1
|
Choi S, Ahn S, Cho KH, Lee SK, Kee JM. Chemoproteomic identification of phosphohistidine acceptors: posttranslational activity regulation of a key glycolytic enzyme. Chem Sci 2025; 16:8014-8022. [PMID: 40201162 PMCID: PMC11974560 DOI: 10.1039/d5sc01024a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/28/2025] [Indexed: 04/10/2025] Open
Abstract
Histidine phosphorylation, an unconventional and understudied posttranslational modification, often involves phosphohistidine (pHis) "acceptor" proteins, which bind to pHis residues and undergo phosphotransfer from pHis. While the roles of pHis acceptors are well-documented in bacterial cell signalling and metabolism, the presence and functions of additional pHis acceptors remain largely unknown. In this study, we introduce a chemoproteomic strategy leveraging a stable analogue of 3-pHis to identify 13 putative pHis acceptors in Escherichia coli. Among these, we identified phosphofructokinase-1 (PfkA), a central enzyme in glycolysis, as a pHis acceptor phosphorylated at His249 by phosphocarrier protein HPr (PtsH). This phosphorylation, modulated by carbon source availability, inhibited PfkA's kinase activity, while the pHis-specific phosphatase signal inhibitory factor X (SixA) reversed the effect, restoring the kinase function. Our findings reveal a novel regulatory mechanism in which histidine phosphorylation dynamically controls a key glycolytic enzyme, implicating a broader role for pHis in bacterial metabolism.
Collapse
Affiliation(s)
- Solbee Choi
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Seungmin Ahn
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Kyung Hyun Cho
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Sung Kuk Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Jung-Min Kee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| |
Collapse
|
2
|
Shimpi AA, Naegle KM. Linguistic networks uncover grammatical constraints of protein sentences comprised of domain-based words. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626803. [PMID: 39677636 PMCID: PMC11643033 DOI: 10.1101/2024.12.04.626803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Evolution has developed a set of principles that determine feasible domain combinations analogous to grammar within natural languages. Treating domains as words and proteins as sentences, made up of words, we apply a linguistic approach to represent the human proteome as an n-gram network. Combining this with network theory and application, we explore the functional language and rules of the human proteome. Additionally, we explored subnetwork languages by focusing on reversible post-translational modifications (PTMs) systems that follow a reader-writer-eraser paradigm. We find that PTM systems appear to sample grammar rules near the onset of the system expansion, but then convergently evolve towards similar grammar rules, which stabilize during the post-metazoan switch. For example, reader and writer domains are typically tightly connected through shared n-grams, but eraser domains are almost always loosely or completely disconnected from readers and writers. Additionally, after grammar fixation, domains with verb-like properties, such as writers and erasers, never appear - consistent with the idea of natural grammar that leads to clarity and limits futile enzymatic cycles. Then, given how some cancer fusion genes represent the possibility for the emergence of novel language, we investigate how cancer fusion genes alter the human proteome n-gram network. We find most cancer fusion genes follow existing grammar rules. Collectively, these results suggest that n-gram based analysis of proteomes is a complement to the more direct protein-protein interaction networks. N-grams can capture abstract functional connections in a more fully described manner, limited only by the definition of domains within the proteome and not by the combinatorial challenge of capturing all protein interaction connections.
Collapse
Affiliation(s)
- Adrian A. Shimpi
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22903
- Department of Genome Sciences, University of Virginia, Charlottesville, VA, 22903
| | - Kristen M. Naegle
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22903
- Department of Genome Sciences, University of Virginia, Charlottesville, VA, 22903
| |
Collapse
|
3
|
Sayeesh PM, Iguchi M, Inomata K, Ikeya T, Ito Y. Structure and Dynamics of Drk-SH2 Domain and Its Site-Specific Interaction with Sev Receptor Tyrosine Kinase. Int J Mol Sci 2024; 25:6386. [PMID: 38928093 PMCID: PMC11203457 DOI: 10.3390/ijms25126386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The Drosophila downstream receptor kinase (Drk), a homologue of human GRB2, participates in the signal transduction from the extracellular to the intracellular environment. Drk receives signals through the interaction of its Src homology 2 (SH2) domain with the phosphorylated tyrosine residue in the receptor tyrosine kinases (RTKs). Here, we present the solution NMR structure of the SH2 domain of Drk (Drk-SH2), which was determined in the presence of a phosphotyrosine (pY)-containing peptide derived from a receptor tyrosine kinase, Sevenless (Sev). The solution structure of Drk-SH2 possess a common SH2 domain architecture, consisting of three β strands imposed between two α helices. Additionally, we interpret the site-specific interactions of the Drk-SH2 domain with the pY-containing peptide through NMR titration experiments. The dynamics of Drk-SH2 were also analysed through NMR-relaxation experiments as well as the molecular dynamic simulation. The docking simulations of the pY-containing peptide onto the protein surface of Drk-SH2 provided the orientation of the peptide, which showed a good agreement with the analysis of the SH2 domain of GRB2.
Collapse
Affiliation(s)
| | | | | | - Teppei Ikeya
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan; (P.M.S.); (M.I.); (K.I.)
| | - Yutaka Ito
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan; (P.M.S.); (M.I.); (K.I.)
| |
Collapse
|
4
|
Stergas HR, Dillon-Martin M, Dumas CM, Hansen NA, Carasi-Schwartz FJ, D'Amico AR, Finnegan KM, Juch U, Kane KR, Kaplan IE, Masengarb ML, Melero ME, Meyer LE, Sacher CR, Scriven EA, Ebert AM, Ballif BA. CRK and NCK adaptors may functionally overlap in zebrafish neurodevelopment, as indicated by common binding partners and overlapping expression patterns. FEBS Lett 2024; 598:302-320. [PMID: 38058169 DOI: 10.1002/1873-3468.14781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 12/08/2023]
Abstract
CRK adaptor proteins are important for signal transduction mechanisms driving cell proliferation and positioning during vertebrate central nervous system development. Zebrafish lacking both CRK family members exhibit small, disorganized retinas with 50% penetrance. The goal of this study was to determine whether another adaptor protein might functionally compensate for the loss of CRK adaptors. Expression patterns in developing zebrafish, and bioinformatic analyses of the motifs recognized by their SH2 and SH3 domains, suggest NCK adaptors are well-positioned to compensate for loss of CRK adaptors. In support of this hypothesis, proteomic analyses found CRK and NCK adaptors share overlapping interacting partners including known regulators of cell adhesion and migration, suggesting their functional intersection in neurodevelopment.
Collapse
Affiliation(s)
| | | | - Caroline M Dumas
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Nicole A Hansen
- Department of Biology, University of Vermont, Burlington, VT, USA
| | | | - Alex R D'Amico
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Kylie M Finnegan
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Uatchet Juch
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Keeley R Kane
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Isabel E Kaplan
- Department of Biology, University of Vermont, Burlington, VT, USA
| | | | - Marina E Melero
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Lauren E Meyer
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Conrad R Sacher
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Evan A Scriven
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Alicia M Ebert
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Bryan A Ballif
- Department of Biology, University of Vermont, Burlington, VT, USA
| |
Collapse
|
5
|
Sha F, Kurosawa K, Glasser E, Ketavarapu G, Albazzaz S, Koide A, Koide S. Monobody Inhibitor Selective to the Phosphatase Domain of SHP2 and its Use as a Probe for Quantifying SHP2 Allosteric Regulation. J Mol Biol 2023; 435:168010. [PMID: 36806475 PMCID: PMC10079645 DOI: 10.1016/j.jmb.2023.168010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
SHP2 is a phosphatase/adaptor protein that plays an important role in various signaling pathways. Its mutations are associated with cancers and developmental diseases. SHP2 contains a protein tyrosine phosphatase (PTP) and two SH2 domains. Selective inhibition of these domains has been challenging due to the multitude of homologous proteins in the proteome. Here, we developed a monobody, synthetic binding protein, that bound to and inhibited the SHP2 PTP domain. It was selective to SHP2 PTP over close homologs. A crystal structure of the monobody-PTP complex revealed that the monobody bound both highly conserved residues in the active site and less conserved residues in the periphery, rationalizing its high selectivity. Its epitope overlapped with the interface between the PTP and N-terminal SH2 domains that is formed in auto-inhibited SHP2. By using the monobody as a probe for the accessibility of the PTP active site, we developed a simple, nonenzymatic assay for the allosteric regulation of SHP2. The assay showed that, in the absence of an activating phospho-Tyr ligand, wild-type SHP2 and the "PTP-dead" C459E mutant were predominantly in the closed state in which the PTP active site is inaccessible, whereas the E76K and C459S mutants were in the open, active state. It also revealed that previously developed monobodies to the SH2 domains, ligands lacking a phospho-Tyr, weakly favored the open state. These results provide corroboration for a conformational equilibrium underlying allosteric regulation of SHP2, provide powerful tools for characterizing and controlling SHP2 functions, and inform drug discovery against SHP2.
Collapse
Affiliation(s)
- Fern Sha
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, United States
| | - Kohei Kurosawa
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, United States; Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, United States
| | - Eliezra Glasser
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, United States
| | - Gayatri Ketavarapu
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, United States
| | - Samara Albazzaz
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, United States
| | - Akiko Koide
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, United States; Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, United States; Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, United States
| | - Shohei Koide
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, United States; Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, United States; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
6
|
Sámano-Sánchez H, Gibson TJ, Chemes LB. Using Linear Motif Database Resources to Identify SH2 Domain Binders. Methods Mol Biol 2023; 2705:153-197. [PMID: 37668974 DOI: 10.1007/978-1-0716-3393-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The SH2-binding phosphotyrosine class of short linear motifs (SLiMs) are key conditional regulatory elements, particularly in signaling protein complexes beneath the cell's plasma membrane. In addition to transmitting cellular signaling information, they can also play roles in cellular hijack by invasive pathogens. Researchers can take advantage of bioinformatics tools and resources to predict the motifs at conserved phosphotyrosine residues in regions of intrinsically disordered protein. A candidate SH2-binding motif can be established and assigned to one or more of the SH2 domain subgroups. It is, however, not so straightforward to predict which SH2 domains are capable of binding the given candidate. This is largely due to the cooperative nature of the binding amino acids which enables poorer binding residues to be tolerated when the other residues are optimal. High-throughput peptide arrays are powerful tools used to derive SH2 domain-binding specificity, but they are unable to capture these cooperative effects and also suffer from other shortcomings. Tissue and cell type expression can help to restrict the list of available interactors: for example, some well-studied SH2 domain proteins are only present in the immune cell lineages. In this article, we provide a table of motif patterns and four bioinformatics strategies that introduce a range of tools that can be used in motif hunting in cellular and pathogen proteins. Experimental followup is essential to determine which SH2 domain/motif-containing proteins are the actual functional partners.
