1
|
Xie B, Dean A. A Super Enhancer-Derived Enhancer RNA Acts Together with CTCF/Cohesin in Trans to Regulate Erythropoiesis. Genes (Basel) 2025; 16:389. [PMID: 40282349 PMCID: PMC12026470 DOI: 10.3390/genes16040389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/14/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Enhancer RNAs (eRNAs) function in diverse modes and increasing studies have shown that they play important roles in normal development and disease. However, their role in erythropoiesis is not fully understood. Methods: We analyzed published RNA-seq and Promoter Capture Hi-C data from mouse E14.5 fetal liver cells to identify enhancer RNAs in erythroid cells with long-range interactions. Results: We discovered an erythroid-specific enhancer RNA (CpoxeRNA) transcribed from an enhancer region upstream of Cpox, an enzyme important for heme synthesis. CpoxeRNA is important for erythropoiesis, as the knockdown of CpoxeRNA by shRNA results in impaired enucleation and cell proliferation during terminal differentiation. CpoxeRNA interacts with cohesin and acts both in cis and trans to regulate erythroid genes. Conclusions: we have identified a trans-acting eRNA, CpoxeRNA, as a potential regulator of terminal erythropoiesis.
Collapse
Affiliation(s)
- Bingning Xie
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Shen Y, Huang Z, Yang R, Chen Y, Wang Q, Gao L. Insights into Enhancer RNAs: Biogenesis and Emerging Role in Brain Diseases. Neuroscientist 2023; 29:166-176. [PMID: 34612730 DOI: 10.1177/10738584211046889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Enhancers are cis-acting elements that control the transcription of target genes and are transcribed into a class of noncoding RNAs (ncRNAs) termed enhancer RNAs (eRNAs). eRNAs have shorter half-lives than mRNAs and long noncoding RNAs; however, the frequency of transcription of eRNAs is close to that of mRNAs. eRNA expression is associated with a high level of histone mark H3K27ac and a low level of H3K27me3. Although eRNAs only account for a small proportion of ncRNAs, their functions are important. eRNAs can not only increase enhancer activity by promoting the formation of enhancer-promoter loops but also regulate transcriptional activation. Increasing numbers of studies have found that eRNAs play an important role in the occurrence and development of brain diseases; however, further research into eRNAs is required. This review discusses the concept, characteristics, classification, function, and potential roles of eRNAs in brain diseases.
Collapse
Affiliation(s)
- Yuxin Shen
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zhengyi Huang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ruiqing Yang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yunlong Chen
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qiang Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Immunology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Linbo Gao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
3
|
Xiong L, Tolen EA, Choi J, Velychko S, Caizzi L, Velychko T, Adachi K, MacCarthy CM, Lidschreiber M, Cramer P, Schöler HR. Oct4 differentially regulates chromatin opening and enhancer transcription in pluripotent stem cells. eLife 2022; 11:71533. [PMID: 35621159 PMCID: PMC9142147 DOI: 10.7554/elife.71533] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 05/17/2022] [Indexed: 12/21/2022] Open
Abstract
The transcription factor Oct4 is essential for the maintenance and induction of stem cell pluripotency, but its functional roles are not fully understood. Here, we investigate the functions of Oct4 by depleting and subsequently recovering it in mouse embryonic stem cells (ESCs) and conducting a time-resolved multiomics analysis. Oct4 depletion leads to an immediate loss of its binding to enhancers, accompanied by a decrease in mRNA synthesis from its target genes that are part of the transcriptional network that maintains pluripotency. Gradual decrease of Oct4 binding to enhancers does not immediately change the chromatin accessibility but reduces transcription of enhancers. Conversely, partial recovery of Oct4 expression results in a rapid increase in chromatin accessibility, whereas enhancer transcription does not fully recover. These results indicate different concentration-dependent activities of Oct4. Whereas normal ESC levels of Oct4 are required for transcription of pluripotency enhancers, low levels of Oct4 are sufficient to retain chromatin accessibility, likely together with other factors such as Sox2.
Collapse
Affiliation(s)
- Le Xiong
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Göttingen, Germany
| | - Erik A Tolen
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Münster, Germany
| | - Jinmi Choi
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Göttingen, Germany
| | - Sergiy Velychko
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Münster, Germany
| | - Livia Caizzi
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Göttingen, Germany
| | - Taras Velychko
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Göttingen, Germany
| | - Kenjiro Adachi
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Münster, Germany
| | - Caitlin M MacCarthy
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Münster, Germany
| | - Michael Lidschreiber
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Göttingen, Germany
| | - Patrick Cramer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Göttingen, Germany
| | - Hans R Schöler
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Münster, Germany
| |
Collapse
|
4
|
Enhancer RNA: biogenesis, function, and regulation. Essays Biochem 2021; 64:883-894. [PMID: 33034351 DOI: 10.1042/ebc20200014] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/02/2020] [Accepted: 09/23/2020] [Indexed: 12/30/2022]
Abstract
Enhancers are noncoding DNA elements that are present upstream or downstream of a gene to control its spatial and temporal expression. Specific histone modifications, such as monomethylation on histone H3 lysine 4 (H3K4me1) and H3K27ac, have been widely used to assign enhancer regions in mammalian genomes. In recent years, emerging evidence suggests that active enhancers are bidirectionally transcribed to produce enhancer RNAs (eRNAs). This finding not only adds a new reliable feature to define enhancers but also raises a fundamental question of how eRNAs function to activate transcription. Although some believe that eRNAs are merely transcriptional byproducts, many studies have demonstrated that eRNAs execute crucial tasks in regulating chromatin conformation and transcription activation. In this review, we summarize the current understanding of eRNAs from their biogenesis, functions, and regulation to their pathological significance. Additionally, we discuss the challenges and possible mechanisms of eRNAs in regulated transcription.
Collapse
|
5
|
Hou TY, Kraus WL. Spirits in the Material World: Enhancer RNAs in Transcriptional Regulation. Trends Biochem Sci 2020; 46:138-153. [PMID: 32888773 DOI: 10.1016/j.tibs.2020.08.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022]
Abstract
Responses to developmental and environmental cues depend on precise spatiotemporal control of gene transcription. Enhancers, which comprise DNA elements bound by regulatory proteins, can activate target genes in response to these external signals. Recent studies have shown that enhancers are transcribed to produce enhancer RNAs (eRNAs). Do eRNAs play a functional role in activating gene expression or are they non-functional byproducts of nearby transcription machinery? The unstable nature of eRNAs and over-reliance on knockdown approaches have made elucidating the possible functions of eRNAs challenging. We focus here on studies using cloned eRNAs to study their function as transcripts, revealing roles for eRNAs in enhancer-promoter looping, recruiting transcriptional machinery, and facilitating RNA polymerase pause-release to regulate gene expression.
Collapse
Affiliation(s)
- Tim Y Hou
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
6
|
Ibragimov AN, Bylino OV, Shidlovskii YV. Molecular Basis of the Function of Transcriptional Enhancers. Cells 2020; 9:E1620. [PMID: 32635644 PMCID: PMC7407508 DOI: 10.3390/cells9071620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Transcriptional enhancers are major genomic elements that control gene activity in eukaryotes. Recent studies provided deeper insight into the temporal and spatial organization of transcription in the nucleus, the role of non-coding RNAs in the process, and the epigenetic control of gene expression. Thus, multiple molecular details of enhancer functioning were revealed. Here, we describe the recent data and models of molecular organization of enhancer-driven transcription.
Collapse
Affiliation(s)
- Airat N. Ibragimov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (A.N.I.); (O.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Oleg V. Bylino
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (A.N.I.); (O.V.B.)
| | - Yulii V. Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (A.N.I.); (O.V.B.)
- I.M. Sechenov First Moscow State Medical University, 8, bldg. 2 Trubetskaya St., 119048 Moscow, Russia
| |
Collapse
|
7
|
Lee JH, Xiong F, Li W. Enhancer RNAs in cancer: regulation, mechanisms and therapeutic potential. RNA Biol 2020; 17:1550-1559. [PMID: 31916476 DOI: 10.1080/15476286.2020.1712895] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Enhancers are distal genomic elements critical for gene regulation and cell identify control during development and diseases. Many human cancers were found to associate with enhancer malfunction, due to genetic and epigenetic alterations, which in some cases directly drive tumour growth. Conventionally, enhancers are known to provide DNA binding motifs to recruit transcription factors (TFs) and to control target genes. However, recent progress found that most, if not all, active enhancers pervasively transcribe noncoding RNAs that are referred to as enhancer RNAs (eRNAs). Increasing evidence points to functional roles of at least a subset of eRNAs in gene regulation in both normal and cancer cells, adding new insights into the action mechanisms of enhancers. eRNA expression was observed to be widespread but also specific to tumour types and individual patients, serving as opportunities to exploit them as potential diagnosis markers or therapeutic targets. In this review, we discuss the brief history of eRNA research, their functional mechanisms and importance in cancer gene regulation, as well as their therapeutic and diagnostic values in cancer. We propose that further studies of eRNAs in cancer will offer a promising 'eRNA targeted therapy' for human cancer intervention.
