1
|
Croce CM, Vaux D, Strasser A, Opferman JT, Czabotar PE, Fesik SW. The BCL-2 protein family: from discovery to drug development. Cell Death Differ 2025:10.1038/s41418-025-01481-z. [PMID: 40204952 DOI: 10.1038/s41418-025-01481-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/24/2025] [Accepted: 03/14/2025] [Indexed: 04/11/2025] Open
Abstract
The landmark discovery of the BCL-2 gene and then its function marked the identification of inhibition of apoptotic cell death as a crucial novel mechanism driving cancer development and launched the quest to discover the molecular control of apoptosis. This work culminated in the generation of specific inhibitors that are now in clinical use, saving and improving tens of thousands of lives annually. Here, some of the original players of this story, describe the sequence of critical discoveries. The t(14;18) chromosomal translocation, frequently observed in follicular lymphoma, allowed the identification and the cloning of a novel oncogene (BCL-2) juxtaposed to the immunoglobulin heavy chain gene locus (IgH). Of note, BCL-2 acted in a distinct manner as compared to then already known oncogenic proteins like ABL and c-MYC. BCL-2 did not promote cell proliferation but inhibited cell death, as originally shown in growth factor dependent haematopoietic progenitor cell lines (e.g., FDC-P1) and in Eμ-Myc/Eμ-Bcl-2 double transgenic mice. Following a rapid expansion of the BCL-2 protein family, the Abbott Laboratories solved the first structure of BCL-XL and subsequently the BCL-XL/BAK peptide complex, opening the way to understanding the structures of other BCL-2 family members and, finally, to the generation of inhibitors of the different pro-survival BCL-2 proteins, thanks to the efforts of Servier/Norvartis, Genentech/WEHI, AbbVie, Amgen, Prelude and Gilead. Although the BCL-2 inhibitor Venetoclax is in clinical use and inhibitors of BCL-XL and MCL-1 are undergoing clinical trials, several questions remain on whether therapeutic windows can be achieved and what other agents should be used in combination with BH3 mimetics to achieve optimal therapeutic impact for cancer therapy. Finally, the control of the expression of BH3-only proteins and pro-survival BCL-2 family members needs to be better understood as this may identify novel targets for cancer therapy. This story is still not concluded!
Collapse
Affiliation(s)
- Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| | - David Vaux
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Andreas Strasser
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Stephen W Fesik
- Department of Biochemistry, Pharmacology and Chemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
2
|
Yuan S, Sun R, Shi H, Chapman NM, Hu H, Guy C, Rankin S, Kc A, Palacios G, Meng X, Sun X, Zhou P, Yang X, Gottschalk S, Chi H. VDAC2 loss elicits tumour destruction and inflammation for cancer therapy. Nature 2025; 640:1062-1071. [PMID: 40108474 PMCID: PMC12018455 DOI: 10.1038/s41586-025-08732-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 02/03/2025] [Indexed: 03/22/2025]
Abstract
Tumour cells often evade immune pressure exerted by CD8+ T cells or immunotherapies through mechanisms that are largely unclear1,2. Here, using complementary in vivo and in vitro CRISPR-Cas9 genetic screens to target metabolic factors, we established voltage-dependent anion channel 2 (VDAC2) as an immune signal-dependent checkpoint that curtails interferon-γ (IFNγ)-mediated tumour destruction and inflammatory reprogramming of the tumour microenvironment. Targeting VDAC2 in tumour cells enabled IFNγ-induced cell death and cGAS-STING activation, and markedly improved anti-tumour effects and immunotherapeutic responses. Using a genome-scale genetic interaction screen, we identified BAK as the mediator of VDAC2-deficiency-induced effects. Mechanistically, IFNγ stimulation increased BIM, BID and BAK expression, with VDAC2 deficiency eliciting uncontrolled IFNγ-induced BAK activation and mitochondrial damage. Consequently, mitochondrial DNA was aberrantly released into the cytosol and triggered robust activation of cGAS-STING signalling and type I IFN response. Importantly, co-deletion of STING signalling components dampened the therapeutic effects of VDAC2 depletion in tumour cells, suggesting that targeting VDAC2 integrates CD8+ T cell- and IFNγ-mediated adaptive immunity with a tumour-intrinsic innate immune-like response. Together, our findings reveal VDAC2 as a dual-action target to overcome tumour immune evasion and establish the importance of coordinately destructing and inflaming tumours to enable efficacious cancer immunotherapy.
