1
|
Jácome R. Structural and Evolutionary Analysis of Proteins Endowed with a Nucleotidyltransferase, or Non-canonical Palm, Catalytic Domain. J Mol Evol 2024; 92:799-814. [PMID: 39297932 DOI: 10.1007/s00239-024-10207-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Many polymerases and other proteins are endowed with a catalytic domain belonging to the nucleotidyltransferase fold, which has also been deemed the non-canonical palm domain, in which three conserved acidic residues coordinate two divalent metal ions. Tertiary structure-based evolutionary analyses provide valuable information when the phylogenetic signal contained in the primary structure is blurry or has been lost, as is the case with these proteins. Pairwise structural comparisons of proteins with a nucleotidyltransferase fold were performed in the PDBefold web server: the RMSD, the number of superimposed residues, and the Qscore were obtained. The structural alignment score (RMSD × 100/number of superimposed residues) and the 1-Qscore were calculated, and distance matrices were constructed, from which a dendogram and a phylogenetic network were drawn for each score. The dendograms and the phylogenetic networks display well-defined clades, reflecting high levels of structural conservation within each clade, not mirrored by primary sequence. The conserved structural core between all these proteins consists of the catalytic nucleotidyltransferase fold, which is surrounded by different functional domains. Hence, many of the clades include proteins that bind different substrates or partake in non-related functions. Enzymes endowed with a nucleotidyltransferase fold are present in all domains of life, and participate in essential cellular and viral functions, which suggests that this domain is very ancient. Despite the loss of evolutionary traces in their primary structure, tertiary structure-based analyses allow us to delve into the evolution and functional diversification of the NT fold.
Collapse
Affiliation(s)
- Rodrigo Jácome
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, México.
| |
Collapse
|
2
|
Le Boulch M, Jacquet E, Nhiri N, Shmulevitz M, Jaïs PH. Rational design of an artificial tethered enzyme for non-templated post-transcriptional mRNA polyadenylation by the second generation of the C3P3 system. Sci Rep 2024; 14:5156. [PMID: 38431749 PMCID: PMC10908868 DOI: 10.1038/s41598-024-55947-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/29/2024] [Indexed: 03/05/2024] Open
Abstract
We have previously introduced the first generation of C3P3, an artificial system that allows the autonomous in-vivo production of mRNA with m7GpppN-cap. While C3P3-G1 synthesized much larger amounts of capped mRNA in human cells than conventional nuclear expression systems, it produced a proportionately much smaller amount of the corresponding proteins, indicating a clear defect of mRNA translatability. A possible mechanism for this poor translatability could be the rudimentary polyadenylation of the mRNA produced by the C3P3-G1 system. We therefore sought to develop the C3P3-G2 system using an artificial enzyme to post-transcriptionally lengthen the poly(A) tail. This system is based on the mutant mouse poly(A) polymerase alpha fused at its N terminus with an N peptide from the λ virus, which binds to BoxBr sequences placed in the 3'UTR region of the mRNA of interest. The resulting system selectively brings mPAPαm7 to the target mRNA to elongate its poly(A)-tail to a length of few hundred adenosine. Such elongation of the poly(A) tail leads to an increase in protein expression levels of about 2.5-3 times in cultured human cells compared to the C3P3-G1 system. Finally, the coding sequence of the tethered mutant poly(A) polymerase can be efficiently fused to that of the C3P3-G1 enzyme via an F2A sequence, thus constituting the single-ORF C3P3-G2 enzyme. These technical developments constitute an important milestone in improving the performance of the C3P3 system, paving the way for its applications in bioproduction and non-viral human gene therapy.
Collapse
Affiliation(s)
- Marine Le Boulch
- Eukarÿs SAS, Pépinière Genopole, 4 rue Pierre Fontaine, Genopole Entreprises Campus 3, 4 Rue Pierre Fontaine, 91000, Evry-Courcouronnes, France
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Avenue de la Terrasse, 91198, Gif-Sur-Yvette, France
| | - Naïma Nhiri
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Avenue de la Terrasse, 91198, Gif-Sur-Yvette, France
| | - Maya Shmulevitz
- Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, 6-142J Katz Group Centre for Pharmacy and Health Research, 114 Street NW, Edmonton, AB, T6G 2E1, Canada
| | - Philippe H Jaïs
- Eukarÿs SAS, Pépinière Genopole, 4 rue Pierre Fontaine, Genopole Entreprises Campus 3, 4 Rue Pierre Fontaine, 91000, Evry-Courcouronnes, France.
| |
Collapse
|
3
|
Gao Z, He X, Chen G, Fang Y, Meng Z, Tian H, Zhang H, Jing Z. The Viral Protein Poly(A) Polymerase Catalytic Subunit Interacts with Guanylate-Binding Proteins 2 to Antagonize the Antiviral Ability of Targeting Ectromelia Virus. Int J Mol Sci 2023; 24:15750. [PMID: 37958732 PMCID: PMC10648259 DOI: 10.3390/ijms242115750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The recent spread of the monkeypox virus among humans has heightened concerns regarding orthopoxvirus infections. Consequently, conducting a comprehensive study on the immunobiology of the monkeypox virus is imperative for the development of effective therapeutics. Ectromelia virus (ECTV) closely resembles the genetic and disease characteristics of monkeypox virus, making it a valuable research tool for studying orthopoxvirus-host interactions. Guanylate-binding proteins (GBPs), highly expressed interferon-stimulated genes (ISGs), have antagonistic effects against various intracellular pathogenic microorganisms. Our previous research has shown that GBP2 has a mild but statistically significant inhibitory effect on ECTV infection. The presence of a significant number of molecules in the poxvirus genome that encode the host immune response raises questions about whether it also includes proteins that counteract the antiviral activity of GBP2. Using IP/MS and co-IP technology, we discovered that the poly(A) polymerase catalytic subunit (PAPL) protein of ECTV is a viral regulatory molecule that interacts with GBP2. Further studies have shown that PAPL antagonizes the antiviral activity of GBP2 by reducing its protein levels. Knocking out the PAPL gene of ECTV with the CRISPR/Cas9 system significantly diminishes the replication ability of the virus, indicating the indispensable role of PAPL in the replication process of ECTV. In conclusion, our study presents preliminary evidence supporting the significance of PAPL as a virulence factor that can interact with GBP2.
