1
|
Ghannam IAY, Hassan RM, Abdel-Maksoud MS. Peroxisome proliferator-activated receptors (PPARs) agonists as promising neurotherapeutics. Bioorg Chem 2025; 156:108226. [PMID: 39908735 DOI: 10.1016/j.bioorg.2025.108226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/07/2025]
Abstract
Neurodegenerative disorders are characterized by a continuous neurons loss resulting in a wide range of pathogenesis affecting the motor impairment. Several strategies are outlined for therapeutics of synthetic and natural PPARs agonists in some neurological disorders; Parkinson's disease (PD), Alzheimer's disease (AD), Multiple sclerosis (MS), Amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). The aim of this review is to provide a recent update of the previously reported studies, and reviews dealing with the medicinal chemistry of PPARs and their agonists, and to highlight the outstanding advances in the development of both synthetic compounds including; PPARα agonists (fibrates), PPARγ agonists (thiazolidindiones), and PPARβ/δ agonists either as sole or dual acting PPAR full or pan agonists, in addition to the natural phytochemicals; acids, cannabinoids, and flavonoids for their different neuroprotection effects in the previously mentioned neurodegenerative disorders (PD, AD, MS, ALS, and HD). Moreover, this review reports the diverse pre-clinical and clinical studies of PPARs agonists in the neurodegenerative diseases via cellular, and animal models and human.
Collapse
Affiliation(s)
- Iman A Y Ghannam
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Rasha M Hassan
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| | - Mohammed S Abdel-Maksoud
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| |
Collapse
|
2
|
Li X, Zhang L, Liu C, He Y, Li X, Xu Y, Gu C, Wang X, Wang S, Zhang J, Liu J. Construction of mitochondrial quality regulation genes-related prognostic model based on bulk-RNA-seq analysis in multiple myeloma. Biofactors 2025; 51:e2135. [PMID: 39446019 DOI: 10.1002/biof.2135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
Mitochondrial quality regulation plays an important role in affecting the treatment sensitivity of multiple myeloma (MM). We aimed to develop a mitochondrial quality regulation genes (MQRGs)-related prognostic model for MM patients. The Genomic Data Commons-MM of bulk RNA-seq, mutation, and single-cell RNA-seq (scRNA-seq) dataset were downloaded, and the MQRGs gene set was collected previous study. "maftools" and CIBERSORT were used for mutation and immune-infiltration analysis. Subsequently, the "ConsensusClusterPlus" was used to perform the unsupervised clustering analysis, "survminer" and "ssGSEA" R package was used for the Kaplan-Meier survival and enrichment analysis, "limma" R, univariate and Least Absolute Shrinkage and Selection Operator Cox were used for RiskScore model. The "timeROC" R package was used for Receiver Operating Characteristic Curve analysis. Finally, the "Seurat" R package was used for scRNA-seq analysis. These MQRGs are mainly located on chromosome-1,2,3,7, and 22 and had significant expression differences among age, gender, and stage groups, in which PPARGC1A and PPARG are the high mutation genes. Most MQRGs expression are closely associated with the plasma cells infiltration and can divide the patients into 2 different prognostic clusters (C1, C2). Then, 8 risk models were screened from 60 DEGs for RiskScore, which is an independent prognostic factor and effectively divided the patients into high and low risk groups with significant difference of immune checkpoint expression. Nomogram containing RiskScore can accurately predict patient prognosis, and a series of specific transcription factor PRDM1 and IRF1 were identified. We described the based molecular features and developed a high effective MQRGs-related prognostic model in MM.
Collapse
Affiliation(s)
- Xiaohui Li
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ling Zhang
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chengcheng Liu
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yi He
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xudong Li
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yichuan Xu
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Cuiyin Gu
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaozhen Wang
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shuoting Wang
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jingwen Zhang
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jiajun Liu
- Hematology Department, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
3
|
Yousef A, Fang L, Heidari M, Kranrod J, Seubert JM. The role of CYP-sEH derived lipid mediators in regulating mitochondrial biology and cellular senescence: implications for the aging heart. Front Pharmacol 2024; 15:1486717. [PMID: 39703395 PMCID: PMC11655241 DOI: 10.3389/fphar.2024.1486717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/28/2024] [Indexed: 12/21/2024] Open
Abstract
Cellular senescence is a condition characterized by stable, irreversible cell cycle arrest linked to the aging process. The accumulation of senescent cells in the cardiac muscle can contribute to various cardiovascular diseases (CVD). Telomere shortening, epigenetic modifications, DNA damage, mitochondrial dysfunction, and oxidative stress are known contributors to the onset of cellular senescence in the heart. The link between mitochondrial processes and cellular senescence contributed to the age-related decline in cardiac function. These include changes in mitochondrial functions and behaviours that arise from various factors, including impaired dynamics, dysregulated biogenesis, mitophagy, mitochondrial DNA (mtDNA), reduced respiratory capacity, and mitochondrial structural changes. Thus, regulation of mitochondrial biology has a role in cellular senescence and cardiac function in aging hearts. Targeting senescent cells may provide a novel therapeutic approach for treating and preventing CVD associated with aging. CYP epoxygenases metabolize N-3 and N-6 polyunsaturated fatty acids (PUFA) into epoxylipids that are readily hydrolyzed to diol products by soluble epoxide hydrolase (sEH). Increasing epoxylipids levels or inhibition of sEH has demonstrated protective effects in the aging heart. Evidence suggests they may play a role in cellular senescence by regulating mitochondria, thus reducing adverse effects of aging in the heart. In this review, we discuss how mitochondria induce cellular senescence and how epoxylipids affect the senescence process in the aged heart.
Collapse
Affiliation(s)
- Ala Yousef
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Liye Fang
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mobina Heidari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Joshua Kranrod
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - John M. Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Zielke C, Nielsen JE, Lin JS, Barron AE. Between good and evil: Complexation of the human cathelicidin LL-37 with nucleic acids. Biophys J 2024; 123:1316-1328. [PMID: 37919905 PMCID: PMC11163296 DOI: 10.1016/j.bpj.2023.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
The innate immune system provides a crucial first line of defense against invading pathogens attacking the body. As the only member of the human cathelicidin family, the antimicrobial peptide LL-37 has been shown to have antiviral, antifungal, and antibacterial properties. In complexation with nucleic acids, LL-37 is suggested to maintain its beneficial health effects while also acting as a condensation agent for the nucleic acid. Complexes formed by LL-37 and nucleic acids have been shown to be immunostimulatory with a positive impact on the human innate immune system. However, some studies also suggest that in some circumstances, LL-37/nucleic acid complexes may be a contributing factor to autoimmune disorders such as psoriasis and systemic lupus erythematosus. This review provides a comprehensive discussion of research highlighting the beneficial health effects of LL-37/nucleic acid complexes, as well as discussing observed detrimental effects. We will emphasize why it is important to investigate and elucidate structural characteristics, such as condensation patterns of nucleic acids within complexation, and their mechanisms of action, to shed light on the intricate physiological effects of LL-37 and the seemingly contradictory role of LL-37/nucleic acid complexes in the innate immune response.
Collapse
Affiliation(s)
- Claudia Zielke
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, Stanford, California
| | - Josefine Eilsø Nielsen
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, Stanford, California; Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Jennifer S Lin
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, Stanford, California
| | - Annelise E Barron
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, Stanford, California.
| |
Collapse
|
5
|
Li W, Li Y, Zhao J, Liao J, Wen W, Chen Y, Cui H. Release of damaged mitochondrial DNA: A novel factor in stimulating inflammatory response. Pathol Res Pract 2024; 258:155330. [PMID: 38733868 DOI: 10.1016/j.prp.2024.155330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
Mitochondrial DNA (mtDNA) is a circular double-stranded genome that exists independently of the nucleus. In recent years, research on mtDNA has significantly increased, leading to a gradual increase in understanding of its physiological and pathological characteristics. Reactive oxygen species (ROS) and other factors can damage mtDNA. This damaged mtDNA can escape from the mitochondria to the cytoplasm or extracellular space, subsequently activating immune signaling pathways, such as NLR family pyrin domain protein 3 (NLRP3), and triggering inflammatory responses. Numerous studies have demonstrated the involvement of mtDNA damage and leakage in the pathological mechanisms underlying various diseases including infectious diseases, metabolic inflammation, and immune disorders. Consequently, comprehensive investigation of mtDNA can elucidate the pathological mechanisms underlying numerous diseases. The prevention of mtDNA damage and leakage has emerged as a novel approach to disease treatment, and mtDNA has emerged as a promising target for drug development. This article provides a comprehensive review of the mechanisms underlying mtDNA-induced inflammation, its association with various diseases, and the methods used for its detection.
Collapse
Affiliation(s)
- Wenting Li
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Yunnan 650500, China
| | - Yuting Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Jie Zhao
- Department of TCM Endocrinology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Yunnan 650021, China
| | - Jiabao Liao
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Yunnan 650500, China
| | - Weibo Wen
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Yunnan 650500, China.
| | - Yao Chen
- Department of TCM Encephalopathy, Yunnan Provincial Hospital of Traditional Chinese Medicine, Yunnan 650021, China.
| | - Huantian Cui
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Yunnan 650500, China.
| |
Collapse
|
6
|
Ramos-Acosta C, Huerta-Pantoja L, Salazar-Hidalgo ME, Mayol E, Jiménez-Vega S, García-Peña P, Jordi-Cruz J, Baquero C, Porras A, Íñigo-Rodríguez B, Benavente CM, López-Pastor AR, Gómez-Delgado I, Urcelay E, Candel FJ, Anguita E. Tigecycline Opposes Bortezomib Effect on Myeloma Cells Decreasing Mitochondrial Reactive Oxygen Species Production. Int J Mol Sci 2024; 25:4887. [PMID: 38732105 PMCID: PMC11084384 DOI: 10.3390/ijms25094887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Multiple myeloma is an incurable plasma cell malignancy. Most patients end up relapsing and developing resistance to antineoplastic drugs, like bortezomib. Antibiotic tigecycline has activity against myeloma. This study analyzed tigecycline and bortezomib combination on cell lines and plasma cells from myeloma patients. Apoptosis, autophagic vesicles, mitochondrial mass, mitochondrial superoxide, cell cycle, and hydrogen peroxide were studied by flow cytometry. In addition, mitochondrial antioxidants and electron transport chain complexes were quantified by reverse transcription real-time PCR (RT-qPCR) or western blot. Cell metabolism and mitochondrial activity were characterized by Seahorse and RT-qPCR. We found that the addition of tigecycline to bortezomib reduces apoptosis in proportion to tigecycline concentration. Supporting this, the combination of both drugs counteracts bortezomib in vitro individual effects on the cell cycle, reduces autophagy and mitophagy markers, and reverts bortezomib-induced increase in mitochondrial superoxide. Changes in mitochondrial homeostasis and MYC upregulation may account for some of these findings. These data not only advise to avoid considering tigecycline and bortezomib combination for treating myeloma, but caution on the potential adverse impact of treating infections with this antibiotic in myeloma patients under bortezomib treatment.
Collapse
Affiliation(s)
- Carlos Ramos-Acosta
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Laura Huerta-Pantoja
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Milton Eduardo Salazar-Hidalgo
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Elsa Mayol
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Selene Jiménez-Vega
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Pablo García-Peña
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Jenifeer Jordi-Cruz
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Cristina Baquero
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (C.B.); (A.P.)
| | - Almudena Porras
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (C.B.); (A.P.)
| | - Belén Íñigo-Rodríguez
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Celina M. Benavente
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Andrea R. López-Pastor
- Laboratory of Genetics and Molecular Bases of Complex Diseases, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (A.R.L.-P.); (I.G.-D.); (E.U.)
- Networks for Cooperative Research in Health Results (RICORS, REI), 28089 Madrid, Spain
| | - Irene Gómez-Delgado
- Laboratory of Genetics and Molecular Bases of Complex Diseases, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (A.R.L.-P.); (I.G.-D.); (E.U.)
- Networks for Cooperative Research in Health Results (RICORS, REI), 28089 Madrid, Spain
| | - Elena Urcelay
- Laboratory of Genetics and Molecular Bases of Complex Diseases, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (A.R.L.-P.); (I.G.-D.); (E.U.)