Collapse
Affiliation(s)
- Sujing Yuan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Renqiang Sun
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hao Shi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Haoran Hu
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sherri Rankin
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anil Kc
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gustavo Palacios
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaoxi Meng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Sun
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peipei Zhou
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaoyang Yang
- Experimental Cellular Therapeutics Laboratory, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
3
|
Payne NL, Pang SHM, Freeman AJ, Ozkocak DC, Limar JW, Wallis G, Zheng D, Mendonca S, O'Reilly LA, Gray DHD, Poon IKH, Heng TSP. Proinflammatory cytokines sensitise mesenchymal stromal cells to apoptosis. Cell Death Discov 2025; 11:121. [PMID: 40148285 PMCID: PMC11950399 DOI: 10.1038/s41420-025-02412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 02/26/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Mesenchymal stromal cells (MSCs) exert broad therapeutic effects across a range of inflammatory diseases. Their mechanism of action has largely been attributed to paracrine signalling, orchestrated by an array of factors produced by MSCs that are collectively termed the "secretome". Strategies to enhance the release of these soluble factors by pre-exposure to inflammatory cytokines, a concept known as "licensing", is thought to provide a means of enhancing MSC efficacy. Yet, recent evidence shows that intravenously infused MSCs entrapped within the lungs undergo apoptosis, and their subsequent clearance by host phagocytes is essential for their therapeutic efficacy. We therefore sought to clarify the mechanisms governing regulated cell death in MSCs and how exposure to inflammatory cytokines impacts this process. Our results show that MSCs are relatively resistant to cell death induced via the extrinsic pathway of apoptosis, as well as stimuli that induce necroptosis, a form of regulated inflammatory cell death. Instead, efficient killing of MSCs required triggering of the mitochondrial pathway of apoptosis, via inhibition of the pro-survival proteins MCL-1 and BCL-XL. Apoptotic bodies were readily released by MSCs during cell disassembly, a process that was inhibited in vitro and in vivo when the apoptotic effectors BAK and BAX were genetically deleted. Licensing of MSCs by pre-exposure to the inflammatory cytokines TNF and IFN-γ increased the sensitivity of MSCs to intrinsic apoptosis in vitro and accelerated their in vivo clearance by host cells within the lungs after intravenous infusion. Taken together, our study demonstrates that inflammatory "licensing" of MSCs facilitates cell death by increasing their sensitivity to triggers of the intrinsic pathway of apoptosis and accelerating the kinetics of apoptotic cell disassembly.
Collapse
Affiliation(s)
- Natalie L Payne
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Swee Heng Milon Pang
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Andrew J Freeman
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Dilara C Ozkocak
- Research Centre for Extracellular Vesicles, Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Justin W Limar
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Georgia Wallis
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Di Zheng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Senora Mendonca
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lorraine A O'Reilly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Daniel H D Gray
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Ivan K H Poon
- Research Centre for Extracellular Vesicles, Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Tracy S P Heng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
4
|
Li K, Yap YQ, Moujalled DM, Sumardy F, Khakham Y, Georgiou A, Jahja M, Lew TE, De Silva M, Luo MX, Gong JN, Yuan Z, Birkinshaw RW, Czabotar PE, Lowes K, Huang DCS, Kile BT, Wei AH, Dewson G, van Delft MF, Lessene G. Differential regulation of BAX and BAK apoptotic activity revealed by small molecules. SCIENCE ADVANCES 2025; 11:eadr8146. [PMID: 40043112 PMCID: PMC11881913 DOI: 10.1126/sciadv.adr8146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 01/30/2025] [Indexed: 05/13/2025]
Abstract
Defective apoptosis mediated by B cell lymphoma 2 antagonist/killer (BAK) or B cell lymphoma 2-associated X protein (BAX) underlies various pathologies including autoimmune and degenerative conditions. On mitochondria, voltage-dependent anion channel 2 (VDAC2) interacts with BAK and BAX through a common interface to inhibit BAK or to facilitate BAX apoptotic activity. We identified a small molecule (WEHI-3773) that inhibits interaction between VDAC2 and BAK or BAX revealing contrasting effects on their apoptotic activity. WEHI-3773 inhibits apoptosis mediated by BAX by blocking VDAC2-mediated BAX recruitment to mitochondria. Conversely, WEHI-3773 promotes BAK-mediated apoptosis by limiting inhibitory sequestration by VDAC2. In cells expressing both pro-apoptotic proteins, apoptosis promotion by WEHI-3773 dominates, because activated BAK activates BAX through a feed-forward mechanism. Loss of BAX drives resistance to the BCL-2 inhibitor venetoclax in some leukemias. WEHI-3773 overcomes this resistance by promoting BAK-mediated killing. This work highlights the coordination of BAX and BAK apoptotic activity through interaction with VDAC2 that may be targeted therapeutically.