Collapse
Affiliation(s)
- Zhenzhen Gao
- State Key Laboratory for Animal Disease Control and Prevention, Ministry of Agriculture Key Laboratory of Veterinary Public Health, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (Z.G.); (X.H.); (G.C.); (Y.F.); (H.T.); (H.Z.)
| | - Xiaobing He
- State Key Laboratory for Animal Disease Control and Prevention, Ministry of Agriculture Key Laboratory of Veterinary Public Health, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (Z.G.); (X.H.); (G.C.); (Y.F.); (H.T.); (H.Z.)
| | - Guohua Chen
- State Key Laboratory for Animal Disease Control and Prevention, Ministry of Agriculture Key Laboratory of Veterinary Public Health, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (Z.G.); (X.H.); (G.C.); (Y.F.); (H.T.); (H.Z.)
| | - Yongxiang Fang
- State Key Laboratory for Animal Disease Control and Prevention, Ministry of Agriculture Key Laboratory of Veterinary Public Health, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (Z.G.); (X.H.); (G.C.); (Y.F.); (H.T.); (H.Z.)
| | - Zejing Meng
- School of Public Health, Lanzhou University, Lanzhou 730000, China;
| | - Huihui Tian
- State Key Laboratory for Animal Disease Control and Prevention, Ministry of Agriculture Key Laboratory of Veterinary Public Health, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (Z.G.); (X.H.); (G.C.); (Y.F.); (H.T.); (H.Z.)
| | - Hui Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Ministry of Agriculture Key Laboratory of Veterinary Public Health, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (Z.G.); (X.H.); (G.C.); (Y.F.); (H.T.); (H.Z.)
| | - Zhizhong Jing
- State Key Laboratory for Animal Disease Control and Prevention, Ministry of Agriculture Key Laboratory of Veterinary Public Health, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (Z.G.); (X.H.); (G.C.); (Y.F.); (H.T.); (H.Z.)
- School of Public Health, Lanzhou University, Lanzhou 730000, China;
| |
Collapse
|
4
|
Functional and computational identification of a rescue mutation near the active site of an mRNA methyltransferase. Sci Rep 2020; 10:21841. [PMID: 33318548 PMCID: PMC7736282 DOI: 10.1038/s41598-020-79026-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/03/2020] [Indexed: 11/08/2022] Open
Abstract
RNA-based drugs are an emerging class of therapeutics combining the immense potential of DNA gene-therapy with the absence of genome integration-associated risks. While the synthesis of such molecules is feasible, large scale in vitro production of humanised mRNA remains a biochemical and economical challenge. Human mRNAs possess two post-transcriptional modifications at their 5' end: an inverted methylated guanosine and a unique 2'O-methylation on the ribose of the penultimate nucleotide. One strategy to precisely methylate the 2' oxygen is to use viral mRNA methyltransferases that have evolved to escape the host's cell immunity response following virus infection. However, these enzymes are ill-adapted to industrial processes and suffer from low turnovers. We have investigated the effects of homologous and orthologous active-site mutations on both stability and transferase activity, and identified new functional motifs in the interaction network surrounding the catalytic lysine. Our findings suggest that despite their low catalytic efficiency, the active-sites of viral mRNA methyltransferases have low mutational plasticity, while mutations in a defined third shell around the active site have strong effects on folding, stability and activity in the variant enzymes, mostly via network-mediated effects.
Collapse
|
5
|
Vreven T, Moal IH, Vangone A, Pierce BG, Kastritis PL, Torchala M, Chaleil R, Jiménez-García B, Bates PA, Fernandez-Recio J, Bonvin AMJJ, Weng Z. Updates to the Integrated Protein-Protein Interaction Benchmarks: Docking Benchmark Version 5 and Affinity Benchmark Version 2. J Mol Biol 2015; 427:3031-41. [PMID: 26231283 PMCID: PMC4677049 DOI: 10.1016/j.jmb.2015.07.016] [Citation(s) in RCA: 288] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/17/2015] [Accepted: 07/17/2015] [Indexed: 01/31/2023]
Abstract
We present an updated and integrated version of our widely used protein-protein docking and binding affinity benchmarks. The benchmarks consist of non-redundant, high-quality structures of protein-protein complexes along with the unbound structures of their components. Fifty-five new complexes were added to the docking benchmark, 35 of which have experimentally measured binding affinities. These updated docking and affinity benchmarks now contain 230 and 179 entries, respectively. In particular, the number of antibody-antigen complexes has increased significantly, by 67% and 74% in the docking and affinity benchmarks, respectively. We tested previously developed docking and affinity prediction algorithms on the new cases. Considering only the top 10 docking predictions per benchmark case, a prediction accuracy of 38% is achieved on all 55 cases and up to 50% for the 32 rigid-body cases only. Predicted affinity scores are found to correlate with experimental binding energies up to r=0.52 overall and r=0.72 for the rigid complexes.
Collapse
Affiliation(s)
- Thom Vreven
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Iain H Moal
- Joint BSC-CRG-IRB Research Program in Computational Biology, Life Sciences Department, Barcelona Supercomputing Center, C/Jordi Girona 29, 08034 Barcelona, Spain
| | - Anna Vangone
- Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Brian G Pierce
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Panagiotis L Kastritis
- Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Mieczyslaw Torchala
- Biomolecular Modelling Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, United Kingdom
| | - Raphael Chaleil
- Biomolecular Modelling Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, United Kingdom
| | - Brian Jiménez-García
- Joint BSC-CRG-IRB Research Program in Computational Biology, Life Sciences Department, Barcelona Supercomputing Center, C/Jordi Girona 29, 08034 Barcelona, Spain
| | - Paul A Bates
- Biomolecular Modelling Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, United Kingdom.
| | - Juan Fernandez-Recio
- Joint BSC-CRG-IRB Research Program in Computational Biology, Life Sciences Department, Barcelona Supercomputing Center, C/Jordi Girona 29, 08034 Barcelona, Spain.
| | - Alexandre M J J Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584CH Utrecht, The Netherlands.