Collapse
Affiliation(s)
- Joo-Hyung Lee
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center , Houston, TX, USA
| | - Feng Xiong
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center , Houston, TX, USA
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center , Houston, TX, USA.,Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth , Houston, TX, USA
| |
Collapse
|
8
|
The Effects of Quantum Entanglement on Chromatin and Gene Expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1195:73-76. [PMID: 32468461 DOI: 10.1007/978-3-030-32633-3_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Quantum entanglement has recently been demonstrated in macroscopic structures at the scale of microns. The densely packed chromatin that efficiently stores DNA strands may allow for gene expression through epigenetic modifiers within the close proximity of nearby strands and may also experience gene expression through quantum entanglement of epigenetic modifiers. Such an approach may have an evolutionary advantage in the densely packed realm of chromatin.
Collapse
|
9
|
Lewis MW, Li S, Franco HL. Transcriptional control by enhancers and enhancer RNAs. Transcription 2019; 10:171-186. [PMID: 31791217 PMCID: PMC6948965 DOI: 10.1080/21541264.2019.1695492] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 11/02/2022] Open
Abstract
The regulation of gene expression is a fundamental cellular process and its misregulation is a key component of disease. Enhancers are one of the most salient regulatory elements in the genome and help orchestrate proper spatiotemporal gene expression during development, in homeostasis, and in response to signaling. Notably, molecular aberrations at enhancers, such as translocations and single nucleotide polymorphisms, are emerging as an important source of human variation and susceptibility to disease. Herein we discuss emerging paradigms addressing how genes are regulated by enhancers, common features of active enhancers, and how non-coding enhancer RNAs (eRNAs) can direct gene expression programs that underlie cellular phenotypes. We survey the current evidence, which suggests that eRNAs can bind to transcription factors, mediate enhancer-promoter interactions, influence RNA Pol II elongation, and act as decoys for repressive cofactors. Furthermore, we discuss current methodologies for the identification of eRNAs and novel approaches to elucidate their functions.
Collapse
Affiliation(s)
- Michael W. Lewis
- The Lineberger Comprehensive Cancer Center, Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Shen Li
- The Lineberger Comprehensive Cancer Center, Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Hector L. Franco
- The Lineberger Comprehensive Cancer Center, Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Kaikkonen MU, Adelman K. Emerging Roles of Non-Coding RNA Transcription. Trends Biochem Sci 2018; 43:654-667. [DOI: 10.1016/j.tibs.2018.06.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/07/2018] [Accepted: 06/03/2018] [Indexed: 12/14/2022]
|
11
|
Kaneko R, Takatsuru Y, Morita A, Amano I, Haijima A, Imayoshi I, Tamamaki N, Koibuchi N, Watanabe M, Yanagawa Y. Inhibitory neuron-specific Cre-dependent red fluorescent labeling using VGAT BAC-based transgenic mouse lines with identified transgene integration sites. J Comp Neurol 2018; 526:373-396. [PMID: 29063602 DOI: 10.1002/cne.24343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/30/2017] [Accepted: 10/17/2017] [Indexed: 01/15/2023]
Abstract
Inhibitory neurons are crucial for shaping and regulating the dynamics of the entire network, and disturbances in these neurons contribute to brain disorders. Despite the recent progress in genetic labeling techniques, the heterogeneity of inhibitory neurons requires the development of highly characterized tools that allow accurate, convenient, and versatile visualization of inhibitory neurons in the mouse brain. Here, we report a novel genetic technique to visualize the vast majority and/or sparse subsets of inhibitory neurons in the mouse brain without using techniques that require advanced skills. We developed several lines of Cre-dependent tdTomato reporter mice based on the vesicular GABA transporter (VGAT)-BAC, named VGAT-stop-tdTomato mice. The most useful line (line #54) was selected for further analysis based on two characteristics: the inhibitory neuron-specificity of tdTomato expression and the transgene integration site, which confers efficient breeding and fewer adverse effects resulting from transgene integration-related genomic disruption. Robust and inhibitory neuron-specific expression of tdTomato was observed in a wide range of developmental and cellular contexts. By breeding the VGAT-stop-tdTomato mouse (line #54) with a novel Cre driver mouse line, Galntl4-CreER, sparse labeling of inhibitory neurons was achieved following tamoxifen administration. Furthermore, another interesting line (line #58) was generated through the unexpected integration of the transgene into the X-chromosome and will be used to map X-chromosome inactivation of inhibitory neurons. Taken together, our studies provide new, well-characterized tools with which multiple aspects of inhibitory neurons can be studied in the mouse.
Collapse
Affiliation(s)
- Ryosuke Kaneko
- Bioresource Center, Gunma University Graduate School of Medicine, Gunma, Japan
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yusuke Takatsuru
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma, Japan
- Department of Medicine, Johmoh Hospital, Gunma, Japan
| | - Ayako Morita
- Bioresource Center, Gunma University Graduate School of Medicine, Gunma, Japan
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Izuki Amano
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Asahi Haijima
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Itaru Imayoshi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Nobuaki Tamamaki
- Department of Morphological Neural Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Gunma, Japan
| |
Collapse
|
12
|
Mikhaylichenko O, Bondarenko V, Harnett D, Schor IE, Males M, Viales RR, Furlong EEM. The degree of enhancer or promoter activity is reflected by the levels and directionality of eRNA transcription. Genes Dev 2018; 32:42-57. [PMID: 29378788 PMCID: PMC5828394 DOI: 10.1101/gad.308619.117] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/21/2017] [Indexed: 12/03/2022]
Abstract
Here, Mikhaylichenko et al. investigate the transcriptional properties of enhancers during Drosophila embryogenesis using characterized developmental enhancers. The authors demonstrate that while the timing of enhancer transcription is correlated with enhancer activity, the levels and directionality of transcription are highly varied among active enhancers and conclude that this is likely an inherent sequence property of the elements themselves. Gene expression is regulated by promoters, which initiate transcription, and enhancers, which control their temporal and spatial activity. However, the discovery that mammalian enhancers also initiate transcription questions the inherent differences between enhancers and promoters. Here, we investigate the transcriptional properties of enhancers during Drosophila embryogenesis using characterized developmental enhancers. We show that while the timing of enhancer transcription is generally correlated with enhancer activity, the levels and directionality of transcription are highly varied among active enhancers. To assess how this impacts function, we developed a dual transgenic assay to simultaneously measure enhancer and promoter activities from a single element in the same embryo. Extensive transgenic analysis revealed a relationship between the direction of endogenous transcription and the ability to function as an enhancer or promoter in vivo, although enhancer RNA (eRNA) production and activity are not always strictly coupled. Some enhancers (mainly bidirectional) can act as weak promoters, producing overlapping spatio–temporal expression. Conversely, bidirectional promoters often act as strong enhancers, while unidirectional promoters generally cannot. The balance between enhancer and promoter activity is generally reflected in the levels and directionality of eRNA transcription and is likely an inherent sequence property of the elements themselves.
Collapse
Affiliation(s)
- Olga Mikhaylichenko
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Vladyslav Bondarenko
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Dermot Harnett
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Ignacio E Schor
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Matilda Males
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Rebecca R Viales
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Eileen E M Furlong
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| |
Collapse
|
13
|
Bidirectional transcription initiation marks accessible chromatin and is not specific to enhancers. Genome Biol 2017; 18:242. [PMID: 29284524 PMCID: PMC5747114 DOI: 10.1186/s13059-017-1379-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/12/2017] [Indexed: 01/12/2023] Open
Abstract
Background Enhancers are modular regulatory elements that are central to the spatial and temporal regulation of gene expression. Bidirectional transcription initiating at enhancers has been proposed to mark active enhancers and as such has been utilized to experimentally identify active enhancers de novo. Results Here, we show that bidirectional transcription initiation is a pervasive feature of accessible chromatin, including at enhancers, promoters, and other DNase hypersensitive regions not marked with canonical histone modification profiles. Transcription is less predictive for enhancer activity than epigenetic modifications such as H3K4me1 or the accessibility of DNA when measured both in enhancer assays and at endogenous loci. The stability of enhancer initiated transcripts does not influence measures of enhancer activity and we cannot detect evidence of purifying selection on the resulting enhancer RNAs within the human population. Conclusions Our results indicate that bidirectional transcription initiation from accessible chromatin is not sufficient for, nor specific to, enhancer activity. Transcription initiating at enhancers may be a frequent by-product of promiscuous RNA polymerase initiation at accessible chromatin and is unlikely to generally play a functional role in enhancer activity. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1379-8) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Meng H, Bartholomew B. Emerging roles of transcriptional enhancers in chromatin looping and promoter-proximal pausing of RNA polymerase II. J Biol Chem 2017; 293:13786-13794. [PMID: 29187597 DOI: 10.1074/jbc.r117.813485] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Initiation and regulation of transcription by RNA polymerase II (RNAPII) in eukaryotes rely on the transcriptional regulatory elements. Promoters and enhancers share similar architectures and functions, and the prevailing view is that they can initiate bidirectional transcription. We summarize functional roles of enhancer transcription and possible mechanisms in enhancer-promoter communication. We discuss the potential roles of enhancer RNAs (eRNAs) in early elongation and highlight that transcriptional enhancers might modulate the release of paused RNAPII via 3D chromatin looping. Emerging evidence suggests that transcriptional enhancers regulate the promoter-proximal pausing of RNAPII, a key rate-limiting step required for productive elongation.