Collapse
Affiliation(s)
- Kaiming Li
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Yu Q. Yap
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Donia M. Moujalled
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Fransisca Sumardy
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Yelena Khakham
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Angela Georgiou
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Michelle Jahja
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Thomas E. Lew
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Melanie De Silva
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Meng-Xiao Luo
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Jia-nan Gong
- National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for Animal Model, Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zheng Yuan
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Richard W. Birkinshaw
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter E. Czabotar
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Kym Lowes
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - David C. S. Huang
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Benjamin T. Kile
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Andrew H. Wei
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Grant Dewson
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Mark F. van Delft
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Guillaume Lessene
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Uren RT, Ritchie ME, Wong AW, Ludeman JP, Uno E, Narayana VK, De Souza DP, Sviridov D, Kluck RM. A lipid signature of BAK-driven apoptotic pore formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618570. [PMID: 39463966 PMCID: PMC11507859 DOI: 10.1101/2024.10.16.618570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Apoptotic cell death is regulated by the BCL-2 protein family, with clusters of BAK or BAX homodimers driving pore formation in the mitochondrial outer membrane via a poorly understood process. There is growing evidence that, in addition to BAK and BAX, lipids play an important role in pore formation. Towards a better understanding of the lipidic drivers of apoptotic pore formation in isolated mitochondria, two complementary approaches were taken. Firstly, the lipids released during BAK-mediated pore formation were measured with targeted lipidomics, revealing enrichment of long chain polyunsaturated lysophospholipids (LPLs) in the released fraction. In contrast, the BAK protein was not released suggesting that BAK and LPLs locate to distinct microdomains. Secondly, added cholesterol not only prevented pore formation but prevented the clustering of BAK homodimers. Our data lead us to a model in which BAK clustering triggers formation of a separate microdomain rich in LPLs that can progress to lipid shedding and the opening of a lipid-lined pore. Pore stabilisation and growth may be due to BAK dimers then moving to the pore edge. Our BAK-lipid microdomain model supports the heterogeneity of BAK assemblies, and the observed lipid-release signature gives new insight into the genesis of the apoptotic pore.
Collapse
|
6
|
Khatun J, Gelles JD, Chipuk JE. Dynamic death decisions: How mitochondrial dynamics shape cellular commitment to apoptosis and ferroptosis. Dev Cell 2024; 59:2549-2565. [PMID: 39378840 PMCID: PMC11469553 DOI: 10.1016/j.devcel.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024]
Abstract
The incorporation of mitochondria into early eukaryotes established organelle-based biochemistry and enabled metazoan development. Diverse mitochondrial biochemistry is essential for life, and its homeostatic control via mitochondrial dynamics supports organelle quality and function. Mitochondrial crosstalk with numerous regulated cell death (RCD) pathways controls the decision to die. In this review, we will focus on apoptosis and ferroptosis, two distinct forms of RCD that utilize divergent signaling to kill a targeted cell. We will highlight how proteins and processes involved in mitochondrial dynamics maintain biochemically diverse subcellular compartments to support apoptosis and ferroptosis machinery, as well as unite disparate RCD pathways through dual control of organelle biochemistry and the decision to die.