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
6
|
Priet S, Lartigue A, Debart F, Claverie JM, Abergel C. mRNA maturation in giant viruses: variation on a theme. Nucleic Acids Res 2015; 43:3776-88. [PMID: 25779049 PMCID: PMC4402537 DOI: 10.1093/nar/gkv224] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 12/02/2022] Open
Abstract
Giant viruses from the Mimiviridae family replicate entirely in their host cytoplasm where their genes are transcribed by a viral transcription apparatus. mRNA polyadenylation uniquely occurs at hairpin-forming palindromic sequences terminating viral transcripts. Here we show that a conserved gene cluster both encode the enzyme responsible for the hairpin cleavage and the viral polyA polymerases (vPAP). Unexpectedly, the vPAPs are homodimeric and uniquely self-processive. The vPAP backbone structures exhibit a symmetrical architecture with two subdomains sharing a nucleotidyltransferase topology, suggesting that vPAPs originate from an ancestral duplication. A Poxvirus processivity factor homologue encoded by Megavirus chilensis displays a conserved 5'-GpppA 2'O methyltransferase activity but is also able to internally methylate the mRNAs' polyA tails. These findings elucidate how the arm wrestling between hosts and their viruses to access the translation machinery is taking place in Mimiviridae.
Collapse
Affiliation(s)
- Stéphane Priet
- Architecture et Fonction des Macromolécules Biologiques, CNRS UMR 7257, Aix-Marseille Université, 163 Avenue de Luminy, Case 932, 13288 Marseille cedex 9, France
| | - Audrey Lartigue
- Structural and Genomic Information Laboratory, UMR 7256 (IMM FR 3479) CNRS Aix-Marseille Université, 163 Avenue de Luminy, Case 934, 13288 Marseille cedex 9, France
| | - Françoise Debart
- IBMM, UMR 5247, CNRS-UM1-UM2, Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier, France
| | - Jean-Michel Claverie
- Structural and Genomic Information Laboratory, UMR 7256 (IMM FR 3479) CNRS Aix-Marseille Université, 163 Avenue de Luminy, Case 934, 13288 Marseille cedex 9, France APHM, FR-13385 Marseille, France
| | - Chantal Abergel
- Structural and Genomic Information Laboratory, UMR 7256 (IMM FR 3479) CNRS Aix-Marseille Université, 163 Avenue de Luminy, Case 934, 13288 Marseille cedex 9, France
| |
Collapse
|
7
|
|
8
|
Li H, Li C, Zhou S, Poulos TL, Gershon PD. Domain-level rocking motion within a polymerase that translocates on single-stranded nucleic acid. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:617-24. [PMID: 23519670 PMCID: PMC3606039 DOI: 10.1107/s0907444913000346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 01/04/2013] [Indexed: 11/10/2022]
Abstract
Vaccinia virus poly(A) polymerase (VP55) is the only known polymerase that can translocate independently with respect to single-stranded nucleic acid (ssNA). Previously, its structure has only been solved in the context of the VP39 processivity factor. Here, a crystal structure of unliganded monomeric VP55 has been solved to 2.86 Å resolution, showing the first backbone structural isoforms among either VP55 or its processivity factor (VP39). Backbone differences between the two molecules of VP55 in the asymmetric unit indicated that unliganded monomeric VP55 can undergo a `rocking' motion of the N-terminal domain with respect to the other two domains, which may be `rigidified' upon VP39 docking. This observation is consistent with previously demonstrated experimental molecular dynamics of the monomer during translocation with respect to nucleic acid and with different mechanisms of translocation in the presence and absence of processivity factor VP39. Side-chain conformational changes in the absence of ligand were observed at a key primer contact site and at the catalytic center of VP55. The current structure completes the trio of possible structural forms for VP55 and VP39, namely the VP39 monomer, the VP39-VP55 heterodimer and the VP55 monomer.
Collapse
Affiliation(s)
- Huiyung Li
- Department of Molecular Biology and Biochemistry, Xinxiang Medical University, Xinxiang, Henan 453003, People’s Republic of China
| | - Changzheng Li
- Department of Molecular Biology and Biochemistry, Xinxiang Medical University, Xinxiang, Henan 453003, People’s Republic of China
- Department of Molecular Biology and Biochemistry, UC-Irvine, Irvine, USA
| | - Sufeng Zhou
- Department of Molecular Biology and Biochemistry, Xinxiang Medical University, Xinxiang, Henan 453003, People’s Republic of China
- Department of Molecular Biology and Biochemistry, UC-Irvine, Irvine, USA
| | - Thomas L. Poulos
- Department of Molecular Biology and Biochemistry, UC-Irvine, Irvine, USA
- Department of Pharmaceutical Sciences, UC-Irvine, Irvine, USA
- Department of Chemistry, UC-Irvine, Irvine, USA
| | - Paul David Gershon
- Department of Molecular Biology and Biochemistry, UC-Irvine, Irvine, USA
| |
Collapse
|
9
|
Lartigue A, Jeudy S, Bertaux L, Abergel C. Preliminary crystallographic analysis of a polyadenylate synthase from Megavirus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:53-6. [PMID: 23295487 PMCID: PMC3539704 DOI: 10.1107/s1744309112048257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/24/2012] [Indexed: 11/10/2022]
Abstract
Megavirus chilensis, a close relative of the Mimivirus giant virus, is also the most complex virus sequenced to date, with a 1.26 Mb double-stranded DNA genome encoding 1120 genes. The two viruses share common regulatory elements such as a peculiar palindrome governing the termination/polyadenylation of viral transcripts. They also share a predicted polyadenylate synthase that presents a higher than average percentage of residue conservation. The Megavirus enzyme Mg561 was overexpressed in Escherichia coli, purified and crystallized. A 2.24 Å resolution MAD data set was recorded from a single crystal on the ID29 beamline at the ESRF.