Collapse
Affiliation(s)
- Huan Meng
- From the Department of Epigenetics and Molecular Carcinogenesis, the University of Texas MD Anderson Cancer Center, Smithville, Texas 78957
| | - Blaine Bartholomew
- From the Department of Epigenetics and Molecular Carcinogenesis, the University of Texas MD Anderson Cancer Center, Smithville, Texas 78957
| |
Collapse
|
15
|
Kimura AP, Yoneda R, Kurihara M, Mayama S, Matsubara S. A Long Noncoding RNA, lncRNA-Amhr2, Plays a Role in Amhr2 Gene Activation in Mouse Ovarian Granulosa Cells. Endocrinology 2017; 158:4105-4121. [PMID: 28938492 DOI: 10.1210/en.2017-00619] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023]
Abstract
Anti-Müllerian hormone (AMH) is critical to the regression of Müllerian ducts during mammalian male differentiation and targets ovarian granulosa cells and testicular Sertoli and Leydig cells of adults. Specific effects of AMH are exerted via its receptor, AMH type II receptor (Amhr2), but the mechanism by which the Amhr2 gene is specifically activated is not fully understood. To see whether a proximal promoter was sufficient for Amhr2 gene activation, we generated transgenic mice that bore the enhanced green fluorescent protein (EGFP) gene driven by a 500-bp mouse Amhr2 gene promoter. None of the established 10 lines, however, showed appropriate EGFP expression, indicating that the 500-bp promoter was insufficient for Amhr2 gene activation. As a regulatory element, we found a long noncoding RNA, lncRNA-Amhr2, transcribed from upstream of the Amhr2 gene in ovarian granulosa cells and testicular Sertoli cells. In primary granulosa cells, knockdown of lncRNA-Amhr2 resulted in a decrease of Amhr2 messnger RNA level, and a transient reporter gene assay showed that lncRNA-Amhr2 activation increased Amhr2 promoter activity. The activity was correlated with lncRNA-Amhr2 transcription in stably transfected OV3121 cells derived from mouse granulosa cells. Moreover, by the Tet-on system, the induction of lncRNA-Amhr2 transcription dramatically increased Amhr2 promoter activity in OV3121 cells. These results indicate that lncRNA-Amhr2 plays a role in Amhr2 gene activation in ovarian granulosa cells by enhancing promoter activity, providing insight into Amhr2 gene regulation underlying the AMH signaling in the female reproductive system.
Collapse
Affiliation(s)
- Atsushi P Kimura
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Ryoma Yoneda
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Misuzu Kurihara
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shota Mayama
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shin Matsubara
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
16
|
Huang L, Liu P, Yuan Z, Zhou T, Yu J. The free-energy cost of interaction between DNA loops. Sci Rep 2017; 7:12610. [PMID: 28974770 PMCID: PMC5626758 DOI: 10.1038/s41598-017-12765-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/14/2017] [Indexed: 12/03/2022] Open
Abstract
From the viewpoint of thermodynamics, the formation of DNA loops and the interaction between them, which are all non-equilibrium processes, result in the change of free energy, affecting gene expression and further cell-to-cell variability as observed experimentally. However, how these processes dissipate free energy remains largely unclear. Here, by analyzing a mechanic model that maps three fundamental topologies of two interacting DNA loops into a 4-state model of gene transcription, we first show that a longer DNA loop needs more mean free energy consumption. Then, independent of the type of interacting two DNA loops (nested, side-by-side or alternating), the promotion between them always consumes less mean free energy whereas the suppression dissipates more mean free energy. More interestingly, we find that in contrast to the mechanism of direct looping between promoter and enhancer, the facilitated-tracking mechanism dissipates less mean free energy but enhances the mean mRNA expression, justifying the facilitated-tracking hypothesis, a long-standing debate in biology. Based on minimal energy principle, we thus speculate that organisms would utilize the mechanisms of loop-loop promotion and facilitated tracking to survive in complex environments. Our studies provide insights into the understanding of gene expression regulation mechanism from the view of energy consumption.
Collapse
Affiliation(s)
- Lifang Huang
- Research Centre of Applied Mathematics, Guangzhou University, Guangzhou, 510006, P.R. China
- School of Statistics and Mathematics, Guangdong University of Finance & Economics, Guangzhou, 510275, P.R. China
| | - Peijiang Liu
- School of Statistics and Mathematics, Guangdong University of Finance & Economics, Guangzhou, 510275, P.R. China
| | - Zhanjiang Yuan
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, 510275, P.R. China.
| | - Jianshe Yu
- Research Centre of Applied Mathematics, Guangzhou University, Guangzhou, 510006, P.R. China.
| |
Collapse
|
17
|
Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development. Nature 2016; 539:433-436. [PMID: 27783597 DOI: 10.1038/nature20128] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 09/29/2016] [Indexed: 12/28/2022]
Abstract
HAND2 is an ancestral regulator of heart development and one of four transcription factors that control the reprogramming of fibroblasts into cardiomyocytes. Deletion of Hand2 in mice results in right ventricle hypoplasia and embryonic lethality. Hand2 expression is tightly regulated by upstream enhancers that reside within a super-enhancer delineated by histone H3 acetyl Lys27 (H3K27ac) modifications. Here we show that transcription of a Hand2-associated long non-coding RNA, which we named upperhand (Uph), is required to maintain the super-enhancer signature and elongation of RNA polymerase II through the Hand2 enhancer locus. Blockade of Uph transcription, but not knockdown of the mature transcript, abolished Hand2 expression, causing right ventricular hypoplasia and embryonic lethality in mice. Given the substantial number of uncharacterized promoter-associated long non-coding RNAs encoded by the mammalian genome, the Uph-Hand2 regulatory partnership offers a mechanism by which divergent non-coding transcription can establish a permissive chromatin environment.
Collapse
|
18
|
Beagrie RA, Pombo A. Gene activation by metazoan enhancers: Diverse mechanisms stimulate distinct steps of transcription. Bioessays 2016; 38:881-93. [PMID: 27452946 DOI: 10.1002/bies.201600032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Enhancers can stimulate transcription by a number of different mechanisms which control different stages of the transcription cycle of their target genes, from recruitment of the transcription machinery to elongation by RNA polymerase. These mechanisms may not be mutually exclusive, as a single enhancer may act through different pathways by binding multiple transcription factors. Multiple enhancers may also work together to regulate transcription of a shared target gene. Most of the evidence supporting different enhancer mechanisms comes from the study of single genes, but new high-throughput experimental frameworks offer the opportunity to integrate and generalize disparate mechanisms identified at single genes. This effort is especially important if we are to fully understand how sequence variation within enhancers contributes to human disease.
Collapse
Affiliation(s)
- Robert A Beagrie
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin-Buch, Germany
| | - Ana Pombo
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin-Buch, Germany
| |
Collapse
|
19
|
Vernimmen D, Bickmore WA. The Hierarchy of Transcriptional Activation: From Enhancer to Promoter. Trends Genet 2016; 31:696-708. [PMID: 26599498 DOI: 10.1016/j.tig.2015.10.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/18/2015] [Accepted: 10/15/2015] [Indexed: 12/20/2022]
Abstract
Regulatory elements (enhancers) that are remote from promoters play a critical role in the spatial, temporal, and physiological control of gene expression. Studies on specific loci, together with genome-wide approaches, suggest that there may be many common mechanisms involved in enhancer-promoter communication. Here, we discuss the multiprotein complexes that are recruited to enhancers and the hierarchy of events taking place between regulatory elements and promoters.
Collapse
Affiliation(s)
- Douglas Vernimmen
- The Roslin Institute, Developmental Biology Division, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
20
|
Vakili H, Jin Y, Cattini PA. Evidence for a Circadian Effect on the Reduction of Human Growth Hormone Gene Expression in Response to Excess Caloric Intake. J Biol Chem 2016; 291:13823-33. [PMID: 27151213 PMCID: PMC4919464 DOI: 10.1074/jbc.m116.722744] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/02/2016] [Indexed: 11/06/2022] Open
Abstract
Rhythmicity of biological functions is fundamental for optimal adaptations to environmental cues. Growth hormone (GH) is a major metabolic homeostatic factor that is secreted with a circadian pattern, but whether it is synthesized rhythmically is unknown. We used transgenic mice containing the human (h) GH gene (hGH1) locus to investigate the rhythmicity of hGH synthesis and secretion and to show that RNA and secreted protein levels oscillate over a 24-h cycle. Analysis of hGH1 promoter sequences revealed an enhancer motif (E-box) element that binds the circadian transcriptional machinery (Bmal1 and Clock). Furthermore, Bmal1/Clock were able to transactivate the hGH1 promoter, and mutation of this E-box element adversely affected basal activity after gene transfer. The ability of Bmal1 to bind the hGH1 promoter region containing the E-box element was confirmed in the hGH1 transgenic mouse pituitary in situ Occupancy was reduced in mice fed a high fat diet during the light (inactive) stage of the daily cycle in mice and corresponded to a decrease in hGH1 RNA levels. The decreases in occupancy and RNA levels were not seen, however, during the dark (active) stage. A chromatin loop required for efficient postnatal hGH1 expression was negatively affected by the high fat diet in the light but not dark stage similar to the pattern observed with Bmal1 association with the promoter region. This is the first evidence that hGH synthesis follows a diurnal rhythm and of dynamic associations of the circadian machinery with a component of a chromosomal structure of the hGH1 locus that is essential for efficient expression.
