1
|
Shimada M, Hirayama R, Matsumoto Y. Dimethyl Sulfoxide Attenuates Ionizing Radiation-induced Centrosome Overduplication and Multipolar Cell Division in Human Induced Pluripotent Stem Cells. Radiat Res 2024; 202:719-725. [PMID: 39211984 DOI: 10.1667/rade-24-00069.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Centrosomes are important organelles for cell division and genome stability. Ionizing radiation exposure efficiently induces centrosome overduplication via the disconnection of the cell and centrosome duplication cycles. Over duplicated centrosomes cause mitotic catastrophe or chromosome aberrations, leading to cell death or tumorigenesis. Pluripotent stem cells, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), can differentiate into all organs. To maintain pluripotency, PSCs show specific cellular dynamics, such as a short G1 phase and silenced cell-cycle checkpoints for high cellular proliferation. However, how exogenous DNA damage affects cell cycle-dependent centrosome number regulation in PSCs remains unknown. This study used human iPSCs (hiPSCs) derived from primary skin fibroblasts as a PSC model to address this question. hiPSCs derived from somatic cells could be a useful tool for addressing the radiation response in cell lineage differentiation. After radiation exposure, the hiPSCs showed a higher frequency of centrosome overduplication and multipolar cell division than the differentiated cells. To suppress the indirect effect of radiation exposure, we used the radical scavenger dimethyl sulfoxide (DMSO). Combined treatment with radiation and DMSO efficiently suppressed DNA damage and centrosome overduplication in hiPSCs. Our results will contribute to the understanding of the dynamics of stem cells and the assessment of the risk of genome instability for regenerative medicine.
Collapse
Affiliation(s)
- Mikio Shimada
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Ryoichi Hirayama
- Department of Charged Particle Therapy Research, QST Hospital, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Yoshihisa Matsumoto
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| |
Collapse
|
2
|
Li Z, Zhao H, Li S, Jiao Z. Midbody remnant regulates the formation of primary cilia and their roles in tumor growth. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:261-268. [PMID: 38413234 PMCID: PMC11057987 DOI: 10.3724/zdxbyxb-2023-0461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/26/2024] [Indexed: 02/29/2024]
Abstract
Recent studies have shown that the formation of the primary cilium is associated with a specific cellular organelle known as the midbody remnant (MBR), which is a point-like organelle formed by shedding of the midbody at the end of mitosis. MBRs move along the cell surface close to the center body and regulate it to form primary cilia at the top of the centriole. Primary cilia can act as an organelle to inhibit tumorigenesis, and it is lost in a variety of tumors. Studies have shown that the accumulation of MBRs in tumor cells affects ciliogenesis; in addition, both MBRs and primary cilia are degraded in tumor cells through the autophagy pathway, and MBRs can also transfer tumor signaling pathway factors to primary cilia affecting tumorigenesis. In this article, the basic structure and the formation process of MBR and primary cilia are reviewed and the mechanism of MBRs regulating ciliogenesis is elaborated. The significance of MBR-mediated ciliogenesis in tumorigenesis and its potential as a target for cancer treatment are discussed.
Collapse
Affiliation(s)
- Zhengyang Li
- The Second Clinical Medical College of Lanzhou University, Lanzhou 730030, China.
| | - Huiming Zhao
- The Second Clinical Medical College of Lanzhou University, Lanzhou 730030, China
| | - Subing Li
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Zuoyi Jiao
- Department of General Surgery, the Second Hospital of Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
3
|
Zhu Y, Liu J, Zhang W, Wu J, Li W, Li H, Chu Q, Luo C. [CEP55 may be a potential therapeutic target for non-obstructive azoospermia with maturation arrest]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1059-1064. [PMID: 31640955 DOI: 10.12122/j.issn.1673-4254.2019.09.09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To explore the effect of small interfering RNA (siRNA)-mediated CEP55 gene silencing on the proliferation of mouse spermatogonia. METHODS Six patients with azoospermia diagnosed to have maturation arrest (3 cases) or normal spermatogenesis (3 cases) based on testicular biopsy between January 1 and December 31, 2017 in our center were examined for differential proteins in the testicular tissue using isobaric tags for relative and absolute quantitation (iTRAQ), and CEP55 was found to differentially expressed between the two groups of patients. We constructed a CEP55 siRNA for transfection in mouse spermatogonia and examined the inhibitory effects on CEP55 expressions using Western blotting and qPCR. The effect of CEP55 gene silencing on the proliferation of mouse spermatogonia was evaluated with CCK8 assay. RESULTS In the testicular tissues from the 6 patients with azoospermia, iTRAQ combined with LC/MS/MS analysis identified over two hundred differentially expressed proteins, among which CEP55 showed the most significant differential expression between the patients with maturation arrest and those with normal spermatogenesis. The cell transfection experiment showed that compared with the cells transfected with the vehicle or the negative control sequence, the mouse spermatogonia transfected with CEP55 siRNA showed significantly lowered expressions of CEP55 mRNA and protein (P < 0.05) and significantly decreased proliferation rate as shown by CCK8 assay (P < 0.05). CONCLUSIONS CEP55 may play a key role in spermatogenesis and may serve as a potential therapeutic target for non-obstructive azoospermia with maturation arrest.