- Networks for Cooperative Research in Health Results (RICORS, REI), 28089 Madrid, Spain
| | - Francisco Javier Candel
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Clinical Microbiology & Infectious Diseases, Transplant Coordination, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Eduardo Anguita
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| |
Collapse
|
7
|
Xu Z, Chen X, Zhou H, Sun L, Bai R, Yu W, Yang J, Liu H. The clinical significance of mitochondrial calcium uniporter in gastric cancer patients and its preliminary exploration of the impact on mitochondrial function and metabolism. Front Oncol 2024; 14:1355559. [PMID: 38737905 PMCID: PMC11082321 DOI: 10.3389/fonc.2024.1355559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Objective The objective of this study is to elucidate the influence of MCU on the clinical pathological features of GC patients, to investigate the function and mechanism of the mitochondrial calcium uptake transporter MCU in the initiation and progression of GC, and to explore its impact on the metabolic pathways and biosynthesis of mitochondria. The ultimate goal is to identify novel targets and strategies for the clinical management of GC patients. Methods Tumor and adjacent tissue specimens were obtained from 205 patients with gastric cancer, and immunohistochemical tests were performed to assess the expression of MCU and its correlation with clinical pathological characteristics and prognosis. Data from TCGA, GTEx and GEO databases were retrieved for gastric cancer patients, and bioinformatics analysis was utilized to investigate the association between MCU expression and clinical pathological features. Furthermore, we conducted an in-depth analysis of the role of MCU in GC patients. We investigated the correlation between MCU expression in GC and its impact on mitochondrial function, metabolism, biosynthesis, and immune cells. Additionally, we studied the proteins or molecules that interact with MCU. Results Our research revealed high expression of MCU in the GC tissues. This high expression was associated with poorer T and N staging, and indicated a worse disease-free survival period. MCU expression was positively correlated with mitochondrial function, mitochondrial metabolism, nucleotide, amino acid, and fatty acid synthesis metabolism, and negatively correlated with nicotinate and nicotinamide metabolism. Furthermore, the MCU also regulates the function of the mitochondrial oxidative respiratory chain. The MCU influences the immune cells of GC patients and regulates ROS generation, cell proliferation, apoptosis, and resistance to platinum-based drugs in gastric cancer cells. Conclusion High expression of MCU in GC indicates poorer clinical outcomes. The expression of the MCU are affected through impacts the function of mitochondria, energy metabolism, and cellular biosynthesis in gastric cancer cells, thereby influencing the growth and metastasis of gastric cancer cells. Therefore, the mitochondrial changes regulated by MCU could be a new focus for research and treatment of GC.
Collapse
Affiliation(s)
- Zipeng Xu
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Department of General Surgery, Chang An Hospital, Xian, China
| | - Xia Chen
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Department of General Surgery, Chang An Hospital, Xian, China
| | - Haicun Zhou
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Department of General Surgery, Chang An Hospital, Xian, China
| | - Luming Sun
- Gansu Provincial Key Laboratory of Stem Cell and Gene Medicine, The 940th Hospital of Joint Lohistica Support force of Chinese People’s Liberation Army, Lanzhou, China
| | - Ruobing Bai
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Wenwen Yu
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Department of General Surgery, Chang An Hospital, Xian, China
| | - Junhao Yang
- Gansu Provincial Key Laboratory of Stem Cell and Gene Medicine, The 940th Hospital of Joint Lohistica Support force of Chinese People’s Liberation Army, Lanzhou, China
| | - Hongbin Liu
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Gansu Provincial Key Laboratory of Stem Cell and Gene Medicine, The 940th Hospital of Joint Lohistica Support force of Chinese People’s Liberation Army, Lanzhou, China
| |
Collapse
|
8
|
Cox SN, Lo Giudice C, Lavecchia A, Poeta ML, Chiara M, Picardi E, Pesole G. Mitochondrial and Nuclear DNA Variants in Amyotrophic Lateral Sclerosis: Enrichment in the Mitochondrial Control Region and Sirtuin Pathway Genes in Spinal Cord Tissue. Biomolecules 2024; 14:411. [PMID: 38672428 PMCID: PMC11048214 DOI: 10.3390/biom14040411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive disease with prevalent mitochondrial dysfunctions affecting both upper and lower motor neurons in the motor cortex, brainstem, and spinal cord. Despite mitochondria having their own genome (mtDNA), in humans, most mitochondrial genes are encoded by the nuclear genome (nDNA). Our study aimed to simultaneously screen for nDNA and mtDNA genomes to assess for specific variant enrichment in ALS compared to control tissues. Here, we analysed whole exome (WES) and whole genome (WGS) sequencing data from spinal cord tissues, respectively, of 6 and 12 human donors. A total of 31,257 and 301,241 variants in nuclear-encoded mitochondrial genes were identified from WES and WGS, respectively, while mtDNA reads accounted for 73 and 332 variants. Despite technical differences, both datasets consistently revealed a specific enrichment of variants in the mitochondrial Control Region (CR) and in several of these genes directly associated with mitochondrial dynamics or with Sirtuin pathway genes within ALS tissues. Overall, our data support the hypothesis of a variant burden in specific genes, highlighting potential actionable targets for therapeutic interventions in ALS.
Collapse
Affiliation(s)
- Sharon Natasha Cox
- Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70126 Bari, Italy; (A.L.); (M.L.P.); (E.P.)
| | - Claudio Lo Giudice
- Institute of Biomedical Technologies, National Research Council, 70126 Bari, Italy;
| | - Anna Lavecchia
- Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70126 Bari, Italy; (A.L.); (M.L.P.); (E.P.)
| | - Maria Luana Poeta
- Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70126 Bari, Italy; (A.L.); (M.L.P.); (E.P.)
| | - Matteo Chiara
- Department of Biosciences, University of Milan, 20133 Milan, Italy;
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, National Research Council, 70126 Bari, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70126 Bari, Italy; (A.L.); (M.L.P.); (E.P.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, National Research Council, 70126 Bari, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70126 Bari, Italy; (A.L.); (M.L.P.); (E.P.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, National Research Council, 70126 Bari, Italy
| |
Collapse
|
9
|
Torp MK, Stensløkken KO, Vaage J. When Our Best Friend Becomes Our Worst Enemy: The Mitochondrion in Trauma, Surgery, and Critical Illness. J Intensive Care Med 2024:8850666241237715. [PMID: 38505947 DOI: 10.1177/08850666241237715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Common for major surgery, multitrauma, sepsis, and critical illness, is a whole-body inflammation. Tissue injury is able to trigger a generalized inflammatory reaction. Cell death causes release of endogenous structures termed damage associated molecular patterns (DAMPs) that initiate a sterile inflammation. Mitochondria are evolutionary endosymbionts originating from bacteria, containing molecular patterns similar to bacteria. These molecular patterns are termed mitochondrial DAMPs (mDAMPs). Mitochondrial debris released into the extracellular space or into the circulation is immunogenic and damaging secondary to activation of the innate immune system. In the circulation, released mDAMPS are either free or exist in extracellular vesicles, being able to act on every organ and cell in the body. However, the role of mDAMPs in trauma and critical care is not fully clarified. There is a complete lack of knowledge how they may be counteracted in patients. Among mDAMPs are mitochondrial DNA, cardiolipin, N-formyl peptides, cytochrome C, adenosine triphosphate, reactive oxygen species, succinate, and mitochondrial transcription factor A. In this overview, we present the different mDAMPs, their function, release, targets, and inflammatory potential. In light of present knowledge, the role of mDAMPs in the pathophysiology of major surgery and trauma as well as sepsis, and critical care is discussed.
Collapse
Affiliation(s)
- May-Kristin Torp
- Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
- Department of Research, Østfold Hospital Trust, Grålum, Norway
| | - Kåre-Olav Stensløkken
- Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| | - Jarle Vaage
- Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
- Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Tang J, Tam E, Song E, Xu A, Sweeney G. Crosstalk between myocardial autophagy and sterile inflammation in the development of heart failure. AUTOPHAGY REPORTS 2024; 3:2320605. [PMID: 40395524 PMCID: PMC11864620 DOI: 10.1080/27694127.2024.2320605] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 05/22/2025]
Abstract
Heart failure, a leading driver of global mortality, remains a topic of intense contemporary research interest due to the prevailing unmet need in cardiometabolic therapeutics. Numerous mechanisms with the potential to influence the onset and development of heart failure remain incompletely understood. Firstly, myocardial autophagy, which involves lysosomal degradation of damaged cellular components, confers context-dependent beneficial and detrimental effects. Secondly, sterile inflammation may arise following cardiac stress and exacerbate the progression of heart failure. Inflammation changes in a temporal manner and its onset must be adequately resolved to limit progression of heart failure. Mitochondria are an important factor in contributing to sterile inflammation by releasing damage associated molecular patterns (DAMPs) including mitochondrial DNA (mtDNA). Accordingly, this is one reason why the selective autophagy of mitochondria to maintain optimal function is important in determining cardiac function. In this review, we examine the increasing evidence suggesting crosstalk between autophagy and sterile inflammation together with their role in the development of heart failure. In particular, this is exemplified in the preclinical models of ischaemia/reperfusion injury and pressure overload induced heart failure. We also highlight potential therapeutic approaches focusing on autophagy and addressing sterile inflammation, aiming to enhance outcomes in heart failure.
Collapse
Affiliation(s)
- Jialing Tang
- Department of Biology, York University, Toronto, ON, Canada
| | - Eddie Tam
- Department of Biology, York University, Toronto, ON, Canada
| | - Erfei Song
- Department of Medicine, School of Clinical Medicine, State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Metabolic and Bariatric Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Aimin Xu
- Department of Medicine, School of Clinical Medicine, State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
11
|
Chen PX, Zhang L, Chen D, Tian Y. Mitochondrial stress and aging: Lessons from C. elegans. Semin Cell Dev Biol 2024; 154:69-76. [PMID: 36863917 DOI: 10.1016/j.semcdb.2023.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
Aging is accompanied by a progressive decline in mitochondrial function, which in turn contributes to a variety of age-related diseases. Counterintuitively, a growing number of studies have found that disruption of mitochondrial function often leads to increased lifespan. This seemingly contradictory observation has inspired extensive research into genetic pathways underlying the mitochondrial basis of aging, particularly within the model organism Caenorhabditis elegans. The complex and antagonistic roles of mitochondria in the aging process have altered the view of mitochondria, which not only serve as simple bioenergetic factories but also as signaling platforms for the maintenance of cellular homeostasis and organismal health. Here, we review the contributions of C. elegans to our understanding of mitochondrial function in the aging process over the past decades. In addition, we explore how these insights may promote future research of mitochondrial-targeted strategies in higher organisms to potentially slow aging and delay age-related disease progression.
Collapse
Affiliation(s)
- Peng X Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Leyuan Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Di Chen
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Medical School, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu 210061, China.
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
12
|
Newman LE, Weiser Novak S, Rojas GR, Tadepalle N, Schiavon CR, Grotjahn DA, Towers CG, Tremblay MÈ, Donnelly MP, Ghosh S, Medina M, Rocha S, Rodriguez-Enriquez R, Chevez JA, Lemersal I, Manor U, Shadel GS. Mitochondrial DNA replication stress triggers a pro-inflammatory endosomal pathway of nucleoid disposal. Nat Cell Biol 2024; 26:194-206. [PMID: 38332353 PMCID: PMC11026068 DOI: 10.1038/s41556-023-01343-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024]
Abstract
Mitochondrial DNA (mtDNA) encodes essential subunits of the oxidative phosphorylation system, but is also a major damage-associated molecular pattern (DAMP) that engages innate immune sensors when released into the cytoplasm, outside of cells or into circulation. As a DAMP, mtDNA not only contributes to anti-viral resistance, but also causes pathogenic inflammation in many disease contexts. Cells experiencing mtDNA stress caused by depletion of the mtDNA-packaging protein, transcription factor A, mitochondrial (TFAM) or during herpes simplex virus-1 infection exhibit elongated mitochondria, enlargement of nucleoids (mtDNA-protein complexes) and activation of cGAS-STING innate immune signalling via mtDNA released into the cytoplasm. However, the relationship among aberrant mitochondria and nucleoid dynamics, mtDNA release and cGAS-STING activation remains unclear. Here we show that, under a variety of mtDNA replication stress conditions and during herpes simplex virus-1 infection, enlarged nucleoids that remain bound to TFAM exit mitochondria. Enlarged nucleoids arise from mtDNA experiencing replication stress, which causes nucleoid clustering via a block in mitochondrial fission at a stage when endoplasmic reticulum actin polymerization would normally commence, defining a fission checkpoint that ensures mtDNA has completed replication and is competent for segregation into daughter mitochondria. Chronic engagement of this checkpoint results in enlarged nucleoids trafficking into early and then late endosomes for disposal. Endosomal rupture during transit through this endosomal pathway ultimately causes mtDNA-mediated cGAS-STING activation. Thus, we propose that replication-incompetent nucleoids are selectively eliminated by an adaptive mitochondria-endosomal quality control pathway that is prone to innate immune system activation, which might represent a therapeutic target to prevent mtDNA-mediated inflammation during viral infection and other pathogenic states.