Collapse
Affiliation(s)
- Jesminara Khatun
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jesse D Gelles
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jerry Edward Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
7
|
Glover HL, Schreiner A, Dewson G, Tait SWG. Mitochondria and cell death. Nat Cell Biol 2024; 26:1434-1446. [PMID: 38902422 DOI: 10.1038/s41556-024-01429-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/26/2024] [Indexed: 06/22/2024]
Abstract
Mitochondria are cellular factories for energy production, calcium homeostasis and iron metabolism, but they also have an unequivocal and central role in intrinsic apoptosis through the release of cytochrome c. While the subsequent activation of proteolytic caspases ensures that cell death proceeds in the absence of collateral inflammation, other phlogistic cell death pathways have been implicated in using, or engaging, mitochondria. Here we discuss the emerging complexities of intrinsic apoptosis controlled by the BCL-2 family of proteins. We highlight the emerging theory that non-lethal mitochondrial apoptotic signalling has diverse biological roles that impact cancer, innate immunity and ageing. Finally, we delineate the role of mitochondria in other forms of cell death, such as pyroptosis, ferroptosis and necroptosis, and discuss mitochondria as central hubs for the intersection and coordination of cell death signalling pathways, underscoring their potential for therapeutic manipulation.
Collapse
Affiliation(s)
- Hannah L Glover
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Annabell Schreiner
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Grant Dewson
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Stephen W G Tait
- Cancer Research UK Scotland Institute, Glasgow, UK.
- School of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
8
|
Leitl KD, Sperl LE, Hagn F. Preferred inhibition of pro-apoptotic Bak by BclxL via a two-step mechanism. Cell Rep 2024; 43:114526. [PMID: 39046879 DOI: 10.1016/j.celrep.2024.114526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/14/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Bak is a pore-forming Bcl2 protein that induces apoptosis at the outer mitochondrial membrane, which can either proceed via Bak oligomerization or be inhibited by anti-apoptotic Bcl2 proteins, such as BclxL. BclxL is very efficient in inhibiting Bak pore formation, but the mechanistic basis of this preferred interaction has remained enigmatic. Here, we identify Bakα1 as a second binding site for BclxL and show that it specifically interacts with the Bcl2-homology (BH)3 binding groove of BclxL. The affinity between BclxL and Bakα1 is weaker than with Bak-BH3, suggesting that Bakα1, being exposed early in the pore-forming trajectory, transiently captures BclxL, which subsequently transitions to the proximal BH3 site. Bak variants where the initial transient interaction with BclxL is modulated show a markedly altered response to BclxL inhibition. This work contributes to a better mechanistic understanding of the fine-tuned interactions between different players of the Bcl2 protein family.
Collapse
Affiliation(s)
- Kira D Leitl
- Bavarian NMR Center (BNMRZ), Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany; Molecular Targets and Therapeutics Center (MTTC), Institute of Structural Biology, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Laura E Sperl
- Bavarian NMR Center (BNMRZ), Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany
| | - Franz Hagn
- Bavarian NMR Center (BNMRZ), Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany; Molecular Targets and Therapeutics Center (MTTC), Institute of Structural Biology, Helmholtz Munich, 85764 Neuherberg, Germany.
| |
Collapse
|
9
|
Dadsena S, Cuevas Arenas R, Vieira G, Brodesser S, Melo MN, García-Sáez AJ. Lipid unsaturation promotes BAX and BAK pore activity during apoptosis. Nat Commun 2024; 15:4700. [PMID: 38830851 PMCID: PMC11148036 DOI: 10.1038/s41467-024-49067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
BAX and BAK are proapoptotic members of the BCL2 family that directly mediate mitochondrial outer membrane permeabilition (MOMP), a central step in apoptosis execution. However, the molecular architecture of the mitochondrial apoptotic pore remains a key open question and especially little is known about the contribution of lipids to MOMP. By performing a comparative lipidomics analysis of the proximal membrane environment of BAK isolated in lipid nanodiscs, we find a significant enrichment of unsaturated species nearby BAK and BAX in apoptotic conditions. We then demonstrate that unsaturated lipids promote BAX pore activity in model membranes, isolated mitochondria and cellular systems, which is further supported by molecular dynamics simulations. Accordingly, the fatty acid desaturase FADS2 not only enhances apoptosis sensitivity, but also the activation of the cGAS/STING pathway downstream mtDNA release. The correlation of FADS2 levels with the sensitization to apoptosis of different lung and kidney cancer cell lines by co-treatment with unsaturated fatty acids supports the relevance of our findings. Altogether, our work provides an insight on how local lipid environment affects BAX and BAK function during apoptosis.
Collapse
Affiliation(s)
- Shashank Dadsena
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Rodrigo Cuevas Arenas
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584CG, Utrecht, The Netherlands
| | - Gonçalo Vieira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Susanne Brodesser
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana J García-Sáez
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne, Germany.