Collapse
Affiliation(s)
- Hana Vakili
- From the Departments of Internal Medicine and
| | - Yan Jin
- Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Peter A Cattini
- Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| |
Collapse
|
21
|
Liu T, Zhang J, Zhou T. Effect of Interaction between Chromatin Loops on Cell-to-Cell Variability in Gene Expression. PLoS Comput Biol 2016; 12:e1004917. [PMID: 27153118 PMCID: PMC4859557 DOI: 10.1371/journal.pcbi.1004917] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/14/2016] [Indexed: 01/09/2023] Open
Abstract
According to recent experimental evidence, the interaction between chromatin loops, which can be characterized by three factors-connection pattern, distance between regulatory elements, and communication form, play an important role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effect that addresses the question of how changes in these factors affect variability at the expression level in a systematic rather than case-by-case fashion. Here we make such an effort, based on a mechanic model that maps three fundamental patterns for two interacting DNA loops into a 4-state model of stochastic transcription. We first show that in contrast to side-by-side loops, nested loops enhance mRNA expression and reduce expression noise whereas alternating loops have just opposite effects. Then, we compare effects of facilitated tracking and direct looping on gene expression. We find that the former performs better than the latter in controlling mean expression and in tuning expression noise, but this control or tuning is distance-dependent, remarkable for moderate loop lengths, and there is a limit loop length such that the difference in effect between two communication forms almost disappears. Our analysis and results justify the facilitated chromatin-looping hypothesis.
Collapse
Affiliation(s)
- Tuoqi Liu
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Jiajun Zhang
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Tianshou Zhou
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
22
|
Li W, Notani D, Rosenfeld MG. Enhancers as non-coding RNA transcription units: recent insights and future perspectives. Nat Rev Genet 2016; 17:207-23. [PMID: 26948815 DOI: 10.1038/nrg.2016.4] [Citation(s) in RCA: 515] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Networks of regulatory enhancers dictate distinct cell identities and cellular responses to diverse signals by instructing precise spatiotemporal patterns of gene expression. However, 35 years after their discovery, enhancer functions and mechanisms remain incompletely understood. Intriguingly, recent evidence suggests that many, if not all, functional enhancers are themselves transcription units, generating non-coding enhancer RNAs. This observation provides a fundamental insight into the inter-regulation between enhancers and promoters, which can both act as transcription units; it also raises crucial questions regarding the potential biological roles of the enhancer transcription process and non-coding enhancer RNAs. Here, we review research progress in this field and discuss several important, unresolved questions regarding the roles and mechanisms of enhancers in gene regulation.
Collapse
Affiliation(s)
- Wenbo Li
- Howard Hughes Medical Institute, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92037-0648, USA
| | - Dimple Notani
- Howard Hughes Medical Institute, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92037-0648, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92037-0648, USA
| |
Collapse
|
23
|
Tsai YC, Cooke NE, Liebhaber SA. Long-range looping of a locus control region drives tissue-specific chromatin packing within a multigene cluster. Nucleic Acids Res 2016; 44:4651-64. [PMID: 26893355 PMCID: PMC4889918 DOI: 10.1093/nar/gkw090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/03/2016] [Indexed: 12/12/2022] Open
Abstract
The relationships of higher order chromatin organization to mammalian gene expression remain incompletely defined. The human Growth Hormone (hGH) multigene cluster contains five gene paralogs. These genes are selectively activated in either the pituitary or the placenta by distinct components of a remote locus control region (LCR). Prior studies have revealed that appropriate activation of the placental genes is dependent not only on the actions of the LCR, but also on the multigene composition of the cluster itself. Here, we demonstrate that the hGH LCR 'loops' over a distance of 28 kb in primary placental nuclei to make specific contacts with the promoters of the two GH genes in the cluster. This long-range interaction sequesters the GH genes from the three hCS genes which co-assemble into a tightly packed 'hCS chromatin hub'. Elimination of the long-range looping, via specific deletion of the placental LCR components, triggers a dramatic disruption of the hCS chromatin hub. These data reveal a higher-order structural pathway by which long-range looping from an LCR impacts on local chromatin architecture that is linked to tissue-specific gene regulation within a multigene cluster.
Collapse
Affiliation(s)
- Yu-Cheng Tsai
- Department of Genetics and Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| | - Nancy E Cooke
- Department of Genetics and Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| | - Stephen A Liebhaber
- Department of Genetics and Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| |
Collapse
|
24
|
Kim TK, Shiekhattar R. Architectural and Functional Commonalities between Enhancers and Promoters. Cell 2015; 162:948-59. [PMID: 26317464 DOI: 10.1016/j.cell.2015.08.008] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Indexed: 01/23/2023]
Abstract
With the explosion of genome-wide studies of regulated transcription, it has become clear that traditional definitions of enhancers and promoters need to be revisited. These control elements can now be characterized in terms of their local and regional architecture, their regulatory components, including histone modifications and associated binding factors, and their functional contribution to transcription. This Review discusses unifying themes between promoters and enhancers in transcriptional regulatory mechanisms.
Collapse
Affiliation(s)
- Tae-Kyung Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| | - Ramin Shiekhattar
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, Room 719, 1501 NW 10(th) Avenue, Miami, FL 33136, USA.
| |
Collapse
|
25
|
|
26
|
Systems biology of myasthenia gravis, integration of aberrant lncRNA and mRNA expression changes. BMC Med Genomics 2015; 8:13. [PMID: 25889429 PMCID: PMC4380247 DOI: 10.1186/s12920-015-0087-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 02/26/2015] [Indexed: 12/20/2022] Open
Abstract
Background A novel class of transcripts, long non-coding RNAs (lncRNAs), has recently emerged as a key player in several biological processes, and important roles for these molecules have been reported in a number of complex human diseases, such as autoimmune diseases, neurological disorders, and various cancers. However, the aberrant lncRNAs implicated in myasthenia gravis (MG) remain unknown. The aim of the present study was to explore the abnormal expression of lncRNAs in peripheral blood mononuclear cells (PBMCs) and examine mRNA regulatory relationship networks among MG patients with or without thymoma. Methods Microarray assays were performed, and the outstanding differences between lncRNAs or mRNA expression were verified through RT-PCR. The lncRNAs functions were annotated for the target genes using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway. The potential regulatory relationships between the lncRNAs and target genes were analyzed using the ‘cis’ and ‘trans’ model. Outstanding lncRNAs were organized to generate a TF-lncRNA-gene network using Cytoscape software. Results The lncRNA and mRNA expression profile analysis revealed subsets of differentially expressed genes in MG patients with or without thymoma. A total of 12 outstanding dysregulated expression lncRNAs, such as lncRNA oebiotech_11933, were verified through real-time PCR. Several GO terms including the cellular response to interferon-γ, platelet degranulation, chemokine receptor binding and cytokine interactions were very important in MG pathogenesis. The chromosome locations of some lncRNAs and associated co-expression genes were demonstrated using ‘cis’ analysis. The results of the ‘trans’ analysis revealed that some TFs (i.e., CTCF, TAF1and MYC) regulate lncRNA and gene expression. The outstanding lncRNAs in each group were implicated in the regulation of the TF-lncRNA-target gene network. Conclusion The results of the present study provide a perspective on lncRNA expression in MG. We identify a subset of aberrant lncRNAs and mRNAs as potential biomarkers for the diagnosis of MG. The GO and KEGG pathway analysis provides an annotation to determine the functions of these lncRNAs. The results of the ‘cis’ and ‘trans’ analyses provide information concerning the modular regulation of lncRNAs. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0087-z) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
An autoregulatory pathway establishes the definitive chromatin conformation at the pit-1 locus. Mol Cell Biol 2015; 35:1523-32. [PMID: 25691665 DOI: 10.1128/mcb.01283-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/09/2015] [Indexed: 12/12/2022] Open
Abstract
The transcription factor Pit-1 (POU1-F1) plays a dominant role in cell lineage expansion and differentiation in the anterior pituitary. Prior studies of the mouse Pit-1 (mPit-1) gene revealed that this master regulatory locus is activated at embryonic day 13.5 (E13.5) by an early enhancer (EE), whereas its subsequent expression throughout adult life is maintained by a more distal definitive enhancer (DE). Here, we demonstrate that the sequential actions of these two enhancers are linked to corresponding shifts in their proximities to the Pit-1 promoter. We further demonstrate that the looping of the definitive enhancer to the mPit-1 promoter is critically dependent on a self-sustaining autoregulatory mechanism mediated by the Pit-1 protein. These Pit-1-dependent actions are accompanied by localized recruitment of CBP and enrichment for H3K27 acetylation within the Pit-1 locus. These data support a model in which the sequential actions of two developmentally activated enhancers are linked to a corresponding shift in higher-order chromatin structures. This shift establishes an autoregulatory circuit that maintains durable expression of Pit-1 throughout adult life.