Collapse
Affiliation(s)
- Laura E Newman
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Gladys R Rojas
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | | | | | | | | - Matthew P Donnelly
- Salk Institute for Biological Studies, La Jolla, CA, USA
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Sagnika Ghosh
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Sienna Rocha
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Joshua A Chevez
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Ian Lemersal
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Uri Manor
- Salk Institute for Biological Studies, La Jolla, CA, USA.
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
- Department of Cell & Developmental Biology, University of California, San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
13
|
Li J, Xu P, Chen S. Research progress on mitochondria regulating tumor immunity. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:1-14. [PMID: 38229501 PMCID: PMC10945498 DOI: 10.3724/zdxbyxb-2023-0484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
Tumor cells adapt their metabolism to meet the demands for energy and biosynthesis. Mitochondria, pivotal organelles in the metabolic reprogramming of tumor cells, contribute to tumorigenesis and cancer progression significantly through various dysfunctions in both tumor and immune cells. Alterations in mitochondrial dynamics and metabolic signaling pathways exert crucial regulatory influence on the activation, proliferation, and differentiation of immune cells. The tumor microenvironment orchestrates the activation and functionality of tumor-infiltrating immune cells by reprogramming mitochondrial metabolism and inducing shifts in mitochondrial dynamics, thereby facilitating the establishment of a tumor immunosuppressive microenvironment. Stress-induced leakage of mitochondrial DNA contributes multifaceted regulatory effects on anti-tumor immune responses and the immunosuppressive microenvironment by activating multiple natural immune signals, including cGAS-STING, TLR9, and NLRP3. Moreover, mitochondrial DNA-mediated immunogenic cell death emerges as a promising avenue for anti-tumor immunotherapy. Additionally, mitochondrial reactive oxygen species, a crucial factor in tumorigenesis, drives the formation of tumor immunosuppressive microenvironment by changing the composition of immune cells within the tumor microenvironment. This review focuses on the intrinsic relationship between mitochondrial biology and anti-tumor immune responses from multiple angles. We explore the core role of mitochondria in the dynamic interplay between the tumor and the host to facilitate the development of targeted mitochondrial strategies for anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Jing Li
- College of Life and Environmental Science, Wenzhou University, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou 325035, Zhejiang Province, China.
| | - Pinglong Xu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Biosystem Homeostasis and Protection, Ministry of Education, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou 310058, China.
- Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China.
- Cancer Center, Zhejiang University, Hangzhou 310058, China.
| | - Shasha Chen
- College of Life and Environmental Science, Wenzhou University, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou 325035, Zhejiang Province, China.
| |
Collapse
|
14
|
Li Z, Zhang W, Guo S, Qi G, Huang J, Gao J, Zhao J, Kang L, Li Q. A Review of Advances in Mitochondrial Research in Cancer. Cancer Control 2024; 31:10732748241299072. [PMID: 39487853 PMCID: PMC11531673 DOI: 10.1177/10732748241299072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/28/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Abnormalities in mitochondrial structure or function are closely related to the development of malignant tumors. Mitochondrial metabolic reprogramming provides precursor substances and energy for the vital activities of tumor cells, so that cancer cells can rapidly adapt to the unfavorable environment of hypoxia and nutrient deficiency. Mitochondria can enable tumor cells to gain the ability to proliferate, escape immune responses, and develop drug resistance by altering constitutive junctions, oxidative phosphorylation, oxidative stress, and mitochondrial subcellular relocalization. This greatly reduces the rate of effective clinical control of tumors. PURPOSE Explore the major role of mitochondria in cancer, as well as targeted mitochondrial therapies and mitochondria-associated markers. CONCLUSIONS This review provides a comprehensive analysis of the various aspects of mitochondrial aberrations and addresses drugs that target mitochondrial therapy, providing a basis for clinical mitochondria-targeted anti-tumor therapy.
Collapse
Affiliation(s)
- Zhiru Li
- Graduate School, North China University of Science and Technology, Tangshan, China
- The Fourth Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Wu Zhang
- Center of Treatment of Myasthenia Gravis, People’s Hospital of Shijiazhuang Affiliated to Hebei Medical, Shijiazhuang, China
| | - Shaowei Guo
- The Fourth Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Guoyan Qi
- Center of Treatment of Myasthenia Gravis, People’s Hospital of Shijiazhuang Affiliated to Hebei Medical, Shijiazhuang, China
| | - Jiandi Huang
- The Fourth Department of Oncology, Hebei General Hospital, Shijiazhuang, China
- Graduate School, Hebei North University, Zhangjiakou, China
| | - Jin Gao
- Department of Thyroid & Breast Surgery Ward, Hebei General Hospital, Shijiazhuang, China
| | - Jing Zhao
- The Sixth Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Lin Kang
- Department of Pathology, Hebei General Hospital, Shijiazhuang, China
| | - Qingxia Li
- The Fourth Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
15
|
Scala G, Ambrosio S, Menna M, Gorini F, Caiazza C, Cooke MS, Majello B, Amente S. Accumulation of 8-oxodG within the human mitochondrial genome positively associates with transcription. NAR Genom Bioinform 2023; 5:lqad100. [PMID: 37954575 PMCID: PMC10632194 DOI: 10.1093/nargab/lqad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/03/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Mitochondrial DNA (mtDNA) can be subject to internal and environmental stressors that lead to oxidatively generated damage and the formation of 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxodG). The accumulation of 8-oxodG has been linked to degenerative diseases and aging, as well as cancer. Despite the well-described implications of 8-oxodG in mtDNA for mitochondrial function, there have been no reports of mapping of 8-oxodG across the mitochondrial genome. To address this, we used OxiDIP-Seq and mapped 8-oxodG levels in the mitochondrial genome of human MCF10A cells. Our findings indicated that, under steady-state conditions, 8-oxodG is non-uniformly distributed along the mitochondrial genome, and that the longer non-coding region appeared to be more protected from 8-oxodG accumulation compared with the coding region. However, when the cells have been exposed to oxidative stress, 8-oxodG preferentially accumulated in the coding region which is highly transcribed as H1 transcript. Our data suggest that 8-oxodG accumulation in the mitochondrial genome is positively associated with mitochondrial transcription.
Collapse
Affiliation(s)
- Giovanni Scala
- Department of Biology, University of Naples Federico II, 80138 Naples, Italy
| | - Susanna Ambrosio
- Department of Biology, University of Naples Federico II, 80138 Naples, Italy
| | - Margherita Menna
- Department of Biology, University of Naples Federico II, 80138 Naples, Italy
| | - Francesca Gorini
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
| | - Carmen Caiazza
- Department of Biology, University of Naples Federico II, 80138 Naples, Italy
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Barbara Majello
- Department of Biology, University of Naples Federico II, 80138 Naples, Italy
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
16
|
Lyu Y, Wang T, Huang S, Zhang Z. Mitochondrial Damage-Associated Molecular Patterns and Metabolism in the Regulation of Innate Immunity. J Innate Immun 2023; 15:665-679. [PMID: 37666239 PMCID: PMC10601681 DOI: 10.1159/000533602] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/10/2023] [Indexed: 09/06/2023] Open
Abstract
The innate immune system, as the host's first line of defense against intruders, plays a critical role in recognizing, identifying, and reacting to a wide range of microbial intruders. There is increasing evidence that mitochondrial stress is a major initiator of innate immune responses. When mitochondria's integrity is disrupted or dysfunction occurs, the mitochondria's contents are released into the cytosol. These contents, like reactive oxygen species, mitochondrial DNA, and double-stranded RNA, among others, act as damage-related molecular patterns (DAMPs) that can bind to multiple innate immune sensors, particularly pattern recognition receptors, thereby leading to inflammation. To avoid the production of DAMPs, in addition to safeguarding organelles integrity and functionality, mitochondria may activate mitophagy or apoptosis. Moreover, mitochondrial components and specific metabolic regulations modify properties of innate immune cells. These include macrophages, dendritic cells, innate lymphoid cells, and so on, in steady state or in stimulation that are involved in processes ranging from the tricarboxylic acid cycle to oxidative phosphorylation and fatty acid metabolism. Here we provide a brief summary of mitochondrial DAMPs' initiated and potentiated inflammatory response in the innate immune system. We also provide insights into how the state of activation, differentiation, and functional polarization of innate immune cells can be influenced by alteration to the metabolic pathways in mitochondria.
Collapse
Affiliation(s)
- Yanmin Lyu
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Tianyu Wang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuhong Huang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhaoqiang Zhang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
17
|
Wang D, Li H, Chandel NS, Dou Y, Yi R. MOF-mediated histone H4 Lysine 16 acetylation governs mitochondrial and ciliary functions by controlling gene promoters. Nat Commun 2023; 14:4404. [PMID: 37479688 PMCID: PMC10362062 DOI: 10.1038/s41467-023-40108-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/11/2023] [Indexed: 07/23/2023] Open
Abstract
Histone H4 lysine 16 acetylation (H4K16ac), governed by the histone acetyltransferase MOF, orchestrates gene expression regulation and chromatin interaction. However, the roles of MOF and H4K16ac in controlling cellular function and regulating mammalian tissue development remain unclear. Here we show that conditional deletion of Mof in the skin, but not Kansl1, causes severe defects in the self-renewal of basal epithelial progenitors, epidermal differentiation, and hair follicle growth, resulting in barrier defects and perinatal lethality. MOF-regulated genes are highly enriched for essential functions in the mitochondria and cilia. Genetic deletion of Uqcrq, an essential subunit for the electron transport chain (ETC) Complex III, in the skin, recapitulates the defects in epidermal differentiation and hair follicle growth observed in MOF knockout mouse. Together, this study reveals the requirement of MOF-mediated epigenetic mechanism for regulating mitochondrial and ciliary gene expression and underscores the important function of the MOF/ETC axis for mammalian skin development.
Collapse
Affiliation(s)
- Dongmei Wang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Haimin Li
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Navdeep S Chandel
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yali Dou
- Department of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Rui Yi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
18
|
Soler Palacios B, Villares R, Lucas P, Rodríguez-Frade JM, Cayuela A, Piccirillo JG, Lombardía M, Delgado Gestoso D, Fernández-García M, Risco C, Barbas C, Corrales F, Sorzano COS, Martínez-Martín N, Conesa JJ, Iborra FJ, Mellado M. Growth hormone remodels the 3D-structure of the mitochondria of inflammatory macrophages and promotes metabolic reprogramming. Front Immunol 2023; 14:1200259. [PMID: 37475858 PMCID: PMC10354525 DOI: 10.3389/fimmu.2023.1200259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/14/2023] [Indexed: 07/22/2023] Open
Abstract
INTRODUCTION Macrophages are a heterogeneous population of innate immune cells that support tissue homeostasis through their involvement in tissue development and repair, and pathogen defense. Emerging data reveal that metabolism may control macrophage polarization and function and, conversely, phenotypic polarization may drive metabolic reprogramming. METHODS Here we use biochemical analysis, correlative cryogenic fluorescence microscopy and cryo-focused ion-beam scanning electron microscopy. RESULTS We demonstrate that growth hormone (GH) reprograms inflammatory GM-CSF-primed monocyte-derived macrophages (GM-MØ) by functioning as a metabolic modulator. We found that exogenous treatment of GM-MØ with recombinant human GH reduced glycolysis and lactate production to levels similar to those found in anti-inflammatory M-MØ. Moreover, GH treatment of GM-MØ augmented mitochondrial volume and altered mitochondrial dynamics, including the remodeling of the inner membrane to increase the density of cristae. CONCLUSIONS Our data demonstrate that GH likely serves a modulatory role in the metabolism of inflammatory macrophages and suggest that metabolic reprogramming of macrophages should be considered as a new target to intervene in inflammatory diseases.