Collapse
Affiliation(s)
- Yongtong Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Junting Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Weiqing Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiamin Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenfeng Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Huixi Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qingjun Chu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chen Luo
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
4
|
Qi J, Liu G, Wang F. High levels of centrosomal protein 55 expression is associated with poor clinical prognosis in patients with cervical cancer. Oncol Lett 2018; 15:9347-9352. [PMID: 29805659 DOI: 10.3892/ol.2018.8448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 03/07/2018] [Indexed: 01/03/2023] Open
Abstract
Centrosomal protein 55 (CEP55) has been proposed to have a role in tumor development. However, the expression pattern and clinical relevance of CEP55 has, to the best of our knowledge, not yet been investigated in cervical cancer. The mRNA levels of CEP55 in cervical cancer tissues and paired adjacent non-cancerous tissues were examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The present study assessed the association between immunohistochemical staining of CEP55 and clinicopathological characteristics and survival rates of patients. Compared with the adjacent non-cancerous tissues, CEP55 expression was significantly increased in cervical tumor tissues, as demonstrated by the results of RT-qPCR. High expression of CEP55 was significantly associated with lymph node metastasis (P=0.008) and advanced tumor stage (P=0.010). Furthermore, CEP55 overexpression in cervical cancer specimens was significantly associated with poor 5-year overall and recurrence-free survival rates (P=0.021 and P=0.010, respectively). The results of multivariate Cox regression analysis revealed that CEP55 expression was a significant, independent predictor for the survival of patients with cervical cancer (hazard ratio=3.057; P=0.035). These data indicated that high CEP55 expression was associated with lymph node metastasis and was an independent predictive factor for an unfavorable prognosis in patients with cervical carcinoma.
Collapse
Affiliation(s)
- Jingyi Qi
- Department of Reproductive Medicine, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471000, P.R. China
| | - Gelin Liu
- Department of Reproductive Medicine, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471000, P.R. China
| | - Fang Wang
- Department of Reproductive Medicine, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471000, P.R. China
| |
Collapse
|
5
|
Wang Q, Tang Y, Xu Y, Xu S, Jiang Y, Dong Q, Zhou Y, Ge W. The X-linked deubiquitinase USP9X is an integral component of centrosome. J Biol Chem 2017; 292:12874-12884. [PMID: 28620049 DOI: 10.1074/jbc.m116.769943] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/02/2017] [Indexed: 12/23/2022] Open
Abstract
The X-linked deubiquitinase USP9X has been implicated in multiple pathological disorders including malignancies and X-linked intellectual disability. However, its biological function and substrate repertoire remain to be investigated. In this study, we utilized the tandem mass tag labeling assay to identify USP9X-regulated proteins and revealed that the expression of multiple genes is altered in USP9X-deficient cells. Interestingly, we showed that USP9X promotes stabilization of centrosome proteins PCM1 and CEP55 through its catalytic activity. Remarkably, we demonstrated that USP9X is physically associated and spatially co-localized with PCM1 and CEP55 in the centrosome, and we revealed that either PCM1 or CEP55 loss resulted in impairment of USP9X centrosome localization. Moreover, we showed that USP9X is required for centrosome duplication, and this effect is dependent on its catalytic activity and its N-terminal module, which is responsible for physical association of USP9X with PCM1 and CEP55. Collectively, our experiments identified USP9X as an integral component of the centrosome where it functions to stabilize PCM1 and CEP55 and promote centrosome biogenesis.
Collapse
Affiliation(s)
- Qian Wang
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yiman Tang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yue Xu
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Shilei Xu
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yong Jiang
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Qiuping Dong
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China.
| | - Wenshu Ge
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| |
Collapse
|
6
|
ANCHR mediates Aurora-B-dependent abscission checkpoint control through retention of VPS4. Nat Cell Biol 2014; 16:550-60. [PMID: 24814515 DOI: 10.1038/ncb2959] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 04/02/2014] [Indexed: 02/07/2023]
Abstract
During the final stage of cell division, cytokinesis, the Aurora-B-dependent abscission checkpoint (NoCut) delays membrane abscission to avoid DNA damage and aneuploidy in cells with chromosome segregation defects. This arrest depends on Aurora-B-mediated phosphorylation of CHMP4C, a component of the endosomal sorting complex required for transport (ESCRT) machinery that mediates abscission, but the mechanism remains unknown. Here we describe ANCHR (Abscission/NoCut Checkpoint Regulator; ZFYVE19) as a key regulator of the abscission checkpoint, functioning through the most downstream component of the ESCRT machinery, the ATPase VPS4. In concert with CHMP4C, ANCHR associates with VPS4 at the midbody ring following DNA segregation defects to control abscission timing and prevent multinucleation in an Aurora-B-dependent manner. This association prevents VPS4 relocalization to the abscission zone and is relieved following inactivation of Aurora B to allow abscission. We propose that the abscission checkpoint is mediated by ANCHR and CHMP4C through retention of VPS4 at the midbody ring.