Collapse
Affiliation(s)
- Hugo Sámano-Sánchez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, China
- Biomedical Sciences, Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Lucía B Chemes
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina.
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Argentina.
| |
Collapse
|
7
|
Nanna V, Marasco M, Kirkpatrick JP, Carlomagno T. Methods for Structure Determination of SH2 Domain-Phosphopeptide Complexes by NMR. Methods Mol Biol 2023; 2705:3-23. [PMID: 37668966 DOI: 10.1007/978-1-0716-3393-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique to solve the structure of biomolecular complexes at atomic resolution in solution. Small proteins such as Src-homology 2 (SH2) domains have fast tumbling rates and long-lived NMR signals, making them particularly suited to be studied by standard NMR methods. SH2 domains are modular proteins whose function is the recognition of sequences containing phosphotyrosines. In this chapter, we describe the application of NMR to assess the interaction between SH2 domains and phosphopeptides and determine the structure of the resulting complexes.
Collapse
Affiliation(s)
- Vittoria Nanna
- BMWZ and Institute of Organic Chemistry, Leibniz University Hannover, Hannover, Germany
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Michelangelo Marasco
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Teresa Carlomagno
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
8
|
Proinflammatory and Cancer-Promoting Pathobiont Fusobacterium nucleatum Directly Targets Colorectal Cancer Stem Cells. Biomolecules 2022; 12:biom12091256. [PMID: 36139097 PMCID: PMC9496236 DOI: 10.3390/biom12091256] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Intestinal bacterial communities participate in gut homeostasis and are recognized as crucial in bowel inflammation and colorectal cancer (CRC). Fusobacterium nucleatum (Fn), a pathobiont of the oral microflora, has recently emerged as a CRC-associated microbe linked to disease progression, metastasis, and a poor clinical outcome; however, the primary cellular and/or microenvironmental targets of this agent remain elusive. We report here that Fn directly targets putative colorectal cancer stem cells (CR-CSCs), a tumor cell subset endowed with cancer re-initiating capacity after surgery and chemotherapy. A patient-derived CSC line, highly enriched (70%) for the stem marker CD133, was expanded as tumor spheroids, dissociated, and exposed in vitro to varying amounts (range 100–500 MOI) of Fn. We found that Fn stably adheres to CSCs, likely by multiple interactions involving the tumor-associated Gal-GalNac disaccharide and the Fn-docking protein CEA-family cell adhesion molecule 1 (CEACAM-1), robustly expressed on CSCs. Importantly, Fn elicited innate immune responses in CSCs and triggered a growth factor-like, protein tyrosine phosphorylation cascade largely dependent on CEACAM-1 and culminating in the activation of p42/44 MAP kinase. Thus, the direct stimulation of CSCs by Fn may contribute to microbiota-driven colorectal carcinogenesis and represent a target for innovative therapies.
Collapse
|
9
|
Gangopadhyay K, Roy A, Chandradasan AC, Roy S, Debnath O, SenGupta S, Chowdhury S, Das D, Das R. An evolutionary divergent thermodynamic brake in ZAP-70 fine-tunes the kinetic proofreading in T cells. J Biol Chem 2022; 298:102376. [PMID: 35970395 PMCID: PMC9486129 DOI: 10.1016/j.jbc.2022.102376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
T cell signaling starts with assembling several tyrosine kinases and adaptor proteins to the T cell receptor (TCR), following the antigen-binding to the TCR. The stability of the TCR-antigen complex and the delay between the recruitment and activation of each kinase determines the T cell response. Integration of such delays constitutes a kinetic proofreading mechanism to regulate T cell response to the antigen binding. However, the mechanism of these delays is not fully understood. Combining biochemical experiments and kinetic modelling, here we report a thermodynamic brake in the regulatory module of the tyrosine kinase ZAP-70, which determines the ligand selectivity, and may delay the ZAP-70 activation upon antigen binding to TCR. The regulatory module of ZAP-70 comprises of a tandem SH2 (tSH2) domain that binds to its ligand, doubly-phosphorylated ITAM peptide (ITAM-Y2P), in two kinetic steps: a fast step and a slow step. We show the initial encounter complex formation between the ITAM-Y2P and tSH2 domain follows a fast-kinetic step, whereas the conformational transition to the holo-state follows a slow-kinetic step. We further observed a thermodynamic penalty imposed during the second phosphate-binding event reduces the rate of structural transition to the holo-state. Phylogenetic analysis revealed the evolution of the thermodynamic brake coincides with the divergence of the adaptive immune system to the cell-mediated and humoral responses. In addition, the paralogous kinase Syk expressed in B cells does not possess such a functional thermodynamic brake, which may explain the higher basal activation and lack of ligand selectivity in Syk.
Collapse
Affiliation(s)
- Kaustav Gangopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Arnab Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Athira C Chandradasan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Swarnendu Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Olivia Debnath
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Soumee SenGupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Subhankar Chowdhury
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Dipjyoti Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India.
| | - Rahul Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India; Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur, India.
| |
Collapse
|
10
|
Martyn GD, Veggiani G, Kusebauch U, Morrone SR, Yates BP, Singer AU, Tong J, Manczyk N, Gish G, Sun Z, Kurinov I, Sicheri F, Moran MF, Moritz RL, Sidhu SS. Engineered SH2 Domains for Targeted Phosphoproteomics. ACS Chem Biol 2022; 17:1472-1484. [PMID: 35613471 DOI: 10.1021/acschembio.2c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A comprehensive analysis of the phosphoproteome is essential for understanding molecular mechanisms of human diseases. However, current tools used to enrich phosphotyrosine (pTyr) are limited in their applicability and scope. Here, we engineered new superbinder Src-Homology 2 (SH2) domains that enrich diverse sets of pTyr-peptides. We used phage display to select a Fes-SH2 domain variant (superFes; sFes1) with high affinity for pTyr and solved its structure bound to a pTyr-peptide. We performed systematic structure-function analyses of the superbinding mechanisms of sFes1 and superSrc-SH2 (sSrc1), another SH2 superbinder. We grafted the superbinder motifs from sFes1 and sSrc1 into 17 additional SH2 domains and confirmed increased binding affinity for specific pTyr-peptides. Using mass spectrometry (MS), we demonstrated that SH2 superbinders have distinct specificity profiles and superior capabilities to enrich pTyr-peptides. Finally, using combinations of SH2 superbinders as affinity purification (AP) tools we showed that unique subsets of pTyr-peptides can be enriched with unparalleled depth and coverage.
Collapse
Affiliation(s)
- Gregory D. Martyn
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Gianluca Veggiani
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada
| | - Ulrike Kusebauch
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Seamus R. Morrone
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Bradley P. Yates
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada
| | - Alex U. Singer
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada
| | - Jiefei Tong
- Program in Cell biology, Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Noah Manczyk
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Gerald Gish
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Zhi Sun
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Igor Kurinov
- Department of Chemistry and Chemical Biology, Cornell University, NE-CAT, Argonne, Illinois 60439, United States
| | - Frank Sicheri
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Michael F. Moran
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Program in Cell biology, Hospital for Sick Children, Toronto M5G 0A4, Canada
- The Hospital for Sick Children, SPARC Biocentre, Toronto, Ontario M5G 0A4, Canada
| | - Robert L. Moritz
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Sachdev S. Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
11
|
Tiberti M, Terkelsen T, Degn K, Beltrame L, Cremers TC, da Piedade I, Di Marco M, Maiani E, Papaleo E. MutateX: an automated pipeline for in silico saturation mutagenesis of protein structures and structural ensembles. Brief Bioinform 2022; 23:6552273. [PMID: 35323860 DOI: 10.1093/bib/bbac074] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 12/26/2022] Open
Abstract
Mutations, which result in amino acid substitutions, influence the stability of proteins and their binding to biomolecules. A molecular understanding of the effects of protein mutations is both of biotechnological and medical relevance. Empirical free energy functions that quickly estimate the free energy change upon mutation (ΔΔG) can be exploited for systematic screenings of proteins and protein complexes. In silico saturation mutagenesis can guide the design of new experiments or rationalize the consequences of known mutations. Often software such as FoldX, while fast and reliable, lack the necessary automation features to apply them in a high-throughput manner. We introduce MutateX, a software to automate the prediction of ΔΔGs associated with the systematic mutation of each residue within a protein, or protein complex to all other possible residue types, using the FoldX energy function. MutateX also supports ΔΔG calculations over protein ensembles, upon post-translational modifications and in multimeric assemblies. At the heart of MutateX lies an automated pipeline engine that handles input preparation, parallelization and outputs publication-ready figures. We illustrate the MutateX protocol applied to different case studies. The results of the high-throughput scan provided by our tools can help in different applications, such as the analysis of disease-associated mutations, to complement experimental deep mutational scans, or assist the design of variants for industrial applications. MutateX is a collection of Python tools that relies on open-source libraries. It is available free of charge under the GNU General Public License from https://github.com/ELELAB/mutatex.
Collapse
Affiliation(s)
- Matteo Tiberti
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Thilde Terkelsen
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Kristine Degn
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Ludovica Beltrame
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Tycho Canter Cremers
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Isabelle da Piedade
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Miriam Di Marco
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Emiliano Maiani
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Elena Papaleo
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.,Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800, Lyngby, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Morris R, Zhang Y, Ellyard JI, Vinuesa CG, Murphy JM, Laktyushin A, Kershaw NJ, Babon JJ. Structural and functional analysis of target recognition by the lymphocyte adaptor protein LNK. Nat Commun 2021; 12:6110. [PMID: 34671038 PMCID: PMC8528861 DOI: 10.1038/s41467-021-26394-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/30/2021] [Indexed: 01/17/2023] Open
Abstract
The SH2B family of adaptor proteins, SH2-B, APS, and LNK are key modulators of cellular signalling pathways. Whilst SH2-B and APS have been partially structurally and biochemically characterised, to date there has been no such characterisation of LNK. Here we present two crystal structures of the LNK substrate recognition domain, the SH2 domain, bound to phosphorylated motifs from JAK2 and EPOR, and biochemically define the basis for target recognition. The LNK SH2 domain adopts a canonical SH2 domain fold with an additional N-terminal helix. Targeted analysis of binding to phosphosites in signalling pathways indicated that specificity is conferred by amino acids one- and three-residues downstream of the phosphotyrosine. Several mutations in LNK showed impaired target binding in vitro and a reduced ability to inhibit signalling, allowing an understanding of the molecular basis of LNK dysfunction in variants identified in patients with myeloproliferative disease.
