1
|
Zhang F, Tang Y, Zhou H, Li K, West JA, Griffin JL, Lilley KS, Zhang N. The Yeast Gsk-3 Kinase Mck1 Is Necessary for Cell Wall Remodeling in Glucose-Starved and Cell Wall-Stressed Cells. Int J Mol Sci 2025; 26:3534. [PMID: 40332024 PMCID: PMC12027387 DOI: 10.3390/ijms26083534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
The cell wall integrity (CWI) pathway is responsible for transcriptional regulation of cell wall remodeling in response to cell wall stress. How cell wall remodeling mediated by the CWI pathway is effected by inputs from other signaling pathways is not well understood. Here, we demonstrate that the Mck1 kinase cooperates with Slt2, the MAP kinase of the CWI pathway, to promote cell wall thickening in glucose-starved cells. Integrative analyses of the transcriptome, proteome and metabolic profiling indicate that Mck1 is required for the accumulation of UDP-glucose (UDPG), the substrate for β-glucan synthesis, through the activation of two regulons: the Msn2/4-dependent stress response and the Cat8-/Adr1-mediated metabolic reprogram dependent on the SNF1 complex. Analysis of the phosphoproteome suggests that similar to mammalian Gsk-3 kinases, Mck1 is involved in the regulation of cytoskeleton-dependent cellular processes, metabolism, signaling and transcription. Specifically, Mck1 may be implicated in the Snf1-dependent metabolic reprogram through PKA inhibition and SAGA (Spt-Ada-Gcn5 acetyltransferase)-mediated transcription activation, a hypothesis further underscored by the significant overlap between the Mck1- and Gcn5-activated transcriptomes. Phenotypic analysis also supports the roles of Mck1 in actin cytoskeleton-mediated exocytosis to ensure plasma membrane homeostasis and cell wall remodeling in cell wall-stressed cells. Together, these findings not only reveal the novel functions of Mck1 in metabolic reprogramming and polarized growth but also provide valuable omics resources for future studies to uncover the underlying mechanisms of Mck1 and other Gsk-3 kinases in cell growth and stress response.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingzhi Tang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - Houjiang Zhou
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Kaiqiang Li
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - James A. West
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - Julian L. Griffin
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - Kathryn S. Lilley
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - Nianshu Zhang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| |
Collapse
|
2
|
Ni Y, Wang J, Chen L, Liu H, Wang G. Fgk3, a Glycogen Synthase Kinase, Regulates Chitin Synthesis through the Carbon Catabolite Repressor FgCreA in Fusarium graminearum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24013-24023. [PMID: 39432268 DOI: 10.1021/acs.jafc.4c05700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The glycogen synthase kinase-3 (GSK3) orthologs are well-conserved in eukaryotic organisms. However, their functions remain poorly characterized in filamentous fungi. In our previous study, we unveiled the function of Fgk3, the GSK3 ortholog, in glycogen metabolism in Fusarium graminearum, the causal agent of Fusarium head blight. Interestingly, the fgk3 mutant was unstable and tended to produce fast-growing suppressors, including secondary suppressors. Using whole-genome sequencing, we identified suppressor mutations in FgCHS5, FgFKS1, FgCREA, FgSSN6, FgRGR1, and FgPP2A in nine primary and four secondary suppressors. Subsequently, we validated that deletion of FgCHS5 or FgCREAΔH253 mutation partially suppressed the defects of fgk3 in vegetative growth and cell wall integrity, suggesting that Fgk3 may regulate the chitin synthesis through FgCreA-mediated transcriptional regulation in F. graminearum. Accordingly, the FGK3 deletion led to hyphal swelling with abnormal chitin deposition, and deletion of FGK3 or FgCREA caused the upregulation of the expression of chitin synthases FgCHS5 and FgCHS6. The interaction between Fgk3 and FgCreA was verified by Yeast two-hybrid and Co-Immunoprecipitation assays. More importantly, we verified that the nuclear localization and protein stability of FgCreA relies on the Fgk3 kinase, while the H253 deletion facilitated the re-localization of FgCreA to the nucleus in the fgk3 mutant background, potentially contributing to the suppression of the fgk3 mutant's defects. Intriguingly, the ΔH253 mutation of FgCreA, identified in suppressor mutant S3, is adjacent to a conserved phosphorylation site, S254, suggesting that this mutation may inhibit the S254 phosphorylation and promote the nuclear localization of FgCreA. Collectively, our findings indicate that the glycogen synthase kinase Fgk3 regulates the chitin synthesis through the carbon catabolite repressor FgCreA in F. graminearum.
Collapse
Affiliation(s)
- Yajia Ni
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiawen Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lin Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiquan Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guanghui Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Han X, D'Angelo C, Otamendi A, Cifuente JO, de Astigarraga E, Ochoa-Lizarralde B, Grininger M, Routier FH, Guerin ME, Fuehring J, Etxebeste O, Connell SR. CryoEM analysis of the essential native UDP-glucose pyrophosphorylase from Aspergillus nidulans reveals key conformations for activity regulation and function. mBio 2023; 14:e0041423. [PMID: 37409813 PMCID: PMC10470519 DOI: 10.1128/mbio.00414-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Invasive aspergillosis is one of the most serious clinical invasive fungal infections, resulting in a high case fatality rate among immunocompromised patients. The disease is caused by saprophytic molds in the genus Aspergillus, including Aspergillus fumigatus, the most significant pathogenic species. The fungal cell wall, an essential structure mainly composed of glucan, chitin, galactomannan, and galactosaminogalactan, represents an important target for the development of antifungal drugs. UDP (uridine diphosphate)-glucose pyrophosphorylase (UGP) is a central enzyme in the metabolism of carbohydrates that catalyzes the biosynthesis of UDP-glucose, a key precursor of fungal cell wall polysaccharides. Here, we demonstrate that the function of UGP is vital for Aspergillus nidulans (AnUGP). To understand the molecular basis of AnUGP function, we describe a cryoEM structure (global resolution of 3.5 Å for the locally refined subunit and 4 Å for the octameric complex) of a native AnUGP. The structure reveals an octameric architecture with each subunit comprising an N-terminal α-helical domain, a central catalytic glycosyltransferase A-like (GT-A-like) domain, and a C-terminal (CT) left-handed β-helix oligomerization domain. AnUGP displays unprecedented conformational variability between the CT oligomerization domain and the central GT-A-like catalytic domain. In combination with activity measurements and bioinformatics analysis, we unveil the molecular mechanism of substrate recognition and specificity for AnUGP. Altogether, our study not only contributes to understanding the molecular mechanism of catalysis/regulation of an important class of enzymes but also provides the genetic, biochemical, and structural groundwork for the future exploitation of UGP as a potential antifungal target. IMPORTANCE Fungi cause diverse diseases in humans, ranging from allergic syndromes to life-threatening invasive diseases, together affecting more than a billion people worldwide. Increasing drug resistance in Aspergillus species represents an emerging global health threat, making the design of antifungals with novel mechanisms of action a worldwide priority. The cryoEM structure of UDP (uridine diphosphate)-glucose pyrophosphorylase (UGP) from the filamentous fungus Aspergillus nidulans reveals an octameric architecture displaying unprecedented conformational variability between the C-terminal oligomerization domain and the central glycosyltransferase A-like catalytic domain in the individual protomers. While the active site and oligomerization interfaces are more highly conserved, these dynamic interfaces include motifs restricted to specific clades of filamentous fungi. Functional study of these motifs could lead to the definition of new targets for antifungals inhibiting UGP activity and, thus, the architecture of the cell wall of filamentous fungal pathogens.