Collapse
Affiliation(s)
- Blanca Soler Palacios
- Department of Immunology and Oncology, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| | - Ricardo Villares
- Department of Immunology and Oncology, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| | - Pilar Lucas
- Department of Immunology and Oncology, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| | - José Miguel Rodríguez-Frade
- Department of Immunology and Oncology, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| | - Ana Cayuela
- Biocomputing Unit, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| | - Jonathan G. Piccirillo
- Department of Macromolecular Structures, National Center for Biotechnology/The Spanish National Research Council) (CSIC), Madrid, Spain
| | - Manuel Lombardía
- Functional Proteomics Laboratory, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| | - David Delgado Gestoso
- Department of Macromolecular Structures, National Center for Biotechnology/The Spanish National Research Council) (CSIC), Madrid, Spain
| | - Miguel Fernández-García
- Metabolomic and Bioanalysis Center (CEMBIO), Pharmacy Faculty, Universidad San Pablo-CEU, Centre for Universitary Studies (CEU) Universities, Boadilla del Monte, Spain
- Department of Basic Medical Sciences, Medicine Faculty, Universidad San Pablo-CEU, Centre for Universitary Studies (CEU) Universities, Boadilla del Monte, Spain
| | - Cristina Risco
- Department of Macromolecular Structures, National Center for Biotechnology/The Spanish National Research Council) (CSIC), Madrid, Spain
| | - Coral Barbas
- Metabolomic and Bioanalysis Center (CEMBIO), Pharmacy Faculty, Universidad San Pablo-CEU, Centre for Universitary Studies (CEU) Universities, Boadilla del Monte, Spain
| | - Fernando Corrales
- Functional Proteomics Laboratory, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| | - Carlos Oscar S. Sorzano
- Biocomputing Unit, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| | - Nuria Martínez-Martín
- Tissue and Organ Homeostasis Program, Centro de Biologia Molecular Severo Ochoa, The Spanish National Research Council (CSIC)–Autonomus University of Madrid (UAM), Madrid, Spain
| | - José Javier Conesa
- Department of Macromolecular Structures, National Center for Biotechnology/The Spanish National Research Council) (CSIC), Madrid, Spain
| | - Francisco J. Iborra
- Príncipe Felípe Research Centre (Associated Unit to the Biomedicine Institute of Valencia), Biomedicine Institute of Valencia, Valencia, Spain
| | - Mario Mellado
- Department of Immunology and Oncology, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
19
|
Picca A, Guerra F, Calvani R, Coelho-Júnior HJ, Leeuwenburgh C, Bucci C, Marzetti E. The contribution of mitochondrial DNA alterations to aging, cancer, and neurodegeneration. Exp Gerontol 2023; 178:112203. [PMID: 37172915 DOI: 10.1016/j.exger.2023.112203] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Mitochondrial DNA (mtDNA) is as a double-stranded molecule existing in hundreds to thousands copies in cells depending on cell metabolism and exposure to endogenous and/or environmental stressors. The coordination of mtDNA replication and transcription regulates the pace of mitochondrial biogenesis to guarantee the minimum number of organelles per cell. mtDNA inheritance follows a maternal lineage, although bi-parental inheritance has been reported in some species and in the case of mitochondrial diseases in humans. mtDNA mutations (e.g., point mutations, deletions, copy number variations) have been identified in the setting of several human diseases. For instance, sporadic and inherited rare disorders involving the nervous system as well higher risk of developing cancer and neurodegenerative conditions, including Parkinson's and Alzheimer's disease, have been associated with polymorphic mtDNA variants. An accrual of mtDNA mutations has also been identified in several tissues and organs, including heart and muscle, of old experimental animals and humans, which may contribute to the development of aging phenotypes. The role played by mtDNA homeostasis and mtDNA quality control pathways in human health is actively investigated for the possibility of developing targeted therapeutics for a wide range of conditions.
Collapse
Affiliation(s)
- Anna Picca
- Department of Medicine and Surgery, LUM University, 70100 Casamassima, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy; Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Hélio José Coelho-Júnior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy; Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
20
|
Vila-Sanjurjo A, Mallo N, Atkins JF, Elson JL, Smith PM. Our current understanding of the toxicity of altered mito-ribosomal fidelity during mitochondrial protein synthesis: What can it tell us about human disease? Front Physiol 2023; 14:1082953. [PMID: 37457031 PMCID: PMC10349377 DOI: 10.3389/fphys.2023.1082953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/28/2023] [Indexed: 07/18/2023] Open
Abstract
Altered mito-ribosomal fidelity is an important and insufficiently understood causative agent of mitochondrial dysfunction. Its pathogenic effects are particularly well-known in the case of mitochondrially induced deafness, due to the existence of the, so called, ototoxic variants at positions 847C (m.1494C) and 908A (m.1555A) of 12S mitochondrial (mt-) rRNA. It was shown long ago that the deleterious effects of these variants could remain dormant until an external stimulus triggered their pathogenicity. Yet, the link from the fidelity defect at the mito-ribosomal level to its phenotypic manifestation remained obscure. Recent work with fidelity-impaired mito-ribosomes, carrying error-prone and hyper-accurate mutations in mito-ribosomal proteins, have started to reveal the complexities of the phenotypic manifestation of mito-ribosomal fidelity defects, leading to a new understanding of mtDNA disease. While much needs to be done to arrive to a clear picture of how defects at the level of mito-ribosomal translation eventually result in the complex patterns of disease observed in patients, the current evidence indicates that altered mito-ribosome function, even at very low levels, may become highly pathogenic. The aims of this review are three-fold. First, we compare the molecular details associated with mito-ribosomal fidelity to those of general ribosomal fidelity. Second, we gather information on the cellular and organismal phenotypes associated with defective translational fidelity in order to provide the necessary grounds for an understanding of the phenotypic manifestation of defective mito-ribosomal fidelity. Finally, the results of recent experiments directly tackling mito-ribosomal fidelity are reviewed and future paths of investigation are discussed.
Collapse
Affiliation(s)
- Antón Vila-Sanjurjo
- Grupo GIBE, Departamento de Bioloxía e Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Natalia Mallo
- Grupo GIBE, Departamento de Bioloxía e Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - John F Atkins
- Schools of Biochemistry and Microbiology, University College Cork, Cork, Ireland
| | - Joanna L Elson
- The Bioscience Institute, Newcastle University, Newcastle uponTyne, United Kingdom
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Paul M Smith
- Department of Paediatrics, Raigmore Hospital, Inverness, Scotland, United Kingdom
| |
Collapse
|
21
|
Abstract
According to the endosymbiotic theory, most of the DNA of the original bacterial endosymbiont has been lost or transferred to the nucleus, leaving a much smaller (∼16 kb in mammals), circular molecule that is the present-day mitochondrial DNA (mtDNA). The ability of mtDNA to escape mitochondria and integrate into the nuclear genome was discovered in budding yeast, along with genes that regulate this process. Mitochondria have emerged as key regulators of innate immunity, and it is now recognized that mtDNA released into the cytoplasm, outside of the cell, or into circulation activates multiple innate immune signaling pathways. Here, we first review the mechanisms through which mtDNA is released into the cytoplasm, including several inducible mitochondrial pores and defective mitophagy or autophagy. Next, we cover how the different forms of released mtDNA activate specific innate immune nucleic acid sensors and inflammasomes. Finally, we discuss how intracellular and extracellular mtDNA release, including circulating cell-free mtDNA that promotes systemic inflammation, are implicated in human diseases, bacterial and viral infections, senescence and aging.
Collapse
Affiliation(s)
- Laura E Newman
- Salk Institute for Biological Studies, La Jolla, California, USA;
| | - Gerald S Shadel
- Salk Institute for Biological Studies, La Jolla, California, USA;
| |
Collapse
|
22
|
Yang J, Liu L, Oda Y, Wada K, Ago M, Matsuda S, Hattori M, Goto T, Ishibashi S, Kawashima-Sonoyama Y, Matsuzaki Y, Taketani T. Extracellular Vesicles and Cx43-Gap Junction Channels Are the Main Routes for Mitochondrial Transfer from Ultra-Purified Mesenchymal Stem Cells, RECs. Int J Mol Sci 2023; 24:10294. [PMID: 37373439 DOI: 10.3390/ijms241210294] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Mitochondria are essential organelles for maintaining intracellular homeostasis. Their dysfunction can directly or indirectly affect cell functioning and is linked to multiple diseases. Donation of exogenous mitochondria is potentially a viable therapeutic strategy. For this, selecting appropriate donors of exogenous mitochondria is critical. We previously demonstrated that ultra-purified bone marrow-derived mesenchymal stem cells (RECs) have better stem cell properties and homogeneity than conventionally cultured bone marrow-derived mesenchymal stem cells. Here, we explored the effect of contact and noncontact systems on three possible mitochondrial transfer mechanisms involving tunneling nanotubes, connexin 43 (Cx43)-mediated gap junction channels (GJCs), and extracellular vesicles (Evs). We show that Evs and Cx43-GJCs provide the main mechanism for mitochondrial transfer from RECs. Through these two critical mitochondrial transfer pathways, RECs could transfer a greater number of mitochondria into mitochondria-deficient (ρ0) cells and could significantly restore mitochondrial functional parameters. Furthermore, we analyzed the effect of exosomes (EXO) on the rate of mitochondrial transfer from RECs and recovery of mitochondrial function. REC-derived EXO appeared to promote mitochondrial transfer and slightly improve the recovery of mtDNA content and oxidative phosphorylation in ρ0 cells. Thus, ultrapure, homogenous, and safe stem cell RECs could provide a potential therapeutic tool for diseases associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jiahao Yang
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Lu Liu
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Yasuaki Oda
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Keisuke Wada
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Mako Ago
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Shinichiro Matsuda
- Department of Medical Oncology, Shimane University Hospital, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Miho Hattori
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Tsukimi Goto
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Shuichi Ishibashi
- Department of Digestive and General Surgery, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Yuki Kawashima-Sonoyama
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Yumi Matsuzaki
- Department of Life Science, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Takeshi Taketani
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| |
Collapse
|
23
|
Chen S, Liao Z, Xu P. Mitochondrial control of innate immune responses. Front Immunol 2023; 14:1166214. [PMID: 37325622 PMCID: PMC10267745 DOI: 10.3389/fimmu.2023.1166214] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Mitochondria are versatile organelles and essential components of numerous biological processes such as energy metabolism, signal transduction, and cell fate determination. In recent years, their critical roles in innate immunity have come to the forefront, highlighting impacts on pathogenic defense, tissue homeostasis, and degenerative diseases. This review offers an in-depth and comprehensive examination of the multifaceted mechanisms underlying the interactions between mitochondria and innate immune responses. We will delve into the roles of healthy mitochondria as platforms for signalosome assembly, the release of mitochondrial components as signaling messengers, and the regulation of signaling via mitophagy, particularly to cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling and inflammasomes. Furthermore, the review will explore the impacts of mitochondrial proteins and metabolites on modulating innate immune responses, the polarization of innate immune cells, and their implications on infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Shasha Chen
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Zhiyong Liao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Pinglong Xu
- Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University (HIC-ZJU), Hangzhou, China
- Ministry of Education (MOE) Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Torp MK, Vaage J, Stensløkken KO. Mitochondria-derived damage-associated molecular patterns and inflammation in the ischemic-reperfused heart. Acta Physiol (Oxf) 2023; 237:e13920. [PMID: 36617670 DOI: 10.1111/apha.13920] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/01/2022] [Accepted: 01/02/2023] [Indexed: 01/10/2023]
Abstract
Cardiac cell death after myocardial infarction release endogenous structures termed damage-associated molecular patterns (DAMPs) that trigger the innate immune system and initiate a sterile inflammation in the myocardium. Cardiomyocytes are energy demanding cells and 30% of their volume are mitochondria. Mitochondria are evolutionary endosymbionts originating from bacteria containing molecular patterns similar to bacteria, termed mitochondrial DAMPs (mDAMPs). Consequently, mitochondrial debris may be particularly immunogenic and damaging. However, the role of mDAMPs in myocardial infarction is not clarified. Identifying the most harmful mDAMPs and inhibiting their early inflammatory signaling may reduce infarct size and the risk of developing post-infarct heart failure. The focus of this review is the role of mDAMPs in the immediate pro-inflammatory phase after myocardial infarction before arrival of immune cells in the myocardium. We discuss different mDAMPs, their role in physiology and present knowledge regarding their role in the inflammatory response of acute myocardial infarction.