Collapse
|
28
|
Yoo EJ, Brown CD, Tsai YC, Cooke NE, Liebhaber SA. Autonomous actions of the human growth hormone long-range enhancer. Nucleic Acids Res 2015; 43:2091-101. [PMID: 25662214 PMCID: PMC4344525 DOI: 10.1093/nar/gkv093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The human growth hormone (hGH) gene is controlled by a long-range enhancer, HSI, located 14.5 kb 5′ to the hGH promoter. HSI establishes a domain of noncoding transcription that is ‘looped’ to the hGH promoter as an essential step in initiating hGH gene expression. Thus, defining how HSI generates its domain of noncoding transcription is central to understanding its long-range function. Here, we demonstrate that activation of noncoding transcription reflects an HSI-autonomous activity fully independent of interactions with linked gene promoters and occurring in spatial and temporal synchrony with initiation of GH expression in the embryonic pituitary. HSI establishes its noncoding transcription start sites (TSS) over a defined distance from its core determinants and in a manner independent of local primary sequences. The interval between HSI and it TSS co-maps with a domain of disordered and/or highly mobile nucleosomes specific to the pituitary locus. Thus, a localized chromatin reconfiguration by HSI and consequent establishment of an adjacent domain of noncoding transcription constitute initiating events in long-range enhancer function within the hGH locus.
Collapse
Affiliation(s)
- Eung Jae Yoo
- Department of Genetics, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher D Brown
- Department of Genetics, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yu-Cheng Tsai
- Department of Genetics, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy E Cooke
- Department of Genetics, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104, USA Department of Medicine, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen A Liebhaber
- Department of Genetics, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104, USA Department of Medicine, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Characterization of the humanTCAM1Ppseudogene and its activation by a potential dual promoter-enhancer: Comparison with a protein-coding mouse orthologue. FEBS Lett 2015; 589:540-7. [DOI: 10.1016/j.febslet.2015.01.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 11/17/2022]
|
30
|
Abstract
Over the last three decades, studies of the α- and β-globin genes clusters have led to elucidation of the general principles of mammalian gene regulation, such as RNA stability, termination of transcription, and, more importantly, the identification of remote regulatory elements. More recently, detailed studies of α-globin regulation, using both mouse and human loci, allowed the dissection of the sequential order in which transcription factors are recruited to the locus during lineage specification. These studies demonstrated the importance of the remote regulatory elements in the recruitment of RNA polymerase II (PolII) together with their role in the generation of intrachromosomal loops within the locus and the removal of polycomb complexes during differentiation. The multiple roles attributed to remote regulatory elements that have emerged from these studies will be discussed.
Collapse
Affiliation(s)
- Douglas Vernimmen
- The Roslin Institute, Developmental Biology Division, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Vakili H, Jin Y, Cattini PA. Energy homeostasis targets chromosomal reconfiguration of the human GH1 locus. J Clin Invest 2014; 124:5002-12. [PMID: 25295535 DOI: 10.1172/jci77126] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/29/2014] [Indexed: 11/17/2022] Open
Abstract
Levels of pituitary growth hormone (GH), a metabolic homeostatic factor with strong lipolytic activity, are decreased in obese individuals. GH declines prior to the onset of weight gain in response to excess caloric intake and hyperinsulinemia; however, the mechanism by which GH is reduced is not clear. We used transgenic mice expressing the human GH (hGH) gene, GH1, to assess the effect of high caloric intake on expression as well as the local chromosome structure of the intact GH1 locus. Animals exposed to 3 days of high caloric intake exhibited hyperinsulinemia without hyperglycemia and a decrease in both hGH synthesis and secretion, but no difference in endogenous production of murine GH. Efficient GH1 expression requires a long-range intrachromosomal interaction between remote enhancer sequences and the proximal promoter region through "looping" of intervening chromatin. High caloric intake disrupted this interaction and decreased both histone H3/H4 hyperacetylation and RNA polymerase II occupancy at the GH1 promoter. Incorporation of physical activity muted the effects of excess caloric intake on insulin levels, GH1 promoter hyperacetylation, chromosomal architecture, and expression. These results indicate that energy homeostasis alters postnatal hGH synthesis through dynamic changes in the 3-dimensional chromatin structure of the GH1 locus, including structures required for cell type specificity during development.
Collapse
|
32
|
Kurihara M, Shiraishi A, Satake H, Kimura AP. A conserved noncoding sequence can function as a spermatocyte-specific enhancer and a bidirectional promoter for a ubiquitously expressed gene and a testis-specific long noncoding RNA. J Mol Biol 2014; 426:3069-93. [PMID: 25020229 DOI: 10.1016/j.jmb.2014.06.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 12/13/2022]
Abstract
Tissue-specific gene expression is tightly regulated by various elements such as promoters, enhancers, and long noncoding RNAs (lncRNAs). In the present study, we identified a conserved noncoding sequence (CNS1) as a novel enhancer for the spermatocyte-specific mouse testicular cell adhesion molecule 1 (Tcam1) gene. CNS1 was located 3.4kb upstream of the Tcam1 gene and associated with histone H3K4 mono-methylation in testicular germ cells. By the in vitro reporter gene assay, CNS1 could enhance Tcam1 promoter activity only in GC-2spd(ts) cells, which were derived from mouse spermatocytes. When we integrated the 6.9-kb 5'-flanking sequence of Tcam1 with or without a deletion of CNS1 linked to the enhanced green fluorescent protein gene into the chromatin of GC-2spd(ts) cells, CNS1 significantly enhanced Tcam1 promoter activity. These results indicate that CNS1 could function as a spermatocyte-specific enhancer. Interestingly, CNS1 also showed high bidirectional promoter activity in the reporter assay, and consistent with this, the Smarcd2 gene and lncRNA, designated lncRNA-Tcam1, were transcribed from adjacent regions of CNS1. While Smarcd2 was ubiquitously expressed, lncRNA-Tcam1 expression was restricted to testicular germ cells, although this lncRNA did not participate in Tcam1 activation. Ubiquitous Smarcd2 expression was correlated to CpG hypo-methylation of CNS1 and partially controlled by Sp1. However, for lncRNA-Tcam1 transcription, the strong association with histone acetylation and histone H3K4 tri-methylation also appeared to be required. The present data suggest that CNS1 is a spermatocyte-specific enhancer for the Tcam1 gene and a bidirectional promoter of Smarcd2 and lncRNA-Tcam1.
Collapse
Affiliation(s)
- Misuzu Kurihara
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Akira Shiraishi
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Osaka 618-8503, Japan
| | - Honoo Satake
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Osaka 618-8503, Japan
| | - Atsushi P Kimura
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan; Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
33
|
Abstract
Enhancers are traditionally viewed as DNA sequences located some distance from a promoter that act in cis and in an orientation-independent fashion to increase utilization of specific promoters and thereby regulate gene expression. Much progress has been made over the last decade toward understanding how these distant elements interact with target promoters, but how transcription is enhanced remains an object of active inquiry. Recent reports convey the prevalence and diversity of enhancer transcription and transcripts and support both as key factors with mechanistically distinct, but not mutually exclusive roles in enhancer function. Decoupling the causes and effects of transcription on the local chromatin landscape and understanding the role of enhancer transcripts in the context of long-range interactions are challenges that require additional attention. In this review, we focus on the possible functions of enhancer transcription by highlighting several recent enhancer RNA papers and, within the context of other enhancer studies, speculate on the role of enhancer transcription in regulating differential gene expression.