Collapse
Affiliation(s)
- Rhiannon Morris
- grid.1042.7Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Royal Parade, Parkville, VIC 3052 Australia
| | - Yaoyuan Zhang
- grid.1001.00000 0001 2180 7477Australia Department of Immunology and Infectious Diseases, Australian National University, Canberra, ACT Australia ,grid.1001.00000 0001 2180 7477Australia Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT Australia
| | - Julia I. Ellyard
- grid.1001.00000 0001 2180 7477Australia Department of Immunology and Infectious Diseases, Australian National University, Canberra, ACT Australia ,grid.1001.00000 0001 2180 7477Australia Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT Australia
| | - Carola G. Vinuesa
- grid.1001.00000 0001 2180 7477Australia Department of Immunology and Infectious Diseases, Australian National University, Canberra, ACT Australia ,grid.1001.00000 0001 2180 7477Australia Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT Australia
| | - James M. Murphy
- grid.1042.7Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Royal Parade, Parkville, VIC 3052 Australia
| | - Artem Laktyushin
- grid.1042.7Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Royal Parade, Parkville, VIC 3052 Australia
| | - Nadia J. Kershaw
- grid.1042.7Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Royal Parade, Parkville, VIC 3052 Australia
| | - Jeffrey J. Babon
- grid.1042.7Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Royal Parade, Parkville, VIC 3052 Australia
| |
Collapse
|
13
|
Suter EC, Schmid EM, Harris AR, Voets E, Francica B, Fletcher DA. Antibody:CD47 ratio regulates macrophage phagocytosis through competitive receptor phosphorylation. Cell Rep 2021; 36:109587. [PMID: 34433055 PMCID: PMC8477956 DOI: 10.1016/j.celrep.2021.109587] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 04/19/2021] [Accepted: 08/02/2021] [Indexed: 01/04/2023] Open
Abstract
Cancer immunotherapies often modulate macrophage effector function by introducing either targeting antibodies that activate Fcγ receptors (FcγRs) or blocking antibodies that disrupt inhibitory SIRPα-CD47 engagement. However, how these competing signals are integrated is poorly understood, raising questions about how to effectively titrate immune responses. Here, we find that macrophage phagocytic decisions are regulated by the ratio of activating ligand to inhibitory ligand over a broad range of absolute molecular densities. Using both endogenous and chimeric receptors, we show that activating:inhibitory ligand ratios of at least 10:1 are required to promote phagocytosis of model antibody-opsonized CD47-inhibited targets and that lowering that ratio reduces FcγR phosphorylation because of inhibitory phosphatases recruited to CD47-bound SIRPα. We demonstrate that ratiometric signaling is critical for phagocytosis of tumor cells and can be modified by blocking SIRPα, indicating that balancing targeting and blocking antibodies may be important for controlling macrophage phagocytosis in cancer immunotherapy.
Collapse
Affiliation(s)
- Emily C Suter
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA; UC Berkeley/UC San Francisco Graduate Group in Bioengineering, Berkeley, CA, USA
| | - Eva M Schmid
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Andrew R Harris
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA; Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON, Canada
| | - Erik Voets
- Aduro Biotech Europe, Oss, the Netherlands
| | | | - Daniel A Fletcher
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA; UC Berkeley/UC San Francisco Graduate Group in Bioengineering, Berkeley, CA, USA; Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
14
|
Low TY, Mohtar MA, Lee PY, Omar N, Zhou H, Ye M. WIDENING THE BOTTLENECK OF PHOSPHOPROTEOMICS: EVOLVING STRATEGIES FOR PHOSPHOPEPTIDE ENRICHMENT. MASS SPECTROMETRY REVIEWS 2021; 40:309-333. [PMID: 32491218 DOI: 10.1002/mas.21636] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Phosphorylation is a form of protein posttranslational modification (PTM) that regulates many biological processes. Whereas phosphoproteomics is a scientific discipline that identifies and quantifies the phosphorylated proteome using mass spectrometry (MS). This task is extremely challenging as ~30% of the human proteome is phosphorylated; and each phosphoprotein may exist as multiple phospho-isoforms that are present in low abundance and stoichiometry. Hence, phosphopeptide enrichment techniques are indispensable to (phospho)proteomics laboratories. These enrichment methods encompass widely-adopted techniques such as (i) affinity-based chromatography; (ii) ion exchange and mixed-mode chromatography (iii) enrichment with phospho-specific antibodies and protein domains, and (iv) functionalized polymers and other less common but emerging technologies such as hydroxyapatite chromatography and precipitation with inorganic ions. Here, we review these techniques, their history, continuous development and evaluation. Besides, we outline associating challenges of phosphoproteomics that are linked to experimental design, sample preparation, and proteolytic digestion. In addition, we also discuss about the future outlooks in phosphoproteomics, focusing on elucidating the noncanonical phosphoproteome and deciphering the "dark phosphoproteome". © 2020 John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - M Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Nursyazwani Omar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Houjiang Zhou
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Centre, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
15
|
Alfaidi M, Scott ML, Orr AW. Sinner or Saint?: Nck Adaptor Proteins in Vascular Biology. Front Cell Dev Biol 2021; 9:688388. [PMID: 34124074 PMCID: PMC8187788 DOI: 10.3389/fcell.2021.688388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/28/2021] [Indexed: 12/28/2022] Open
Abstract
The Nck family of modular adaptor proteins, including Nck1 and Nck2, link phosphotyrosine signaling to changes in cytoskeletal dynamics and gene expression that critically modulate cellular phenotype. The Nck SH2 domain interacts with phosphotyrosine at dynamic signaling hubs, such as activated growth factor receptors and sites of cell adhesion. The Nck SH3 domains interact with signaling effectors containing proline-rich regions that mediate their activation by upstream kinases. In vascular biology, Nck1 and Nck2 play redundant roles in vascular development and postnatal angiogenesis. However, recent studies suggest that Nck1 and Nck2 differentially regulate cell phenotype in the adult vasculature. Domain-specific interactions likely mediate these isoform-selective effects, and these isolated domains may serve as therapeutic targets to limit specific protein-protein interactions. In this review, we highlight the function of the Nck adaptor proteins, the known differences in domain-selective interactions, and discuss the role of individual Nck isoforms in vascular remodeling and function.
Collapse
Affiliation(s)
- Mabruka Alfaidi
- Department of Pathology and Translational Pathobiology, Louisiana State University Health - Shreveport, Shreveport, LA, United States
| | - Matthew L Scott
- Department of Pathology and Translational Pathobiology, Louisiana State University Health - Shreveport, Shreveport, LA, United States
| | - Anthony Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health - Shreveport, Shreveport, LA, United States.,Department of Cell Biology and Anatomy, LSU Health - Shreveport, Shreveport, LA, United States.,Department of Molecular & Cellular Physiology, LSU Health - Shreveport, Shreveport, LA, United States
| |
Collapse
|
16
|
Sluiter TJ, van Buul JD, Huveneers S, Quax PHA, de Vries MR. Endothelial Barrier Function and Leukocyte Transmigration in Atherosclerosis. Biomedicines 2021; 9:328. [PMID: 33804952 PMCID: PMC8063931 DOI: 10.3390/biomedicines9040328] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/24/2022] Open
Abstract
The vascular endothelium is a highly specialized barrier that controls passage of fluids and migration of cells from the lumen into the vessel wall. Endothelial cells assist leukocytes to extravasate and despite the variety in the specific mechanisms utilized by different leukocytes to cross different vascular beds, there is a general principle of capture, rolling, slow rolling, arrest, crawling, and ultimately diapedesis via a paracellular or transcellular route. In atherosclerosis, the barrier function of the endothelium is impaired leading to uncontrolled leukocyte extravasation and vascular leakage. This is also observed in the neovessels that grow into the atherosclerotic plaque leading to intraplaque hemorrhage and plaque destabilization. This review focuses on the vascular endothelial barrier function and the interaction between endothelial cells and leukocytes during transmigration. We will discuss the role of endothelial dysfunction, transendothelial migration of leukocytes and plaque angiogenesis in atherosclerosis.
Collapse
Affiliation(s)
- Thijs J. Sluiter
- Department of Vascular Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (T.J.S.); (P.H.A.Q.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jaap D. van Buul
- Sanquin Research and Landsteiner Laboratory, Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, 1066 CX Amsterdam, The Netherlands;
| | - Stephan Huveneers
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Paul H. A. Quax
- Department of Vascular Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (T.J.S.); (P.H.A.Q.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Margreet R. de Vries
- Department of Vascular Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (T.J.S.); (P.H.A.Q.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
17
|
Bacon K, Blain A, Bowen J, Burroughs M, McArthur N, Menegatti S, Rao BM. Quantitative Yeast-Yeast Two Hybrid for the Discovery and Binding Affinity Estimation of Protein-Protein Interactions. ACS Synth Biol 2021; 10:505-514. [PMID: 33587591 DOI: 10.1021/acssynbio.0c00472] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Quantifying the binding affinity of protein-protein interactions is important for elucidating connections within biochemical signaling pathways, as well as characterization of binding proteins isolated from combinatorial libraries. We describe a quantitative yeast-yeast two-hybrid (qYY2H) system that not only enables the discovery of specific protein-protein interactions but also efficient, quantitative estimation of their binding affinities (KD). In qYY2H, the bait and prey proteins are expressed as yeast cell surface fusions using yeast surface display. We developed a semiempirical framework for estimating the KD of monovalent bait-prey interactions, using measurements of bait-prey yeast-yeast binding, which is mediated by multivalent interactions between yeast-displayed bait and prey. Using qYY2H, we identified interaction partners of SMAD3 and the tandem WW domains of YAP from a cDNA library and characterized their binding affinities. Finally, we showed that qYY2H could also quantitatively evaluate binding interactions mediated by post-translational modifications on the bait protein.