Collapse
Affiliation(s)
- May-Kristin Torp
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jarle Vaage
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Kåre-Olav Stensløkken
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Golubickaite I, Ugenskiene R, Bartnykaite A, Poskiene L, Vegiene A, Padervinskis E, Rudzianskas V, Juozaityte E. Mitochondria-Related TFAM and POLG Gene Variants and Associations with Tumor Characteristics and Patient Survival in Head and Neck Cancer. Genes (Basel) 2023; 14:434. [PMID: 36833361 PMCID: PMC9956916 DOI: 10.3390/genes14020434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
In 2020, 878,348 newly reported cases and 444,347 deaths related to head and neck cancer were reported. These numbers suggest that there is still a need for molecular biomarkers for the diagnosis and prognosis of the disease. In this study, we aimed to analyze mitochondria-related mitochondrial transcription factor A (TFAM) and DNA polymerase γ (POLG) single-nucleotide polymorphisms (SNPs) in the head and neck cancer patient group and evaluate associations between SNPs, disease characteristics, and patient outcomes. Genotyping was performed using TaqMan probes with Real-Time polymerase chain reaction. We found associations between TFAM gene SNPs rs11006129 and rs3900887 and patient survival status. We found that patients with the TFAM rs11006129 CC genotype and non-carriers of the T allele had longer survival times than those with the CT genotype or T-allele carriers. Additionally, patients with the TFAM rs3900887 A allele tended to have shorter survival times than non-carriers of the A allele. Our findings suggest that variants in the TFAM gene may play an important role in head and neck cancer patient survival and could be considered and further evaluated as prognostic biomarkers. However, due to the limited sample size (n = 115), further studies in larger and more diverse cohorts are needed to confirm these findings.
Collapse
Affiliation(s)
- Ieva Golubickaite
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Rasa Ugenskiene
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Institute of Oncology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Agne Bartnykaite
- Institute of Oncology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Lina Poskiene
- Department of Pathological Anatomy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Aurelija Vegiene
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Evaldas Padervinskis
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Viktoras Rudzianskas
- Institute of Oncology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Elona Juozaityte
- Institute of Oncology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| |
Collapse
|
26
|
Tiwari-Heckler S, Robson SC, Longhi MS. Mitochondria Drive Immune Responses in Critical Disease. Cells 2022; 11:cells11244113. [PMID: 36552877 PMCID: PMC9777392 DOI: 10.3390/cells11244113] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Mitochondria engage in multiple cellular and extracellular signaling pathways ranging from metabolic control, antiviral and antibacterial host defense to the modulation of inflammatory responses following cellular damage and stress. The remarkable contributions of these organelles to innate and adaptive immunity, shape cell phenotype and modulate their functions during infection, after trauma and in the setting of inflammatory disease. We review the latest knowledge of mitochondrial biology and then discuss how these organelles may impact immune cells to drive aberrant immune responses in critical disease.
Collapse
Affiliation(s)
- Shilpa Tiwari-Heckler
- Department of Gastroenterology, University Hospital Heidelberg Medical Clinic, 69120 Heidelberg, Germany
| | - Simon C. Robson
- Center for Inflammation Research, Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Maria Serena Longhi
- Center for Inflammation Research, Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Correspondence:
| |
Collapse
|
27
|
Lee JH, Hussain M, Kim EW, Cheng SJ, Leung AKL, Fakouri NB, Croteau DL, Bohr VA. Mitochondrial PARP1 regulates NAD +-dependent poly ADP-ribosylation of mitochondrial nucleoids. Exp Mol Med 2022; 54:2135-2147. [PMID: 36473936 PMCID: PMC9794712 DOI: 10.1038/s12276-022-00894-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/23/2022] [Accepted: 09/19/2022] [Indexed: 12/12/2022] Open
Abstract
PARPs play fundamental roles in multiple DNA damage recognition and repair pathways. Persistent nuclear PARP activation causes cellular NAD+ depletion and exacerbates cellular aging. However, very little is known about mitochondrial PARP (mtPARP) and poly ADP-ribosylation (PARylation). The existence of mtPARP is controversial, and the biological roles of mtPARP-induced mitochondrial PARylation are unclear. Here, we demonstrate the presence of PARP1 and PARylation in purified mitochondria. The addition of the PARP1 substrate NAD+ to isolated mitochondria induced PARylation, which was suppressed by treatment with the inhibitor olaparib. Mitochondrial PARylation was also evaluated by enzymatic labeling of terminal ADP-ribose (ELTA). To further confirm the presence of mtPARP1, we evaluated mitochondrial nucleoid PARylation by ADP ribose-chromatin affinity purification (ADPr-ChAP) and PARP1 chromatin immunoprecipitation (ChIP). We observed that NAD+ stimulated PARylation and TFAM occupancy on the mtDNA regulatory region D-loop, inducing mtDNA transcription. These findings suggest that PARP1 is integrally involved in mitochondrial PARylation and that NAD+-dependent mtPARP1 activity contributes to mtDNA transcriptional regulation.
Collapse
Affiliation(s)
- Jong-Hyuk Lee
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, 31404, USA
| | - Mansoor Hussain
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Edward W Kim
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Shang-Jung Cheng
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
- Departments of Oncology, Genetics Medicine, Molecular Biology & Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Nima Borhan Fakouri
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Deborah L Croteau
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
- Computational Biology and Genomic Core Facility, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Vilhelm A Bohr
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
- Danish Center for Healthy Aging, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
28
|
Al Khatib I, Deng J, Symes A, Kerr M, Zhang H, Huang SYN, Pommier Y, Khan A, Shutt TE. Functional characterization of two variants of mitochondrial topoisomerase TOP1MT that impact regulation of the mitochondrial genome. J Biol Chem 2022; 298:102420. [PMID: 36030054 PMCID: PMC9513266 DOI: 10.1016/j.jbc.2022.102420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
TOP1MT encodes a mitochondrial topoisomerase that is important for mtDNA regulation and is involved in mitochondrial replication, transcription, and translation. Two variants predicted to affect TOP1MT function (V1 - R198C and V2 - V338L) were identified by exome sequencing of a newborn with hypertrophic cardiomyopathy. As no pathogenic TOP1MT variants had been confirmed previously, we characterized these variants for their ability to rescue several TOP1MT functions in KO cells. Consistent with these TOP1MT variants contributing to the patient phenotype, our comprehensive characterization suggests that both variants had impaired activity. Critically, we determined neither variant was able to restore steady state levels of mitochondrial-encoded proteins nor to rescue oxidative phosphorylation when re-expressed in TOP1MT KO cells. However, we found the two variants behaved differently in some respects; while the V1 variant was more efficient in restoring transcript levels, the V2 variant showed better rescue of mtDNA copy number and replication. These findings suggest that the different TOP1MT variants affect distinct TOP1MT functions. Altogether, these findings begin to provide insight into the many roles that TOP1MT plays in the maintenance and expression of the mitochondrial genome and how impairments in this important protein may lead to human pathology.
Collapse
Affiliation(s)
- Iman Al Khatib
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jingti Deng
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew Symes
- Department of Geomatics Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | | | - Hongliang Zhang
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Shar-Yin Naomi Huang
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Aneal Khan
- Discovery DNA, Calgary, Alberta, Canada; M.A.G.I.C. Clinic Ltd (Metabolics and Genetics in Calgary), Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Timothy E Shutt
- Departments of Biochemistry & Molecular Biology and Medical Genetics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
29
|
Marmolejo-Garza A, Medeiros-Furquim T, Rao R, Eggen BJL, Boddeke E, Dolga AM. Transcriptomic and epigenomic landscapes of Alzheimer's disease evidence mitochondrial-related pathways. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119326. [PMID: 35839870 DOI: 10.1016/j.bbamcr.2022.119326] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/06/2023]
Abstract
Alzheimers disease (AD) is the main cause of dementia and it is defined by cognitive decline coupled to extracellular deposit of amyloid-beta protein and intracellular hyperphosphorylation of tau protein. Historically, efforts to target such hallmarks have failed in numerous clinical trials. In addition to these hallmark-targeted approaches, several clinical trials focus on other AD pathological processes, such as inflammation, mitochondrial dysfunction, and oxidative stress. Mitochondria and mitochondrial-related mechanisms have become an attractive target for disease-modifying strategies, as mitochondrial dysfunction prior to clinical onset has been widely described in AD patients and AD animal models. Mitochondrial function relies on both the nuclear and mitochondrial genome. Findings from omics technologies have shed light on AD pathophysiology at different levels (e.g., epigenome, transcriptome and proteome). Most of these studies have focused on the nuclear-encoded components. The first part of this review provides an updated overview of the mechanisms that regulate mitochondrial gene expression and function. The second part of this review focuses on evidence of mitochondrial dysfunction in AD. We have focused on published findings and datasets that study AD. We analyzed published data and provide examples for mitochondrial-related pathways. These pathways are strikingly dysregulated in AD neurons and glia in sex-, cell- and disease stage-specific manners. Analysis of mitochondrial omics data highlights the involvement of mitochondria in AD, providing a rationale for further disease modeling and drug targeting.
Collapse
Affiliation(s)
- Alejandro Marmolejo-Garza
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, the Netherlands; Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Tiago Medeiros-Furquim
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, the Netherlands; Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ramya Rao
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, the Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Erik Boddeke
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark.
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, the Netherlands.
| |
Collapse
|
30
|
Erturk E, Enes Onur O, Akgun O, Tuna G, Yildiz Y, Ari F. Mitochondrial miRNAs (MitomiRs): Their potential roles in breast and other cancers. Mitochondrion 2022; 66:74-81. [PMID: 35963496 DOI: 10.1016/j.mito.2022.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/19/2022] [Accepted: 08/02/2022] [Indexed: 11/15/2022]
Abstract
Breast cancer is the most common cancer in women worldwide. MicroRNAs (miRNAs) are non-coding RNAs that are involved in the post-transcriptional regulation of gene expression. Although miRNAs mainly act in the cytoplasm, they can be found in the mitochondrial compartment of the cell. These miRNAs called "MitomiR", they can change mitochondrial functions by regulating proteins at the mitochondrial level and cause cancer. In this review, we have aimed to explain miRNA biogenesis, transport pathways to mitochondria, and summarize mitomiRs that have been shown to play an important role in mitochondrial function, especially in the initiation and progression of breast cancer.
Collapse
Affiliation(s)
- Elif Erturk
- Bursa Uludag University, Vocational School of Health Services, 16059, Bursa, Turkey
| | - Omer Enes Onur
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey
| | - Oguzhan Akgun
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey
| | - Gonca Tuna
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey
| | - Yaren Yildiz
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey
| | - Ferda Ari
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey.
| |
Collapse
|
31
|
Different platforms for mitomiRs in mitochondria: Emerging facets in regulation of mitochondrial functions. Mitochondrion 2022; 66:67-73. [DOI: 10.1016/j.mito.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022]
|
32
|
Čater M, Bombek LK. Protective Role of Mitochondrial Uncoupling Proteins against Age-Related Oxidative Stress in Type 2 Diabetes Mellitus. Antioxidants (Basel) 2022; 11:antiox11081473. [PMID: 36009191 PMCID: PMC9404801 DOI: 10.3390/antiox11081473] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
The accumulation of oxidative damage to DNA and other biomolecules plays an important role in the etiology of aging and age-related diseases such as type 2 diabetes mellitus (T2D), atherosclerosis, and neurodegenerative disorders. Mitochondrial DNA (mtDNA) is especially sensitive to oxidative stress. Mitochondrial dysfunction resulting from the accumulation of mtDNA damage impairs normal cellular function and leads to a bioenergetic crisis that accelerates aging and associated diseases. Age-related mitochondrial dysfunction decreases ATP production, which directly affects insulin secretion by pancreatic beta cells and triggers the gradual development of the chronic metabolic dysfunction that characterizes T2D. At the same time, decreased glucose oxidation in skeletal muscle due to mitochondrial damage leads to prolonged postprandial blood glucose rise, which further worsens glucose homeostasis. ROS are not only highly reactive by-products of mitochondrial respiration capable of oxidizing DNA, proteins, and lipids but can also function as signaling and effector molecules in cell membranes mediating signal transduction and inflammation. Mitochondrial uncoupling proteins (UCPs) located in the inner mitochondrial membrane of various tissues can be activated by ROS to protect cells from mitochondrial damage. Mitochondrial UCPs facilitate the reflux of protons from the mitochondrial intermembrane space into the matrix, thereby dissipating the proton gradient required for oxidative phosphorylation. There are five known isoforms (UCP1-UCP5) of mitochondrial UCPs. UCP1 can indirectly reduce ROS formation by increasing glutathione levels, thermogenesis, and energy expenditure. In contrast, UCP2 and UCP3 regulate fatty acid metabolism and insulin secretion by beta cells and modulate insulin sensitivity. Understanding the functions of UCPs may play a critical role in developing pharmacological strategies to combat T2D. This review summarizes the current knowledge on the protective role of various UCP homologs against age-related oxidative stress in T2D.