Collapse
Affiliation(s)
- Audrey Lartigue
- Information Génomique et Structurale, IGS UMR7256, CNRS, Aix-Marseille Université, IMM, FR3479, 163 Avenue de Luminy – case 934, 13288 Marseille CEDEX 09, France
| | - Sandra Jeudy
- Information Génomique et Structurale, IGS UMR7256, CNRS, Aix-Marseille Université, IMM, FR3479, 163 Avenue de Luminy – case 934, 13288 Marseille CEDEX 09, France
| | - Lionel Bertaux
- Information Génomique et Structurale, IGS UMR7256, CNRS, Aix-Marseille Université, IMM, FR3479, 163 Avenue de Luminy – case 934, 13288 Marseille CEDEX 09, France
| | - Chantal Abergel
- Information Génomique et Structurale, IGS UMR7256, CNRS, Aix-Marseille Université, IMM, FR3479, 163 Avenue de Luminy – case 934, 13288 Marseille CEDEX 09, France
| |
Collapse
|
10
|
Prichard MN, Kern ER. Orthopoxvirus targets for the development of new antiviral agents. Antiviral Res 2012; 94:111-25. [PMID: 22406470 PMCID: PMC3773844 DOI: 10.1016/j.antiviral.2012.02.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/10/2012] [Accepted: 02/21/2012] [Indexed: 12/29/2022]
Abstract
Investments in the development of new drugs for orthopoxvirus infections have fostered new avenues of research, provided an improved understanding of orthopoxvirus biology and yielded new therapies that are currently progressing through clinical trials. These broad-based efforts have also resulted in the identification of new inhibitors of orthopoxvirus replication that target many different stages of viral replication cycle. This review will discuss progress in the development of new anti-poxvirus drugs and the identification of new molecular targets that can be exploited for the development of new inhibitors. The prototype of the orthopoxvirus group is vaccinia virus and its replication cycle will be discussed in detail noting specific viral functions and their associated gene products that have the potential to serve as new targets for drug development. Progress that has been achieved in recent years should yield new drugs for the treatment of these infections and might also reveal new approaches for antiviral drug development with other viruses.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35233-1711, United States.
| | | |
Collapse
|
11
|
Abstract
Many flaviviruses are significant human pathogens. The plus-strand RNA genome of a flavivirus contains a 5' terminal cap 1 structure (m(7)GpppAmG). The flavivirus encodes one methyltransferase (MTase), located at the N-terminal portion of the NS5 RNA-dependent RNA polymerase (RdRp). Here we review recent advances in our understanding of flaviviral capping machinery and the implications for drug development. The NS5 MTase catalyzes both guanine N7 and ribose 2'-OH methylations during viral cap formation. Representative flavivirus MTases, from dengue, yellow fever, and West Nile virus (WNV), sequentially generate GpppA → m(7)GpppA → m(7)GpppAm. Despite the existence of two distinct methylation activities, the crystal structures of flavivirus MTases showed a single binding site for S-adenosyl-L-methionine (SAM), the methyl donor. This finding indicates that the substrate GpppA-RNA must be repositioned to accept the N7 and 2'-O methyl groups from SAM during the sequential reactions. Further studies demonstrated that distinct RNA elements are required for the methylations of guanine N7 on the cap and of ribose 2'-OH on the first transcribed nucleotide. Mutant enzymes with different methylation defects can trans complement one another in vitro, demonstrating that separate molecules of the enzyme can independently catalyze the two cap methylations in vitro. In the context of the infectious virus, defects in both methylations, or a defect in the N7 methylation alone, are lethal to WNV. However, viruses defective solely in 2'-O methylation are attenuated and can protect mice from later wild-type WNV challenge. The results demonstrate that the N7 methylation activity is essential for the WNV life cycle and, thus, methyltransferase represents a novel and promising target for flavivirus therapy.
Collapse
|
12
|
Li CZ, Koter M, Ye X, Zhou SF, Chou W, Luo R, Gershon PD. Widespread but Small-Scale Changes in the Structural and Dynamic Properties of Vaccinia Virus Poly(A) Polymerase upon Association with Its Processivity Factor in Solution. Biochemistry 2010; 49:6247-62. [DOI: 10.1021/bi100166x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- C.-Z. Li
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - M. Koter
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - X. Ye
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - S.-F. Zhou
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - W. Chou
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - R. Luo
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - P. D. Gershon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| |
Collapse
|
13
|
Ringpis GE, Stagno J, Aphasizhev R. Mechanism of U-insertion RNA editing in trypanosome mitochondria: characterization of RET2 functional domains by mutational analysis. J Mol Biol 2010; 399:696-706. [PMID: 20417643 PMCID: PMC2885561 DOI: 10.1016/j.jmb.2010.04.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 04/14/2010] [Accepted: 04/19/2010] [Indexed: 12/30/2022]
Abstract
3'-Terminal uridylyl transferases (TUTases) selectively bind uridine 5'-triphosphate (UTP) and catalyze the addition of uridine 5'-monophosphate to the 3'-hydroxyl of RNA substrates in a template-independent manner. RNA editing TUTase 1 and RNA editing TUTase 2 (RET2) play central roles in uridine insertion/deletion RNA editing, which is an essential part of mitochondrial RNA processing in trypanosomes. Although the conserved N-terminal (catalytic) domain and C-terminal (nucleotide base recognition) domain are readily distinguished in all known TUTases, nucleotide specificity, RNA substrate preference, processivity, quaternary structures, and auxiliary domains vary significantly among enzymes of divergent biological functions. RET2 acts as a subunit of the RNA editing core complex to carry out guide-RNA-dependent U-insertion into mitochondrial mRNA. By correlating mutational effects on RET2 activity as recombinant protein and as RNA editing core complex subunit with RNAi-based knock-in phenotypes, we have assessed the UTP and RNA binding sites in RET2. Here we demonstrate functional conservation of key UTP-binding and metal-ion-coordinating residues and identify amino acids involved in RNA substrate recognition. Invariant arginine residues 144 and 435 positioned in the vicinity of the UTP binding site are critical for RET2 activity on single-stranded and double-stranded RNAs, as well as function in vivo. Recognition of a double-stranded RNA, which resembles a guide RNA/mRNA duplex, is further facilitated by multipoint contacts across the RET2-specific middle domain.