Collapse
Affiliation(s)
- Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Abigail Blain
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - John Bowen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Matthew Burroughs
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nikki McArthur
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Golden LEAF Biomanufacturing Training and Education Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Balaji M. Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Golden LEAF Biomanufacturing Training and Education Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
18
|
An allosteric hot spot in the tandem-SH2 domain of ZAP-70 regulates T-cell signaling. Biochem J 2020; 477:1287-1308. [PMID: 32203568 DOI: 10.1042/bcj20190879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 12/28/2022]
Abstract
T-cell receptor (TCR) signaling is initiated by recruiting ZAP-70 to the cytosolic part of TCR. ZAP-70, a non-receptor tyrosine kinase, is composed of an N-terminal tandem SH2 (tSH2) domain connected to the C-terminal kinase domain. The ZAP-70 is recruited to the membrane through binding of tSH2 domain and the doubly phosphorylated ITAM motifs of CD3 chains in the TCR complex. Our results show that the tSH2 domain undergoes a biphasic structural transition while binding to the doubly phosphorylated ITAM-ζ1 peptide. The C-terminal SH2 domain binds first to the phosphotyrosine residue of ITAM peptide to form an encounter complex leading to subsequent binding of second phosphotyrosine residue to the N-SH2 domain. We decipher a network of noncovalent interactions that allosterically couple the two SH2 domains during binding to doubly phosphorylated ITAMs. Mutation in the allosteric network residues, for example, W165C, uncouples the formation of encounter complex to the subsequent ITAM binding thus explaining the altered recruitment of ZAP-70 to the plasma membrane causing autoimmune arthritis in mice. The proposed mechanism of allosteric coupling is unique to ZAP-70, which is fundamentally different from Syk, a close homolog of ZAP-70 expressed in B-cells.
Collapse
|
19
|
Malarkannan S. Molecular mechanisms of FasL-mediated 'reverse-signaling'. Mol Immunol 2020; 127:31-37. [PMID: 32905906 DOI: 10.1016/j.molimm.2020.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
Effector lymphocytes, including NK and T cells, express FasL. Expression of Fas, the receptor for FasL in tumor cells, renders them susceptible to NK and T cell-mediated killing. The functional relevance of FasL in initiating death signals in tumor cells is well-characterized. However, the cytoplasmic interacting partners and the potential signaling pathways downstream of FasL are far from fully defined. FasL possesses an 81 amino acid long cytoplasmic tail with multiple unique recruitment motifs. We predict multiple interdependent signaling complexes form the core of the 'reverse signaling' downstream of FasL. A direct interaction between the proline-rich domain of FasL and the SH3 domain of PI(3)K-p85α initiates the first pathway. This cascade helps FasL to link to PLC-γ2 via PIP3 or the Akt-dependent activation of mTOR complexes. Independently, a GRB2/GADs-binding PXXP cytoplasmic motif of FasL can initiate a Ras-GTP-dependent PAK1→C-Raf→MEK1/2→ERK1/2 activation. FasL can recruit Fyn via the proline-rich domain leading to the recruitment of ADAP. Through its ability to directly interact with Carma1 and TAK1, ADAP initiates the formation of the Carma1/Bcl10/Malt1-based CBM signalosome that is primarily responsible for inflammatory cytokine production. Here, we explore the conserved cytoplasmic domains of FasL, the potential signaling molecules that interact, and the functional downstream consequences within the effector lymphocytes to define the FasL-mediated 'reverse signaling'.
Collapse
Affiliation(s)
- Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, United States; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
20
|
von Wenserski L, Schultheiß C, Bolz S, Schliffke S, Simnica D, Willscher E, Gerull H, Wolters-Eisfeld G, Riecken K, Fehse B, Altfeld M, Nollau P, Binder M. SLAMF receptors negatively regulate B cell receptor signaling in chronic lymphocytic leukemia via recruitment of prohibitin-2. Leukemia 2020; 35:1073-1086. [PMID: 32826957 PMCID: PMC8024197 DOI: 10.1038/s41375-020-01025-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/30/2020] [Accepted: 08/07/2020] [Indexed: 01/25/2023]
Abstract
We identified a subset of Chronic Lymphocytic Leukemia (CLL) patients with high Signaling Lymphocytic Activation Molecule Family (SLAMF) receptor-related signaling that showed an indolent clinical course. Since SLAMF receptors play a role in NK cell biology, we reasoned that these receptors may impact NK cell-mediated CLL immunity. Indeed, our experiments showed significantly decreased degranulation capacity of primary NK cells from CLL patients expressing low levels of SLAMF1 and SLAMF7. Since the SLAMFlow signature was strongly associated with an unmutated CLL immunoglobulin heavy chain (IGHV) status in large datasets, we investigated the impact of SLAMF1 and SLAMF7 on the B cell receptor (BCR) signaling axis. Overexpression of SLAMF1 or SLAMF7 in IGHV mutated CLL cell models resulted in reduced proliferation and impaired responses to BCR ligation, whereas the knockout of both receptors showed opposing effects and increased sensitivity toward inhibition of components of the BCR pathway. Detailed molecular analyzes showed that SLAMF1 and SLAMF7 receptors mediate their BCR pathway antagonistic effects via recruitment of prohibitin-2 (PHB2) thereby impairing its role in signal transduction downstream the IGHV-mutant IgM-BCR. Together, our data indicate that SLAMF receptors are important modulators of the BCR signaling axis and may improve immune control in CLL by interference with NK cells.
Collapse
Affiliation(s)
- Lisa von Wenserski
- Department of Internal Medicine IV Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle, Saale, Germany
| | - Christoph Schultheiß
- Department of Internal Medicine IV Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle, Saale, Germany
| | - Sarah Bolz
- TU Dresden, Biotechnologisches Zentrum, Dresden, Germany
| | - Simon Schliffke
- Department of Oncology and Hematology, Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg, Germany
| | - Donjete Simnica
- Department of Internal Medicine IV Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle, Saale, Germany
| | - Edith Willscher
- Department of Internal Medicine IV Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle, Saale, Germany
| | - Helwe Gerull
- Research Institute Children's Cancer Center and Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerrit Wolters-Eisfeld
- Research Institute Children's Cancer Center and Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcus Altfeld
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Peter Nollau
- Research Institute Children's Cancer Center and Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mascha Binder
- Department of Internal Medicine IV Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle, Saale, Germany.
| |
Collapse
|
21
|
Alfaidi M, Bhattarai U, Orr AW. Nck1, But Not Nck2, Mediates Disturbed Flow-Induced p21-Activated Kinase Activation and Endothelial Permeability. J Am Heart Assoc 2020; 9:e016099. [PMID: 32468886 PMCID: PMC7428973 DOI: 10.1161/jaha.120.016099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Alteration in hemodynamic shear stress at atheroprone sites promotes endothelial paracellular pore formation and permeability. The molecular mechanism remains unknown. Methods and Results We show that Nck (noncatalytic region of tyrosine kinase) deletion significantly ameliorates disturbed flow‐induced permeability, and selective isoform depletion suggests distinct signaling mechanisms. Only Nck1 deletion significantly reduces disturbed flow‐induced paracellular pore formation and permeability, whereas Nck2 depletion has no significant effects. Additionally, Nck1 re‐expression, but not Nck2, restores disturbed flow‐induced permeability in Nck1/2 knockout cells, confirming the noncompensating roles. In vivo, using the partial carotid ligation model of disturbed flow, Nck1 knockout prevented the increase in vascular permeability, as assessed by Evans blue and fluorescein isothiocyanate dextran extravasations and leakage of plasma fibrinogen into the vessel wall. Domain swap experiments mixing SH2 (phosphotyrosine binding) and SH3 (proline‐rich binding) domains between Nck1 and Nck2 showed a dispensable role for SH2 domains but a critical role for the Nck1 SH3 domains in rescuing disturbed flow‐induced endothelial permeability. Consistent with this, both Nck1 and Nck2 bind to platelet endothelial adhesion molecule‐1 (SH2 dependent) in response to shear stress, but only Nck1 ablation interferes with shear stress–induced PAK2 (p21‐activated kinase) membrane translocation and activation. A single point mutation into individual Nck1 SH3 domains suggests a role for the first domain of Nck1 in PAK recruitment to platelet endothelial cell adhesion molecule‐1 and activation in response to shear stress. Conclusions This work provides the first evidence that Nck1 but not the highly similar Nck2 plays a distinct role in disturbed flow‐induced vascular permeability by selective p21‐activated kinase activation.
Collapse
Affiliation(s)
- Mabruka Alfaidi
- Department of Pathology and Translational Pathobiology LSU Health-Shreveport LA
| | - Umesh Bhattarai
- Department of Molecular& Cellular Physiology LSU Health-Shreveport LA
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology LSU Health-Shreveport LA.,Department of Molecular& Cellular Physiology LSU Health-Shreveport LA.,Department of Cell Biology and Anatomy LSU Health-Shreveport LA
| |
Collapse
|
22
|
Yuan X, Bu H, Zhou J, Yang CY, Zhang H. Recent Advances of SHP2 Inhibitors in Cancer Therapy: Current Development and Clinical Application. J Med Chem 2020; 63:11368-11396. [DOI: 10.1021/acs.jmedchem.0c00249] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xinrui Yuan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Hong Bu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Chao-Yie Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Huibin Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| |
Collapse
|
23
|
Abstract
The potential of CD31 as a therapeutic target in atherosclerosis has been considered ever since its cloning in the 1990s, but the exact role played by this molecule in the biologic events underlying atherosclerosis has remained controversial, resulting in the stalling of any therapeutic perspective. Due to the supposed cell adhesive properties of CD31, specific monoclonal antibodies and recombinant proteins were regarded as blocking agents because their use prevented the arrival of leukocytes at sites of acute inflammation. However, the observed effect of those compounds likely resulted from the engagement of the immunomodulatory function of CD31 signaling. This was acknowledged only later though, upon the discovery of CD31's 2 intracytoplasmic tyrosine residues called immunoreceptor tyrosine inhibitory motifs. A growing body of evidence currently points at a therapeutic potential for CD31 agonists in atherothrombosis. Clinical observations show that CD31 expression is altered at the surface of leukocytes infiltrating unhealed atherothrombotic lesions and that the physiological immunomodulatory functions of CD31 are lost at the surface of blood leukocytes in patients with acute coronary syndromes. On the contrary, translational studies using candidate therapeutic molecules in laboratory animals have provided encouraging results: synthetic peptides administered to atherosclerotic mice as systemic drugs in the acute phases of atherosclerotic complications favor the healing of wounded arteries, whereas the immobilization of CD31 agonist peptides onto coronary stents implanted in farm pigs favors their peaceful integration within the coronary arterial wall.