Collapse
|
7
|
Chang YC, Wu CH, Yen TC, Ouyang P. Centrosomal protein 55 (Cep55) stability is negatively regulated by p53 protein through Polo-like kinase 1 (Plk1). J Biol Chem 2012; 287:4376-85. [PMID: 22184120 PMCID: PMC3281710 DOI: 10.1074/jbc.m111.289108] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 12/06/2011] [Indexed: 01/31/2023] Open
Abstract
Centrosomal protein 55 (Cep55), which is localized to the centrosome in interphase cells and recruited to the midbody during cytokinesis, is a regulator required for the completion of cell abscission. Up-regulation of Cep55 and inactivation of p53 occur in the majority of human cancers, raising the possibility of a link between these two genes. In this study we evaluated the role of p53 in Cep55 regulation. We demonstrated that Cep55 expression levels are well correlated with cancer cell growth rate and that p53 is able to negatively regulate Cep55 protein and promoter activity. Down-regulation of expression of Cep55 was accompanied by repression of polo-like kinase 1 (Plk1) levels due to p53 induction. Overexpression of Plk1 and knockdown of p53 expression both enhanced the post-translational protein stability of Cep55. BI 2356, a selective Plk1 inhibitor, however, prevented Cep55 accumulation in p53 knockdown cells while persistently keeping Plk1 levels elevated. Our results, therefore, indicate the existence of a p53-Plk1-Cep55 axis in which p53 negatively regulates expression of Cep55, through Plk1 which, in turn, is a positive regulator of Cep55 protein stability.
Collapse
Affiliation(s)
- Yu-Chen Chang
- From the Graduate Institute of Clinical Medical Sciences, College of Medicine
- Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, and
| | - Chu-Hen Wu
- the Department of Anatomy
- Molecular Medicine Research Center, and
| | - Tzu-Chen Yen
- Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, and
| | - Pin Ouyang
- the Department of Anatomy
- Molecular Medicine Research Center, and
- Transgenic Mouse Core Laboratory, Chang Gung University, Tao-Yuan, Taiwan 333
| |
Collapse
|
8
|
Abstract
The midbody is a transient structure that connects two daughter cells at the end of cytokinesis, with the principal function being to localize the site of abscission, which physically separates two daughter cells. Despite its importance, understanding of midbody assembly and its regulation is still limited. Here we describe how the structural composition of the midbody changes during progression throughout cytokinesis and explore the functional implications of these changes. Deriving from midzones, midbodies are organized by a set of microtubule interacting proteins that colocalize to a zone of microtubule overlap in the center. We found that these proteins split into three subgroups that relocalize to different parts of the midbody: the bulge, the dark zone, and the flanking zone. We characterized these relocalizations and defined domain requirements for three key proteins: MKLP1, KIF4, and PRC1. Two cortical proteins-anillin and RhoA-localized to presumptive abscission sites in mature midbodies, where they may regulate the endosomal sorting complex required for transport machinery. Finally, we characterized the role of Plk1, a key regulator of cytokinesis, in midbody assembly. Our findings represent the most detailed description of midbody assembly and maturation to date and may help elucidate how abscission sites are positioned and regulated.
Collapse
Affiliation(s)
- Chi-Kuo Hu
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
9
|
Caballe A, Martin-Serrano J. ESCRT machinery and cytokinesis: the road to daughter cell separation. Traffic 2011; 12:1318-26. [PMID: 21722282 DOI: 10.1111/j.1600-0854.2011.01244.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is a set of cellular protein complexes required for at least three topologically equivalent membrane scission events, namely multivesicular body (MVB) formation, retroviral particle release and midbody abscission during cytokinesis. Recently, several studies have explored the mechanism by which the core ESCRT-III subunits mediate membrane scission and might be differentially required according to the functions of the pathway. In this review, we discuss the links between the ESCRT machinery and cytokinesis, with special focus on abscission initiation and regulation.