Collapse
Affiliation(s)
- Xu Han
- Structural Biology of Cellular Machines Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Cecilia D'Angelo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
| | - Ainara Otamendi
- Laboratory of Biology, Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country, UPV/EHU, San Sebastian, Spain
| | - Javier O. Cifuente
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
| | - Elisa de Astigarraga
- Structural Biology of Cellular Machines Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Borja Ochoa-Lizarralde
- Structural Biology of Cellular Machines Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Marcelo E. Guerin
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Jana Fuehring
- Institute for Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Oier Etxebeste
- Laboratory of Biology, Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country, UPV/EHU, San Sebastian, Spain
| | - Sean R. Connell
- Structural Biology of Cellular Machines Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
4
|
Kikani CK. Metabolic "Sense Relay" in Stem Cells: A Short But Impactful Life of PAS Kinase Balancing Stem Cell Fates. Cells 2023; 12:1751. [PMID: 37443785 PMCID: PMC10340297 DOI: 10.3390/cells12131751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Tissue regeneration is a complex molecular and biochemical symphony. Signaling pathways establish the rhythmic proliferation and differentiation cadence of participating cells to repair the damaged tissues and repopulate the tissue-resident stem cells. Sensory proteins form a critical bridge between the environment and cellular response machinery, enabling precise spatiotemporal control of stem cell fate. Of many sensory modules found in proteins from prokaryotes to mammals, Per-Arnt-Sim (PAS) domains are one of the most ancient and found in the most diverse physiological context. In metazoa, PAS domains are found in many transcription factors and ion channels; however, PAS domain-containing Kinase (PASK) is the only metazoan kinase where the PAS sensory domain is connected to a signaling kinase domain. PASK is predominantly expressed in undifferentiated, self-renewing embryonic and adult stem cells, and its expression is rapidly lost upon differentiation, resulting in its nearly complete absence from the adult mammalian tissues. Thus, PASK is expressed within a narrow but critical temporal window when stem cell fate is established. In this review, we discuss the emerging insight into the sensory and signaling functions of PASK as an integrator of metabolic and nutrient signaling information that serves to balance self-renewal and differentiation programs during mammalian tissue regeneration.
Collapse
Affiliation(s)
- Chintan K Kikani
- Department of Biology, College of Arts and Sciences, University of Kentucky, Thomas Hunt Morgan Building, 675 Rose Street, Lexington, KY 40506, USA
| |
Collapse
|
5
|
The Trypanosome UDP-Glucose Pyrophosphorylase Is Imported by Piggybacking into Glycosomes, Where Unconventional Sugar Nucleotide Synthesis Takes Place. mBio 2021; 12:e0037521. [PMID: 34044588 PMCID: PMC8262884 DOI: 10.1128/mbio.00375-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Glycosomes are peroxisome-related organelles of trypanosomatid parasites containing metabolic pathways, such as glycolysis and biosynthesis of sugar nucleotides, usually present in the cytosol of other eukaryotes. UDP-glucose pyrophosphorylase (UGP), the enzyme responsible for the synthesis of the sugar nucleotide UDP-glucose, is localized in the cytosol and glycosomes of the bloodstream and procyclic trypanosomes, despite the absence of any known peroxisome-targeting signal (PTS1 and PTS2). The questions that we address here are (i) is the unusual glycosomal biosynthetic pathway of sugar nucleotides functional and (ii) how is the PTS-free UGP imported into glycosomes? We showed that UGP is imported into glycosomes by piggybacking on the glycosomal PTS1-containing phosphoenolpyruvate carboxykinase (PEPCK) and identified the domains involved in the UGP/PEPCK interaction. Proximity ligation assays revealed that this interaction occurs in 3 to 10% of glycosomes, suggesting that these correspond to organelles competent for protein import. We also showed that UGP is essential for the growth of trypanosomes and that both the glycosomal and cytosolic metabolic pathways involving UGP are functional, since the lethality of the knockdown UGP mutant cell line (RNAiUGP, where RNAi indicates RNA interference) was rescued by expressing a recoded UGP (rUGP) in the organelle (RNAiUGP/EXPrUGP-GPDH, where GPDH is glycerol-3-phosphate dehydrogenase). Our conclusion was supported by targeted metabolomic analyses (ion chromatography–high-resolution mass spectrometry [IC-HRMS]) showing that UDP-glucose is no longer detectable in the RNAiUGP mutant, while it is still produced in cells expressing UGP exclusively in the cytosol (PEPCK null mutant) or glycosomes (RNAiUGP/EXPrUGP-GPDH). Trypanosomatids are the only known organisms to have selected functional peroxisomal (glycosomal) sugar nucleotide biosynthetic pathways in addition to the canonical cytosolic ones.
Collapse
|
6
|
A Genetic Screen for Human Genes Suppressing FUS Induced Toxicity in Yeast. G3-GENES GENOMES GENETICS 2020; 10:1843-1852. [PMID: 32276960 PMCID: PMC7263679 DOI: 10.1534/g3.120.401164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
FUS is a nucleic acid binding protein that, when mutated, cause a subset of familial amyotrophic lateral sclerosis (ALS). Expression of FUS in yeast recapitulates several pathological features of the disease-causing mutant proteins, including nuclear to cytoplasmic translocation, formation of cytoplasmic inclusions, and cytotoxicity. Genetic screens using the yeast model of FUS have identified yeast genes and their corresponding human homologs suppressing FUS induced toxicity in yeast, neurons and animal models. To expand the search for human suppressor genes of FUS induced toxicity, we carried out a genome-scale genetic screen using a newly constructed library containing 13570 human genes cloned in an inducible yeast-expression vector. Through multiple rounds of verification, we found 37 human genes that, when overexpressed, suppress FUS induced toxicity in yeast. Human genes with DNA or RNA binding functions are overrepresented among the identified suppressor genes, supporting that perturbations of RNA metabolism is a key underlying mechanism of FUS toxicity.
Collapse
|
7
|
Xu X, Huang M, Ouyang Y, Iha H, Xu Z. PSK1 coordinates glucose metabolism and utilization and regulates energy-metabolism oscillation in Saccharomyces cerevisiae. Yeast 2020; 37:261-268. [PMID: 31899805 DOI: 10.1002/yea.3458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/05/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
Energy-metabolism oscillations (EMO) are ultradian biological rhythms observed in in aerobic chemostat cultures of Saccharomyces cerevisiae. EMO regulates energy metabolism such as glucose, carbohydrate storage, O2 uptake, and CO2 production. PSK1 is a nutrient responsive protein kinase involved in regulation of glucose metabolism, sensory response to light, oxygen, and redox state. The aim of this investigation was to assess the function of PSK1 in regulation of EMO. The mRNA levels of PSK1 fluctuated in concert with EMO, and deletion of PSK1 resulted in unstable EMO with disappearance of the fluctuations and reduced amplitude, compared with the wild type. Furthermore, the mutant PSK1Δ showed downregulation of the synthesis and breakdown of glycogen with resultant decrease in glucose concentrations. The redox state represented by NADH also decreased in PSK1Δ compared with the wild type. These data suggest that PSK1 plays an important role in the regulation of energy metabolism and stabilizes ultradian biological rhythms. These results enhance our understanding of the mechanisms of biorhythms in the budding yeast.
Collapse
Affiliation(s)
- Xianyan Xu
- Departments of Anatomy, Pediatrics and Environmental Medicine, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Meixian Huang
- Departments of Anatomy, Pediatrics and Environmental Medicine, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Yuhui Ouyang
- Department of Otolaryngology Head and Neck Surgery and Department of Allergy, Beijing TongRen Hospital, Affiliated with the Capital University of Medical Science, Beijing, China
| | - Hidekatsu Iha
- Department of Microbiology, Faculty of Medicine, Oita University, Oita, Japan
| | - Zhaojun Xu
- Departments of Anatomy, Pediatrics and Environmental Medicine, Quanzhou Medical College, Quanzhou, Fujian, China.,Second Department of Biochemistry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
8
|
Kikani CK, Wu X, Fogarty S, Kang SAW, Dephoure N, Gygi SP, Sabatini DM, Rutter J. Activation of PASK by mTORC1 is required for the onset of the terminal differentiation program. Proc Natl Acad Sci U S A 2019; 116:10382-10391. [PMID: 31072927 PMCID: PMC6534978 DOI: 10.1073/pnas.1804013116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
During skeletal muscle regeneration, muscle stem cells (MuSCs) respond to multiple signaling inputs that converge onto mammalian target of rapamycin complex 1 (mTORC1) signaling pathways. mTOR function is essential for establishment of the differentiation-committed progenitors (early stage of differentiation, marked by the induction of myogenin expression), myotube fusion, and, ultimately, hypertrophy (later stage of differentiation). While a major mTORC1 substrate, p70S6K, is required for myotube fusion and hypertrophy, an mTORC1 effector for the induction of myogenin expression remains unclear. Here, we identified Per-Arnt-Sim domain kinase (PASK) as a downstream phosphorylation target of mTORC1 in MuSCs during differentiation. We have recently shown that the PASK phosphorylates Wdr5 to stimulate MuSC differentiation by epigenetically activating the myogenin promoter. We show that phosphorylation of PASK by mTORC1 is required for the activation of myogenin transcription, exit from self-renewal, and induction of the myogenesis program. Our studies reveal that mTORC1-PASK signaling is required for the rise of myogenin-positive committed myoblasts (early stage of myogenesis), whereas mTORC1-S6K signaling is required for myoblast fusion (later stage of myogenesis). Thus, our discoveries allow molecular dissection of mTOR functions during different stages of the myogenesis program driven by two different substrates.