Collapse
Affiliation(s)
- Gene-Errol Ringpis
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, California, 92697, USA
| | | | - Ruslan Aphasizhev
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, California, 92697, USA
| |
Collapse
|
14
|
Farlow J, Ichou MA, Huggins J, Ibrahim S. Comparative whole genome sequence analysis of wild-type and cidofovir-resistant monkeypoxvirus. Virol J 2010; 7:110. [PMID: 20509894 PMCID: PMC2890524 DOI: 10.1186/1743-422x-7-110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 05/28/2010] [Indexed: 11/10/2022] Open
Abstract
We performed whole genome sequencing of a cidofovir {[(S)-1-(3-hydroxy-2-phosphonylmethoxy-propyl) cytosine] [HPMPC]}-resistant (CDV-R) strain of Monkeypoxvirus (MPV). Whole-genome comparison with the wild-type (WT) strain revealed 55 single-nucleotide polymorphisms (SNPs) and one tandem-repeat contraction. Over one-third of all identified SNPs were located within genes comprising the poxvirus replication complex, including the DNA polymerase, RNA polymerase, mRNA capping methyltransferase, DNA processivity factor, and poly-A polymerase. Four polymorphic sites were found within the DNA polymerase gene. DNA polymerase mutations observed at positions 314 and 684 in MPV were consistent with CDV-R loci previously identified in Vaccinia virus (VACV). These data suggest the mechanism of CDV resistance may be highly conserved across Orthopoxvirus (OPV) species. SNPs were also identified within virulence genes such as the A-type inclusion protein, serine protease inhibitor-like protein SPI-3, Schlafen ATPase and thymidylate kinase, among others. Aberrant chain extension induced by CDV may lead to diverse alterations in gene expression and viral replication that may result in both adaptive and attenuating mutations. Defining the potential contribution of substitutions in the replication complex and RNA processing machinery reported here may yield further insight into CDV resistance and may augment current therapeutic development strategies.
Collapse
Affiliation(s)
- Jason Farlow
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702-5011, USA.
| | | | | | | |
Collapse
|
15
|
Abstract
Studies of the functional proteins encoded by the poxvirus genome provide information about the composition of the virus as well as individual virus-virus protein and virus-host protein interactions, which provides insight into viral pathogenesis and drug discovery. Widely used proteomic techniques to identify and characterize specific protein-protein interactions include yeast two-hybrid studies and coimmunoprecipitations. Recently, various mass spectrometry techniques have been employed to identify viral protein components of larger complexes. These methods, combined with structural studies, can provide new information about the putative functions of viral proteins as well as insights into virus-host interaction dynamics. For viral proteins of unknown function, identification of either viral or host binding partners provides clues about their putative function. In this review, we discuss poxvirus proteomics, including the use of proteomic methodologies to identify viral components and virus-host protein interactions. High-throughput global protein expression studies using protein chip technology as well as new methods for validating putative protein-protein interactions are also discussed.
Collapse
|
16
|
Chen LS, Du-Cuny L, Vethantham V, Hawke DH, Manley JL, Zhang S, Gandhi V. Chain termination and inhibition of mammalian poly(A) polymerase by modified ATP analogues. Biochem Pharmacol 2009; 79:669-77. [PMID: 19814999 DOI: 10.1016/j.bcp.2009.09.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 09/28/2009] [Accepted: 09/30/2009] [Indexed: 11/20/2022]
Abstract
We report the inhibition of mammalian polyadenylation by the triphosphate derivatives of adenosine analogues, 8-chloroadenosine (8-Cl-Ado) and 8-aminoadenosine (8-amino-Ado), which are under preclinical and clinical investigations for the treatment of hematological malignancies. The nucleotide substrate specificity of bovine poly(A) polymerase (PAP) towards C8-modified ATP analogues was examined using primer extension assays. Radiolabeled RNA primers were incubated with bovine PAP, and in the absence of ATP, no primer extension was observed with 8-Cl-ATP, whereas 8-amino-ATP resulted in chain termination. The effects of modified ATP analogues on ATP-dependent poly(A)-tail synthesis by bovine PAP also were determined, and incubation with analogue triphosphate resulted in significant reduction of poly(A)-tail length. To model the biochemical consequences of 8-Cl-Ado incorporation into RNA, a synthetic RNA primer containing a 3'-terminal 8-Cl-AMP residue was evaluated, and polyadenylation of the primer by bovine PAP with ATP was blocked completely. To explain these experimental observations and probe the possible structural mechanisms, molecular modeling was employed to examine the interactions between PAP and various ATP analogues. Molecular docking demonstrated that C8-modifications of ATP led to increased distance between the 3'-hydroxyl group of the RNA oligonucleotide terminus and the alpha-phosphate of ATP that render the molecules in an unfavorable position for incorporation into RNA. Similarly, C8-substitution with a chlorine or amino group at the 3'-terminal residue of RNA also inhibits further chain elongation by PAP. In conclusion, modified ATP analogues may exert their biological effects through polyadenylation inhibition, and thus may provide an RNA-directed mechanism of action for 8-Cl-Ado and 8-amino-Ado.