Collapse
Affiliation(s)
- Anna Caballe
- Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, UK
| | | |
Collapse
|
10
|
Fanarraga ML, Carranza G, Castaño R, Jiménez V, Villegas JC, Zabala JC. Emerging roles for tubulin folding cofactors at the centrosome. Commun Integr Biol 2011; 3:306-8. [PMID: 20798813 DOI: 10.4161/cib.3.4.11976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 04/03/2010] [Indexed: 02/07/2023] Open
Abstract
Despite its fundamental role in centrosome biology, procentriole formation, both in the canonical and in the de novo replication pathways, remains poorly understood, and the molecular components that are involved in human cells are not well established. We found that one of the tubulin cofactors, TBCD, is localized at centrosomes and the midbody, and is required for spindle organization, cell abscission, centriole formation and ciliogenesis. Our studies have established a molecular link between the centriole and the midbody, demonstrating that this cofactor is also necessary for microtubule retraction during cell abscission. TBCD is the first centriolar protein identified that plays a role in the assembly of both "centriolar rosettes" during early ciliogenesis, and at the procentriole budding site by S/G(2), a discovery that directly implicates tubulin cofactors in the cell division, cell migration and cell signaling research fields.
Collapse
|
11
|
Human ESCRT-III and VPS4 proteins are required for centrosome and spindle maintenance. Proc Natl Acad Sci U S A 2010; 107:12889-94. [PMID: 20616062 DOI: 10.1073/pnas.1005938107] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ESCRT pathway helps mediate the final abscission step of cytokinesis in mammals and archaea. In mammals, two early acting proteins of the ESCRT pathway, ALIX and TSG101, are recruited to the midbody through direct interactions with the phosphoprotein CEP55. CEP55 resides at the centrosome through most of the cell cycle but then migrates to the midbody at the start of cytokinesis, suggesting that the ESCRT pathway may also have centrosomal links. Here, we have systematically analyzed the requirements for late-acting mammalian ESCRT-III and VPS4 proteins at different stages of mitosis and cell division. We found that depletion of VPS4A, VPS4B, or any of the 11 different human ESCRT-III (CHMP) proteins inhibited abscission. Remarkably, depletion of individual ESCRT-III and VPS4 proteins also altered centrosome and spindle pole numbers, producing multipolar spindles (most ESCRT-III/VPS4 proteins) or monopolar spindles (CHMP2A or CHMP5) and causing defects in chromosome segregation and nuclear morphology. VPS4 proteins concentrated at spindle poles during mitosis and then at midbodies during cytokinesis, implying that these proteins function directly at both sites. We conclude that ESCRT-III/VPS4 proteins function at centrosomes to help regulate their maintenance or proliferation and then at midbodies during abscission, thereby helping ensure the ordered progression through the different stages of cell division.
Collapse
|
12
|
Chang YC, Chen YJ, Wu CH, Wu YC, Yen TC, Ouyang P. Characterization of centrosomal proteins Cep55 and pericentrin in intercellular bridges of mouse testes. J Cell Biochem 2010; 109:1274-85. [PMID: 20186884 DOI: 10.1002/jcb.22517] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Centrosomal protein 55 (Cep55), located in the centrosome in interphase cells and recruited to the midbody during cytokinesis, is essential for completion of cell abscission. Northern blot previously showed that a high level of Cep55 is predominantly expressed in the testis. In the present study, we examined the spatial and temporal expression patterns of Cep55 during mouse testis maturation. We found that Cep55, together with pericentrin, another centrosomal protein, were localized to the intercellular bridges (IBs) interconnecting spermatogenic cells in a syncytium. The IBs were elaborated as a double ring structure formed by an inner ring decorated by Cep55 or pericentrin and an outer ring of mitotic kinesin-like protein 1 (MKLP1) in the male germ cell in early postnatal stages and adulthood. In addition, Cep55 and pericentrin were also localized to the acrosome region and flagellum neck and middle piece in elongated spermatids, respectively. These results suggest that Cep55 and pericentrin are required for the stable bridge between germ cells during spermatogenesis and spermiogenesis.
Collapse
Affiliation(s)
- Yu-Chen Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
13
|
Patzke S, Redick S, Warsame A, Murga-Zamalloa CA, Khanna H, Doxsey S, Stokke T. CSPP is a ciliary protein interacting with Nephrocystin 8 and required for cilia formation. Mol Biol Cell 2010; 21:2555-67. [PMID: 20519441 PMCID: PMC2912343 DOI: 10.1091/mbc.e09-06-0503] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We described previously the cell cycle- and microtubule-related functions of two splice isoforms of the centrosome spindle pole-associated protein (CSPP and CSPP-L). Here, we show that endogenous CSPP isoforms not only localize to centrosomes and the midbody in cycling cells but also extend to the cilia axoneme in postmitotic resting cells. They are required for ciliogenesis in hTERT-RPE1 cells in vitro and are expressed in ciliated renal, retinal, and respiratory cells in vivo. We report that CSPP isoforms require their common C-terminal domain to interact with Nephrocystin 8 (NPHP8/RPGRIP1L) and to form a ternary complex with NPHP8 and NPHP4. We find CSPP-L to be required for the efficient localization of NPHP8 but not NPHP4 to the basal body. The ciliogenesis defect in hTERT-RPE1 cells is, however, not mediated through loss of NPHP8. Similar to the effects of ectopical expression of CSPP-L, cilia length increased in NPHP8-depleted cells. Our results thus suggest that CSPP proteins may be involved in further cytoskeletal organization of the basal body and its primary cilium. To conclude, we have identified a novel, nonmitotic function of CSPP proteins placing them into a ciliary protein network crucial for normal renal and retinal tissue architecture and physiology.