Collapse
Affiliation(s)
- Chintan K Kikani
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132;
| | - Xiaoying Wu
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Sarah Fogarty
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Seong Anthony Woo Kang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Noah Dephoure
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
- Broad Institute of Harvard and MIT, Cambridge, MA 02142
| | - Jared Rutter
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132;
- Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84132
| |
Collapse
|
9
|
The Regulation of Cbf1 by PAS Kinase Is a Pivotal Control Point for Lipogenesis vs. Respiration in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2019; 9:33-46. [PMID: 30381292 PMCID: PMC6325914 DOI: 10.1534/g3.118.200663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PAS kinase 1 (Psk1) is a key regulator of respiration in Saccharomyces cerevisiae. Herein the molecular mechanisms of this regulation are explored through the characterization of its substrate, Centromere binding factor 1 (Cbf1). CBF1-deficient yeast displayed a significant decrease in cellular respiration, while PAS kinase-deficient yeast, or yeast harboring a Cbf1 phosphosite mutant (T211A) displayed a significant increase. Transmission electron micrographs showed an increased number of mitochondria in PAS kinase-deficient yeast consistent with the increase in respiration. Although the CBF1-deficient yeast did not appear to have an altered number of mitochondria, a mitochondrial proteomics study revealed significant differences in the mitochondrial composition of CBF1-deficient yeast including altered Atp3 levels, a subunit of the mitochondrial F1-ATP synthase complex. Both beta-galactosidase reporter assays and western blot analysis confirmed direct transcriptional control of ATP3 by Cbf1. In addition, we confirmed the regulation of yeast lipid genes LAC1 and LAG1 by Cbf1. The human homolog of Cbf1, Upstream transcription factor 1 (USF1), is also known to be involved in lipid biogenesis. Herein, we provide the first evidence for a role of USF1 in respiration since it appeared to complement Cbf1in vivo as determined by respiration phenotypes. In addition, we confirmed USF1 as a substrate of human PAS kinase (hPASK) in vitro. Combined, our data supports a model in which Cbf1/USF1 functions to partition glucose toward respiration and away from lipid biogenesis, while PAS kinase inhibits respiration in part through the inhibition of Cbf1/USF1.
Collapse
|
10
|
Chen TJ, Chi Z, Jiang H, Liu GL, Hu Z, Chi ZM. Cell wall integrity is required for pullulan biosynthesis and glycogen accumulation in Aureobasidium melanogenum P16. Biochim Biophys Acta Gen Subj 2018; 1862:1516-1526. [PMID: 29550432 DOI: 10.1016/j.bbagen.2018.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/11/2018] [Accepted: 03/13/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Pullulan and glycogen have many applications and physiological functions. However, to date, it has been unknown where and how the pullulan is synthesized in the yeast cells and if cell wall structure of the producer can affect pullulan and glycogen biosynthesis. METHODS The genes related to cell wall integrity were cloned, characterized, deleted and complemented. The cell wall integrity, pullulan biosynthesis, glycogen accumulation and gene expression were examined. RESULTS In this study, the GT6 and GT7 genes encoding different α1,2 mannosyltransferases in Aureobasidium melanogenum P16 were cloned and characterized. The proteins deduced from both the GT6 and GT7 genes contained the conserved sequences YNMCHFWSNFEI and YSTCHFWSNFEI of a Ktr mannosyltransferase family. The removal of each gene and both the two genes caused the changes in colony and cell morphology and enhanced glycogen accumulation, leading to a reduced pullulan biosynthesis and the declined expression of many genes related to pullulan biosynthesis. The swollen cells of the disruptants were due to increased accumulation of glycogen, suggesting that uridine diphosphate glucose (UDP-glucose) was channeled to glycogen biosynthesis in the disruptants, rather than pullulan biosynthesis. Complementation of the GT6 and GT7 genes in the corresponding disruptants and growth of the disruptants in the presence of 0.6 M KCl made pullulan biosynthesis, glycogen accumulation, colony and cell morphology be restored. GENERAL SIGNIFICANCE This is the first report that the two α1,2 mannosyltransferases were required for colony and cell morphology, glycogen accumulation and pullulan biosynthesis in the pullulan producing yeast.
Collapse
Affiliation(s)
- Tie-Jun Chen
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China
| | - Hong Jiang
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | - Guang-Lei Liu
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou 515063, China
| | - Zhen-Ming Chi
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China.
| |
Collapse
|
11
|
Chen Y, Nielsen J. Flux control through protein phosphorylation in yeast. FEMS Yeast Res 2017; 16:fow096. [PMID: 27797916 DOI: 10.1093/femsyr/fow096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2016] [Indexed: 01/26/2023] Open
Abstract
Protein phosphorylation is one of the most important mechanisms regulating metabolism as it can directly modify metabolic enzymes by the addition of phosphate groups. Attributed to such a rapid and reversible mechanism, cells can adjust metabolism rapidly in response to temporal changes. The yeast Saccharomyces cerevisiae, a widely used cell factory and model organism, is reported to show frequent phosphorylation events in metabolism. Studying protein phosphorylation in S. cerevisiae allows for gaining new insight into the function of regulatory networks, which may enable improved metabolic engineering as well as identify mechanisms underlying human metabolic diseases. Here we collect functional phosphorylation events of 41 enzymes involved in yeast metabolism and demonstrate functional mechanisms and the application of this information in metabolic engineering. From a systems biology perspective, we describe the development of phosphoproteomics in yeast as well as approaches to analysing the phosphoproteomics data. Finally, we focus on integrated analyses with other omics data sets and genome-scale metabolic models. Despite the advances, future studies improving both experimental technologies and computational approaches are imperative to expand the current knowledge of protein phosphorylation in S. cerevisiae.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Kgs. Lyngby, Denmark
| |
Collapse
|
12
|
Identification of Psk2, Skp1, and Tub4 as trans-acting factors for uORF-containing ROK1 mRNA in Saccharomyces cerevisiae. J Microbiol 2015; 53:616-22. [PMID: 26310304 DOI: 10.1007/s12275-015-5389-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
Abstract
Rok1, a DEAD-box RNA helicase, is involved in rRNA processing and the control of cell cycle progression in Saccharomyces cerevisiae. Rok1 protein expression is cell cycle-regulated, declining at G1/S and increasing at G2. The downregulation of Rok1 expression in G1/S phase is mediated by the inhibitory action of two upstream open reading frames (uORFs) in the ROK1 5'-untranslated region (5'UTR). We identified Psk2 (PAS kinase), Skp1 (kinetochore protein) and Tub4 (γ-tubulin protein) as ROK1 5'UTR-interacting proteins using yeast three-hybrid system. A deletion analysis of PSK2 or inactivation of temperature-sensitive alleles of SKP1 and TUB4 revealed that Rok1 protein synthesis is repressed by Psk2 and Skp1. This repression appeared to be mediated through the ROK1 uORF1. In contrast, Tub4 plays a positive role in regulating Rok1 protein synthesis and likely after the uORF1-mediated inhibitory regulation. These results suggest that 5'UTR-interacting proteins, identified using three hybrid screening, are important for uORF-mediated regulation of Rok1 protein expression.