Collapse
|
34
|
Massah S, Hollebakken R, Labrecque MP, Kolybaba AM, Beischlag TV, Prefontaine GG. Epigenetic characterization of the growth hormone gene identifies SmcHD1 as a regulator of autosomal gene clusters. PLoS One 2014; 9:e97535. [PMID: 24818964 PMCID: PMC4018343 DOI: 10.1371/journal.pone.0097535] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 04/21/2014] [Indexed: 12/31/2022] Open
Abstract
Regulatory elements for the mouse growth hormone (GH) gene are located distally in a putative locus control region (LCR) in addition to key elements in the promoter proximal region. The role of promoter DNA methylation for GH gene regulation is not well understood. Pit-1 is a POU transcription factor required for normal pituitary development and obligatory for GH gene expression. In mammals, Pit-1 mutations eliminate GH production resulting in a dwarf phenotype. In this study, dwarf mice illustrated that Pit-1 function was obligatory for GH promoter hypomethylation. By monitoring promoter methylation levels during developmental GH expression we found that the GH promoter became hypomethylated coincident with gene expression. We identified a promoter differentially methylated region (DMR) that was used to characterize a methylation-dependent DNA binding activity. Upon DNA affinity purification using the DMR and nuclear extracts, we identified structural maintenance of chromosomes hinge domain containing -1 (SmcHD1). To better understand the role of SmcHD1 in genome-wide gene expression, we performed microarray analysis and compared changes in gene expression upon reduced levels of SmcHD1 in human cells. Knock-down of SmcHD1 in human embryonic kidney (HEK293) cells revealed a disproportionate number of up-regulated genes were located on the X-chromosome, but also suggested regulation of genes on non-sex chromosomes. Among those, we identified several genes located in the protocadherin β cluster. In addition, we found that imprinted genes in the H19/Igf2 cluster associated with Beckwith-Wiedemann and Silver-Russell syndromes (BWS & SRS) were dysregulated. For the first time using human cells, we showed that SmcHD1 is an important regulator of imprinted and clustered genes.
Collapse
Affiliation(s)
- Shabnam Massah
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Robert Hollebakken
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Mark P. Labrecque
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Addie M. Kolybaba
- Faculty of Biology, Ludwig Maximilians University Munich, Martinsried, Germany
| | | | | |
Collapse
|
35
|
Abstract
Over the past few years, advances in genome analyses have identified an emerging class of noncoding RNAs that play critical roles in the regulation of gene expression and epigenetic reprogramming. Given their transcriptional pervasiveness, the potential for these intriguing macromolecules to integrate a myriad of external cellular cues with nuclear responses has become increasingly apparent. Recent studies have implicated noncoding RNAs in epidermal development and keratinocyte differentiation, but the complexity of multilevel regulation of transcriptional programs involved in these processes remains ill defined. In this review, we discuss the relevance of noncoding RNA in normal skin development, their involvement in cutaneous malignancies, and their role in the regulation of adult stem-cell maintenance in stratified epithelial tissues. Furthermore, we provide additional examples highlighting the ubiquity of noncoding RNAs in diverse human diseases.
Collapse
|
36
|
Rye M, Sandve GK, Daub CO, Kawaji H, Carninci P, Forrest ARR, Drabløs F. Chromatin states reveal functional associations for globally defined transcription start sites in four human cell lines. BMC Genomics 2014; 15:120. [PMID: 24669905 PMCID: PMC3986914 DOI: 10.1186/1471-2164-15-120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 12/07/2013] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Deciphering the most common modes by which chromatin regulates transcription, and how this is related to cellular status and processes is an important task for improving our understanding of human cellular biology. The FANTOM5 and ENCODE projects represent two independent large scale efforts to map regulatory and transcriptional features to the human genome. Here we investigate chromatin features around a comprehensive set of transcription start sites in four cell lines by integrating data from these two projects. RESULTS Transcription start sites can be distinguished by chromatin states defined by specific combinations of both chromatin mark enrichment and the profile shapes of these chromatin marks. The observed patterns can be associated with cellular functions and processes, and they also show association with expression level, location relative to nearby genes, and CpG content. In particular we find a substantial number of repressed inter- and intra-genic transcription start sites enriched for active chromatin marks and Pol II, and these sites are strongly associated with immediate-early response processes and cell signaling. Associations between start sites with similar chromatin patterns are validated by significant correlations in their global expression profiles. CONCLUSIONS The results confirm the link between chromatin state and cellular function for expressed transcripts, and also indicate that active chromatin states at repressed transcripts may poise transcripts for rapid activation during immune response.
Collapse
Affiliation(s)
- Morten Rye
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, P.O. Box 8905, NO-7491 Trondheim, Norway
- St. Olavs Hospital, Postboks 3250, Sluppen 7006, Trondheim
| | | | - Carsten O Daub
- RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Hideya Kawaji
- RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Saitama 351-0198, Japan
| | - Piero Carninci
- RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Alistair RR Forrest
- RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Finn Drabløs
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, P.O. Box 8905, NO-7491 Trondheim, Norway
| |
Collapse
|
37
|
Lam MTY, Li W, Rosenfeld MG, Glass CK. Enhancer RNAs and regulated transcriptional programs. Trends Biochem Sci 2014; 39:170-82. [PMID: 24674738 DOI: 10.1016/j.tibs.2014.02.007] [Citation(s) in RCA: 383] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/20/2014] [Accepted: 02/20/2014] [Indexed: 01/06/2023]
Abstract
A large portion of the human genome is transcribed into RNAs without known protein-coding functions, far outnumbering coding transcription units. Extensive studies of long noncoding RNAs (lncRNAs) have clearly demonstrated that they can play critical roles in regulating gene expression, development, and diseases, acting both as transcriptional activators and repressors. More recently, enhancers have been found to be broadly transcribed, resulting in the production of enhancer-derived RNAs, or eRNAs. Here, we review emerging evidence suggesting that at least some eRNAs contribute to enhancer function. We discuss these findings with respect to potential mechanisms of action of eRNAs and other ncRNAs in regulated gene expression.
Collapse
Affiliation(s)
- Michael T Y Lam
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Wenbo Li
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA; Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
| |
Collapse
|
38
|
Matsubara S, Kurihara M, Kimura AP. A long non-coding RNA transcribed from conserved non-coding sequences contributes to the mouse prolyl oligopeptidase gene activation. J Biochem 2013; 155:243-56. [PMID: 24369296 DOI: 10.1093/jb/mvt113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Prolyl oligopeptidase (POP) is a multifunctional protease which is involved in many physiological events, but its gene regulatory mechanism is poorly understood. To identify novel regulatory elements of the POP gene, we compared the genomic sequences at the mouse and human POP loci and found six conserved non-coding sequences (CNSs) at adjacent intergenic regions. From these CNSs, four long non-coding RNAs (lncRNAs) were transcribed and the expression pattern of one (lncPrep+96kb) was correlated with that of POP. lncPrep+96kb was transcribed as two forms due to the different transcriptional start sites and was localized at the nucleus and cytoplasm, although more was present at the nucleus. When we knocked down lncPrep+96kb in the primary ovarian granulosa cell and a hepatic cell line, the POP expression was decreased in both cells. In contrast, overexpression of lncPrep+96kb increased the POP expression only in the granulosa cell. Because lncPrep+96kb was upregulated with the same timing as POP in the hormone-treated ovary, this lncRNA could play a role in the POP gene activation in the granulosa cell. Moreover, a downstream region of the human POP gene was also transcribed. We propose a novel mechanism for the POP gene activation.
Collapse
Affiliation(s)
- Shin Matsubara
- Graduate School of Life Science and Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | |
Collapse
|
39
|
Ben-Shlomo A, Pichurin O, Khalafi R, Zhou C, Chesnokova V, Ren SG, Liu NA, Melmed S. Constitutive somatostatin receptor subtype 2 activity attenuates GH synthesis. Endocrinology 2013; 154:2399-409. [PMID: 23696564 PMCID: PMC3689284 DOI: 10.1210/en.2013-1132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Somatostatin signals predominantly through somatostatin receptor (SSTR) subtype 2 to attenuate GH release. However, the independent role of the receptor in regulating GH synthesis is unclear. Because we had previously demonstrated constitutive SSTR2 activity in mouse corticotrophs, we now analyzed GH regulation in rat pituitary somatotroph (GC) tumor cells, which express SSTR2 exclusively and are devoid of endogenous somatostatin ligand. We demonstrate that moderately stable SSTR2 overexpression (GpSSTR2(WT) cells) was associated with decreased GH promoter activity, GH mRNA, and hormone levels compared with those of control transfectants (GpCon cells). In contrast, levels of GH mRNA and peptide and GH promoter activity were unchanged in GpSSTR2(DRY) stable transfectants moderately expressing DRY motif mutated SSTR2 (R140A). GpSSTR(2DRY) did not exhibit an enhanced octreotide response as did GpSSTR2(WT) cells; however, both SSTR2(WT)-enhanced yellow fluorescent protein (eYFP) and SSTR2(DRY)-eYFP internalized on octreotide treatment. Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, increased GH synthesis in wild-type GC cells and primary pituitary cultures. GpSSTR2(WT) cells induced GH synthesis more strongly on SAHA treatment, evident by both higher GH peptide and mRNA levels compared with the moderate but similar GH increase observed in GpCon and GpSSTR2(DRY) cells. In vivo SAHA also increased GH release from GpSSTR2(WT) but not from control xenografts. Endogenous rat GH promoter chromatin immunoprecipitation showed decreased baseline acetylation of the GH promoter with exacerbated acetylation after SAHA treatment in GpSSTR2(WT) compared with that of either GpSSTR(2DRY) or control cells, the latter 2 transfectants exhibiting similar GH promoter acetylation levels. In conclusion, modestly increased SSTR2 expression constitutively decreases GH synthesis, an effect partially mediated by GH promoter histone deacetylation.