Collapse
Affiliation(s)
- Sebastian Patzke
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, N-0310 Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
14
|
Hornick JE, Karanjeet K, Collins ES, Hinchcliffe EH. Kinesins to the core: The role of microtubule-based motor proteins in building the mitotic spindle midzone. Semin Cell Dev Biol 2010; 21:290-9. [PMID: 20109573 PMCID: PMC3951275 DOI: 10.1016/j.semcdb.2010.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 01/19/2010] [Indexed: 12/23/2022]
Abstract
In mammalian cultured cells the initiation of cytokinesis is regulated - both temporally and spatially - by the overlapping, anti-parallel microtubules of the spindle midzone. This region recruits several key central spindle components: PRC-1, polo-like kinase 1 (Plk-1), the centralspindlin complex, and the chromosome passenger complex (CPC), which together serve to stabilize the microtubule overlap, and also to coordinate the assembly of the cortical actin/myosin cytoskeleton necessary to physically cleave the cell in two. The localization of these crucial elements to the spindle midzone requires members of the kinesin superfamily of microtubule-based motor proteins. Here we focus on reviewing the role played by a variety of kinesins in both building and operating the spindle midzone machinery during cytokinesis.
Collapse
Affiliation(s)
- Jessica E. Hornick
- Department of Obstetrics and Gynecology, and Robert H. Lurie Cancer Center, Northwestern University School of Medicine, Chicago, IL 60611 USA
| | - Kul Karanjeet
- Cell Dynamics Section, The Hormel Institute University of Minnesota, Austin, MN 55912 USA
| | - Elizabeth S. Collins
- Cell Dynamics Section, The Hormel Institute University of Minnesota, Austin, MN 55912 USA
- Department of Biology, University of Massachusetts, Amherst, MA 01003 USA
| | - Edward H. Hinchcliffe
- Cell Dynamics Section, The Hormel Institute University of Minnesota, Austin, MN 55912 USA
| |
Collapse
|
15
|
Li Y, Xu FL, Lu J, Saunders WS, Prochownik EV. Widespread genomic instability mediated by a pathway involving glycoprotein Ib alpha and Aurora B kinase. J Biol Chem 2010; 285:13183-92. [PMID: 20157117 DOI: 10.1074/jbc.m109.084913] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
c-Myc (Myc) oncoprotein induction of genomic instability (GI) contributes to its initial transforming function and subsequent tumor cell evolution. We describe here a pathway by which Myc, via its target protein glycoprotein Ibalpha (GpIb alpha), mediates GI. Proteomic profiling revealed that the serine/threonine kinase Aurora B is down-regulated by GpIb alpha in p53-deficient primary human fibroblasts. The phenotypes of Aurora B deficiency are strikingly reminiscent of Myc or GpIb alpha overexpression and include double-stranded DNA breaks, altered nuclear size and morphology, chromatin bridges, cleavage furrow regression, and tetraploidy. During mitosis, GpIb alpha and Aurora B redistribute to the cleavage furrow along with other cleavage furrow proteins. GpIb alpha overexpression at levels comparable with those seen in some tumor cells causes the dispersal of these proteins but not Aurora B, resulting in furrow regression and cytokinesis failure. Aurora B normalization redirects the mislocalized furrow proteins to their proper location, corrects the cleavage furrow abnormalities, and restores genomic stability. Aurora B thus appears necessary for a previously unrecognized function in guiding and positioning a number of key proteins, including GpIb alpha to the cleavage furrow. These findings underscore the importance of maintaining a delicate balance among cleavage furrow-associated proteins during mitosis. Suppression of Aurora B via GpIb alpha provides a unifying and mechanistic explanation for several types of Myc-mediated GI.
Collapse
Affiliation(s)
- Youjun Li
- Section of Hematology/Oncology, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15201, USA
| | | | | | | | | |
Collapse
|
16
|
Fanarraga ML, Bellido J, Jaén C, Villegas JC, Zabala JC. TBCD links centriologenesis, spindle microtubule dynamics, and midbody abscission in human cells. PLoS One 2010; 5:e8846. [PMID: 20107510 PMCID: PMC2809749 DOI: 10.1371/journal.pone.0008846] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 01/04/2010] [Indexed: 11/18/2022] Open
Abstract
Microtubule-organizing centers recruit alpha- and beta-tubulin polypeptides for microtubule nucleation. Tubulin synthesis is complex, requiring five specific cofactors, designated tubulin cofactors (TBCs) A-E, which contribute to various aspects of microtubule dynamics in vivo. Here, we show that tubulin cofactor D (TBCD) is concentrated at the centrosome and midbody, where it participates in centriologenesis, spindle organization, and cell abscission. TBCD exhibits a cell-cycle-specific pattern, localizing on the daughter centriole at G1 and on procentrioles by S, and disappearing from older centrioles at telophase as the protein is recruited to the midbody. Our data show that TBCD overexpression results in microtubule release from the centrosome and G1 arrest, whereas its depletion produces mitotic aberrations and incomplete microtubule retraction at the midbody during cytokinesis. TBCD is recruited to the centriole replication site at the onset of the centrosome duplication cycle. A role in centriologenesis is further supported in differentiating ciliated cells, where TBCD is organized into "centriolar rosettes". These data suggest that TBCD participates in both canonical and de novo centriolar assembly pathways.