Collapse
Affiliation(s)
- Giuseppina Caligiuri
- From the Laboratory for Vascular Translational Science, Inserm U1148, Université de Paris, France; and Department of Cardiology, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Nord Val-de-Seine, Site Bichat, France
| |
Collapse
|
24
|
Zheng Z, Chu B, Kong Q, Chen X, Ke M, Qin Y, Lu Y, Feng S, Tian R. High-Throughput Phosphotyrosine Protein Complexes Screening by Photoaffinity-Engineered Protein Scaffold-Based Forward-Phase Protein Array. Anal Chem 2019; 91:10026-10032. [PMID: 31282657 DOI: 10.1021/acs.analchem.9b01845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Low-abundance phosphotyrosine (pTyr)-mediated signaling protein complexes play critical roles in cancer signaling. The precise and comprehensive profiling of these pTyr-mediated protein complexes remains challenging because of their dynamic nature and weak binding affinity. Taking advantage of the SH2 domains modified with trifunctional chemical probes and genetic mutations (termed Photo-pTyr-scaffold), we developed a Photo-pTyr-scaffold-based forward-phase protein array that can be used to specifically capture complexes by developing an engineered SH2 domain, photoaffinity cross-linking, and antibody-based measuring weak pTyr-mediated protein complexes from complex biological samples in a 96-well microplate format. This platform demonstrated good precision for quantitation (R2 = 0.99) and high sensitivity by which only 5 μg of whole cell lysates is needed. We successfully applied the technology for profiling the dynamic EGF-stimulation-dependent EGFR signaling protein complexes across four different time courses (i.e., 0, 2, 5, 10, and 30 min) in a high-throughput manner. We further evaluated the modulation of EGFR-GRB2-SHC1 protein complexes by FDA-approved EGFR kinase inhibitor erlotinib, demonstrating the feasibility of this approach for high-throughput drug screening. The Photo-pTyr-scaffold-based forward-phase protein array could be generically applicable for exploring the dynamic pTyr signaling complexes in various biological systems and screening for related drugs in a high-throughput manner.
Collapse
Affiliation(s)
- Zhendong Zheng
- Key Laboratory of Oil Gas and Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering , Xinjiang University , Urumqi 830046 , China.,Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Bizhu Chu
- Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Qian Kong
- Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Xiong Chen
- Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Mi Ke
- Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Yunqiu Qin
- Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Yi Lu
- Key Laboratory of Oil Gas and Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering , Xinjiang University , Urumqi 830046 , China
| | - Shun Feng
- School of Life Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , China
| | - Ruijun Tian
- Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research , Shenzhen 518055 , China
| |
Collapse
|
25
|
Tiruthani K, Mischler A, Ahmed S, Mahinthakumar J, Haugh JM, Rao BM. Design and evaluation of engineered protein biosensors for live-cell imaging of EGFR phosphorylation. Sci Signal 2019; 12:eaap7584. [PMID: 31164479 PMCID: PMC8757379 DOI: 10.1126/scisignal.aap7584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Live-cell fluorescence microscopy is broadly applied to study the dynamics of receptor-mediated cell signaling, but the availability of intracellular biosensors is limited. A biosensor based on the tandem SH2 domains from phospholipase C-γ1 (PLCγ1), tSH2-WT, has been used to measure phosphorylation of the epidermal growth factor receptor (EGFR). Here, we found that tSH2-WT lacked specificity for phosphorylated EGFR, consistent with the known promiscuity of SH2 domains. Further, EGF-stimulated membrane recruitment of tSH2-WT differed qualitatively from the expected kinetics of EGFR phosphorylation. Analysis of a mathematical model suggested, and experiments confirmed, that the high avidity of tSH2-WT resulted in saturation of its target and interference with EGFR endocytosis. To overcome the apparent target specificity and saturation issues, we implemented two protein engineering strategies. In the first approach, we screened a combinatorial library generated by random mutagenesis of the C-terminal SH2 domain (cSH2) of PLCγ1 and isolated a mutant form (mSH2) with enhanced specificity for phosphorylated Tyr992 (pTyr992) of EGFR. A biosensor based on mSH2 closely reported the kinetics of EGFR phosphorylation but retained cross-reactivity similar to tSH2-WT. In the second approach, we isolated a pTyr992-binding protein (SPY992) from a combinatorial library generated by mutagenesis of the Sso7d protein scaffold. Compared to tSH2-WT and mSH2, SPY992 exhibited superior performance as a specific, moderate-affinity biosensor. We extended this approach to isolate a biosensor for EGFR pTyr1148 (SPY1148). This approach of integrating theoretical considerations with protein engineering strategies can be generalized to design and evaluate suitable biosensors for various phospho-specific targets.
Collapse
Affiliation(s)
- Karthik Tiruthani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Adam Mischler
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Shoeb Ahmed
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | - Jessica Mahinthakumar
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
26
|
Caligiuri G. Mechanotransduction, immunoregulation, and metabolic functions of CD31 in cardiovascular pathophysiology. Cardiovasc Res 2019; 115:1425-1434. [DOI: 10.1093/cvr/cvz132] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/02/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022] Open
Abstract
Abstract
Biomechanical changes in the heart and vessels drive rapid and dynamic regulation of blood flow, a vital process for meeting the changing metabolic needs of the peripheral tissues at any given point in time. The fluid movement of the blood exerts haemodynamic stress upon the solid elements of the cardiovascular system: the heart, vessels, and cellular components of the blood. Cardiovascular diseases can lead to prolonged mechanical stress, such as cardiac remodelling during heart failure or vascular stiffening in atherosclerosis. This can lead to a significantly reduced or increasingly turbulent blood supply, inducing a shift in cellular metabolism that, amongst other effects, can trigger the release of reactive oxygen species and initiate a self-perpetuating cycle of inflammation and oxidative stress. CD31 is the most abundant constitutive co-signalling receptor glycoprotein on endothelial cells, which line the cardiovascular system and form the first-line of cellular contact with the blood. By associating with most endothelial receptors involved in mechanosensing, CD31 regulates the response to biomechanical stimuli. In addition, by relocating in the lipid rafts of endothelial cells as well as of cells stably interacting with the endothelium, including leucocytes and platelets, CD31–CD31 trans-homophilic engagement guides and restrains platelet and immune cell accumulation and activation and at sites of damage. In this way, CD31 is at the centre of mediating mechanical, metabolic, and immunological changes within the circulation and provides a single target that may have pleiotropic beneficial effects.
Collapse
Affiliation(s)
- Giuseppina Caligiuri
- Université de Paris, Cardiovascular Immunobiology, UMRS1148, INSERM, Paris, France
- Cardiology Department and Physiology Departments, AP-HP, University Hospital Xavier Bichat, 46 Rue Henri Huchard, Paris, France
| |
Collapse
|
27
|
Veggiani G, Huang H, Yates BP, Tong J, Kaneko T, Joshi R, Li SSC, Moran MF, Gish G, Sidhu SS. Engineered SH2 domains with tailored specificities and enhanced affinities for phosphoproteome analysis. Protein Sci 2018; 28:403-413. [PMID: 30431205 DOI: 10.1002/pro.3551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 02/05/2023]
Abstract
Protein phosphorylation is the most abundant post-translational modification in cells. Src homology 2 (SH2) domains specifically recognize phosphorylated tyrosine (pTyr) residues to mediate signaling cascades. A conserved pocket in the SH2 domain binds the pTyr side chain and the EF and BG loops determine binding specificity. By using large phage-displayed libraries, we engineered the EF and BG loops of the Fyn SH2 domain to alter specificity. Engineered SH2 variants exhibited distinct specificity profiles and were able to bind pTyr sites on the epidermal growth factor receptor, which were not recognized by the wild-type Fyn SH2 domain. Furthermore, mass spectrometry showed that SH2 variants with additional mutations in the pTyr-binding pocket that enhanced affinity were highly effective for enrichment of diverse pTyr peptides within the human proteome. These results showed that engineering of the EF and BG loops could be used to tailor SH2 domain specificity, and SH2 variants with diverse specificities and high affinities for pTyr residues enabled more comprehensive analysis of the human phosphoproteome. STATEMENT: Src Homology 2 (SH2) domains are modular domains that recognize phosphorylated tyrosine embedded in proteins, transducing these post-translational modifications into cellular responses. Here we used phage display to engineer hundreds of SH2 domain variants with altered binding specificities and enhanced affinities, which enabled efficient and differential enrichment of the human phosphoproteome for analysis by mass spectrometry. These engineered SH2 domain variants will be useful tools for elucidating the molecular determinants governing SH2 domains binding specificity and for enhancing analysis and understanding of the human phosphoproteome.
Collapse
Affiliation(s)
- Gianluca Veggiani
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5S3E1, Canada
| | - Haiming Huang
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5S3E1, Canada
| | - Bradley P Yates
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5S3E1, Canada
| | - Jiefei Tong
- Program in Molecular Structure and Function, The Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 0A4, Canada
| | - Tomonori Kaneko
- Department of Biochemistry, Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Rakesh Joshi
- Department of Biochemistry, Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Shawn S C Li
- Department of Biochemistry, Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Michael F Moran
- Program in Molecular Structure and Function, The Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 3E1, Canada.,The Hospital for Sick Children, SPARC Biocentre, Toronto, Ontario, M5G 0A4, Canada
| | - Gerald Gish
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Sachdev S Sidhu
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5S3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| |
Collapse
|
28
|
Mou Y, Zhou XX, Leung K, Martinko AJ, Yu JY, Chen W, Wells JA. Engineering Improved Antiphosphotyrosine Antibodies Based on an Immunoconvergent Binding Motif. J Am Chem Soc 2018; 140:16615-16624. [PMID: 30398859 DOI: 10.1021/jacs.8b08402] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Phosphotyrosine (pY) is one of the most highly studied posttranslational modifications that is responsible for tightly regulating many signaling pathways in eukaryotes. Pan-specific pY antibodies have emerged as powerful tools for understanding the role of these modifications. Nevertheless, structures have not been reported for pan-specific pY antibodies, greatly impeding the further development of tools for integrating this ubiquitous posttranslational modification using structure-guided designs. Here, we present the first crystal structures of two widely utilized pan-specific pY antibodies, PY20 and 4G10. The two antibodies, although developed independently from animal immunizations, have surprisingly similar modes of recognition of the phosphate group, implicating a generic binding structure among pan-specific pY antibodies. Sequence alignments revealed that many pY binding residues are predominant in the mouse V germline genes, which consequently led to the convergent antibodies. On the basis of the convergent structure, we designed a phage display library by lengthening the CDR-L3 loop with the aid of computational modeling. Panning with this library resulted in a series of 4G10 variants with 4 to 11-fold improvements in pY binding affinities. The crystal structure of one improved variant showed remarkable superposition to the computational model, where the lengthened CDR-L3 loop creates an additional hydrogen bond indirectly bound to the phosphate group via a water molecule. The engineered variants exhibited superior performance in Western blot and immunofluorescence.