Collapse
|
13
|
Yi DG, Huh WK. PKA, PHO and stress response pathways regulate the expression of UDP-glucose pyrophosphorylase through Msn2/4 in budding yeast. FEBS Lett 2015; 589:2409-16. [DOI: 10.1016/j.febslet.2015.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/30/2015] [Accepted: 07/09/2015] [Indexed: 11/26/2022]
|
14
|
Franck WL, Gokce E, Randall SM, Oh Y, Eyre A, Muddiman DC, Dean RA. Phosphoproteome Analysis Links Protein Phosphorylation to Cellular Remodeling and Metabolic Adaptation during Magnaporthe oryzae Appressorium Development. J Proteome Res 2015; 14:2408-24. [PMID: 25926025 PMCID: PMC4838196 DOI: 10.1021/pr501064q] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The rice pathogen, Magnaporthe oryzae, undergoes a complex developmental process leading to formation of an appressorium prior to plant infection. In an effort to better understand phosphoregulation during appressorium development, a mass spectrometry based phosphoproteomics study was undertaken. A total of 2924 class I phosphosites were identified from 1514 phosphoproteins from mycelia, conidia, germlings, and appressoria of the wild type and a protein kinase A (PKA) mutant. Phosphoregulation during appressorium development was observed for 448 phosphosites on 320 phosphoproteins. In addition, a set of candidate PKA targets was identified encompassing 253 phosphosites on 227 phosphoproteins. Network analysis incorporating regulation from transcriptomic, proteomic, and phosphoproteomic data revealed new insights into the regulation of the metabolism of conidial storage reserves and phospholipids, autophagy, actin dynamics, and cell wall metabolism during appressorium formation. In particular, protein phosphorylation appears to play a central role in the regulation of autophagic recycling and actin dynamics during appressorium formation. Changes in phosphorylation were observed in multiple components of the cell wall integrity pathway providing evidence that this pathway is highly active during appressorium development. Several transcription factors were phosphoregulated during appressorium formation including the bHLH domain transcription factor MGG_05709. Functional analysis of MGG_05709 provided further evidence for the role of protein phosphorylation in regulation of glycerol metabolism and the metabolic reprogramming characteristic of appressorium formation. The data presented here represent a comprehensive investigation of the M. oryzae phosphoproteome and provide key insights on the role of protein phosphorylation during infection-related development.
Collapse
Affiliation(s)
- William L. Franck
- Center for Integrated Fungal Research, North Carolina State University, Raleigh, North Carolina, 27606
| | - Emine Gokce
- W.M. Keck Fourier Transform-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27606
| | - Shan M. Randall
- W.M. Keck Fourier Transform-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27606
| | - Yeonyee Oh
- Center for Integrated Fungal Research, North Carolina State University, Raleigh, North Carolina, 27606
| | - Alex Eyre
- Center for Integrated Fungal Research, North Carolina State University, Raleigh, North Carolina, 27606
| | - David C. Muddiman
- W.M. Keck Fourier Transform-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27606
| | - Ralph A. Dean
- Center for Integrated Fungal Research, North Carolina State University, Raleigh, North Carolina, 27606
| |
Collapse
|
15
|
Führing JI, Cramer JT, Schneider J, Baruch P, Gerardy-Schahn R, Fedorov R. A quaternary mechanism enables the complex biological functions of octameric human UDP-glucose pyrophosphorylase, a key enzyme in cell metabolism. Sci Rep 2015; 5:9618. [PMID: 25860585 PMCID: PMC5381698 DOI: 10.1038/srep09618] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/09/2015] [Indexed: 11/29/2022] Open
Abstract
In mammals, UDP-glucose pyrophosphorylase (UGP) is the only enzyme capable of activating glucose-1-phosphate (Glc-1-P) to UDP-glucose (UDP-Glc), a metabolite located at the intersection of virtually all metabolic pathways in the mammalian cell. Despite the essential role of its product, the molecular basis of UGP function is poorly understood. Here we report the crystal structure of human UGP in complex with its product UDP-Glc. Beyond providing first insight into the active site architecture, we describe the substrate binding mode and intermolecular interactions in the octameric enzyme that are crucial to its activity. Importantly, the quaternary mechanism identified for human UGP in this study may be common for oligomeric sugar-activating nucleotidyltransferases. Elucidating such mechanisms is essential for understanding nucleotide sugar metabolism and opens the perspective for the development of drugs that specifically inhibit simpler organized nucleotidyltransferases in pathogens.
Collapse
Affiliation(s)
- Jana Indra Führing
- Institute for Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Johannes Thomas Cramer
- Institute for Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Julia Schneider
- Institute for Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Petra Baruch
- Research Division for Structural Analysis, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Rita Gerardy-Schahn
- Institute for Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Roman Fedorov
- 1] Research Division for Structural Analysis, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany [2] Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
16
|
Tripodi F, Nicastro R, Reghellin V, Coccetti P. Post-translational modifications on yeast carbon metabolism: Regulatory mechanisms beyond transcriptional control. Biochim Biophys Acta Gen Subj 2015; 1850:620-7. [DOI: 10.1016/j.bbagen.2014.12.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 12/19/2022]
|
17
|
DeMille D, Badal BD, Evans JB, Mathis AD, Anderson JF, Grose JH. PAS kinase is activated by direct SNF1-dependent phosphorylation and mediates inhibition of TORC1 through the phosphorylation and activation of Pbp1. Mol Biol Cell 2015; 26:569-82. [PMID: 25428989 PMCID: PMC4310746 DOI: 10.1091/mbc.e14-06-1088] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/29/2014] [Accepted: 11/16/2014] [Indexed: 01/22/2023] Open
Abstract
We describe the interplay between three sensory protein kinases in yeast: AMP-regulated kinase (AMPK, or SNF1 in yeast), PAS kinase 1 (Psk1 in yeast), and the target of rapamycin complex 1 (TORC1). This signaling cascade occurs through the SNF1-dependent phosphorylation and activation of Psk1, which phosphorylates and activates poly(A)- binding protein binding protein 1 (Pbp1), which then inhibits TORC1 through sequestration at stress granules. The SNF1-dependent phosphorylation of Psk1 appears to be direct, in that Snf1 is necessary and sufficient for Psk1 activation by alternate carbon sources, is required for altered Psk1 protein mobility, is able to phosphorylate Psk1 in vitro, and binds Psk1 via its substrate-targeting subunit Gal83. Evidence for the direct phosphorylation and activation of Pbp1 by Psk1 is also provided by in vitro and in vivo kinase assays, including the reduction of Pbp1 localization at distinct cytoplasmic foci and subsequent rescue of TORC1 inhibition in PAS kinase-deficient yeast. In support of this signaling cascade, Snf1-deficient cells display increased TORC1 activity, whereas cells containing hyperactive Snf1 display a PAS kinase-dependent decrease in TORC1 activity. This interplay between yeast SNF1, Psk1, and TORC1 allows for proper glucose allocation during nutrient depletion, reducing cell growth and proliferation when energy is low.
Collapse
Affiliation(s)
- Desiree DeMille
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Bryan D Badal
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - J Brady Evans
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Andrew D Mathis
- Department of Chemistry, Brigham Young University, Provo, UT 84602
| | - Joseph F Anderson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Julianne H Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| |
Collapse
|
18
|
DeMille D, Bikman BT, Mathis AD, Prince JT, Mackay JT, Sowa SW, Hall TD, Grose JH. A comprehensive protein-protein interactome for yeast PAS kinase 1 reveals direct inhibition of respiration through the phosphorylation of Cbf1. Mol Biol Cell 2014; 25:2199-215. [PMID: 24850888 PMCID: PMC4091833 DOI: 10.1091/mbc.e13-10-0631] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PAS kinase is a conserved sensory protein kinase required for glucose homeostasis. The interactome for yeast PAS kinase 1 (Psk1) is identified, revealing 93 binding partners. Evidence is provided for in vivo phosphorylation of Cbf1 and subsequent inhibition of respiration, supporting a role for Psk1 in partitioning glucose for cell growth. Per-Arnt-Sim (PAS) kinase is a sensory protein kinase required for glucose homeostasis in yeast, mice, and humans, yet little is known about the molecular mechanisms of its function. Using both yeast two-hybrid and copurification approaches, we identified the protein–protein interactome for yeast PAS kinase 1 (Psk1), revealing 93 novel putative protein binding partners. Several of the Psk1 binding partners expand the role of PAS kinase in glucose homeostasis, including new pathways involved in mitochondrial metabolism. In addition, the interactome suggests novel roles for PAS kinase in cell growth (gene/protein expression, replication/cell division, and protein modification and degradation), vacuole function, and stress tolerance. In vitro kinase studies using a subset of 25 of these binding partners identified Mot3, Zds1, Utr1, and Cbf1 as substrates. Further evidence is provided for the in vivo phosphorylation of Cbf1 at T211/T212 and for the subsequent inhibition of respiration. This respiratory role of PAS kinase is consistent with the reported hypermetabolism of PAS kinase–deficient mice, identifying a possible molecular mechanism and solidifying the evolutionary importance of PAS kinase in the regulation of glucose homeostasis.