Collapse
Affiliation(s)
- Lisa S Chen
- Department of Experimental Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Li C, Li H, Zhou S, Sun E, Yoshizawa J, Poulos TL, Gershon PD. Polymerase translocation with respect to single-stranded nucleic acid: looping or wrapping of primer around a poly(A) polymerase. Structure 2009; 17:680-9. [PMID: 19446524 DOI: 10.1016/j.str.2009.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 02/13/2009] [Accepted: 03/09/2009] [Indexed: 11/27/2022]
Abstract
Vaccinia virus protein VP55 translocates continuously with respect to single-stranded nucleic acid while extending its 3'end. Here, all key sites of polymerase-primer interaction were identified, demonstrating the wrapping or looping of polyadenylation primer around the polymerase during translocation. Side-chain substitutions at one of the sites indicated its requirement for tail extension beyond approximately 12 nucleotides in length, and conformational changes observed upon oligonucleotide binding suggested allosteric connectivity during translocation. Conformational changes in VP39 upon VP55 binding suggested that, within the VP55-VP39 complex, VP39's mRNA 5' cap binding site closes. The crystallographic structure showed a PAPase catalytic center without side-chain substitutions, possessing two metal ions and with all known reactive and catalytic groups represented, fitting a classical two-metal ion mechanism for phosphoryl transfer.
Collapse
Affiliation(s)
- ChangZheng Li
- Department of Chemistry, Xinxiang Medical University, Xinxiang, Henan, PR China
| | | | | | | | | | | | | |
Collapse
|
18
|
Becker MN, Todd TM, Moyer RW. An Amsacta moorei entomopoxvirus ortholog of the poly(A) polymerase small subunit exhibits methyltransferase activity and is non-essential for virus growth. Virology 2008; 375:624-36. [PMID: 18367228 PMCID: PMC2478561 DOI: 10.1016/j.virol.2008.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 02/08/2008] [Accepted: 02/20/2008] [Indexed: 02/05/2023]
Abstract
Unlike the heterodimeric poly(A) polymerase (PAP) of vaccinia virus (VACV), the PAP from the Amsacta moorei entomopoxvirus, AMEV, is potentially derived from three subunits: a single large and two small subunits (AMV060 and AMV115). The VACV small subunit serves as a 2'-O-methyltransferase, a processivity factor for mRNA polyadenylation, and a transcription elongation factor. We wished to determine the structure-function relationships of the three putative AMEV PAP subunits. We show that AMV060 is expressed as an early gene persisting throughout infection, whereas AMV115 is expressed late. We demonstrate that AMV060 exhibits 2'-O-methyltransferase activity but the gene is not essential for virus growth. Absence of the AMV060 protein has no effect on the length of the poly(A) tails present in mRNA. No physical association was found between any of the putative AMEV PAP subunits. We therefore propose that mRNA polyadenylation does not require interactions between these three proteins.
Collapse
Affiliation(s)
- Marie N Becker
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA.
| | | | | |
Collapse
|
19
|
Aphasizhev R, Aphasizheva I. Terminal RNA uridylyltransferases of trypanosomes. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1779:270-80. [PMID: 18191648 PMCID: PMC2364610 DOI: 10.1016/j.bbagrm.2007.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 12/10/2007] [Accepted: 12/13/2007] [Indexed: 12/14/2022]
Abstract
Terminal RNA uridylyltransferases (TUTases) are functionally and structurally diverse nucleotidyl transferases that catalyze template-independent 3' uridylylation of RNAs. Within the DNA polymerase beta-type superfamily, TUTases are closely related to non-canonical poly(A) polymerases. Studies of U-insertion/deletion RNA editing in mitochondria of trypanosomatids identified the first TUTase proteins and their cellular functions: post-transcriptional uridylylation of guide RNAs by RNA editing TUTase 1 (RET1) and U-insertion mRNA editing by RNA editing TUTase 2 (RET2). The editing TUTases possess conserved catalytic and nucleotide base recognition domains, yet differ in quaternary structure, substrate specificity and processivity. The cytosolic TUTases TUT3 and TUT4 have also been identified in trypanosomes but their biological roles remain to be established. Structural analyses have revealed a mechanism of cognate nucleoside triphosphate selection by TUTases, which includes protein-UTP contacts as well as contribution of the RNA substrate. This review focuses on biological functions and structures of trypanosomal TUTases.
Collapse
Affiliation(s)
- Ruslan Aphasizhev
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697-4025, USA.
| | | |
Collapse
|
20
|
Martin G, Doublié S, Keller W. Determinants of substrate specificity in RNA-dependent nucleotidyl transferases. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1779:206-16. [PMID: 18177750 PMCID: PMC2676681 DOI: 10.1016/j.bbagrm.2007.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 11/23/2007] [Accepted: 12/06/2007] [Indexed: 01/28/2023]
Abstract
Poly(A) polymerases were identified almost 50 years ago as enzymes that add multiple AMP residues to the 3' ends of primer RNAs without use of a template from ATP as cosubstrate and with release of pyrophosphate. Based on sequence homology of a signature motif in the catalytic domain, poly(A) polymerases were later found to belong to a superfamily of nucleotidyl transferases acting on a very diverse array of substrates. Enzymes belonging to the superfamily can add from single nucleotides of AMP, CMP or UMP to RNA, antibiotics and proteins but also homopolymers of many hundred residues to the 3' ends of RNA molecules. The recently reported structures of several nucleotidyl transferases facilitate the study of the catalytic mechanisms of these very diverse enzymes. Numerous structures of CCA-adding enzymes have now revealed all steps in the formation of a CCA tail at the 3' end of tRNAs. In addition, structures of poly(A) polymerases and uridylyl transferases are now available as binary and ternary complexes with incoming nucleotide and RNA primer. Some of these proteins undergo significant conformational changes after substrate binding. This is proposed to be an indication for an induced fit mechanism that drives substrate selection and leads to catalysis. Insights from recent structures of ternary complexes indicate an important role for the primer molecule in selecting the incoming nucleotide.
Collapse
Affiliation(s)
- Georges Martin
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Given Building E314-A, Burlington, VT 05405 USA
| | - Walter Keller
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| |
Collapse
|
21
|
Abstract
RNA-specific nucleotidyl transferases (rNTrs) are a diverse family of template-independent polymerases that add ribonucleotides to the 3'-ends of RNA molecules. All rNTrs share a related active-site architecture first described for DNA polymerase beta and a catalytic mechanism conserved among DNA and RNA polymerases. The best known examples are the nuclear poly(A) polymerases involved in the 3'-end processing of eukaryotic messenger RNA precursors and the ubiquitous CCA-adding enzymes that complete the 3'-ends of tRNA molecules. In recent years, a growing number of new enzymes have been added to the list that now includes the "noncanonical" poly(A) polymerases involved in RNA quality control or in the readenylation of dormant messenger RNAs in the cytoplasm. Other members of the group are terminal uridylyl transferases adding single or multiple UMP residues in RNA-editing reactions or upon the maturation of small RNAs and poly(U) polymerases, the substrates of which are still not known. 2'-5'Oligo(A) synthetases differ from the other rNTrs by synthesizing oligonucleotides with 2'-5'-phosphodiester bonds de novo.