Collapse
Affiliation(s)
- Maša Čater
- Correspondence: (M.Č.); (L.K.B.); Tel.: +386-2-2345-847 (L.K.B.)
| | | |
Collapse
|
33
|
Wu Q, Tsai HI, Zhu H, Wang D. The Entanglement between Mitochondrial DNA and Tumor Metastasis. Cancers (Basel) 2022; 14:cancers14081862. [PMID: 35454769 PMCID: PMC9028275 DOI: 10.3390/cancers14081862] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Mitochondrial dysfunction is one of the main features of cancer cells. As genetic material in mitochondria, mitochondrial DNA (mtDNA) variations and dysregulation of mitochondria-encoded genes have been shown to correlate with survival outcomes in cancer patients. Cancer metastasis is often a major cause of treatment failure, which is a multi-step cascade process. With the development of gene sequencing and in vivo modeling technology, the role of mtDNA in cancer metastasis has been continuously explored. Our review systematically provides a summary of the multiple roles of mtDNA in cancer metastasis and presents the broad prospects for mtDNA in cancer prediction and therapy. Abstract Mitochondrial DNA, the genetic material in mitochondria, encodes essential oxidative phosphorylation proteins and plays an important role in mitochondrial respiration and energy transfer. With the development of genome sequencing and the emergence of novel in vivo modeling techniques, the role of mtDNA in cancer biology is gaining more attention. Abnormalities of mtDNA result in not only mitochondrial dysfunction of the the cancer cells and malignant behaviors, but regulation of the tumor microenvironment, which becomes more aggressive. Here, we review the recent progress in the regulation of cancer metastasis using mtDNA and the underlying mechanisms, which may identify opportunities for finding novel cancer prediction and therapeutic targets.
Collapse
Affiliation(s)
- Qiwei Wu
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| | - Hsiang-i Tsai
- Laboratory of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| | - Haitao Zhu
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
- Laboratory of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
- Correspondence: (H.Z.); (D.W.); Tel.: +86-138-6139-0259 (D.W.)
| | - Dongqing Wang
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
- Correspondence: (H.Z.); (D.W.); Tel.: +86-138-6139-0259 (D.W.)
| |
Collapse
|
34
|
Varassas SP, Kouvelis VN. Mitochondrial Transcription of Entomopathogenic Fungi Reveals Evolutionary Aspects of Mitogenomes. Front Microbiol 2022; 13:821638. [PMID: 35387072 PMCID: PMC8979003 DOI: 10.3389/fmicb.2022.821638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Entomopathogenic fungi and more specifically genera Beauveria and Metarhizium have been exploited for the biological control of pests. Genome analyses are important to understand better their mode of action and thus, improve their efficacy against their hosts. Until now, the sequences of their mitochondrial genomes were studied, but not at the level of transcription. Except of yeasts and Neurospora crassa, whose mt gene transcription is well described, in all other Ascomycota, i.e., Pezizomycotina, related information is extremely scarce. In this work, mt transcription and key enzymes of this function were studied. RT-PCR experiments and Northern hybridizations reveal the transcriptional map of the mt genomes of B. bassiana and M. brunneum species. The mt genes are transcribed in six main transcripts and undergo post-transcriptional modifications to create single gene transcripts. Promoters were determined in both mt genomes with a comparative in silico analysis, including all known information from other fungal mt genomes. The promoter consensus sequence is 5'-ATAGTTATTAT-3' which is in accordance with the definition of the polycistronic transcripts determined with the experiments described above. Moreover, 5'-RACE experiments in the case of premature polycistronic transcript nad1-nad4-atp8-atp6 revealed the 5' end of the RNA transcript immediately after the in silico determined promoter, as also found in other fungal species. Since several conserved elements were retrieved from these analyses compared to the already known data from yeasts and N. crassa, the phylogenetic analyses of mt RNA polymerase (Rpo41) and its transcriptional factor (Mtf1) were performed in order to define their evolution. As expected, it was found that fungal Rpo41 originate from the respective polymerase of T7/T3 phages, while the ancestor of Mtf1 is of alpha-proteobacterial origin. Therefore, this study presents insights about the fidelity of the mt single-subunit phage-like RNA polymerase during transcription, since the correct identification of mt promoters from Rpo41 requires an ortholog to bacterial sigma factor, i.e., Mtf1. Thus, a previously proposed hypothesis of a phage infected alpha-proteobacterium as the endosymbiotic progenitor of mitochondrion is confirmed in this study and further upgraded by the co-evolution of the bacterial (Mtf1) and viral (Rpo41) originated components in one functional unit.
Collapse
Affiliation(s)
| | - Vassili N. Kouvelis
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
35
|
Phosphorylation and acetylation of mitochondrial transcription factor A promote transcription processivity without compromising initiation or DNA compaction. J Biol Chem 2022; 298:101815. [PMID: 35278431 PMCID: PMC9006650 DOI: 10.1016/j.jbc.2022.101815] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 11/15/2022] Open
Abstract
Mitochondrial transcription factor A (TFAM) plays important roles in mitochondrial DNA compaction, transcription initiation, and in the regulation of processes like transcription and replication processivity. It is possible that TFAM is locally regulated within the mitochondrial matrix via such mechanisms as phosphorylation by protein kinase A and nonenzymatic acetylation by acetyl-CoA. Here, we demonstrate that DNA-bound TFAM is less susceptible to these modifications. We confirmed using EMSAs that phosphorylated or acetylated TFAM compacted circular double-stranded DNA just as well as unmodified TFAM and provide an in-depth analysis of acetylated sites on TFAM. We show that both modifications of TFAM increase the processivity of mitochondrial RNA polymerase during transcription through TFAM-imposed barriers on DNA, but that TFAM bearing either modification retains its full activity in transcription initiation. We conclude that TFAM phosphorylation by protein kinase A and nonenzymatic acetylation by acetyl-CoA are unlikely to occur at the mitochondrial DNA and that modified free TFAM retains its vital functionalities like compaction and transcription initiation while enhancing transcription processivity.
Collapse
|
36
|
Picca A, Guerra F, Calvani R, Romano R, Coelho-Junior HJ, Damiano FP, Bucci C, Marzetti E. Circulating Mitochondrial DNA and Inter-Organelle Contact Sites in Aging and Associated Conditions. Cells 2022; 11:cells11040675. [PMID: 35203322 PMCID: PMC8870554 DOI: 10.3390/cells11040675] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are primarily involved in cell bioenergetics, regulation of redox homeostasis, and cell death/survival signaling. An immunostimulatory property of mitochondria has also been recognized which is deployed through the extracellular release of entire or portioned organelle and/or mitochondrial DNA (mtDNA) unloading. Dynamic homo- and heterotypic interactions involving mitochondria have been described. Each type of connection has functional implications that eventually optimize mitochondrial activity according to the bioenergetic demands of a specific cell/tissue. Inter-organelle communications may also serve as molecular platforms for the extracellular release of mitochondrial components and subsequent ignition of systemic inflammation. Age-related chronic inflammation (inflamm-aging) has been associated with mitochondrial dysfunction and increased extracellular release of mitochondrial components—in particular, cell-free mtDNA. The close relationship between mitochondrial dysfunction and cellular senescence further supports the central role of mitochondria in the aging process and its related conditions. Here, we provide an overview of (1) the mitochondrial genetic system and the potential routes for generating and releasing mtDNA intermediates; (2) the pro-inflammatory pathways elicited by circulating mtDNA; (3) the participation of inter-organelle contacts to mtDNA homeostasis; and (4) the link of these processes with senescence and age-associated conditions.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.R.); (C.B.)
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
- Correspondence: ; Tel.: +39-06-3015-5559; Fax: +39-06-3051-911
| | - Roberta Romano
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.R.); (C.B.)
| | - Hélio José Coelho-Junior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Francesco P. Damiano
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.R.); (C.B.)
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
37
|
Nadalutti CA, Ayala-Peña S, Santos JH. Mitochondrial DNA damage as driver of cellular outcomes. Am J Physiol Cell Physiol 2022; 322:C136-C150. [PMID: 34936503 PMCID: PMC8799395 DOI: 10.1152/ajpcell.00389.2021] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mitochondria are primarily involved in energy production through the process of oxidative phosphorylation (OXPHOS). Increasing evidence has shown that mitochondrial function impacts a plethora of different cellular activities, including metabolism, epigenetics, and innate immunity. Like the nucleus, mitochondria own their genetic material, but this organellar genome is circular, present in multiple copies, and maternally inherited. The mitochondrial DNA (mtDNA) encodes 37 genes that are solely involved in OXPHOS. Maintenance of mtDNA, through replication and repair, requires the import of nuclear DNA-encoded proteins. Thus, mitochondria completely rely on the nucleus to prevent mitochondrial genetic alterations. As most cells contain hundreds to thousands of mitochondria, it follows that the shear number of organelles allows for the buffering of dysfunction-at least to some extent-before tissue homeostasis becomes impaired. Only red blood cells lack mitochondria entirely. Impaired mitochondrial function is a hallmark of aging and is involved in a number of different disorders, including neurodegenerative diseases, diabetes, cancer, and autoimmunity. Although alterations in mitochondrial processes unrelated to OXPHOS, such as fusion and fission, contribute to aging and disease, maintenance of mtDNA integrity is critical for proper organellar function. Here, we focus on how mtDNA damage contributes to cellular dysfunction and health outcomes.
Collapse
Affiliation(s)
- Cristina A. Nadalutti
- 1Mechanistic Toxicology Branch, Division of the National Toxicology
Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, North Carolina
| | - Sylvette Ayala-Peña
- 2Department of Pharmacology and Toxicology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Janine H. Santos
- 1Mechanistic Toxicology Branch, Division of the National Toxicology
Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, North Carolina
| |
Collapse
|
38
|
Choi WS, Garcia-Diaz M. A minimal motif for sequence recognition by mitochondrial transcription factor A (TFAM). Nucleic Acids Res 2021; 50:322-332. [PMID: 34928349 PMCID: PMC8754647 DOI: 10.1093/nar/gkab1230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 11/13/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial transcription factor A (TFAM) plays a critical role in mitochondrial transcription initiation and mitochondrial DNA (mtDNA) packaging. Both functions require DNA binding, but in one case TFAM must recognize a specific promoter sequence, while packaging requires coating of mtDNA by association with non sequence-specific regions. The mechanisms by which TFAM achieves both sequence-specific and non sequence-specific recognition have not yet been determined. Existing crystal structures of TFAM bound to DNA allowed us to identify two guanine-specific interactions that are established between TFAM and the bound DNA. These interactions are observed when TFAM is bound to both specific promoter sequences and non-sequence specific DNA. These interactions are established with two guanine bases separated by 10 random nucleotides (GN10G). Our biochemical results demonstrate that the GN10G consensus is essential for transcriptional initiation and contributes to facilitating TFAM binding to DNA substrates. Furthermore, we report a crystal structure of TFAM in complex with a non sequence-specific sequence containing a GN10G consensus. The structure reveals a unique arrangement in which TFAM bridges two DNA substrates while maintaining the GN10G interactions. We propose that the GN10G consensus is key to facilitate the interaction of TFAM with DNA.