Collapse
Affiliation(s)
- Mónica López Fanarraga
- Departamentos de Biología Molecular, Instituto de Formación e Investigación Marqués de Valdecilla Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Javier Bellido
- Departamentos de Biología Molecular, Instituto de Formación e Investigación Marqués de Valdecilla Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Cristina Jaén
- Departamentos de Biología Molecular, Instituto de Formación e Investigación Marqués de Valdecilla Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Juan Carlos Villegas
- Anatomía y Biología Celular, Instituto de Formación e Investigación Marqués de Valdecilla Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Juan Carlos Zabala
- Departamentos de Biología Molecular, Instituto de Formación e Investigación Marqués de Valdecilla Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
17
|
Hutt KJ, Shi Z, Petroff BK, Albertini DF. The environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin disturbs the establishment and maintenance of cell polarity in preimplantation rat embryos. Biol Reprod 2010; 82:914-20. [PMID: 20089886 DOI: 10.1095/biolreprod.109.081109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Maternal exposure to the environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces a variety of defects in compaction-stage embryos, including monopolar spindle formation, errors in chromosome segregation, and fragmentation resulting from aberrant cytokinesis. In this study, we investigated the possibility that a failure in centrosome duplication, separation, or positioning within blastomeres might underlie the observed effects of TCDD on early embryos. The subcellular localization of the centrosomal marker TUBG1 was analyzed in preimplantation embryos collected from female rats exposed to either chronic (50 ng kg(-1) wk(-1) for 3 wk) or acute (50 ng/kg or 1 microg/kg at proestrus) doses of TCDD. In treated embryos, interphase TUBG1 foci were more abundant and cortically displaced when compared to those in controls. At prophase, some blastomeres exhibited a single large perinuclear TUBG1 aggregate, suggesting a failure in centrosome duplication or separation. Furthermore, the presence of monopolar spindles at metaphase was confirmed by the localization of TUBG1 to the single spindle pole. Therefore, the misregulation of centrosome number and localization, as indicated by TUBG1 staining, may contribute to errors in chromosome segregation and cytokinesis in embryos following maternal TCDD exposure.
Collapse
Affiliation(s)
- Karla J Hutt
- The Center for Reproductive Sciences, Department of Molecular and Integrative Physiology, and Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66103, USA
| | | | | | | |
Collapse
|
18
|
Shen Q, Zheng X, McNutt MA, Guang L, Sun Y, Wang J, Gong Y, Hou L, Zhang B. NAT10, a nucleolar protein, localizes to the midbody and regulates cytokinesis and acetylation of microtubules. Exp Cell Res 2009; 315:1653-67. [PMID: 19303003 DOI: 10.1016/j.yexcr.2009.03.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 03/03/2009] [Accepted: 03/05/2009] [Indexed: 01/02/2023]
Abstract
The midbody is a structural organelle formed in late phase mitosis which is responsible for completion of cytokinesis. Although various kinds of proteins have been found to distribute or immigrate to this organelle, their functions have still not been completely worked out. In this study, we demonstrated that NAT10 (N-acetyltransferase 10, NAT10) is not only predominantly distributed in the nucleolus in interphase, but is also concentrated in the mitotic midbody during telophase. The domain in N-terminal residues 549-834 of NAT10 specifically mediated its subcellular localization. Treatment with genotoxic agents or irradiation increased concentration of NAT10 in both the nucleolus and midbody. Moreover, DNA damage induced increase of NAT10 in the midbody apparently accompanied by in situ elevation of the level of acetylated alpha-tubulin, suggesting that it plays a role in maintaining or enhancing stability of alpha-tubulin. The depletion of NAT10 induced defects in nucleolar assembly, cytokinesis and decreased acetylated alpha-tubulin, leading to G2/M cell cycle arrest or delay of mitotic exit. In addition, over-expression of NAT10 was found in a variety of soft tissue sarcomas, and correlated with tumor histological grading. These results indicate that NAT10 may play an important role in cell division through facilitating reformation of the nucleolus and midbody in the late phase of cell mitosis, and stabilization of microtubules.