Collapse
Affiliation(s)
- Yun Mou
- Department of Pharmaceutical Chemistry , University of California, San Francisco , San Francisco , California 94143 , United States.,Institute of Biomedical Sciences , Academia Sinica , Taipei 11529 , Taiwan
| | - Xin X Zhou
- Department of Pharmaceutical Chemistry , University of California, San Francisco , San Francisco , California 94143 , United States
| | - Kevin Leung
- Department of Pharmaceutical Chemistry , University of California, San Francisco , San Francisco , California 94143 , United States
| | - Alexander J Martinko
- Department of Pharmaceutical Chemistry , University of California, San Francisco , San Francisco , California 94143 , United States.,Chemistry and Chemical Biology Graduate Program , University of California, San Francisco , San Francisco , California 94143 , United States
| | - Jiun-Yann Yu
- Department of Electrical, Computer, and Energy Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Wentao Chen
- Department of Pharmaceutical Chemistry , University of California, San Francisco , San Francisco , California 94143 , United States
| | - James A Wells
- Department of Pharmaceutical Chemistry , University of California, San Francisco , San Francisco , California 94143 , United States.,Department of Cellular and Molecular Pharmacology , University of California, San Francisco , San Francisco , California 94143 , United States
| |
Collapse
|
29
|
Bone marrow-specific loss of ABI1 induces myeloproliferative neoplasm with features resembling human myelofibrosis. Blood 2018; 132:2053-2066. [PMID: 30213875 DOI: 10.1182/blood-2018-05-848408] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/01/2018] [Indexed: 12/23/2022] Open
Abstract
Although the pathogenesis of primary myelofibrosis (PMF) and other myeloproliferative neoplasms (MPNs) is linked to constitutive activation of the JAK-STAT pathway, JAK inhibitors have neither curative nor MPN-stem cell-eradicating potential, indicating that other targetable mechanisms are contributing to the pathophysiology of MPNs. We previously demonstrated that Abelson interactor 1 (Abi-1), a negative regulator of Abelson kinase 1, functions as a tumor suppressor. Here we present data showing that bone marrow-specific deletion of Abi1 in a novel mouse model leads to development of an MPN-like phenotype resembling human PMF. Abi1 loss resulted in a significant increase in the activity of the Src family kinases (SFKs), STAT3, and NF-κB signaling. We also observed impairment of hematopoietic stem cell self-renewal and fitness, as evidenced in noncompetitive and competitive bone marrow transplant experiments. CD34+ hematopoietic progenitors and granulocytes from patients with PMF showed decreased levels of ABI1 transcript as well as increased activity of SFKs, STAT3, and NF-κB. In aggregate, our data link the loss of Abi-1 function to hyperactive SFKs/STAT3/NF-κB signaling and suggest that this signaling axis may represent a regulatory module involved in the molecular pathophysiology of PMF.
Collapse
|
30
|
Photoaffinity-engineered protein scaffold for systematically exploring native phosphotyrosine signaling complexes in tumor samples. Proc Natl Acad Sci U S A 2018; 115:E8863-E8872. [PMID: 30190427 DOI: 10.1073/pnas.1805633115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Phosphotyrosine (pTyr)-regulated protein complexes play critical roles in cancer signaling. The systematic characterization of these protein complexes in tumor samples remains a challenge due to their limited access and the transient nature of pTyr-mediated interactions. We developed a hybrid chemical proteomics approach, termed Photo-pTyr-scaffold, by engineering Src homology 2 (SH2) domains, which specifically bind pTyr proteins, with both trifunctional chemical probes and genetic mutations to overcome these challenges. Dynamic SH2 domain-scaffolding protein complexes were efficiently cross-linked under mild UV light, captured by biotin tag, and identified by mass spectrometry. This approach was successfully used to profile native pTyr protein complexes from breast cancer tissue samples on a proteome scale with high selectivity, achieving about 100 times higher sensitivity for detecting pTyr signaling proteins than that afforded by traditional immunohistochemical methods. Among more than 1,000 identified pTyr proteins, receptor tyrosine kinase PDGFRB expressed on cancer-associated fibroblasts was validated as an important intercellular signaling regulator with poor expression correlation to ERBB2, and blockade of PDGFRB signaling could efficiently suppress tumor growth. The Photo-pTyr-scaffold approach may become a generic tool for readily profiling dynamic pTyr signaling complexes in clinically relevant samples.
Collapse
|
31
|
|
32
|
Abstract
Recombinant proteins expressed in bacteria are sometimes insoluble, aggregated, and incorrectly folded. For those Src homology 2 (SH2) domains that are insoluble in bacteria, baculovirus-insect cell expression systems can be an alternative to produce soluble and functionally active proteins. We describe a protocol for cloning and purification of GST-tagged SH2 domains using the Bac-to-Bac baculovirus expression system.
Collapse
|
33
|
Locke C, Machida K, Tucker CL, Wu Y, Yu J. Optogenetic activation of EphB2 receptor in dendrites induced actin polymerization by activating Arg kinase. Biol Open 2017; 6:1820-1830. [PMID: 29158322 PMCID: PMC5769660 DOI: 10.1242/bio.029900] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Erythropoietin-producing hepatocellular (Eph) receptors regulate a wide array of developmental processes by responding to cell-cell contacts. EphB2 is well-expressed in the brain and known to be important for dendritic spine development, as well as for the maintenance of the synapses, although the mechanisms of these functions have not been fully understood. Here we studied EphB2's functions in hippocampal neurons with an optogenetic approach, which allowed us to specify spatial regions of signal activation and monitor in real-time the consequences of signal activation. We designed and constructed OptoEphB2, a genetically encoded photoactivatable EphB2. Photoactivation of OptoEphB2 in fibroblast cells induced receptor phosphorylation and resulted in cell rounding ------- a well-known cellular response to EphB2 activation. In contrast, local activation of OptoEphb2 in dendrites of hippocampal neurons induces rapid actin polymerization, resulting dynamic dendritic filopodial growth. Inhibition of Rac1 and CDC42 did not abolish OptoEphB2-induced actin polymerization. Instead, we identified Abelson tyrosine-protein kinase 2 (Abl2/Arg) as a necessary effector in OptoEphB2-induced filopodia growth in dendrites. These findings provided new mechanistic insight into EphB2's role in neural development and demonstrated the advantage of OptoEphB as a new tool for studying EphB signaling.
Collapse
Affiliation(s)
- Clifford Locke
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Kazuya Machida
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | - Yi Wu
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Ji Yu
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
34
|
Jadwin JA, Curran TG, Lafontaine AT, White FM, Mayer BJ. Src homology 2 domains enhance tyrosine phosphorylation in vivo by protecting binding sites in their target proteins from dephosphorylation. J Biol Chem 2017; 293:623-637. [PMID: 29162725 DOI: 10.1074/jbc.m117.794412] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 11/17/2017] [Indexed: 02/03/2023] Open
Abstract
Phosphotyrosine (pTyr)-dependent signaling is critical for many cellular processes. It is highly dynamic, as signal output depends not only on phosphorylation and dephosphorylation rates but also on the rates of binding and dissociation of effectors containing phosphotyrosine-dependent binding modules such as Src homology 2 (SH2) and phosphotyrosine-binding (PTB) domains. Previous in vitro studies suggested that binding of SH2 and PTB domains can enhance protein phosphorylation by protecting the sites bound by these domains from phosphatase-mediated dephosphorylation. To test whether this occurs in vivo, we used the binding of growth factor receptor bound 2 (GRB2) to phosphorylated epidermal growth factor receptor (EGFR) as a model system. We analyzed the effects of SH2 domain overexpression on protein tyrosine phosphorylation by quantitative Western and far-Western blotting, mass spectrometry, and computational modeling. We found that SH2 overexpression results in a significant, dose-dependent increase in EGFR tyrosine phosphorylation, particularly of sites corresponding to the binding specificity of the overexpressed SH2 domain. Computational models using experimentally determined EGFR phosphorylation and dephosphorylation rates, and pTyr-EGFR and GRB2 concentrations, recapitulated the experimental findings. Surprisingly, both modeling and biochemical analyses suggested that SH2 domain overexpression does not result in a major decrease in the number of unbound phosphorylated SH2 domain-binding sites. Our results suggest that signaling via SH2 domain binding is buffered over a relatively wide range of effector concentrations and that SH2 domain proteins with overlapping binding specificities are unlikely to compete with one another for phosphosites in vivo.
Collapse
Affiliation(s)
- Joshua A Jadwin
- From the Raymond and Beverly Sackler Laboratory of Molecular Medicine, Department of Genetics and Genome Sciences, and the Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut 06030 and
| | - Timothy G Curran
- the Department of Biological Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Adam T Lafontaine
- From the Raymond and Beverly Sackler Laboratory of Molecular Medicine, Department of Genetics and Genome Sciences, and the Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut 06030 and
| | - Forest M White
- the Department of Biological Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Bruce J Mayer
- From the Raymond and Beverly Sackler Laboratory of Molecular Medicine, Department of Genetics and Genome Sciences, and the Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut 06030 and
| |
Collapse
|
35
|
Yao Y, Bian Y, Dong M, Wang Y, Lv J, Chen L, Wang H, Mao J, Dong J, Ye M. SH2 Superbinder Modified Monolithic Capillary Column for the Sensitive Analysis of Protein Tyrosine Phosphorylation. J Proteome Res 2017; 17:243-251. [PMID: 29083189 DOI: 10.1021/acs.jproteome.7b00546] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study, we present a method to specifically capture phosphotyrosine (pTyr) peptides from minute amount of sample for the sensitive analysis of protein tyrosine phosphorylation. We immobilized SH2 superbinder on a monolithic capillary column to construct a microreactor to enrich pTyr peptides. It was found that the synthetic pTyr peptide could be specifically enriched by the microreactor from the peptide mixture prepared by spiking of the synthetic pTyr peptide into the tryptic digests of α-casein and β-casein with molar ratios of 1:1000:1000. The microreactor was further applied to enrich pTyr peptides from pervanadate-treated HeLa cell digests for phosphoproteomics analysis, which resulted in the identification of 796 unique pTyr sites. In contrast, the conventional SH2 superbinder-based method identified 41 pTyr sites for the same sample, only 5.2% of the number achieved by the microreactor. Finally, this microreactor was also applied to analyze the pTyr in Shc1 complex, an immunopurified protein complex, which resulted in the identification of 15 pTyr sites. Together, this technique is best fitted to analyze the pTyr in minute amount of sample and will have broad application in fields where only a limited amount of sample is available.