Collapse
Affiliation(s)
- Woo Suk Choi
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
39
|
A Mitochondrial Dysfunction and Oxidative Stress Pathway-Based Prognostic Signature for Clear Cell Renal Cell Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9939331. [PMID: 34868460 PMCID: PMC8635875 DOI: 10.1155/2021/9939331] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/07/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022]
Abstract
Mitochondria not only are the main source of ATP synthesis but also regulate cellular redox balance and calcium homeostasis. Its dysfunction can lead to a variety of diseases and promote cancer and metastasis. In this study, we aimed to explore the molecular characteristics and prognostic significance of mitochondrial genes (MTGs) related to oxidative stress in clear cell renal cell carcinoma (ccRCC). A total of 75 differentially expressed MTGs were analyzed from The Cancer Genome Atlas (TCGA) database, including 46 upregulated and 29 downregulated MTGs. Further analysis screened 6 prognostic-related MTGs (ACAD11, ACADSB, BID, PYCR1, SLC25A27, and STAR) and was used to develop a signature. Kaplan-Meier survival and receiver operating characteristic (ROC) curve analyses showed that the signature could accurately distinguish patients with poor prognosis and had good individual risk stratification and prognostic potential. Stratified analysis based on different clinical variables indicated that the signature could be used to evaluate tumor progression in ccRCC. Moreover, we found that there were significant differences in immune cell infiltration between the low- and high-risk groups based on the signature and that ccRCC patients in the low-risk group responded better to immunotherapy than those in the high-risk group (46.59% vs 35.34%, P = 0.008). We also found that the expression levels of these prognostic MTGs were significantly associated with drug sensitivity in multiple ccRCC cell lines. Our study for the first time elucidates the biological function and prognostic significance of mitochondrial molecules associated with oxidative stress and provides a new protocol for evaluating treatment strategies targeting mitochondria in ccRCC patients.
Collapse
|
40
|
Herbert CJ, Labarre-Mariotte S, Cornu D, Sophie C, Panozzo C, Michel T, Dujardin G, Bonnefoy N. Translational activators and mitoribosomal isoforms cooperate to mediate mRNA-specific translation in Schizosaccharomyces pombe mitochondria. Nucleic Acids Res 2021; 49:11145-11166. [PMID: 34634819 PMCID: PMC8565316 DOI: 10.1093/nar/gkab789] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/24/2021] [Accepted: 10/05/2021] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial mRNAs encode key subunits of the oxidative phosphorylation complexes that produce energy for the cell. In Saccharomyces cerevisiae, mitochondrial translation is under the control of translational activators, specific to each mRNA. In Schizosaccharomyces pombe, which more closely resembles the human system by its mitochondrial DNA structure and physiology, most translational activators appear to be either lacking, or recruited for post-translational functions. By combining bioinformatics, genetic and biochemical approaches we identified two interacting factors, Cbp7 and Cbp8, controlling Cytb production in S. pombe. We show that their absence affects cytb mRNA stability and impairs the detection of the Cytb protein. We further identified two classes of Cbp7/Cbp8 partners and showed that they modulated Cytb or Cox1 synthesis. First, two isoforms of bS1m, a protein of the small mitoribosomal subunit, that appear mutually exclusive and confer translational specificity. Second, a complex of four proteins dedicated to Cox1 synthesis, which includes an RNA helicase that interacts with the mitochondrial ribosome. Our results suggest that S. pombe contains, in addition to complexes of translational activators, a heterogeneous population of mitochondrial ribosomes that could specifically modulate translation depending on the mRNA translated, in order to optimally balance the production of different respiratory complex subunits.
Collapse
Affiliation(s)
- Christopher J Herbert
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Sylvie Labarre-Mariotte
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - David Cornu
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Cyrielle Sophie
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Cristina Panozzo
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Thomas Michel
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Geneviève Dujardin
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Nathalie Bonnefoy
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
41
|
Wu Z, Sainz AG, Shadel GS. Mitochondrial DNA: cellular genotoxic stress sentinel. Trends Biochem Sci 2021; 46:812-821. [PMID: 34088564 PMCID: PMC9809014 DOI: 10.1016/j.tibs.2021.05.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/24/2021] [Accepted: 05/08/2021] [Indexed: 02/08/2023]
Abstract
High copy number, damage prone, and lean on repair mechanisms are unique features of mitochondrial DNA (mtDNA) that are hard to reconcile with its essentiality for oxidative phosphorylation, the primary function ascribed to this maternally inherited component of our genome. We propose that mtDNA is also a genotoxic stress sentinel, as well as a direct second messenger of this type of cellular stress. Here, we discuss existing evidence for this sentinel/effector role through the ability of mtDNA to escape the confines of the mitochondrial matrix and activate nuclear DNA damage/repair responses via interferon-stimulated gene products and other downstream effectors. However, this arrangement may come at a cost, leading to cancer chemoresistance and contributing to inflammation, disease pathology, and aging.
Collapse
Affiliation(s)
- Zheng Wu
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA,Graduate Program in Genetics, Yale School of Medicine, New Haven, CT 06437, USA,These authors contributed equally to this work
| | - Alva G. Sainz
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA,Graduate Program in Experimental Pathology, Yale School of Medicine, New Haven, CT 06437, USA,These authors contributed equally to this work
| | - Gerald S. Shadel
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA,Correspondence: (G.S. Shadel)
| |
Collapse
|
42
|
Mitochondrial DNA in innate immune responses against infectious diseases. Biochem Soc Trans 2021; 48:2823-2838. [PMID: 33155647 DOI: 10.1042/bst20200687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/18/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022]
Abstract
Mitochondrial DNA (mtDNA) can initiate an innate immune response when mislocalized in a compartment other than the mitochondrial matrix. mtDNA plays significant roles in regulating mitochondrial dynamics as well as mitochondrial unfolded protein response (UPR). The mislocalized extra-mtDNA can elicit innate immune response via cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) pathway, inducing the expression of the interferon-stimulated genes (ISGs). Also, cytosolic damaged mtDNA is cleared up by various pathways which are responsible for participating in the activation of inflammatory responses. Four pathways of extra-mitochondrial mtDNA clearance are highlighted in this review - the inflammasome activation mechanism, neutrophil extracellular traps formation, recognition by Toll-like receptor 9 and transfer of mtDNA between cells packaged into extracellular vesicles. Anomalies in these pathways are associated with various diseases. We posit our review in the present pandemic situation and discuss how mtDNA elicits innate immune responses against different viruses and bacteria. This review gives a comprehensive picture of the role of extra-mitochondrial mtDNA in infectious diseases and speculates that research towards its understanding would help establish its therapeutic potential.
Collapse
|
43
|
Mitochondrial Glucocorticoid Receptors and Their Actions. Int J Mol Sci 2021; 22:ijms22116054. [PMID: 34205227 PMCID: PMC8200016 DOI: 10.3390/ijms22116054] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are membrane organelles present in almost all eukaryotic cells. In addition to their well-known role in energy production, mitochondria regulate central cellular processes, including calcium homeostasis, Reactive Oxygen Species (ROS) generation, cell death, thermogenesis, and biosynthesis of lipids, nucleic acids, and steroid hormones. Glucocorticoids (GCs) regulate the mitochondrially encoded oxidative phosphorylation gene expression and mitochondrial energy metabolism. The identification of Glucocorticoid Response Elements (GREs) in mitochondrial sequences and the detection of Glucocorticoid Receptor (GR) in mitochondria of different cell types gave support to hypothesis that mitochondrial GR directly regulates mitochondrial gene expression. Numerous studies have revealed changes in mitochondrial gene expression alongside with GR import/export in mitochondria, confirming the direct effects of GCs on mitochondrial genome. Further evidence has made clear that mitochondrial GR is involved in mitochondrial function and apoptosis-mediated processes, through interacting or altering the distribution of Bcl2 family members. Even though its exact translocation mechanisms remain unknown, data have shown that GR chaperones (Hsp70/90, Bag-1, FKBP51), the anti-apoptotic protein Bcl-2, the HDAC6- mediated deacetylation and the outer mitochondrial translocation complexes (Tom complexes) co-ordinate GR mitochondrial trafficking. A role of mitochondrial GR in stress and depression as well as in lung and hepatic inflammation has also been demonstrated.
Collapse
|
44
|
Jang YH, Ahn SR, Shim JY, Lim KI. Engineering Genetic Systems for Treating Mitochondrial Diseases. Pharmaceutics 2021; 13:810. [PMID: 34071708 PMCID: PMC8227772 DOI: 10.3390/pharmaceutics13060810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are intracellular energy generators involved in various cellular processes. Therefore, mitochondrial dysfunction often leads to multiple serious diseases, including neurodegenerative and cardiovascular diseases. A better understanding of the underlying mitochondrial dysfunctions of the molecular mechanism will provide important hints on how to mitigate the symptoms of mitochondrial diseases and eventually cure them. In this review, we first summarize the key parts of the genetic processes that control the physiology and functions of mitochondria and discuss how alterations of the processes cause mitochondrial diseases. We then list up the relevant core genetic components involved in these processes and explore the mutations of the components that link to the diseases. Lastly, we discuss recent attempts to apply multiple genetic methods to alleviate and further reverse the adverse effects of the core component mutations on the physiology and functions of mitochondria.
Collapse
Affiliation(s)
- Yoon-ha Jang
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-h.J.); (J.-y.S.)
| | - Sae Ryun Ahn
- Industry Collaboration Center, Industry-Academic Cooperation Foundation, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea;
| | - Ji-yeon Shim
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-h.J.); (J.-y.S.)
| | - Kwang-il Lim
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-h.J.); (J.-y.S.)
- Industry Collaboration Center, Industry-Academic Cooperation Foundation, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea;
| |
Collapse
|
45
|
Jovanovic VM, Sarfert M, Reyna-Blanco CS, Indrischek H, Valdivia DI, Shelest E, Nowick K. Positive Selection in Gene Regulatory Factors Suggests Adaptive Pleiotropic Changes During Human Evolution. Front Genet 2021; 12:662239. [PMID: 34079582 PMCID: PMC8166252 DOI: 10.3389/fgene.2021.662239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/19/2021] [Indexed: 01/09/2023] Open
Abstract
Gene regulatory factors (GRFs), such as transcription factors, co-factors and histone-modifying enzymes, play many important roles in modifying gene expression in biological processes. They have also been proposed to underlie speciation and adaptation. To investigate potential contributions of GRFs to primate evolution, we analyzed GRF genes in 27 publicly available primate genomes. Genes coding for zinc finger (ZNF) proteins, especially ZNFs with a Krüppel-associated box (KRAB) domain were the most abundant TFs in all genomes. Gene numbers per TF family differed between all species. To detect signs of positive selection in GRF genes we investigated more than 3,000 human GRFs with their more than 70,000 orthologs in 26 non-human primates. We implemented two independent tests for positive selection, the branch-site-model of the PAML suite and aBSREL of the HyPhy suite, focusing on the human and great ape branch. Our workflow included rigorous procedures to reduce the number of false positives: excluding distantly similar orthologs, manual corrections of alignments, and considering only genes and sites detected by both tests for positive selection. Furthermore, we verified the candidate sites for selection by investigating their variation within human and non-human great ape population data. In order to approximately assign a date to positively selected sites in the human lineage, we analyzed archaic human genomes. Our work revealed with high confidence five GRFs that have been positively selected on the human lineage and one GRF that has been positively selected on the great ape lineage. These GRFs are scattered on different chromosomes and have been previously linked to diverse functions. For some of them a role in speciation and/or adaptation can be proposed based on the expression pattern or association with human diseases, but it seems that they all contributed independently to human evolution. Four of the positively selected GRFs are KRAB-ZNF proteins, that induce changes in target genes co-expression and/or through arms race with transposable elements. Since each positively selected GRF contains several sites with evidence for positive selection, we suggest that these GRFs participated pleiotropically to phenotypic adaptations in humans.