Collapse
Affiliation(s)
- Georges Martin
- Department of Cell Biology, Biozentrum, University of Basel, Basel, Switzerland
| | | |
Collapse
|
22
|
Stagno J, Aphasizheva I, Aphasizhev R, Luecke H. Dual role of the RNA substrate in selectivity and catalysis by terminal uridylyl transferases. Proc Natl Acad Sci U S A 2007; 104:14634-9. [PMID: 17785418 PMCID: PMC1976215 DOI: 10.1073/pnas.0704259104] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Terminal RNA uridylyltransferases (TUTases) catalyze template-independent UMP addition to the 3' hydroxyl of RNA. TUTases belong to the DNA polymerase beta superfamily of nucleotidyltransferases that share a conserved catalytic domain bearing three metal-binding carboxylate residues. We have previously determined crystal structures of the UTP-bound and apo forms of the minimal trypanosomal TUTase, TbTUT4, which is composed solely of the N-terminal catalytic and C-terminal base-recognition domains. Here we report crystal structures of TbTUT4 with bound CTP, GTP, and ATP, demonstrating nearly perfect superposition of the triphosphate moieties with that of the UTP substrate. Consequently, at physiological nucleoside 5'-triphosphate concentrations, the protein-uracil base interactions alone are not sufficient to confer UTP selectivity. To resolve this ambiguity, we determined the crystal structure of a prereaction ternary complex composed of UTP, TbTUT4, and UMP, which mimics an RNA substrate, and the postreaction complex of TbTUT4 with UpU dinucleotide. The UMP pyrimidine ring stacks against the uracil base of the bound UTP, which on its other face also stacks with an essential tyrosine. In contrast, the different orientation of the purine bases observed in cocrystals with ATP and GTP prevents this triple stacking, precluding productive binding of the RNA. The 3' hydroxyl of the bound UMP is poised for in-line nucleophilic attack while contributing to the formation of a binding site for a second catalytic metal ion. We propose a dual role for RNA substrates in TUTase-catalyzed reactions: contribution to selective incorporation of the cognate nucleoside and shaping of the catalytic metal binding site.
Collapse
Affiliation(s)
- Jason Stagno
- Departments of Molecular Biology and Biochemistry
| | | | - Ruslan Aphasizhev
- Microbiology and Molecular Genetics
- To whom correspondence may be addressed. E-mail: or
| | - Hartmut Luecke
- Departments of Molecular Biology and Biochemistry
- Physiology and Biophysics, and
- Informatics and Computer Science and
- Center for Biomembrane Systems, University of California, Irvine, CA 92697
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
23
|
Assenberg R, Ren J, Verma A, Walter TS, Alderton D, Hurrelbrink RJ, Fuller SD, Bressanelli S, Owens RJ, Stuart DI, Grimes JM. Crystal structure of the Murray Valley encephalitis virus NS5 methyltransferase domain in complex with cap analogues. J Gen Virol 2007; 88:2228-2236. [PMID: 17622627 DOI: 10.1099/vir.0.82757-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have determined the high resolution crystal structure of the methyltransferase domain of the NS5 polypeptide from the Murray Valley encephalitis virus. This domain is unusual in having both the N7 and 2'-O methyltransferase activity required for Cap 1 synthesis. We have also determined structures for complexes of this domain with nucleotides and cap analogues providing information on cap binding, based on which we suggest a model of how the sequential methylation of the N7 and 2'-O groups of the cap may be coordinated.
Collapse
Affiliation(s)
- René Assenberg
- Oxford Protein Production Facility, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jingshan Ren
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN, UK
- Oxford Protein Production Facility, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Anil Verma
- Oxford Protein Production Facility, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Thomas S Walter
- Oxford Protein Production Facility, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN, UK
| | - David Alderton
- Oxford Protein Production Facility, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Robert J Hurrelbrink
- Department of Virology, Telethon Institute for Child Health Research, University of Western Australia, Perth, WA 6008, Australia
| | - Stephen D Fuller
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Stéphane Bressanelli
- INRA, UMR1157, Virologie Moléculaire et Structurale, 91198 Gif sur Yvette, France
- CNRS, UMR2472, IFR 115, Virologie Moléculaire et Structurale, 91198 Gif sur Yvette, France
| | - Raymond J Owens
- Oxford Protein Production Facility, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN, UK
| | - David I Stuart
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN, UK
- Oxford Protein Production Facility, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jonathan M Grimes
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN, UK
- Oxford Protein Production Facility, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
24
|
Yoshizawa JM, Li C, Gershon PD. Saltatory Forward Movement of a Poly(A) Polymerase during Poly(A) Tail Addition. J Biol Chem 2007; 282:19144-51. [PMID: 17488726 DOI: 10.1074/jbc.m700183200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vaccinia poly(A) polymerase (VP55) interacts with > or = 33-nucleotide (nt) primers via uridylates at two sites (-27/-26 and -10). It adds approximately 30-nt poly(A) tails with a rapid, processive burst in which the first few nt are added without substantial primer movement, and addition of the remaining adenylates is dependent upon a six-uridylate tract at the extreme 3' end of the primer and accompanied by polymerase translocation. Interaction of VP55 with 2-aminopurine (2-AP)-containing primers was associated with a 3-fold enhancement in 2-AP fluorescence. In stopped-flow experiments, fluorescence intensity changed with time during the polyadenylation burst in a manner dependent upon the position of 2-AP, indicating a non-uniform isomerization of the polymerase-primer complex with time consistent with a discontinuous (saltatory) translocation mechanism. Three distinct translocatory phases could be discerned: a -10(U)-binding site forward movement, a -27/-26(UU)-binding site jump to -10, then a -27/-26(UU)-binding site movement further downstream. Poly(A) tail elongation showed no apparent pauses during these isomerizations. Fluorescence changes during polyadenylation of 2-AP-containing primers with short preformed oligo(A) tails reinforced the above observations. Primers composed entirely of oligo(U) (apart from the 2-AP sensor), in which the polymerase modules might be most able to "slide" uniformly, also showed the characteristic saltatory pattern of translocation. These data indicate, for the first time, a discontinuous mode of translocation for a non-templated polymerase.