Collapse
Affiliation(s)
- Desiree DeMille
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Benjamin T Bikman
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602
| | - Andrew D Mathis
- Department of Chemistry, Brigham Young University, Provo, UT 84602
| | - John T Prince
- Department of Chemistry, Brigham Young University, Provo, UT 84602
| | - Jordan T Mackay
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Steven W Sowa
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Tacie D Hall
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Julianne H Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| |
Collapse
|
19
|
Hurtado-Carneiro V, Roncero I, Egger SS, Wenger RH, Blazquez E, Sanz C, Alvarez E. PAS kinase is a nutrient and energy sensor in hypothalamic areas required for the normal function of AMPK and mTOR/S6K1. Mol Neurobiol 2014; 50:314-26. [PMID: 24445950 DOI: 10.1007/s12035-013-8630-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/24/2013] [Indexed: 12/14/2022]
Abstract
The complications caused by overweight, obesity and type 2 diabetes are one of the main problems that increase morbidity and mortality in developed countries. Hypothalamic metabolic sensors play an important role in the control of feeding and energy homeostasis. PAS kinase (PASK) is a nutrient sensor proposed as a regulator of glucose metabolism and cellular energy. The role of PASK might be similar to other known metabolic sensors, such as AMP-activated protein kinase (AMPK) and the mammalian target of rapamycin (mTOR). PASK-deficient mice resist diet-induced obesity. We have recently reported that AMPK and mTOR/S6K1 pathways are regulated in the ventromedial and lateral hypothalamus in response to nutritional states, being modulated by anorexigenic glucagon-like peptide-1 (GLP-1)/exendin-4 in lean and obese rats. We identified PASK in hypothalamic areas, and its expression was regulated under fasting/re-feeding conditions and modulated by exendin-4. Furthermore, PASK-deficient mice have an impaired activation response of AMPK and mTOR/S6K1 pathways. Thus, hypothalamic AMPK and S6K1 were highly activated under fasted/re-fed conditions. Additionally, in this study, we have observed that the exendin-4 regulatory effect in the activity of metabolic sensors was lost in PASK-deficient mice, and the anorexigenic properties of exendin-4 were significantly reduced, suggesting that PASK could be a mediator in the GLP-1 signalling pathway. Our data indicated that the PASK function could be critical for preserving the nutrient effect on AMPK and mTOR/S6K1 pathways and maintain the regulatory role of exendin-4 in food intake. Some of the antidiabetogenic effects of exendin-4 might be modulated through these processes.
Collapse
Affiliation(s)
- Verónica Hurtado-Carneiro
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Plaza S. Ramón y Cajal, s/n, Madrid, 28040, Spain,
| | | | | | | | | | | | | |
Collapse
|
20
|
Huang M, Xu Q, Mitsui K, Xu Z. PSK1 regulates expression of SOD1 involved in oxidative stress tolerance in yeast. FEMS Microbiol Lett 2013; 350:154-60. [PMID: 24236444 DOI: 10.1111/1574-6968.12329] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 11/09/2013] [Accepted: 11/11/2013] [Indexed: 01/25/2023] Open
Abstract
The Per-ARNT-Sim (PAS) domain serine/threonine kinase PAS kinase is involved in energy flux and protein synthesis. In yeast, PSK1 and PSK2 are two partially redundant PASK homologs. We recently generated PSK2 deletion mutant and showed that Psk2 acts as a nutrient-sensing protein kinase to modulate Ultradian clock-coupled respiratory oscillation in yeast. Here, we show that deletion of PSK1 increased the sensitivity of yeast cells to oxidative stress (H2 O2 treatment) and partially inhibited cell growth; however, the growth of the PSK2-deleted mutant was similar to that of the wild type. Superoxide dismutase-1 (SOD1) mRNA and protein levels were lower in PSK1-deletion mutant than the wild type. The mRNA levels of stress response genes CTT1, HSP104, ATH1, NTH1 and SOD2 were similar in both the PSK1-deleted mutant and wild-type yeast. Furthermore, intracellular accumulation of reactive oxygen species (ROS) was noted in PSK1-deleted mutant. These results suggest that PSK1 induces SOD1 expression to protect against oxidative stress in yeast.
Collapse
Affiliation(s)
- Meixian Huang
- Quanzhou Medical College, Quanzhou, Fujian, China; The Second Department of Biochemistry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | | | | | | |
Collapse
|
21
|
Führing J, Cramer JT, Routier FH, Lamerz AC, Baruch P, Gerardy-Schahn R, Fedorov R. Catalytic Mechanism and Allosteric Regulation of UDP-Glucose Pyrophosphorylase from Leishmania major. ACS Catal 2013. [DOI: 10.1021/cs4007777] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jana Führing
- Institute
for Cellular Chemistry, OE4330, Hannover Medical School, Carl-Neuberg-Strasse
1, 30625 Hannover, Germany
| | - Johannes T. Cramer
- Institute
for Cellular Chemistry, OE4330, Hannover Medical School, Carl-Neuberg-Strasse
1, 30625 Hannover, Germany
| | - Françoise H. Routier
- Institute
for Cellular Chemistry, OE4330, Hannover Medical School, Carl-Neuberg-Strasse
1, 30625 Hannover, Germany
| | - Anne-Christin Lamerz
- Institute
for Cellular Chemistry, OE4330, Hannover Medical School, Carl-Neuberg-Strasse
1, 30625 Hannover, Germany
| | - Petra Baruch
- Research
Division for Structural Analysis, OE8830, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Rita Gerardy-Schahn
- Institute
for Cellular Chemistry, OE4330, Hannover Medical School, Carl-Neuberg-Strasse
1, 30625 Hannover, Germany
| | - Roman Fedorov
- Research
Division for Structural Analysis, OE8830, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
- Institute
for Biophysical Chemistry, OE4350, Hannover Medical School, Carl-Neuberg-Strasse
1, 30625 Hannover, Germany
| |
Collapse
|
22
|
DeMille D, Grose JH. PAS kinase: a nutrient sensing regulator of glucose homeostasis. IUBMB Life 2013; 65:921-9. [PMID: 24265199 PMCID: PMC4081539 DOI: 10.1002/iub.1219] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/26/2013] [Accepted: 09/27/2013] [Indexed: 12/16/2022]
Abstract
Per-Arnt-Sim (PAS) kinase (PASK, PASKIN, and PSK) is a member of the group of nutrient sensing protein kinases. These protein kinases sense the energy or nutrient status of the cell and regulate cellular metabolism appropriately. PAS kinase responds to glucose availability and regulates glucose homeostasis in yeast, mice, and man. Despite this pivotal role, the molecular mechanisms of PAS kinase regulation and function are largely unknown. This review focuses on what is known about PAS kinase, including its conservation from yeast to man, identified substrates, associated phenotypes and role in metabolic disease.
Collapse
Affiliation(s)
- Desiree DeMille
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT
| | - Julianne H. Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT
| |
Collapse
|
23
|
Hurtado-Carneiro V, Roncero I, Blazquez E, Alvarez E, Sanz C. PAS kinase as a nutrient sensor in neuroblastoma and hypothalamic cells required for the normal expression and activity of other cellular nutrient and energy sensors. Mol Neurobiol 2013; 48:904-20. [PMID: 23765195 DOI: 10.1007/s12035-013-8476-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/29/2013] [Indexed: 12/16/2022]
Abstract
PAS kinase (PASK) is a nutrient sensor that is highly conserved throughout evolution. PASK-deficient mice reveal a metabolic phenotype similar to that described in S6 kinase-1 S6K1-deficient mice that are protected against obesity. Hypothalamic metabolic sensors, such as AMP-activated protein kinase (AMPK) and the mammalian target of rapamycin (mTOR), play an important role in feeding behavior, the homeostasis of body weight, and energy balance. These sensors respond to changes in nutrient levels in the hypothalamic areas involved in feeding behavior and in neuroblastoma N2A cells, and we have recently reported that those effects are modulated by the anorexigenic peptide glucagon-like peptide-1 (GLP-1). Here, we identified PASK in both N2A cells and rat VMH and LH areas and found that its expression is regulated by glucose and GLP-1. High levels of glucose decreased Pask gene expression. Furthermore, PASK-silenced N2A cells record an impaired response by the AMPK and mTOR/S6K1 pathways to changes in glucose levels. Likewise, GLP-1 effect on the activity of AMPK, S6K1, and other intermediaries of both pathways and the regulatory role at the level of gene expression were also blocked in PASK-silenced cells. The absence of response to low glucose concentrations in PASK-silenced cells correlates with increased ATP content, low expression of mRNA coding for AMPK upstream kinase LKB1, and enhanced activation of S6K1. Our findings indicate that, at least in N2A cells, PASK is a key kinase in GLP-1 actions and exerts a coordinated response with the other metabolic sensors, suggesting that PASK might play an important role in feeding behavior.