Collapse
Affiliation(s)
- Qi Shen
- Department of Pathology, Health Science Center of Peking University, Haidian District, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Guan J, Ekwurtzel E, Kvist U, Yuan L. Cohesin protein SMC1 is a centrosomal protein. Biochem Biophys Res Commun 2008; 372:761-4. [PMID: 18515072 DOI: 10.1016/j.bbrc.2008.05.120] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2008] [Accepted: 05/20/2008] [Indexed: 11/24/2022]
Abstract
Structural maintenance of chromosome protein 1 (SMC1) is well known for its roles in sister chromatid cohesion and DNA repair. In this study, we report a novel centrosomal localization of SMC1 within the cytoplasm in a variety of mammalian cell lines. We showed that SMC1 localized to centrosomes throughout the cell cycle in a microtubule-independent manner. Biochemically, SMC1 was cofractionated with the centrosomal protein gamma-tubulin in centrosomal preparation. Immunohistochemistry and immunoelectron microscopy performed on mouse tissue sections revealed that SMC1 antibody strongly labeled the base of cilia in ciliated epithelia, where basal bodies were located. Furthermore, we showed that SMC1 was associated with both centrioles of a centrosome at G0/G1 stage of the cell cycle. These results demonstrate that SMC1 is a centrosomal protein, suggesting possible involvement of SMC1 in centrosome/basal body-related functions, such as organization of dynamic arrays of microtubules and ciliary formation.
Collapse
Affiliation(s)
- Jikui Guan
- Department of Cell and Molecular Biology, Karolinska Institute, Berzelius väg 35, SE-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
20
|
Durcan TM, Halpin ES, Rao T, Collins NS, Tribble EK, Hornick JE, Hinchcliffe EH. Tektin 2 is required for central spindle microtubule organization and the completion of cytokinesis. ACTA ACUST UNITED AC 2008; 181:595-603. [PMID: 18474621 PMCID: PMC2386100 DOI: 10.1083/jcb.200711160] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
During anaphase, the nonkinetochore microtubules in the spindle midzone become compacted into the central spindle, a structure which is required to both initiate and complete cytokinesis. We show that Tektin 2 (Tek2) associates with the spindle poles throughout mitosis, organizes the spindle midzone microtubules during anaphase, and assembles into the midbody matrix surrounding the compacted midzone microtubules during cytokinesis. Tek2 small interfering RNA (siRNA) disrupts central spindle organization and proper localization of MKLP1, PRC1, and Aurora B to the midzone and prevents the formation of a midbody matrix. Video microscopy revealed that loss of Tek2 results in binucleate cell formation by aberrant fusion of daughter cells after cytokinesis. Although a myosin II inhibitor, blebbistatin, prevents actin-myosin contractility, the microtubules of the central spindle are compacted. Strikingly, Tek2 siRNA abolishes this actin-myosin-independent midzone microtubule compaction. Thus, Tek2-dependent organization of the central spindle during anaphase is essential for proper midbody formation and the segregation of daughter cells after cytokinesis.
Collapse
Affiliation(s)
- Thomas M Durcan
- Department of Biological Sciences and Notre Dame Integrated Imaging Facility, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Didier C, Merdes A, Gairin JE, Jabrane-Ferrat N. Inhibition of proteasome activity impairs centrosome-dependent microtubule nucleation and organization. Mol Biol Cell 2007; 19:1220-9. [PMID: 18094058 DOI: 10.1091/mbc.e06-12-1140] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Centrosomes are dynamic organelles that consist of a pair of cylindrical centrioles, surrounded by pericentriolar material. The pericentriolar material contains factors that are involved in microtubule nucleation and organization, and its recruitment varies during the cell cycle. We report here that proteasome inhibition in HeLa cells induces the accumulation of several proteins at the pericentriolar material, including gamma-tubulin, GCP4, NEDD1, ninein, pericentrin, dynactin, and PCM-1. The effect of proteasome inhibition on centrosome proteins does not require intact microtubules and is reversed after removal of proteasome inhibitors. This accrual of centrosome proteins is paralleled by accumulation of ubiquitin in the same area and increased polyubiquitylation of nonsoluble gamma-tubulin. Cells that have accumulated centrosome proteins in response to proteasome inhibition are impaired in microtubule aster formation. Our data point toward a role of the proteasome in the turnover of centrosome proteins, to maintain proper centrosome function.