Collapse
Affiliation(s)
- Anat Ben-Shlomo
- The Pituitary Center, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
GH secretion is controlled by hypothalamic as well as intrapituitary and peripheral signals, all of which converge upon the somatotroph, resulting in integrated GH synthesis and secretion. Enabling an accurate diagnosis of idiopathic adult GH deficiency (IAGHD) is challenged by the pulsatility of GH secretion, provocative test result variability, and suboptimal GH assay standardization. The spectrum between attenuated GH secretion associated with the normal aging process and with obesity and truly well-defined IAGHD is not distinct and may mislead the diagnosis. Adult-onset GHD is mainly caused by an acquired pituitary deficiency, commonly including prior head/neck irradiation, or an expanding pituitary mass causing functional somatotroph compression. To what extent rare cryptic causes account for those patients seemingly classified as IAGHD is unclear. About 15% of patients with adult GHD and receiving GH replacement in open-label surveillance studies are reported as being due to an idiopathic cause. These patients may also reflect a pool of subjects with an as yet to be determined occult defect, or those with unclear or incomplete medical histories (including forgotten past sports head injury or motor vehicle accident). Therefore, submaximal diagnostic evaluation likely leads to an inadvertent diagnosis of IAGHD. In these latter cases, adherence to rigorous biochemical diagnostic criteria and etiology exclusion may result in reclassification of a subset of these patients to a distinct known acquired etiology, or as GH-replete. Accordingly, rigorously verified IAGHD likely comprises less than 10% of adult GHD patients, an already rare disorder. Regardless of etiology, patients with adult GHD, including those with IAGHD, exhibit a well-defined clinical phenotype including increased fat mass, loss of lean muscle mass, decreased bone mass, and enhanced cardiac morbidity. Definition of unique efficacy and dosing parameters for GH replacement and resultant therapeutic efficacy markers in true IAGHD requires prospective study.
Collapse
Affiliation(s)
- Shlomo Melmed
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, California 90048, USA.
| |
Collapse
|
41
|
Yoo EJ, Cooke NE, Liebhaber SA. Identification of a secondary promoter within the human B cell receptor component gene hCD79b. J Biol Chem 2013; 288:18353-65. [PMID: 23649625 DOI: 10.1074/jbc.m113.461988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The human B cell-specific protein, CD79b (also known as Igβ and B29) constitutes an essential signal transduction component of the B cell receptor. Although its function is central to the triggering of B cell terminal differentiation in response to antigen stimulation, the transcriptional determinants that control CD79b gene expression remain poorly defined. In the present study, we explored these determinants using a series of hCD79b transgenic mouse models. Remarkably, we observed that the previously described hCD79b promoter along with its associated enhancer elements and first exon could be deleted without appreciable loss of hCD79b transcriptional activity or tissue specificity. In this deletion setting, a secondary promoter located within exon 2 maintained full levels and specificity of hCD79b transcription. Of note, this secondary promoter was also active, albeit at lower levels, in the wild-type hCD79b locus. The activity of the secondary promoter was dependent on the action(s) of a conserved sequence element mapping to a chromatin DNase I hypersensitive site located within intron 1. mRNA generated from this secondary promoter is predicted to encode an Igβ protein lacking a signal sequence and thus unable to serve normal B cell receptor function. Although the physiologic role of the hCD79b secondary promoter and its encoded protein remain unclear, the current data suggest that it has the capacity to play a role in normal as well as pathologic states in B cell proliferation and function.
Collapse
Affiliation(s)
- Eung Jae Yoo
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
42
|
Distinct chromatin configurations regulate the initiation and the maintenance of hGH gene expression. Mol Cell Biol 2013; 33:1723-34. [PMID: 23428872 DOI: 10.1128/mcb.01166-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
For many mammalian genes, initiation of transcription during embryonic development must be subsequently sustained over extensive periods of adult life. It remains unclear whether maintenance of gene expression reflects the same set of pathways as are involved in initial gene activation. The human pituitary growth hormone (hGH-N) locus is activated in the differentiating somatotrope midway through embryogenesis by a multicomponent locus control region (LCR). DNase I-hypersensitive site I (HSI) of the LCR is essential to full developmental activation of the hGH-N locus. Here we demonstrate that conditional deletion of HSI from the active hGH locus in the adult pituitary effectively silences hGH-N expression. Analyses of chromatin structure and locus positioning demonstrate that a specific subset of the HSI functions active in the embryo retain their HSI dependence in the adult pituitary. These functions sustain engagement of the hGH locus with polymerase II (Pol II) factories, histone acetylation at the hGH-N promoter, and looping of the LCR to its target promoter. These data reveal that HSI is essential to both the maintenance and the initiation phases of gene expression. These observations contribute to our mechanistic understanding of how stable patterns of mammalian gene expression are established in a terminally differentiated cell.
Collapse
|
43
|
Herquel B, Ouararhni K, Martianov I, Le Gras S, Ye T, Keime C, Lerouge T, Jost B, Cammas F, Losson R, Davidson I. Trim24-repressed VL30 retrotransposons regulate gene expression by producing noncoding RNA. Nat Struct Mol Biol 2013; 20:339-46. [PMID: 23377542 DOI: 10.1038/nsmb.2496] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 12/18/2012] [Indexed: 01/29/2023]
Abstract
Trim24 (Tif1α) and Trim33 (Tif1γ) interact to form a co-repressor complex that suppresses murine hepatocellular carcinoma. Here we show that Trim24 and Trim33 cooperatively repress retinoic acid receptor-dependent activity of VL30-class endogenous retroviruses (ERVs) in liver. In Trim24-knockout hepatocytes, VL30 derepression leads to accumulation of reverse-transcribed VL30 cDNA in the cytoplasm that correlates with activation of the viral-defense interferon responses mimicking the preneoplastic inflammatory state seen in human liver following exogenous viral infection. Furthermore, upon derepression, VL30 long terminal repeats (LTRs) act as promoter and enhancer elements deregulating expression of neighboring genes and generating enhancer RNAs that are required for LTR enhancer activity in hepatocytes in vivo. These data reinforce the role of the TRIM family of proteins in retroviral restriction and antiviral defense and provide an example of an ERV-derived oncogenic regulatory network.
Collapse
Affiliation(s)
- Benjamin Herquel
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Okada M, Matsuda H, Okimura Y. Lentiviral and Moloney retroviral expression of green fluorescent protein in somatotrophs in vivo. PLoS One 2013; 8:e54437. [PMID: 23342159 PMCID: PMC3546981 DOI: 10.1371/journal.pone.0054437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 12/13/2012] [Indexed: 11/19/2022] Open
Abstract
Previous studies have shown that the locus control region (LCR) and the promoter of the growth hormone (GH) gene can control the expression of GH. Therefore, lenti- and retro-viral vectors with these elements might be useful to monitor the activation of the GH gene and the development of newborn somatotrophs. To test this, we first constructed a lentiviral vector, which expresses green fluorescent protein (GFP) under the control of these elements, and injected them into rat pituitaries in situ and in vivo. The lentiviral vector expressed GFP specifically in the anterior lobe, and nearly all GFP-positive cells were anti-GH immunoreactive. The GFP expression was upregulated by the administration of growth hormone releasing hormone and an IGF-1 receptor blocker. Furthermore, the social isolation stress, which was shown to decrease the GH secretion, decreased the GFP expression. Second, we injected the retroviral vector into neonatal rat pituitaries in vivo. At 30 days postinjection (DPI), almost all GFP-positive cells were anti-GH positive and anti-prolactin negative as the lentiviral expression. However, GFP was transiently expressed by developing lactotrophs at 8 and 16 DPI, suggesting that our vector lacks an element(s) which suppresses the expression. Meanwhile, the retrovirally labeled cells tended to cluster with the cells of same type. An analysis of cell numbers in each cluster revealed some features of cell proliferation. These viral vectors are shown to be useful tools to monitor the activation of the GH gene and the development of somatotrophs.
Collapse
Affiliation(s)
- Masayoshi Okada
- Department of Physiology, Kansai Medical University, Moriguchi City, Osaka, Japan.
| | | | | |
Collapse
|
45
|
Fleetwood MR, Ho Y, Cooke NE, Liebhaber SA. DNase I hypersensitive site II of the human growth hormone locus control region mediates an essential and distinct long-range enhancer function. J Biol Chem 2012; 287:25454-65. [PMID: 22669946 DOI: 10.1074/jbc.m112.365825] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Locus control regions (LCRs) comprise sets of DNA elements capable of establishing autonomous chromatin domains that support robust and physiologically appropriate expression of target genes, often working over extensive distances. Human growth hormone (hGH-N) expression in the pituitary is under the regulation of a well characterized LCR containing four DNase I hypersensitive sites (HSs). The two pituitary-specific HS, HSI and HSII, are located 14.5 and 15.5 kb 5' to the hGH-N promoter. HSI is essential for activation of hGH-N during pituitary development and for sustaining robust activity in the adult. To determine whether the closely linked HSII has a role in hGH-N expression, it was deleted from a previously validated hGH/P1 transgene. Analysis of three independent hGH/P1(ΔHSII) transgenic mouse lines revealed that this deletion had no adverse effect on the formation of HSI, yet resulted in a substantial loss (70%) in hGH-N mRNA expression. This loss of expression was accompanied by a corresponding reduction in recruitment of the pituitary-specific transcription factor Pit-1 to the hGH-N promoter and a selective decrease in promoter occupancy of the elongation-linked isoform of RNA polymerase II. Sufficiency of HSI and HSII in LCR activity was explored by establishing two additional sets of mouse transgenic lines in which DNA segments containing these HS were positioned within the λ phage genome. In this "neutral" DNA context, HSII was required for the recruitment of HAT activity. These data establish HSII as a nonredundant component of the hGH LCR essential for establishment of robust levels of hGH-N gene expression.