- Department of Membrane Dynamics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
10
|
Subas Satish HP, Iyer S, Shi MX, Wong AW, Fischer KC, Wardak AZ, Lio D, Brouwer JM, Uren RT, Czabotar PE, Miller MS, Kluck RM. A novel inhibitory BAK antibody enables assessment of non-activated BAK in cancer cells. Cell Death Differ 2024; 31:711-721. [PMID: 38582955 PMCID: PMC11164899 DOI: 10.1038/s41418-024-01289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/08/2024] Open
Abstract
BAX and BAK are pro-apoptotic members of the BCL2 family that are required to permeabilize the mitochondrial outer membrane. The proteins can adopt a non-activated monomeric conformation, or an activated conformation in which the exposed BH3 domain facilitates binding either to a prosurvival protein or to another activated BAK or BAX protein to promote pore formation. Certain cancer cells are proposed to have high levels of activated BAK sequestered by MCL1 or BCLXL, thus priming these cells to undergo apoptosis in response to BH3 mimetic compounds that target MCL1 or BCLXL. Here we report the first antibody, 14G6, that is specific for the non-activated BAK conformer. A crystal structure of 14G6 Fab bound to BAK revealed a binding site encompassing both the α1 helix and α5-α6 hinge regions of BAK, two sites involved in the unfolding of BAK during its activation. In mitochondrial experiments, 14G6 inhibited BAK unfolding triggered by three diverse BAK activators, supporting crucial roles for both α1 dissociation and separation of the core (α2-α5) and latch (α6-α9) regions in BAK activation. 14G6 bound the majority of BAK in several leukaemia cell lines, and binding decreased following treatment with BH3 mimetics, indicating only minor levels of constitutively activated BAK in those cells. In summary, 14G6 provides a new means of assessing BAK status in response to anti-cancer treatments.
Collapse
Affiliation(s)
- Hema Preethi Subas Satish
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sweta Iyer
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Melissa X Shi
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Agnes W Wong
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Karla C Fischer
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ahmad Z Wardak
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Daisy Lio
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jason M Brouwer
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Rachel T Uren
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Michelle S Miller
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Ruth M Kluck
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
11
|
Jenner A, Garcia-Saez AJ. The regulation of the apoptotic pore-An immunological tightrope walk. Adv Immunol 2024; 162:59-108. [PMID: 38866439 DOI: 10.1016/bs.ai.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Apoptotic pore formation in mitochondria is the pivotal point for cell death during mitochondrial apoptosis. It is regulated by BCL-2 family proteins in response to various cellular stress triggers and mediates mitochondrial outer membrane permeabilization (MOMP). This allows the release of mitochondrial contents into the cytosol, which triggers rapid cell death and clearance through the activation of caspases. However, under conditions of low caspase activity, the mitochondrial contents released into the cytosol through apoptotic pores serve as inflammatory signals and activate various inflammatory responses. In this chapter, we discuss how the formation of the apoptotic pore is regulated by BCL-2 proteins as well as other cellular or mitochondrial proteins and membrane lipids. Moreover, we highlight the importance of sublethal MOMP in the regulation of mitochondrial-activated inflammation and discuss its physiological consequences in the context of pathogen infection and disease and how it can potentially be exploited therapeutically, for example to improve cancer treatment.
Collapse
Affiliation(s)
- Andreas Jenner
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ana J Garcia-Saez
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
12
|
Yuan Z, van Delft MF, Li MX, Sumardy F, Smith BJ, Huang DCS, Lessene G, Khakam Y, Jin R, He S, Smith NA, Birkinshaw RW, Czabotar PE, Dewson G. Key residues in the VDAC2-BAK complex can be targeted to modulate apoptosis. PLoS Biol 2024; 22:e3002617. [PMID: 38696533 PMCID: PMC11098506 DOI: 10.1371/journal.pbio.3002617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/16/2024] [Accepted: 04/05/2024] [Indexed: 05/04/2024] Open
Abstract
BAK and BAX execute intrinsic apoptosis by permeabilising the mitochondrial outer membrane. Their activity is regulated through interactions with pro-survival BCL-2 family proteins and with non-BCL-2 proteins including the mitochondrial channel protein VDAC2. VDAC2 is important for bringing both BAK and BAX to mitochondria where they execute their apoptotic function. Despite this important function in apoptosis, while interactions with pro-survival family members are well characterised and have culminated in the development of drugs that target these interfaces to induce cancer cell apoptosis, the interaction between BAK and VDAC2 remains largely undefined. Deep scanning mutagenesis coupled with cysteine linkage identified key residues in the interaction between BAK and VDAC2. Obstructive labelling of specific residues in the BH3 domain or hydrophobic groove of BAK disrupted this interaction. Conversely, mutating specific residues in a cytosol-exposed region of VDAC2 stabilised the interaction with BAK and inhibited BAK apoptotic activity. Thus, this VDAC2-BAK interaction site can potentially be targeted to either inhibit BAK-mediated apoptosis in scenarios where excessive apoptosis contributes to disease or to promote BAK-mediated apoptosis for cancer therapy.