Collapse
Affiliation(s)
- Janice M Yoshizawa
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| | | | | |
Collapse
|
25
|
Stagno J, Aphasizheva I, Rosengarth A, Luecke H, Aphasizhev R. UTP-bound and Apo structures of a minimal RNA uridylyltransferase. J Mol Biol 2006; 366:882-99. [PMID: 17189640 PMCID: PMC1850106 DOI: 10.1016/j.jmb.2006.11.065] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 11/09/2006] [Accepted: 11/20/2006] [Indexed: 11/22/2022]
Abstract
3'-Uridylylation of RNA is emerging as a phylogenetically widespread phenomenon involved in processing events as diverse as uridine insertion/deletion RNA editing in mitochondria of trypanosomes and small nuclear RNA (snRNA) maturation in humans. This reaction is catalyzed by terminal uridylyltransferases (TUTases), which are template-independent RNA nucleotidyltransferases that specifically recognize UTP and belong to a large enzyme superfamily typified by DNA polymerase beta. Multiple TUTases, recently identified in trypanosomes, as well as a U6 snRNA-specific TUTase enzyme in humans, are highly divergent at the protein sequence level. However, they all possess conserved catalytic and UTP recognition domains, often accompanied by various auxiliary modules present at the termini or between conserved domains. Here we report identification, structural and biochemical analyses of a novel trypanosomal TUTase, TbTUT4, which represents a minimal catalytically active RNA uridylyltransferase. The TbTUT4 consists of only two domains that define the catalytic center at the bottom of the nucleoside triphosphate and RNA substrate binding cleft. The 2.0 Angstroms crystal structure reveals two significantly different conformations of this TUTase: one molecule is in a relatively open apo conformation, whereas the other displays a more compact TUTase-UTP complex. A single nucleoside triphosphate is bound in the active site by a complex network of interactions between amino acid residues, a magnesium ion and highly ordered water molecules with the UTP's base, ribose and phosphate moieties. The structure-guided mutagenesis and cross-linking studies define the amino acids essential for catalysis, uracil base recognition, ribose binding and phosphate coordination by uridylyltransferases. In addition, the cluster of positively charged residues involved in RNA binding is identified. We also report a 2.4 Angstroms crystal structure of TbTUT4 with the bound 2' deoxyribonucleoside, which provides the structural basis of the enzyme's preference toward ribonucleotides.
Collapse
Affiliation(s)
- Jason Stagno
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
26
|
Mesters JR, Tan J, Hilgenfeld R. Viral enzymes. Curr Opin Struct Biol 2006; 16:776-86. [PMID: 17085042 PMCID: PMC7127120 DOI: 10.1016/j.sbi.2006.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 10/16/2006] [Accepted: 10/24/2006] [Indexed: 01/09/2023]
Abstract
Viral genomes show unequalled diversity, ranging from single-stranded DNA to double-stranded RNA. Moreover, viruses can quickly adapt to the host's immune response and drug treatment. Although they tend to make optimal use of the host cell's reservoir of proteins, viruses need to carry some enzymatic functions with them, as they may not be available or accessible in the infected cell. Recently, progress has been made in our structural understanding of viral enzymes involved in all stages of the viral life cycle, which includes entry, hijack, replication and exit stages.
Collapse
Affiliation(s)
- Jeroen R Mesters
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | | | | |
Collapse
|
27
|
Tomar S, Hardy RW, Smith JL, Kuhn RJ. Catalytic core of alphavirus nonstructural protein nsP4 possesses terminal adenylyltransferase activity. J Virol 2006; 80:9962-9. [PMID: 17005674 PMCID: PMC1617302 DOI: 10.1128/jvi.01067-06] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 07/25/2006] [Indexed: 11/20/2022] Open
Abstract
The RNA-dependent RNA polymerase nsP4 is an integral part of the alphavirus replication complex. To define the role of nsP4 in viral RNA replication and for a structure-function analysis, we expressed Sindbis virus nsP4 in Escherichia coli. The core catalytic domain of nsP4 (Delta97nsP4, a deletion of the N-terminal 97 amino acids), which consists of the predicted polymerase domain containing the GDD amino acid motif required for viral RNA synthesis, was stable against proteolytic degradation during expression. Therefore, the recombinant core domain and selected mutants were expressed and purified to homogeneity. We determined that Delta97nsP4 possesses terminal adenylyltransferase (TATase) activity, as it specifically catalyzed the addition of adenine to the 3' end of an acceptor RNA in the presence of divalent cations. Furthermore, Delta97nsP4 is unable to transfer other nucleotides (UTP, CTP, GTP, and dATP) to the acceptor RNA in the absence or presence of other nucleotides. Delta97nsP4 possessing a GDD-to-GAA mutation completely inactivates the enzymatic activity. However, a GDD-to-SNN mutation did not inactivate the enzyme but reduced its activity to approximately 45% of that of the wild type in the presence of Mg(2+). Investigation of the TATase of the GDD-to-SNN mutant revealed that it had TATase equivalent to that of the wild type in the presence of Mn(2+). Identification of Delta97nsP4 TATase activity suggests a novel function of the alphavirus RNA-dependent RNA polymerase in the maintenance and repair of the poly(A) tail, an element required for replication of the viral genome.
Collapse
Affiliation(s)
- Shailly Tomar
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA
| | | | | | | |
Collapse
|