Collapse
Affiliation(s)
- Margaret R Fleetwood
- Department of Genetics and Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
46
|
An RNA-independent linkage of noncoding transcription to long-range enhancer function. Mol Cell Biol 2012; 32:2020-9. [PMID: 22431516 DOI: 10.1128/mcb.06650-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The detection of noncoding transcription at multiple enhancers within the mammalian genome raises critical questions regarding whether and how this activity contributes to enhancer function. Here, using in vivo analysis of a human growth hormone (hGH) transgene locus, we report that activation of a domain of noncoding transcription adjacent to the long-range hGH-N enhancer, HSI, is established by the enhancer independent of any interactions with its target promoter. We further demonstrate that the appearance of this enhancer-linked noncoding transcription is temporally and spatially concordant with induction of hGH-N in the embryonic pituitary. Finally, we show that the level of transcriptional enhancement of hGH-N by HSI is directly related to the intensity of HSI-dependent noncoding transcription and is fully independent of the structure of the locally transcribed RNA. These data extend our understanding of the relationship of long-range enhancer activity to enhancer-dependent noncoding transcription and establish a model that may be of general relevance to additional mammalian loci.
Collapse
|
47
|
Maiorano NA, Hindges R. Non-coding RNAs in retinal development. Int J Mol Sci 2012; 13:558-578. [PMID: 22312272 PMCID: PMC3269706 DOI: 10.3390/ijms13010558] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 12/22/2022] Open
Abstract
Retinal development is dependent on an accurately functioning network of transcriptional and translational regulators. Among the diverse classes of molecules involved, non-coding RNAs (ncRNAs) play a significant role. Members of this family are present in the cell as transcripts, but are not translated into proteins. MicroRNAs (miRNAs) are small ncRNAs that act as post-transcriptional regulators. During the last decade, they have been implicated in a variety of biological processes, including the development of the nervous system. On the other hand, long-ncRNAs (lncRNAs) represent a different class of ncRNAs that act mainly through processes involving chromatin remodeling and epigenetic mechanisms. The visual system is a prominent model to investigate the molecular mechanisms underlying neurogenesis or circuit formation and function, including the differentiation of retinal progenitor cells to generate the seven principal cell classes in the retina, pathfinding decisions of retinal ganglion cell axons in order to establish the correct connectivity from the eye to the brain proper, and activity-dependent mechanisms for the functionality of visual circuits. Recent findings have associated ncRNAs in several of these processes and uncovered a new level of complexity for the existing regulatory mechanisms. This review summarizes and highlights the impact of ncRNAs during the development of the vertebrate visual system, with a specific focus on the role of miRNAs and a synopsis regarding recent findings on lncRNAs in the retina.
Collapse
Affiliation(s)
- Nicola A. Maiorano
- MRC Centre for Developmental Neurobiology, King’s College London, New Hunt’s House, Guy’s Campus, London, SE1 1UL, UK; E-Mail:
| | - Robert Hindges
- MRC Centre for Developmental Neurobiology, King’s College London, New Hunt’s House, Guy’s Campus, London, SE1 1UL, UK; E-Mail:
| |
Collapse
|
48
|
POU1F1-mediated activation of hGH-N by deoxyribonuclease I hypersensitive site II of the human growth hormone locus control region. J Mol Biol 2011; 415:29-45. [PMID: 22094313 DOI: 10.1016/j.jmb.2011.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 10/21/2011] [Accepted: 11/01/2011] [Indexed: 11/23/2022]
Abstract
The human growth hormone gene (hGH-N) is regulated by a distal locus control region (LCR) composed of five deoxyribonuclease I hypersensitive sites (HSs). The region encompassing HSI and HSII contains the predominant pituitary somatotrope-specific hGH-N activation function of the LCR. This activity was attributed primarily to POU1F1 (Pit-1) elements at HSI, as linkage to HSI was sufficient for properly regulated hGH-N expression in transgenic mice, while HSII alone had no activity. However, the presence of HSII in conjunction with HSI further enhanced hGH-N transgene expression, indicating additional determinants of pituitary hGH-N activation in the HSII region, but limitations of transgenic models and previous ex vivo systems have prevented the characterization of HSII. In the present study, we employ a novel minichromosome model of the hGH-N regulatory domain and show that HSII confers robust POU1F1-dependent activation of hGH-N in this system. This effect was accompanied by POU1F1-dependent histone acetylation and methylation throughout the minichromosome LCR/hGH-N domain. A series of in vitro DNA binding experiments revealed that POU1F1 binds to multiple sites at HSII, consistent with a direct role in HSII function. Remarkably, POU1F1 binding was localized in part to the 3' untranslated region of a primate-specific LINE-1 (long interspersed nuclear element 1) retrotransposon, suggesting that its insertion during primate evolution may have conferred function to the HSII region in the context of pituitary GH gene regulation. These observations clarify the function of HSII, expanding the role of POU1F1 in hGH LCR activity, and provide insight on the molecular evolution of the LCR.
Collapse
|
49
|
Sarthi J, Elefant F. dTip60 HAT activity controls synaptic bouton expansion at the Drosophila neuromuscular junction. PLoS One 2011; 6:e26202. [PMID: 22046262 PMCID: PMC3203119 DOI: 10.1371/journal.pone.0026202] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 09/22/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Histone acetylation of chromatin plays a key role in promoting the dynamic transcriptional responses in neurons that influence the neuroplasticity linked to cognitive ability, yet the specific histone acetyltransferases (HATs) that create such epigenetic marks remain to be elucidated. METHODS AND FINDINGS Here we use the Drosophila neuromuscular junction (NMJ) as a well-characterized synapse model to identify HATs that control synaptic remodeling and structure. We show that the HAT dTip60 is concentrated both pre and post-synaptically within the NMJ. Presynaptic targeted reduction of dTip60 HAT activity causes a significant increase in synaptic bouton number that specifically affects type Is boutons. The excess boutons show a suppression of the active zone synaptic function marker bruchpilot, suggesting defects in neurotransmission function. Analysis of microtubule organization within these excess boutons using immunohistochemical staining to the microtubule associated protein futsch reveals a significant increase in the rearrangement of microtubule loop architecture that is required for bouton division. Moreover, α-tubulin acetylation levels of microtubules specifically extending into the terminal synaptic boutons are reduced in response to dTip60 HAT reduction. CONCLUSIONS Our results are the first to demonstrate a causative role for the HAT dTip60 in the control of synaptic plasticity that is achieved, at least in part, via regulation of the synaptic microtubule cytoskeleton. These findings have implications for dTip60 HAT dependant epigenetic mechanisms underlying cognitive function.
Collapse
Affiliation(s)
- Jessica Sarthi
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Felice Elefant
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
50
|
Tam KJ, Watson CT, Massah S, Kolybaba AM, Breden F, Prefontaine GG, Beischlag TV. Regulatory function of conserved sequences upstream of the long-wave sensitive opsin genes in teleost fishes. Vision Res 2011; 51:2295-303. [PMID: 21971525 DOI: 10.1016/j.visres.2011.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/01/2011] [Accepted: 09/02/2011] [Indexed: 10/17/2022]
Abstract
Vertebrate opsin genes often occur in sets of tandem duplicates, and their expression varies developmentally and in response to environmental cues. We previously identified two highly conserved regions upstream of the long-wave sensitive opsin (LWS) gene cluster in teleosts. This region has since been shown in zebrafish to drive expression of LWS genes in vivo. In order to further investigate how elements in this region control opsin gene expression, we tested constructs encompassing the highly conserved regions and the less conserved portions upstream of the coding sequences in a promoter-less luciferase expression system. A ∼4500 bp construct of the upstream region, including the highly-conserved regions Reg I and Reg II, increased expression 100-fold, and successive 5' deletions reduced expression relative to the full 4.5 Kb region. Gene expression was highest when the transcription factor RORα was co-transfected with the proposed regulatory regions. Because these regions were tested in a promoter-less expression system, they include elements able to initiate and drive transcription. Teleosts exhibit complex color-mediated adaptive behavior and their adaptive significance has been well documented in several species. Therefore these upstream regions of LWS represent a model system for understanding the molecular basis of adaptive variation in gene regulation of color vision.
Collapse
Affiliation(s)
- Kevin J Tam
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | | | | | | | | | | | | |
Collapse
|