Collapse
Affiliation(s)
- Vladimir M Jovanovic
- Human Biology and Primate Evolution, Freie Universität Berlin, Berlin, Germany.,Bioinformatics Solution Center, Freie Universität Berlin, Berlin, Germany
| | - Melanie Sarfert
- Human Biology and Primate Evolution, Freie Universität Berlin, Berlin, Germany
| | - Carlos S Reyna-Blanco
- Department of Biology, University of Fribourg, Fribourg, Switzerland.,Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Henrike Indrischek
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany
| | - Dulce I Valdivia
- Evolutionary Genomics Laboratory and Genome Topology and Regulation Laboratory, Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-Irapuato), Irapuato, Mexico
| | - Ekaterina Shelest
- Centre for Enzyme Innovation, University of Portsmouth, Portsmouth, United Kingdom
| | - Katja Nowick
- Human Biology and Primate Evolution, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
46
|
Sreekumar PG, Ferrington DA, Kannan R. Glutathione Metabolism and the Novel Role of Mitochondrial GSH in Retinal Degeneration. Antioxidants (Basel) 2021; 10:661. [PMID: 33923192 PMCID: PMC8146950 DOI: 10.3390/antiox10050661] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Glutathione (GSH) is present ubiquitously, and its role as a crucial cellular antioxidant in tissues, including the retina, is well established. GSH's antioxidant function arises from its ability to scavenge reactive oxygen species or to serve as an essential cofactor for GSH S-transferases and peroxidases. This review summarizes the general functions, retinal distribution, disorders linked to GSH deficiency, and the emerging role for mitochondrial GSH (mGSH) in retinal function. Though synthesized only in the cytosol, the presence of GSH in multiple cell organelles suggests the requirement for its active transport across organellar membranes. The localization and distribution of 2-oxoglutarate carrier (OGC) and dicarboxylate carrier (DIC), two recently characterized mitochondrial carrier proteins in RPE and retina, show that these transporters are highly expressed in human retinal pigment epithelium (RPE) cells and retinal layers, and their expression increases with RPE polarity in cultured cells. Depletion of mGSH levels via inhibition of the two transporters resulted in reduced mitochondrial bioenergetic parameters (basal respiration, ATP production, maximal respiration, and spare respiratory capacity) and increased RPE cell death. These results begin to reveal a critical role for mGSH in maintaining RPE bioenergetics and cell health. Thus, augmentation of mGSH pool under GSH-deficient conditions may be a valuable tool in treating retinal disorders, such as age-related macular degeneration and optic neuropathies, whose pathologies have been associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Parameswaran G. Sreekumar
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, Los Angeles, CA 90033, USA;
| | - Deborah A. Ferrington
- Department of Ophthalmology and Visual Neurosciences and Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, Los Angeles, CA 90033, USA;
- Stein Eye Institute, Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
47
|
Wang Y, Gao J, Wu F, Lai C, Li Y, Zhang G, Peng X, Yu S, Yang J, Wang W, Zhang W, Yang X. Biological and epigenetic alterations of mitochondria involved in cellular replicative and hydrogen peroxide-induced premature senescence of human embryonic lung fibroblasts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112204. [PMID: 33845364 DOI: 10.1016/j.ecoenv.2021.112204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
The mitoepigenetic modifications may be closely related to cellular fate. Both the replicative and hydrogen peroxide (H2O2)-induced premature senescence models were used to detect the mitochondrial biological characteristics and the epigenetic factors during senescence of human embryonic lung fibroblasts. The mitochondrial quantity was decreased in two senescence stages, while the mitochondrial DNA (mtDNA) copy number was increased significantly and the methyltransferases activity likewise. And the acute mtROS accumulation could launch premature senescence. Later, the persistent premature senescence owned the higher level of adenosine triphosphate (ATP) and mitochondrial 5-methylcytosine (mt-5-mC), and the less level of 8-hydroxydeoxyguanosine (8-OHdG) than those of replicative senescence. The mtDNA methylation-related enzymes, binding protein and the mitochondrial transcription regulators presented the differentially expressed profiles in both senescent states. Interestingly, the hypermethylation in the CpG region of mitochondrial transcription factor B2 (TFB2M) contributed to its downregulation of mRNA level in replicative senescence. The alterations of the mitochondrial biological functions and mtDNA features would be novel candidate biomarkers involved in cellular senescence. The specific methylation status of mtDNA may also have a crosstalk with oxidative stress to the mitochondrial function, contributing to cellular senescence.
Collapse
Affiliation(s)
- Yan Wang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Jianji Gao
- Department of Medical Quality Management, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Fan Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Caiyun Lai
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Yueqi Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Gaoqiang Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Xinyue Peng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Susu Yu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Jiani Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Wei Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China.
| | - Xingfen Yang
- Key Laboratory of Tropical Disease Research of Guangdong Province, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, PR China.
| |
Collapse
|
48
|
Oláhová M, Peter B, Szilagyi Z, Diaz-Maldonado H, Singh M, Sommerville EW, Blakely EL, Collier JJ, Hoberg E, Stránecký V, Hartmannová H, Bleyer AJ, McBride KL, Bowden SA, Korandová Z, Pecinová A, Ropers HH, Kahrizi K, Najmabadi H, Tarnopolsky MA, Brady LI, Weaver KN, Prada CE, Õunap K, Wojcik MH, Pajusalu S, Syeda SB, Pais L, Estrella EA, Bruels CC, Kunkel LM, Kang PB, Bonnen PE, Mráček T, Kmoch S, Gorman GS, Falkenberg M, Gustafsson CM, Taylor RW. POLRMT mutations impair mitochondrial transcription causing neurological disease. Nat Commun 2021; 12:1135. [PMID: 33602924 PMCID: PMC7893070 DOI: 10.1038/s41467-021-21279-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023] Open
Abstract
While >300 disease-causing variants have been identified in the mitochondrial DNA (mtDNA) polymerase γ, no mitochondrial phenotypes have been associated with POLRMT, the RNA polymerase responsible for transcription of the mitochondrial genome. Here, we characterise the clinical and molecular nature of POLRMT variants in eight individuals from seven unrelated families. Patients present with global developmental delay, hypotonia, short stature, and speech/intellectual disability in childhood; one subject displayed an indolent progressive external ophthalmoplegia phenotype. Massive parallel sequencing of all subjects identifies recessive and dominant variants in the POLRMT gene. Patient fibroblasts have a defect in mitochondrial mRNA synthesis, but no mtDNA deletions or copy number abnormalities. The in vitro characterisation of the recombinant POLRMT mutants reveals variable, but deleterious effects on mitochondrial transcription. Together, our in vivo and in vitro functional studies of POLRMT variants establish defective mitochondrial transcription as an important disease mechanism.
Collapse
Affiliation(s)
- Monika Oláhová
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Bradley Peter
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Zsolt Szilagyi
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Hector Diaz-Maldonado
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Meenakshi Singh
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ewen W Sommerville
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Emma L Blakely
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Jack J Collier
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Emily Hoberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Viktor Stránecký
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, 120 00, Czech Republic
| | - Hana Hartmannová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, 120 00, Czech Republic
| | - Anthony J Bleyer
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, 120 00, Czech Republic
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, USA
| | - Kim L McBride
- Center for Cardiovascular and Pulmonary Research, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, USA
| | - Sasigarn A Bowden
- Division of Endocrinology, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, USA
| | - Zuzana Korandová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, 120 00, Czech Republic
- Department of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Pecinová
- Department of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hans-Hilger Ropers
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mark A Tarnopolsky
- Department of Pediatric and Medicines, Division of Neuromuscular and Neurometabolic Diseases, McMaster University Children's Hospital, Hamilton, Canada
| | - Lauren I Brady
- Department of Pediatric and Medicines, Division of Neuromuscular and Neurometabolic Diseases, McMaster University Children's Hospital, Hamilton, Canada
| | - K Nicole Weaver
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Carlos E Prada
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, Cardiovascular Foundation of Colombia, Floridablanca, Colombia
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Monica H Wojcik
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Newborn Medicine and Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Sander Pajusalu
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Safoora B Syeda
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Lynn Pais
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Elicia A Estrella
- Division of Genetics & Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Christine C Bruels
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Louis M Kunkel
- Division of Genetics & Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter B Kang
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Molecular Genetics & Microbiology, and Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
- Genetics Institute and Myology Institute, University of Florida, Gainesville, FL, USA
| | - Penelope E Bonnen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Tomáš Mráček
- Department of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, 120 00, Czech Republic
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Claes M Gustafsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden.
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
49
|
Vila-Sanjurjo A, Smith PM, Elson JL. Heterologous Inferential Analysis (HIA) and Other Emerging Concepts: In Understanding Mitochondrial Variation In Pathogenesis: There is no More Low-Hanging Fruit. Methods Mol Biol 2021; 2277:203-245. [PMID: 34080154 DOI: 10.1007/978-1-0716-1270-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Here we summarize our latest efforts to elucidate the role of mtDNA variants affecting the mitochondrial translation machinery, namely variants mapping to the mt-rRNA and mt-tRNA genes. Evidence is accumulating to suggest that the cellular response to interference with mitochondrial translation is different from that occurring as a result of mutations in genes encoding OXPHOS proteins. As a result, it appears safe to state that a complete view of mitochondrial disease will not be obtained until we understand the effect of mt-rRNA and mt-tRNA variants on mitochondrial protein synthesis. Despite the identification of a large number of potentially pathogenic variants in the mitochondrially encoded rRNA (mt-rRNA) genes, we lack direct methods to firmly establish their pathogenicity. In the absence of such methods, we have devised an indirect approach named heterologous inferential analysis (HIA ) that can be used to make predictions concerning the disruptive potential of a large subset of mt-rRNA variants. We have used HIA to explore the mutational landscape of 12S and 16S mt-rRNA genes. Our HIA studies include a thorough classification of all rare variants reported in the literature as well as others obtained from studies performed in collaboration with physicians. HIA has also been used with non-mammalian mt-rRNA genes to elucidate how mitotypes influence the interaction of the individual and the environment. Regarding mt-tRNA variations, rapidly growing evidence shows that the spectrum of mutations causing mitochondrial disease might differ between the different mitochondrial haplogroups seen in human populations.
Collapse
Affiliation(s)
- Antón Vila-Sanjurjo
- Departamento de Bioloxía, Facultade de Ciencias, Centro de Investigacións en Ciencias Avanzadas (CICA), Universidade da Coruña, A Coruña, Spain.
| | - Paul M Smith
- Department of Paediatrics, Royal Aberdeen Children's Hospital, Aberdeen, UK
| | - Joanna L Elson
- Biosciences Institute Newcastle, Newcastle University, Newcastle upon Tyne, UK.
- Human Metabolomics, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
50
|
Govers LP, Toka HR, Hariri A, Walsh SB, Bockenhauer D. Mitochondrial DNA mutations in renal disease: an overview. Pediatr Nephrol 2021; 36:9-17. [PMID: 31925537 PMCID: PMC7701126 DOI: 10.1007/s00467-019-04404-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 12/28/2022]
Abstract
Kidneys have a high energy demand to facilitate the reabsorption of the glomerular filtrate. For this reason, renal cells have a high density of mitochondria. Mitochondrial cytopathies can be the result of a mutation in both mitochondrial and nuclear DNA. Mitochondrial dysfunction can lead to a variety of renal manifestations. Examples of tubular manifestations are renal Fanconi Syndrome, which is often found in patients diagnosed with Kearns-Sayre and Pearson's marrow-pancreas syndrome, and distal tubulopathies, which result in electrolyte disturbances such as hypomagnesemia. Nephrotic syndrome can be a glomerular manifestation of mitochondrial dysfunction and is typically associated with focal segmental glomerular sclerosis on histology. Tubulointerstitial nephritis can also be seen in mitochondrial cytopathies and may lead to end-stage renal disease. The underlying mechanisms of these cytopathies remain incompletely understood; therefore, current therapies focus mainly on symptom relief. A better understanding of the molecular disease mechanisms is critical in order to improve treatments.
Collapse
Affiliation(s)
- Larissa P Govers
- Department of Renal Medicine, University College London, London, UK
| | - Hakan R Toka
- Manatee Kidney Diseases Consultants, Bradenton, USA
| | - Ali Hariri
- Clinical Development, Sanofi Rare Disease, Boston, USA
| | - Stephen B Walsh
- Department of Renal Medicine, University College London, London, UK
| | - Detlef Bockenhauer
- Department of Renal Medicine, University College London, London, UK.
- Renal Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, UK.
| |
Collapse
|