligand residues and/or hydrogen bonding networks, while the coordination atoms on the same ligand residues remain seldom changed. Here we show that the MarR-type zinc transcriptional regulator ZitR switches one of its histidine nitrogen atoms for zinc coordination during the allosteric control of DNA binding. The Zn(II)-coordination nitrogen on histidine 42 within ZitR's high-affinity zinc site (site 1) switches from Nε2 to Nδ1 upon Zn(II) binding to its low-affinity zinc site (site 2), which facilitates ZitR's conversion from the nonoptimal to the optimal DNA-binding conformation. This histidine switch-mediated cooperation between site 1 and site 2 enables ZitR to adjust its DNA-binding affinity in response to a broad range of zinc fluctuation, which may allow the fine tuning of transcriptional regulation.
Collapse
|
47
|
Structural analysis of the regulatory mechanism of MarR protein Rv2887 in M. tuberculosis. Sci Rep 2017; 7:6471. [PMID: 28743871 PMCID: PMC5526998 DOI: 10.1038/s41598-017-01705-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/30/2017] [Indexed: 11/20/2022] Open
Abstract
MarR family proteins are transcriptional regulators that control expression of bacterial proteins involved in metabolism, virulence, stress responses and multi-drug resistance, mainly via ligand-mediated attenuation of DNA binding. Greater understanding of their underlying regulatory mechanism may open up new avenues for the effective treatment of bacterial infections. To gain molecular insight into the mechanism of Rv2887, a MarR family protein in M. tuberculosis, we first showed that it binds salicylate (SA) and para-aminosalicylic acid (PAS), its structural analogue and an antitubercular drug, in a 1:1 stoichiometry with high affinity. Subsequent determination and analysis of Rv2887 crystal structures in apo form, and in complex with SA, PAS and DNA showed that SA and PAS bind to Rv2887 at similar sites, and that Rv2887 interacts with DNA mainly by insertion of helix α4 into the major groove. Ligand binding triggers rotation of the wHTH domain of Rv2887 toward the dimerization domain, causing changes in protein conformation such that it can no longer bind to a 27 bp recognition sequence in the upstream region of gene Rv0560c. The structures provided here lay a foundation for the design of small molecules that target Rv2887, a potential new approach for the development of anti-mycobacterials.
Collapse
|
48
|
Deochand DK, Perera IC, Crochet RB, Gilbert NC, Newcomer ME, Grove A. Histidine switch controlling pH-dependent protein folding and DNA binding in a transcription factor at the core of synthetic network devices. MOLECULAR BIOSYSTEMS 2017; 12:2417-26. [PMID: 27282811 DOI: 10.1039/c6mb00304d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Therapeutic strategies have been reported that depend on synthetic network devices in which a urate-sensing transcriptional regulator detects pathological levels of urate and triggers production or release of urate oxidase. The transcription factor involved, HucR, is a member of the multiple antibiotic resistance (MarR) protein family. We show that protonation of stacked histidine residues at the pivot point of long helices that form the scaffold of the dimer interface leads to reversible formation of a molten globule state and significantly attenuated DNA binding at physiological temperatures. We also show that binding of urate to symmetrical sites in each protein lobe is communicated via the dimer interface. This is the first demonstration of regulation of a MarR family transcription factor by pH-dependent interconversion between a molten globule and a compact folded state. Our data further suggest that HucR may be utilized in synthetic devices that depend on detection of pH changes.
Collapse
Affiliation(s)
- D K Deochand
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - I C Perera
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - R B Crochet
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - N C Gilbert
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - M E Newcomer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - A Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
49
|
Deochand DK, Grove A. MarR family transcription factors: dynamic variations on a common scaffold. Crit Rev Biochem Mol Biol 2017; 52:595-613. [PMID: 28670937 DOI: 10.1080/10409238.2017.1344612] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Members of the multiple antibiotic resistance regulator (MarR) family of transcription factors are critical for bacterial cells to respond to chemical signals and to convert such signals into changes in gene activity. Obligate dimers belonging to the winged helix-turn-helix protein family, they are critical for regulation of a variety of functions, including degradation of organic compounds and control of virulence gene expression. The conventional regulatory paradigm is based on a genomic locus in which the gene encoding the MarR protein is divergently oriented from a gene under its control; MarR binding to the intergenic region controls expression of both genes by changing the interaction of RNA polymerase with gene promoters. MarR protein oxidation or binding of a small molecule ligand adversely affects DNA binding, resulting in altered expression of the divergent genes. The generality of this simple paradigm, including the regulation of Escherichia coli MarR by direct binding of antibiotics, has been challenged by reports published in recent years. In addition, structural and biochemical analyses of ligand binding to numerous MarR homologs are converging to identify a shared ligand-binding "hot-spot". This review highlights recent research advances that point to shared features, yet at the same time highlights the remarkable flexibility with which members of this protein family implement responses to inducing signals. A more comprehensive understanding of protein function will pave the way towards the development of both antibacterial agents and biosensors that are based on MarR family proteins.
Collapse
Affiliation(s)
- Dinesh K Deochand
- a Department of Biological Sciences , Louisiana State University , Baton Rouge , LA , USA
| | - Anne Grove
- a Department of Biological Sciences , Louisiana State University , Baton Rouge , LA , USA
| |
Collapse
|
50
|
Abstract
Organic hydroperoxide reductase regulator (OhrR) in bacteria is a sensor for organic hydroperoxide stress and a transcriptional regulator for the enzyme organic hydroperoxide reductase (Ohr). In this study we investigated, using a GFP reporter system, whether Mycobacterium smegmatis OhrR has the ability to sense and respond to intracellular organic hydroperoxide stress. It was observed that M. smegmatis strains bearing the pohr-gfpuv fusion construct were able to express GFP only in the absence of an intact ohrR gene, but not in its presence. However, GFP expression in the strain bearing pohr-gfpuv with an intact ohrR gene could be induced by organic hydroperoxides in vitro and in the intracellular environment upon ingestion of the bacteria by macrophages; indicating that OhrR responds not only to in vitro but also to intracellular organic hydroperoxide stress. Further, the intracellular expression of pohr driven GFP in this strain could be abolished by replacing the intact ohrR gene with a mutant ohrR gene modified for N-terminal Cysteine (Cys) residue, suggesting that OhrR senses intracellular organic hydroperoxides through Cys residue. This is the first report demonstrating the ability of OhrR to sense intracellular organic hydroperoxides.
Collapse
|