Collapse
Affiliation(s)
- Verónica Hurtado-Carneiro
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, sn, 28040, Madrid, Spain
| | | | | | | | | |
Collapse
|
24
|
Taylor NMI, Glatt S, Hennrich ML, von Scheven G, Grötsch H, Fernández-Tornero C, Rybin V, Gavin AC, Kolb P, Müller CW. Structural and functional characterization of a phosphatase domain within yeast general transcription factor IIIC. J Biol Chem 2013; 288:15110-20. [PMID: 23569204 DOI: 10.1074/jbc.m112.427856] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Saccharomyces cerevisiae τ55, a subunit of the RNA polymerase III-specific general transcription factor TFIIIC, comprises an N-terminal histidine phosphatase domain (τ55-HPD) whose catalytic activity and cellular function is poorly understood. We solved the crystal structures of τ55-HPD and its closely related paralogue Huf and used in silico docking methods to identify phosphoserine- and phosphotyrosine-containing peptides as possible substrates that were subsequently validated using in vitro phosphatase assays. A comparative phosphoproteomic study identified additional phosphopeptides as possible targets that show the involvement of these two phosphatases in the regulation of a variety of cellular functions. Our results identify τ55-HPD and Huf as bona fide protein phosphatases, characterize their substrate specificities, and provide a small set of regulated phosphosite targets in vivo.
Collapse
Affiliation(s)
- Nicholas M I Taylor
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Oliveira AP, Ludwig C, Picotti P, Kogadeeva M, Aebersold R, Sauer U. Regulation of yeast central metabolism by enzyme phosphorylation. Mol Syst Biol 2013; 8:623. [PMID: 23149688 PMCID: PMC3531909 DOI: 10.1038/msb.2012.55] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 10/05/2012] [Indexed: 02/03/2023] Open
Abstract
As a frequent post-translational modification, protein phosphorylation regulates many cellular processes. Although several hundred phosphorylation sites have been mapped to metabolic enzymes in Saccharomyces cerevisiae, functionality was demonstrated for few of them. Here, we describe a novel approach to identify in vivo functionality of enzyme phosphorylation by combining flux analysis with proteomics and phosphoproteomics. Focusing on the network of 204 enzymes that constitute the yeast central carbon and amino-acid metabolism, we combined protein and phosphoprotein levels to identify 35 enzymes that change their degree of phosphorylation during growth under five conditions. Correlations between previously determined intracellular fluxes and phosphoprotein abundances provided first functional evidence for five novel phosphoregulated enzymes in this network, adding to nine known phosphoenzymes. For the pyruvate dehydrogenase complex E1 α subunit Pda1 and the newly identified phosphoregulated glycerol-3-phosphate dehydrogenase Gpd1 and phosphofructose-1-kinase complex β subunit Pfk2, we then validated functionality of specific phosphosites through absolute peptide quantification by targeted mass spectrometry, metabolomics and physiological flux analysis in mutants with genetically removed phosphosites. These results demonstrate the role of phosphorylation in controlling the metabolic flux realised by these three enzymes.
Collapse
Affiliation(s)
- Ana Paula Oliveira
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
26
|
Cardon CM, Beck T, Hall MN, Rutter J. PAS kinase promotes cell survival and growth through activation of Rho1. Sci Signal 2012; 5:ra9. [PMID: 22296835 DOI: 10.1126/scisignal.2002435] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In Saccharomyces cerevisiae, phosphorylation of Ugp1 by either of the yeast PASK family protein kinases (yPASK), Psk1 or Psk2, directs this metabolic enzyme to deliver glucose to the periphery for synthesis of the cell wall. However, we isolated PSK1 and PSK2 in a high-copy suppressor screen of a temperature-sensitive mutant of target of rapamycin 2 (TOR2). Posttranslational activation of yPASK, either by cell integrity stress or by growth on nonfermentative carbon sources, also suppressed the growth defect resulting from tor2 mutation. Although suppression of the tor2 mutant growth phenotype by activation of the kinase activity of yPASK required phosphorylation of the metabolic enzyme Ugp1 on serine 11, this resulted in the formation of a complex that induced Rho1 activation, rather than required the glucose partitioning function of Ugp1. In addition to phosphorylated Ugp1, this complex contained Rom2, a Rho1 guanine nucleotide exchange factor, and Ssd1, an mRNA-binding protein. Activation of yPASK-dependent Ugp1 phosphorylation, therefore, enables two processes that are required for cell growth and stress resistance: synthesis of the cell wall through partitioning glucose to the periphery and the formation of the signaling complex with Rom2 and Ssd1 to promote Rho1-dependent polarized cell growth. This complex may integrate metabolic and signaling responses required for cell growth and survival in suboptimal conditions.
Collapse
Affiliation(s)
- Caleb M Cardon
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
27
|
PAS kinase: integrating nutrient sensing with nutrient partitioning. Semin Cell Dev Biol 2012; 23:626-30. [PMID: 22245833 DOI: 10.1016/j.semcdb.2011.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 12/23/2011] [Indexed: 11/21/2022]
Abstract
Recent data suggests that PAS kinase acts as a signal integrator to adjust metabolic behavior in response to nutrient conditions. Specifically, PAS kinase controls the partitioning of nutrient resources between the myriad of possible fates. In this capacity, PAS kinase elicits a pro-growth program, which includes both signaling and metabolic control, both in yeast and in mammals. We propose that, like other kinases possessing these properties-AMPK and TOR, PAS kinase might be target for therapy of diabetes, obesity and cancer.
Collapse
|
28
|
Oliveira AP, Sauer U. The importance of post-translational modifications in regulating Saccharomyces cerevisiae metabolism. FEMS Yeast Res 2011; 12:104-17. [DOI: 10.1111/j.1567-1364.2011.00765.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ana Paula Oliveira
- Institute of Molecular Systems Biology; Department of Biology; ETH Zurich; Zurich; Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology; Department of Biology; ETH Zurich; Zurich; Switzerland
| |
Collapse
|
29
|
Semplici F, Vaxillaire M, Fogarty S, Semache M, Bonnefond A, Fontés G, Philippe J, Meur G, Diraison F, Sessions RB, Rutter J, Poitout V, Froguel P, Rutter GA. Human mutation within Per-Arnt-Sim (PAS) domain-containing protein kinase (PASK) causes basal insulin hypersecretion. J Biol Chem 2011; 286:44005-44014. [PMID: 22065581 PMCID: PMC3243507 DOI: 10.1074/jbc.m111.254995] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PAS kinase (PASK) is a glucose-regulated protein kinase involved in the control of pancreatic islet hormone release and insulin sensitivity. We aimed here to identify mutations in the PASK gene that may be associated with young-onset diabetes in humans. We screened 18 diabetic probands with unelucidated maturity-onset diabetes of the young (MODY). We identified two rare nonsynonymous mutations in the PASK gene (p.L1051V and p.G1117E), each of which was found in a single MODY family. Wild type or mutant PASKs were expressed in HEK 293 cells. Kinase activity of the affinity-purified proteins was assayed as autophosphorylation at amino acid Thr307 or against an Ugp1p-derived peptide. Whereas the PASK p.G1117E mutant displayed a ∼25% increase with respect to wild type PASK in the extent of autophosphorylation, and a ∼2-fold increase in kinase activity toward exogenous substrates, the activity of the p.L1051V mutant was unchanged. Amino acid Gly1117 is located in an α helical region opposing the active site of PASK and may elicit either: (a) a conformational change that increases catalytic efficiency or (b) a diminished inhibitory interaction with the PAS domain. Mouse islets were therefore infected with adenoviruses expressing wild type or mutant PASK and the regulation of insulin secretion was examined. PASK p.G1117E-infected islets displayed a 4-fold decrease in glucose-stimulated (16.7 versus 3 mM) insulin secretion, chiefly reflecting a 4.5-fold increase in insulin release at low glucose. In summary, we have characterized a rare mutation (p.G1117E) in the PASK gene from a young-onset diabetes family, which modulates glucose-stimulated insulin secretion.