Collapse
Affiliation(s)
- Christine Didier
- Institut de Sciences et Technologies du Médicament de Toulouse, Unité Mixte de Recherche 2587 Centre National de la Recherche Scientifique-Pierre Fabre, 31400 Toulouse, France
| | | | | | | |
Collapse
|
22
|
Cho H, Kehrl JH. Localization of Gi alpha proteins in the centrosomes and at the midbody: implication for their role in cell division. ACTA ACUST UNITED AC 2007; 178:245-55. [PMID: 17635935 PMCID: PMC2064444 DOI: 10.1083/jcb.200604114] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
At the plasma membrane, heterotrimeric G proteins act as molecular switches to relay signals from G protein–coupled receptors; however, Gα subunits also have receptor-independent functions at intracellular sites. Regulator of G protein signaling (RGS) 14, which enhances the intrinsic GTPase activity of Giα proteins, localizes in centrosomes, which suggests the coexpression of Giα. We show expression of Giα1, Giα2, and Giα3 in the centrosomes and at the midbody. Fluorescence resonance energy transfer analysis confirms a direct interaction between RGS14 and Giα1 in centrosomes. Expression of GTPase-deficient Giα1 results in defective cytokinesis, whereas that of wild-type or GTPase-deficient Giα3 causes prolonged mitosis. Cells treated with pertussis toxin, with reduced expression of Giα1, Giα2, and Giα3 or with decreased expression of RGS14 also exhibit cytokinesis defects. These results suggest that Giα proteins and their regulators at these sites may play essential roles during mammalian cell division.
Collapse
Affiliation(s)
- Hyeseon Cho
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.
| | | |
Collapse
|
23
|
Krasinska L, de Bettignies G, Fisher D, Abrieu A, Fesquet D, Morin N. Regulation of multiple cell cycle events by Cdc14 homologues in vertebrates. Exp Cell Res 2007; 313:1225-39. [PMID: 17292885 DOI: 10.1016/j.yexcr.2006.12.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 12/06/2006] [Accepted: 12/20/2006] [Indexed: 11/29/2022]
Abstract
Whereas early cytokinesis events have been relatively well studied, little is known about its final stage, abscission. The Cdc14 phosphatase is involved in the regulation of multiple cell cycle events, and in all systems studied Cdc14 misexpression leads to cytokinesis defects. In this work, we have cloned two CDC14 cDNA from Xenopus, including a previously unreported CDC14B homologue. We use Xenopus and human cell lines and demonstrate that localization of Cdc14 proteins is independent of both cell-type and species specificity. Ectopically expressed XCdc14A is centrosomal in interphase and localizes to the midbody in cytokinesis. By using XCdc14A misregulation, we confirm its control over different cell cycle events and unravel new functions during abscission. XCdc14A regulates the G1/S and G2/M transitions. We show that Cdc25 is an in vitro substrate for XCdc14A and might be its target at the G2/M transition. Upregulated wild-type or phosphatase-dead XCdc14A arrest cells in a late stage of cytokinesis, connected by thin cytoplasmic bridges. It does not interfere with central spindle formation, nor with the relocalization of passenger protein and centralspindlin complexes to the midbody. We demonstrate that XCdc14A upregulation prevents targeting of exocyst and SNARE complexes to the midbody, both essential for abscission to occur.
Collapse
Affiliation(s)
- Liliana Krasinska
- Centre de Recherches de Biochimie Macromoleculaire, Université Montpellier II, CNRS UMR5237 1919, Route de Mende, 34293 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
24
|
Golubkov VS, Chekanov AV, Savinov AY, Rozanov DV, Golubkova NV, Strongin AY. Membrane Type-1 Matrix Metalloproteinase Confers Aneuploidy and Tumorigenicity on Mammary Epithelial Cells. Cancer Res 2006; 66:10460-5. [PMID: 17079467 DOI: 10.1158/0008-5472.can-06-2997] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An elevated expression of membrane type-1 matrix metalloproteinase (MT1-MMP) is closely associated with multiple malignancies. Recently, we discovered that recycled MT1-MMP was trafficked along the tubulin cytoskeleton into the centrosomal compartment and cleaved the integral centrosomal protein pericentrin-2. These events correlated with the induction of chromosome instability and aneuploidy in nonmalignant Madine-Darby canine kidney cells. Accordingly, we hypothesized that MT1-MMP is an oncogene that promotes malignant transformation of normal cells rather than just an enzyme that supports growth of preexisting tumors. To prove our hypothesis, we transfected normal 184B5 human mammary epithelial cells with MT1-MMP (184B5-MT1 cells). MT1-MMP was colocalized with pericentrin in the centrosomal compartment and especially in the midbody of dividing cells. 184B5-MT1 cells acquired the ability to activate MMP-2, to cleave pericentrin, and to invade the Matrigel matrix. 184B5-MT1 cells exhibited aneuploidy, and they were efficient in generating tumors in the orthotopic xenograft model in immunodeficient mice. Because of the absence of tumor angiogenesis and the resulting insufficient blood supply, the tumors then regressed with significant accompanying necrosis. Gene array studies confirmed a significant up-regulation of oncogenes and tumorigenic genes but not the angiogenesis-promoting genes in 184B5-MT1 cells. We believe that our data point to a novel function of MT1-MMP in the initial stages of malignant transformation and to new and hitherto unknown transition mechanism from normalcy to malignancy.
Collapse
Affiliation(s)
- Vladislav S Golubkov
- Cancer Research Center, The Burnham Institute for Medical Research, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|