Collapse
Affiliation(s)
- Yating Yao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangyang Bian
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University , Zhengzhou, Henan 450052, China
| | - Mingming Dong
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,Dalian Ocean University, Dalian 116023, China
| | - Yan Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawen Lv
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianfang Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Mao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Dong
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China
| |
Collapse
|
36
|
Kumar S, Lu B, Davra V, Hornbeck P, Machida K, Birge RB. Crk Tyrosine Phosphorylation Regulates PDGF-BB-inducible Src Activation and Breast Tumorigenicity and Metastasis. Mol Cancer Res 2017; 16:173-183. [PMID: 28974561 DOI: 10.1158/1541-7786.mcr-17-0242] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/22/2017] [Accepted: 09/29/2017] [Indexed: 11/16/2022]
Abstract
The activity of Src family kinases (Src being the prototypical member) is tightly regulated by differential phosphorylation on Tyr416 (positive) and Tyr527 (negative), a duet that reciprocally regulates kinase activity. The latter negative regulation of Src on Tyr527 is mediated by C-terminal Src kinase (CSK) that phosphorylates Tyr527 and maintains Src in a clamped negative regulated state by promoting an intramolecular association. Here it is demonstrated that the SH2- and SH3-domain containing adaptor protein CrkII, by virtue of its phosphorylation on Tyr239, regulates the Csk/Src signaling axis to control Src activation. Once phosphorylated, the motif (PIpYARVIQ) forms a consensus sequence for the SH2 domain of CSK to form a pTyr239-CSK complex. Functionally, when expressed in Crk-/- MEFs or in Crk+/+ HS683 cells, Crk Y239F delayed PDGF-BB-inducible Src Tyr416 phosphorylation. Moreover, expression of Crk Y239F in HS683 cells delayed Src kinase activation and suppressed the cell-invasive and -transforming phenotypes. Finally, through loss-of-function and epistasis experiments using CRISPR-Cas9-engineered 4T1 murine breast cancer cells, Crk Tyr239 is implicated in breast cancer tumor growth and metastasis in orthotopic immunocompetent 4T1 mice model of breast adenocarcinoma. These findings delineate a novel role for Crk Tyr239 phosphorylation in the regulation of Src kinases, as well as a potential molecular explanation for a long-standing question as to how Crk regulates the activation of Src kinases.Implications: These findings provide new perspectives on the versatility of Crk in cancer by demonstrating how Crk mechanistically drives, through a tyrosine phosphorylation-dependent manner, tumor growth, and metastasis. Mol Cancer Res; 16(1); 173-83. ©2017 AACR.
Collapse
Affiliation(s)
- Sushil Kumar
- Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Bin Lu
- Protein Quality Control and Diseases Laboratory, Cancer Center, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Viralkumar Davra
- Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, Rutgers New Jersey Medical School, Newark, New Jersey
| | | | - Kazuya Machida
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, Rutgers New Jersey Medical School, Newark, New Jersey.
| |
Collapse
|
37
|
Miller MB, Yan Y, Machida K, Kiraly DD, Levy AD, Wu YI, Lam TT, Abbott T, Koleske AJ, Eipper BA, Mains RE. Brain Region and Isoform-Specific Phosphorylation Alters Kalirin SH2 Domain Interaction Sites and Calpain Sensitivity. ACS Chem Neurosci 2017; 8:1554-1569. [PMID: 28418645 DOI: 10.1021/acschemneuro.7b00076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Kalirin7 (Kal7), a postsynaptic Rho GDP/GTP exchange factor (RhoGEF), plays a crucial role in long-term potentiation and in the effects of cocaine on behavior and spine morphology. The KALRN gene has been linked to schizophrenia and other disorders of synaptic function. Mass spectrometry was used to quantify phosphorylation at 26 sites in Kal7 from individual adult rat nucleus accumbens and prefrontal cortex before and after exposure to acute or chronic cocaine. Region- and isoform-specific phosphorylation was observed along with region-specific effects of cocaine on Kal7 phosphorylation. Evaluation of the functional significance of multisite phosphorylation in a complex protein like Kalirin is difficult. With the identification of five tyrosine phosphorylation (pY) sites, a panel of 71 SH2 domains was screened, identifying subsets that interacted with multiple pY sites in Kal7. In addition to this type of reversible interaction, endoproteolytic cleavage by calpain plays an essential role in long-term potentiation. Calpain cleaved Kal7 at two sites, separating the N-terminal domain, which affects spine length, and the PDZ binding motif from the GEF domain. Mutations preventing phosphorylation did not affect calpain sensitivity or GEF activity; phosphomimetic mutations at specific sites altered protein stability, increased calpain sensitivity, and reduced GEF activity.
Collapse
Affiliation(s)
| | | | | | - Drew D. Kiraly
- Department
of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Koubek J, Chang YC, Yang SYC, Huang JJT. Trigger Factor-Induced Nascent Chain Dynamics Changes Suggest Two Different Chaperone-Nascent Chain Interactions during Translation. J Mol Biol 2017; 429:1733-1745. [PMID: 28385637 DOI: 10.1016/j.jmb.2017.03.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 11/25/2022]
Abstract
Protein biogenesis is poorly understood due to the ribosome that perturbs measurement attempted on the ribosome-bound nascent chain (RNC). Investigating nascent chain dynamics may provide invaluable insight into the co-translational processes such as structure formation or interaction with a chaperone [e.g., the bacterial trigger factor (TF)]. In this study, we aim to establish a platform for studying nascent chain dynamics by exploring the local environment near the fluorescent dye on site-specifically labeled RNCs with time-resolved fluorescence anisotropy. To prepare a quantitative model of fluorescence depolarization, we utilized intrinsically disordered protein bound to ribosome, which helped us couple the sub-nanosecond depolarization with the motion of the nascent chain backbone. This was consistent with zinc-finger-domain-containing RNCs, where the extent of sub-nanosecond motion decreased upon the addition of zinc when the fluorophore was in close proximity of the domain. After the characterization of disordered nascent chain dynamics, we investigated the synthesis of a model cytosolic protein, Entner-Doudoroff aldolase, labeled at different sites during various stages of translation. Depending on the stage of translation, the addition of the TF to the nascent chain led to two different responses in the nascent chain dynamics serendipitously, suggesting steric hindrance between the nascent chain and the chaperone as a mechanism for TF dissociation from the ribosome during translation. Overall, our study demonstrates the possible use of site-specific labeling and time-resolved anisotropy to gain insight on chaperone binding event at various stages of translation and hints on TF co-translational mechanism.
Collapse
Affiliation(s)
- Jiří Koubek
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, 11529, R.O.C
| | - Yi-Che Chang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, 11529, R.O.C
| | | | | |
Collapse
|
39
|
Rosenberg BJ, Gil-Henn H, Mader CC, Halo T, Yin T, Condeelis J, Machida K, Wu YI, Koleske AJ. Phosphorylated cortactin recruits Vav2 guanine nucleotide exchange factor to activate Rac3 and promote invadopodial function in invasive breast cancer cells. Mol Biol Cell 2017; 28:1347-1360. [PMID: 28356423 PMCID: PMC5426849 DOI: 10.1091/mbc.e16-12-0885] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/20/2017] [Accepted: 03/22/2017] [Indexed: 12/12/2022] Open
Abstract
Phosphorylation of cortactin downstream of the EGF receptor–Src-Arg kinase cascade triggers maturation of invadopodia, actin-rich protrusions that breast cancer cells use to invade the extracellular matrix. Phosphocortactin recruits Vav2 to invadopodia to activate Rac3 and support actin polymerization, matrix degradation, and invasion. Breast carcinoma cells use specialized, actin-rich protrusions called invadopodia to degrade and invade through the extracellular matrix. Phosphorylation of the actin nucleation–promoting factor and actin-stabilizing protein cortactin downstream of the epidermal growth factor receptor–Src-Arg kinase cascade is known to be a critical trigger for invadopodium maturation and subsequent cell invasion in breast cancer cells. The functions of cortactin phosphorylation in this process, however, are not completely understood. We identify the Rho-family guanine nucleotide exchange factor Vav2 in a comprehensive screen for human SH2 domains that bind selectively to phosphorylated cortactin. We demonstrate that the Vav2 SH2 domain binds selectively to phosphotyrosine-containing peptides corresponding to cortactin tyrosines Y421 and Y466 but not to Y482. Mutation of the Vav2 SH2 domain disrupts its recruitment to invadopodia, and an SH2-domain mutant form of Vav2 cannot support efficient matrix degradation in invasive MDA-MB-231 breast cancer cells. We show that Vav2 function is required for promoting invadopodium maturation and consequent actin polymerization, matrix degradation, and invasive migratory behavior. Using biochemical assays and a novel Rac3 biosensor, we show that Vav2 promotes Rac3 activation at invadopodia. Rac3 knockdown reduces matrix degradation by invadopodia, whereas a constitutively active Rac3 can rescue the deficits in invadopodium function in Vav2-knockdown cells. Together these data indicate that phosphorylated cortactin recruits Vav2 to activate Rac3 and promote invadopodial maturation in invasive breast cancer cells.