Collapse
Affiliation(s)
- Francesca Semplici
- Department of Medicine, Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Imperial College London, London SW7 2AZ, United Kingdom
| | - Martine Vaxillaire
- CNRS-UMR-8199, Pasteur Institute of Lille, BP245 59019 Lille Cedex, France; Lille Nord de France University, BP245 59019 Lille Cedex, France
| | - Sarah Fogarty
- University of Utah School of Medicine, Salt Lake City, Utah 84132-3201
| | - Meriem Semache
- Montreal Diabetes Research Center, CRCHUM, University of Montréal, Québec, Canada
| | - Amélie Bonnefond
- CNRS-UMR-8199, Pasteur Institute of Lille, BP245 59019 Lille Cedex, France; Lille Nord de France University, BP245 59019 Lille Cedex, France
| | - Ghislaine Fontés
- Montreal Diabetes Research Center, CRCHUM, University of Montréal, Québec, Canada
| | - Julien Philippe
- CNRS-UMR-8199, Pasteur Institute of Lille, BP245 59019 Lille Cedex, France; Lille Nord de France University, BP245 59019 Lille Cedex, France
| | - Gargi Meur
- Department of Medicine, Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Imperial College London, London SW7 2AZ, United Kingdom
| | - Frederique Diraison
- Centre for Research in Biomedicine, Faculty of Health and Life Sciences, University of the West of England, Bristol BS16 1QY, United Kingdom
| | - Richard B Sessions
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Jared Rutter
- University of Utah School of Medicine, Salt Lake City, Utah 84132-3201
| | - Vincent Poitout
- Montreal Diabetes Research Center, CRCHUM, University of Montréal, Québec, Canada; Department of Medicine, University of Montréal, Montréal QC H1W 4A4 Québec, Canada
| | - Philippe Froguel
- CNRS-UMR-8199, Pasteur Institute of Lille, BP245 59019 Lille Cedex, France; Lille Nord de France University, BP245 59019 Lille Cedex, France; Department of Genomics of Common Disease, School of Public Health, Imperial College London, London SW7 2AZ, United Kingdom
| | - Guy A Rutter
- Department of Medicine, Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
30
|
Genetics and Regulation of Glycogen and Trehalose Metabolism in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-3-642-21467-7_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Schläfli P, Tröger J, Eckhardt K, Borter E, Spielmann P, Wenger RH. Substrate preference and phosphatidylinositol monophosphate inhibition of the catalytic domain of the Per-Arnt-Sim domain kinase PASKIN. FEBS J 2011; 278:1757-68. [PMID: 21418524 DOI: 10.1111/j.1742-4658.2011.08100.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Per-Arnt-Sim (PAS) domain serine/threonine kinase PASKIN, or PAS kinase, links energy flux and protein synthesis in yeast, regulates glycogen synthesis and protein translation in mammals, and might be involved in insulin regulation in the pancreas. According to the current model, binding of a putative ligand to the PAS domain disinhibits the kinase domain, leading to PASKIN autophosphorylation and increased kinase activity. To date, only synthetic but no endogenous PASKIN ligands have been reported. In the present study, we identified a number of novel PASKIN kinase targets, including ribosomal protein S6. Together with our previous identification of eukaryotic elongation factor 1A1, this suggests a role for PASKIN in the regulation of mammalian protein translation. When searching for endogenous PASKIN ligands, we found that various phospholipids can bind PASKIN and stimulate its autophosphorylation. Interestingly, the strongest binding and autophosphorylation was achieved with monophosphorylated phosphatidylinositols. However, stimulated PASKIN autophosphorylation did not correlate with ribosomal protein S6 and eukaryotic elongation factor 1A1 target phosphorylation. Although autophosphorylation was enhanced by monophosphorylated phosphatidylinositols, di- and tri-phosphorylated phosphatidylinositols inhibited autophosphorylation. By contrast, target phosphorylation was always inhibited, with the highest efficiency for di- and tri-phosphorylated phosphatidylinositols. Because phosphatidylinositol monophosphates were found to interact with the kinase rather than with the PAS domain, these data suggest a multiligand regulation of PASKIN activity, including a still unknown PAS domain binding/activating ligand and kinase domain binding modulatory phosphatidylinositol phosphates.
Collapse
Affiliation(s)
- Philipp Schläfli
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
32
|
Ouyang Y, Xu Q, Mitsui K, Motizuki M, Xu Z. PSK2 coordinates glucose metabolism and utilization to maintain ultradian clock-coupled respiratory oscillation in Saccharomyces cerevisiae yeast. Arch Biochem Biophys 2011; 509:52-8. [PMID: 21345330 DOI: 10.1016/j.abb.2011.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 02/03/2011] [Accepted: 02/08/2011] [Indexed: 01/13/2023]
Abstract
Ultradian clock-coupled respiratory oscillation (UCRO) in an aerobic continuous culture of Saccharomyces cerevisiae S288C is principally regulated by control of certain redox reactions of energy metabolism. It is also modulated by the metabolism of storage carbohydrates during adaptation to environmental change. However, the mechanism of cell sensing and response to environmental nutrients in UCRO is unknown. The purpose of the present study was to determine the role of PSK2 kinase in UCRO in yeast. S. cerevisiae in culture showed oscillation in PSK2 mRNA levels with a definite phase relationship to the respiratory oscillation. Furthermore, inactivation of Psk2 by gene disruption severely affected UCRO and its decline to undetectable levels within 2days. In addition, the extracellular and intracellular glucose concentrations of PSK2 deletion mutants in culture were higher and lower, respectively, than those of the wild type. PSK2 mutant cells showed no alteration in redox state. Furthermore, the levels of storage carbohydrates such as glycogen and trehalose fluctuated in PSK2 mutants with attenuated amplitudes comparable to those in the wild type. The results indicated that PSK2 kinase is important for the uptake of glucose and regulation of storage-carbohydrate synthesis and hence the maintenance of an unperturbed continuously oscillating state.
Collapse
Affiliation(s)
- Yuhui Ouyang
- Department of Biochemistry 2, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898, Japan
| | | | | | | | | |
Collapse
|
33
|
Wilson WA, Roach PJ, Montero M, Baroja-Fernández E, Muñoz FJ, Eydallin G, Viale AM, Pozueta-Romero J. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev 2011; 34:952-85. [PMID: 20412306 DOI: 10.1111/j.1574-6976.2010.00220.x] [Citation(s) in RCA: 272] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microorganisms have the capacity to utilize a variety of nutrients and adapt to continuously changing environmental conditions. Many microorganisms, including yeast and bacteria, accumulate carbon and energy reserves to cope with the starvation conditions temporarily present in the environment. Glycogen biosynthesis is a main strategy for such metabolic storage, and a variety of sensing and signaling mechanisms have evolved in evolutionarily distant species to ensure the production of this homopolysaccharide. At the most fundamental level, the processes of glycogen synthesis and degradation in yeast and bacteria share certain broad similarities. However, the regulation of these processes is sometimes quite distinct, indicating that they have evolved separately to respond optimally to the habitat conditions of each species. This review aims to highlight the mechanisms, both at the transcriptional and at the post-transcriptional level, that regulate glycogen metabolism in yeast and bacteria, focusing on selected areas where the greatest increase in knowledge has occurred during the last few years. In the yeast system, we focus particularly on the various signaling pathways that control the activity of the enzymes of glycogen storage. We also discuss our recent understanding of the important role played by the vacuole in glycogen metabolism. In the case of bacterial glycogen, special emphasis is placed on aspects related to the genetic regulation of glycogen metabolism and its connection with other biological processes.
Collapse
Affiliation(s)
- Wayne A Wilson
- Biochemistry and Nutrition Department, Des Moines University, Des Moines, IA, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kikani CK, Antonysamy SA, Bonanno JB, Romero R, Zhang FF, Russell M, Gheyi T, Iizuka M, Emtage S, Sauder JM, Turk BE, Burley SK, Rutter J. Structural bases of PAS domain-regulated kinase (PASK) activation in the absence of activation loop phosphorylation. J Biol Chem 2010; 285:41034-43. [PMID: 20943661 DOI: 10.1074/jbc.m110.157594] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Per-Arnt-Sim (PAS) domain-containing protein kinase (PASK) is an evolutionary conserved protein kinase that coordinates cellular metabolism with metabolic demand in yeast and mammals. The molecular mechanisms underlying PASK regulation, however, remain unknown. Herein, we describe a crystal structure of the kinase domain of human PASK, which provides insights into the regulatory mechanisms governing catalysis. We show that the kinase domain adopts an active conformation and has catalytic activity in vivo and in vitro in the absence of activation loop phosphorylation. Using site-directed mutagenesis and structural comparison with active and inactive kinases, we identified several key structural features in PASK that enable activation loop phosphorylation-independent activity. Finally, we used combinatorial peptide library screening to determine that PASK prefers basic residues at the P-3 and P-5 positions in substrate peptides. Our results describe the key features of the PASK structure and how those features are important for PASK activity and substrate selection.
Collapse
Affiliation(s)
- Chintan K Kikani
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
The role of PAS kinase in PASsing the glucose signal. SENSORS 2010; 10:5668-82. [PMID: 22219681 PMCID: PMC3247726 DOI: 10.3390/s100605668] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/20/2010] [Accepted: 05/12/2010] [Indexed: 01/07/2023]
Abstract
PAS kinase is an evolutionarily conserved nutrient responsive protein kinase that regulates glucose homeostasis. Mammalian PAS kinase is activated by glucose in pancreatic beta cells, and knockout mice are protected from obesity, liver triglyceride accumulation, and insulin resistance when fed a high-fat diet. Yeast PAS kinase is regulated by both carbon source and cell integrity stress and stimulates the partitioning of glucose toward structural carbohydrate biosynthesis. In our current model for PAS kinase regulation, a small molecule metabolite binds the sensory PAS domain and activates the enzyme. Although bona fide PAS kinase substrates are scarce, in vitro substrate searches provide putative targets for exploration.
Collapse
|
36
|
Grose JH, Sundwall E, Rutter J. Regulation and function of yeast PAS kinase: a role in the maintenance of cellular integrity. Cell Cycle 2009; 8:1824-32. [PMID: 19440050 DOI: 10.4161/cc.8.12.8799] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The inability to coordinate cellular metabolic processes with the cellular and organismal nutrient environment leads to a variety of disorders, including diabetes and obesity. Nutrient-sensing protein kinases, such as AMPK and mTOR, play a pivotal role in metabolic regulation and are promising therapeutic targets for the treatment of disease. In this Extra View, we describe another member of the nutrient-sensing protein kinase group, PAS kinase, which plays a role in the regulation of glucose utilization in both mammals and yeast. PAS kinase deficient mice are resistant to high fat diet-induced weight gain, insulin resistance and hepatic triglyceride hyperaccumulation, suggesting a role for PAS kinase in the regulation of glucose and lipid metabolism in mammals. Likewise, PAS kinase deficient yeast display altered glucose partitioning, favoring glycogen biosynthesis at the expense of cell wall biosynthesis. As a result, PAS kinase deficient yeast are sensitive to cell wall perturbing agents. This partitioning of glucose in response to PAS kinase activation is due to phosphorylation of Ugp1, the enzyme primarily responsible for UDP-glucose production. The two yeast PAS kinase homologs, Psk1 and Psk2, are activated by two stimuli, cell integrity stress and nonfermentative carbon sources. We review what is known about yeast PAS kinase and describe a genetic screen that may help elucidate pathways involved in PAS kinase activation and function.
Collapse
Affiliation(s)
- Julianne H Grose
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, USA.
| | | | | |
Collapse
|
37
|
Abstract
Metabolic disorders, such as diabetes and obesity, are fundamentally caused by cellular energy imbalance and dysregulation. Therefore, understanding the regulation of cellular fuel and energy metabolism is of great importance to develop effective therapies for metabolic disease. The cellular nutrient and energy sensors, AMPK and TOR, play a key role in maintaining cellular energy homeostasis. Like AMPK and TOR, PAS kinase (PASK) is also a nutrient responsive protein kinase. In yeast, PAS kinase phosphorylates the enzyme Ugp1 and thereby shifts glucose partitioning toward cell wall glucan synthesis at the expense of glycogen synthesis. Consistent with this function, yeast PAS kinase is activated by both cell integrity stress and growth in non-fermentative carbon sources. PASK is also important for proper regulation of glucose metabolism in mammals at both the hormonal and cellular level. In cultured pancreatic beta-cells, PASK is activated by elevated glucose concentrations and is required for glucose-stimulated transcription of the insulin gene. PASK knockdown in cultured myoblasts causes increased glucose oxidation and elevated cellular ATP levels. Mice lacking PASK exhibit increased metabolic rate and resistance to diet-induced obesity. Interestingly, PGC-1 expression and AMPK and TOR activity were not affected in PASK deficient mice, suggesting PASK may exert its metabolic effects through a new mechanism. We propose that PASK plays a significant role in nutrient sensing, metabolic regulation, and energy homeostasis, and is a potential therapeutic target for metabolic disease.
Collapse
Affiliation(s)
- Huai-Xiang Hao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | |
Collapse
|
38
|
Rauceo JM, Blankenship JR, Fanning S, Hamaker JJ, Deneault JS, Smith FJ, Nantel A, Mitchell AP. Regulation of the Candida albicans cell wall damage response by transcription factor Sko1 and PAS kinase Psk1. Mol Biol Cell 2008; 19:2741-51. [PMID: 18434592 DOI: 10.1091/mbc.e08-02-0191] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The environmental niche of each fungus places distinct functional demands on the cell wall. Hence cell wall regulatory pathways may be highly divergent. We have pursued this hypothesis through analysis of Candida albicans transcription factor mutants that are hypersensitive to caspofungin, an inhibitor of beta-1,3-glucan synthase. We report here that mutations in SKO1 cause this phenotype. C. albicans Sko1 undergoes Hog1-dependent phosphorylation after osmotic stress, like its Saccharomyces cerevisiae orthologues, thus arguing that this Hog1-Sko1 relationship is conserved. However, Sko1 has a distinct role in the response to cell wall inhibition because 1) sko1 mutants are much more sensitive to caspofungin than hog1 mutants; 2) Sko1 does not undergo detectable phosphorylation in response to caspofungin; 3) SKO1 transcript levels are induced by caspofungin in both wild-type and hog1 mutant strains; and 4) sko1 mutants are defective in expression of caspofungin-inducible genes that are not induced by osmotic stress. Upstream Sko1 regulators were identified from a panel of caspofungin-hypersensitive protein kinase-defective mutants. Our results show that protein kinase Psk1 is required for expression of SKO1 and of Sko1-dependent genes in response to caspofungin. Thus Psk1 and Sko1 lie in a newly described signal transduction pathway.
Collapse
Affiliation(s)
- Jason M Rauceo
- Department of Microbiology and Institute of Cancer Research, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Yeast PAS kinase coordinates glucose partitioning in response to metabolic and cell integrity signaling. EMBO J 2007; 26:4824-30. [PMID: 17989693 DOI: 10.1038/sj.emboj.7601914] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 10/17/2007] [Indexed: 11/08/2022] Open
Abstract
PAS kinase is an evolutionarily conserved serine/threonine protein kinase. Mammalian PAS kinase is activated under nutrient replete conditions and is important for controlling metabolic rate and energy homeostasis. In yeast, PAS kinase acts to increase the synthesis of structural carbohydrate at the expense of storage carbohydrates through phosphorylation of the enzyme UDP-glucose pyrophosphorylase. We have identified two pathways that activate yeast PAS kinase; one is responsive to nutrient conditions while the other is responsive to cell integrity stress. These pathways differentially activate the two PAS kinase proteins in Saccharomyces cerevisiae, Psk1 and Psk2, with Psk1 alone responding to activation by nonfermentative carbon sources. We demonstrate that, in addition to transcriptional effects, both of these pathways post-translationally activate PAS kinase via its regulatory N-terminus. As a whole, this system acts to coordinate glucose partitioning with alterations in demand due to changes in environmental and nutrient conditions.
Collapse
|