Collapse
Affiliation(s)
| | - Hava Gil-Henn
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311520, Israel
| | | | - Tiffany Halo
- Department of Chemistry, Yale University, New Haven, CT 06520
| | - Taofei Yin
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Genome Sciences and Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030
| | - John Condeelis
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Kazuya Machida
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Genome Sciences and Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Yi I Wu
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Genome Sciences and Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520 .,Department of Neuroscience, Yale University, New Haven, CT 06520
| |
Collapse
|
40
|
Li Y, Wang Y, Dong M, Zou H, Ye M. Sensitive Approaches for the Assay of the Global Protein Tyrosine Phosphorylation in Complex Samples Using a Mutated SH2 Domain. Anal Chem 2017; 89:2304-2311. [DOI: 10.1021/acs.analchem.6b03812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yanan Li
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Dong
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanfa Zou
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingliang Ye
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
41
|
Deng Z, Dong M, Wang Y, Dong J, Li SSC, Zou H, Ye M. Biphasic Affinity Chromatographic Approach for Deep Tyrosine Phosphoproteome Analysis. Anal Chem 2017; 89:2405-2410. [DOI: 10.1021/acs.analchem.6b04288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Zhenzhen Deng
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Graduate School of Chinese Academy of Sciences, Beijing 1000491, China
| | - Mingming Dong
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yan Wang
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Graduate School of Chinese Academy of Sciences, Beijing 1000491, China
| | - Jing Dong
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shawn S.-C. Li
- Departments
of Biochemistry, Oncology and the Children’s Health Research
Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Hanfa Zou
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mingliang Ye
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
42
|
Proteomic Clustering Analysis of SH2 Domain Datasets. Methods Mol Biol 2017. [PMID: 28092030 DOI: 10.1007/978-1-4939-6762-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Proteomic clustering analysis provides a means of identifying relationships and visualizing those relationships in an extremely complex field of study with many interacting parts. With recent high-throughput studies of Src Homology 2 (SH2) domains, many and varied datasets are being amassed. A strategy for analyzing patterns between these large datasets is required to transform the information into knowledge. The methods for creating neighbor-joining phylogenetic trees, pairs scatter plots, and two-dimensional hierarchical clustering heatmaps are just a few of the diverse methods available to a proteomic researcher. This chapter examines selecting objects to be analyzed, selecting comparison functions to apply to those objects, and pseudo-code for processing data and preparing it for various types of analyses. Here I apply clustering analysis to previous collections of SH2 domains datasets to bring insight into new binding or specificity patterns between the different SH2 domains.
Collapse
|
43
|
Expression and Production of SH2 Domain Proteins. Methods Mol Biol 2017. [PMID: 28092031 DOI: 10.1007/978-1-4939-6762-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The Src Homology 2 (SH2) domain lies at the heart of phosphotyrosine signaling, coordinating signaling events downstream of receptor tyrosine kinases (RTKs), adaptors, and scaffolds. Over a hundred SH2 domains are present in mammals, each having a unique specificity which determines its interactions with multiple binding partners. One of the essential tools necessary for studying and determining the role of SH2 domains in phosphotyrosine signaling is a set of soluble recombinant SH2 proteins. Here we describe methods, based on a broad experience with purification of all SH2 domains, for the production of SH2 domain proteins needed for proteomic and biochemical-based studies such as peptide arrays, mass-spectrometry, protein microarrays, reverse-phase microarrays, and high-throughput fluorescence polarization (HTP-FP). We describe stepwise protocols for expression and purification of SH2 domains using GST or poly His-tags, two widely adopted affinity tags. In addition, we address alternative approaches, challenges, and validation studies for assessing protein quality and provide general characteristics of purified human SH2 domains.
Collapse
|
44
|
Buhs S, Nollau P. SH2 Domain Histochemistry. Methods Mol Biol 2017; 1555:535-545. [PMID: 28092054 DOI: 10.1007/978-1-4939-6762-9_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Among posttranslational modifications, the phosphorylation of tyrosine residues is a key modification in cell signaling. Because of its biological importance, characterization of the cellular state of tyrosine phosphorylation is of great interest. Based on the unique properties of endogenously expressed SH2 domains recognizing tyrosine phosphorylated signaling proteins with high specificity we have developed an alternative approach, coined SH2 profiling, enabling us to decipher complex patterns of tyrosine phosphorylation in various normal and cancerous tissues. So far, SH2 profiling has largely been applied for the analysis of protein extracts with the limitation that information on spatial distribution and intensity of tyrosine phosphorylation within a tissue is lost. Here, we describe a novel SH2 domain based strategy for differential characterization of the state of tyrosine phosphorylation in formaldehyde-fixed and paraffin-embedded tissues. This approach demonstrates that SH2 domains may serve as very valuable tools for the analysis of the differential state of tyrosine phosphorylation in primary tissues fixed and processed under conditions frequently applied by routine pathology laboratories.
Collapse
Affiliation(s)
- Sophia Buhs
- Research Institute Children's Cancer Center and Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Building N63, 2nd Floor, 20251, Hamburg, Germany
| | - Peter Nollau
- Research Institute Children's Cancer Center and Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Building N63, 2nd Floor, 20251, Hamburg, Germany.
| |
Collapse
|
45
|
Ke M, Chu B, Lin L, Tian R. SH2 Domains as Affinity Reagents for Phosphotyrosine Protein Enrichment and Proteomic Analysis. Methods Mol Biol 2017; 1555:395-406. [PMID: 28092045 DOI: 10.1007/978-1-4939-6762-9_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Dynamic tyrosine phosphorylation is a key molecular modulation for many signal transduction events. Because of their low abundance and dynamic nature in cells, the detection and enrichment of phosphotyrosine proteins has long relied on specific antibodies, such as 4G10 and P-Tyr-100. Another well-established approach for phosphotyrosine proteins recognition and enrichment is by their specific binding domains, such as Src homology 2 (SH2) domains. In this chapter, we describe a typical analytical approach for purifying specific SH2 domains, enriching specific phosphotyrosine proteins from activated cells, mass spectrometry analysis, and related data analysis.
Collapse
Affiliation(s)
- Mi Ke
- Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, People's Republic of China
| | - Bizhu Chu
- Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, People's Republic of China
| | - Lin Lin
- Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, People's Republic of China
- Materials Characterization and Preparation Center, South University of Science and Technology of China, Shenzhen, 518055, People's Republic of China
| | - Ruijun Tian
- Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, People's Republic of China.
- Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
46
|
Huang H, Kaneko T, Sidhu SS, Li SSC. Creation of Phosphotyrosine Superbinders by Directed Evolution of an SH2 Domain. Methods Mol Biol 2017; 1555:225-254. [PMID: 28092036 DOI: 10.1007/978-1-4939-6762-9_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Commercial antibodies raised against phosphotyrosine have been widely used as reagents to detect or isolate tyrosine-phosphorylated proteins from cellular samples. However, these antibodies are costly and are not amenable to in-house production in an academic lab setting. In this chapter, we describe a method to generate super-high affinity SH2 domains, dubbed the phosphotyrosine superbinders, by evolving a natural SH2 domain using the phage display technology. The superbinders are stable and can be easily produced in Escherichia coli in large quantities. The strategy presented here may also be applied to other protein domains to generate domain variants with markedly enhanced affinities for a specific post-translational modification.
Collapse
Affiliation(s)
- Haiming Huang
- Banting and Best Department of Medical Research, University of Toronto, Donnelly Centre, 160 College Street, Toronto, ON, Canada, M5S 3E1
- Department of Molecular Genetics, University of Toronto, Donnelly Centre, 160 College Street, Toronto, ON, Canada, M5S 3E1
| | - Tomonori Kaneko
- Department of Biochemistry and Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada, N6A 5C1
| | - Sachdev S Sidhu
- Banting and Best Department of Medical Research, University of Toronto, Donnelly Centre, 160 College Street, Toronto, ON, Canada, M5S 3E1.
- Department of Molecular Genetics, University of Toronto, Donnelly Centre, 160 College Street, Toronto, ON, Canada, M5S 3E1.
| | - Shawn S C Li
- Department of Biochemistry and Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada, N6A 5C1.
| |
Collapse
|
47
|
Abstract
SH2 domains first shed light on the key role of modular binding domains in cell signaling. Much of what we now know about the logic and design principles underlying cell signaling mechanisms, and how such mechanisms might have evolved, can be traced back to early work on SH2 domains. Here we briefly outline several key concepts that emerged from such studies.
Collapse
Affiliation(s)
- Bruce J Mayer
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 400 Farmington Avenue, Farmington, CT, USA.
| |
Collapse
|
48
|
Abstract
The Src Homology 2 (SH2) domain is the prototypical protein interaction module that lies at the heart of phosphotyrosine signaling. Since its serendipitous discovery, there has been a tremendous advancement in technologies and an array of techniques available for studying SH2 domains and phosphotyrosine signaling. In this chapter, we provide a glimpse of the history of SH2 domains and describe many of the tools and techniques that have been developed along the way and discuss future directions for SH2 domain studies. We highlight the gist of each chapter in this volume in the context of: the structural biology and phosphotyrosine binding; characterizing SH2 specificity and generating prediction models; systems biology and proteomics; SH2 domains in signal transduction; and SH2 domains in disease, diagnostics, and therapeutics. Many of the individual chapters provide an in-depth approach that will allow scientists to interrogate the function and role of SH2 domains.
Collapse
Affiliation(s)
- Bernard A Liu
- Broad Institute of Harvard and MIT, 415 Main St., 5175 JJ, Cambridge, MA, 02142, USA.
| | - Kazuya Machida
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 400 Farmington Ave., Farmington, CT, 06030, USA.
| |
Collapse
|
49
|
Machida K, Liu B. Binding Assays Using Recombinant SH2 Domains: Far-Western, Pull-Down, and Fluorescence Polarization. Methods Mol Biol 2017; 1555:307-330. [PMID: 28092040 DOI: 10.1007/978-1-4939-6762-9_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recognition of phosphotyrosine-containing sequences by SH2 domains confers specificity in tyrosine kinase pathways. By assessing interactions between isolated SH2 domains and their binding proteins, it is possible to gain insight into otherwise inaccessible complex cellular systems. Far-Western, pull-down, and fluorescence polarization (FP) have been frequently used for characterization of phosphotyrosine signaling. Here, we outline standard protocols for these established assays using recombinant SH2 domain, emphasizing the importance of appropriate sample preparation and assay controls.
Collapse
Affiliation(s)
- Kazuya Machida
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 400 Farmington Avenue, Farmington, CT, 06030, USA.
| | - Bernard Liu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
50
|
Shu K, Noguchi T, Honda K, Kondoh Y, Osada H, Ohno H, Fujii N, Oishi S. Synthesis of the Src SH2 domain and its application in bioassays for mirror-image screening. RSC Adv 2017. [DOI: 10.1039/c7ra07445j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mirror-image screening systems for Src SH2 domain inhibitors were established using a synthetic Src SH2 domain.
Collapse
Affiliation(s)
- Keitou Shu
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
- Graduate School of Advanced Integrated Studies in Human Survivability
| | - Taro Noguchi
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Kaori Honda
- Chemical Biology Research Group
- RIKEN Center for Sustainable Resource Science
- Saitama 351-0198
- Japan
| | - Yasumitsu Kondoh
- Chemical Biology Research Group
- RIKEN Center for Sustainable Resource Science
- Saitama 351-0198
- Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group
- RIKEN Center for Sustainable Resource Science
- Saitama 351-0198
- Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| |
Collapse
|