Collapse
Affiliation(s)
- Zheng Yuan
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Australia
| | - Mark F. van Delft
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Australia
| | - Mark Xiang Li
- Peter MacCallum Cancer Centre, Parkville, Melbourne, Australia
| | - Fransisca Sumardy
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
| | - Brian J. Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - David C. S. Huang
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Australia
| | - Guillaume Lessene
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Melbourne, Australia
| | - Yelena Khakam
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
| | - Ruitao Jin
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
- Research School of Biology, Australian National University, Canberra, Australia
| | - Sitong He
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Nicholas A. Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Richard W. Birkinshaw
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Australia
| | - Peter E. Czabotar
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Australia
| | - Grant Dewson
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Australia
| |
Collapse
|
13
|
Nakamura K, Seno M, Yoshimura Y, Suzuki O. Long-term culture induces Bax-dependent apoptosis in rat preimplantation embryos. Mol Reprod Dev 2024; 91:e23711. [PMID: 37831754 DOI: 10.1002/mrd.23711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Although rat preimplantation embryos are necessary for producing genetically modified rats, their in vitro culture remains a challenge. Rat zygotes can develop from the one-cell stage to the blastocyst stage in vitro; however, long-term culture reduces their developmental competence via an unknown mechanism. In this study, we examined how in vitro conditions affect rat preimplantation embryos, which may explain this reduced competence. Comprehensive gene expression analysis showed that genes related to apoptosis and energy metabolism were differentially expressed in rat embryos cultured long-term in vitro compared with those developed in vivo. Furthermore, we found that the expression of Bak1 and Bax, which are responsible for mitochondrial outer membrane permeabilization, were more upregulated in embryos cultured in vitro than those developed in vivo. Similarly, apoptosis-dependent DNA fragmentation was also exacerbated in in vitro culture conditions. Finally, gene disruption using CRISPR/Cas9 showed that Bax, but not Bak1, was responsible for these effects. These findings suggest that long-term in vitro culture induces Bax-dependent apoptosis through the mitochondrial pathway and may provide clues to improve the long-term culture of rat preimplantation embryos for genetic engineering research.
Collapse
Affiliation(s)
- Kazuomi Nakamura
- Advanced Medicine, Innovation and Clinical Research Center, Tottori University Hospital, Yonago, Tottori, Japan
| | - Misako Seno
- Advanced Medicine & Translational Research Center, Organization for Research Initiative and Promotion, Tottori University, Yonago, Tottori, Japan
| | - Yuki Yoshimura
- Division of Integrative Physiology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Osamu Suzuki
- Laboratory of Animal Models for Human Diseases, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| |
Collapse
|
14
|
Cheng P, Hou Y, Bian M, Fang X, Liu Y, Rao Y, Cao S, Liu Y, Zhang S, Chen Y, Dong X, Liu Z. Parkin-mediated ubiquitination inhibits BAK apoptotic activity by blocking its canonical hydrophobic groove. Commun Biol 2023; 6:1260. [PMID: 38087033 PMCID: PMC10716173 DOI: 10.1038/s42003-023-05650-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BAK permeabilizes the mitochondrial outer membrane, causing apoptosis. This apoptotic activity of BAK is stimulated by binding prodeath activators within its canonical hydrophobic groove. Parkin, an E3 ubiquitin (Ub) ligase, can ubiquitinate BAK, which inhibits BAK apoptotic activity. However, the molecular mechanism underlying the inhibition of ubiquitination remains structurally uncharacterized. Here, we utilize truncated and soluble BAK to construct a mimetic of K113-ubiquitinated BAK (disulfide-linked UbG76C ~ BAKK113C) and further present its NMR-derived structure model. The classical L8-I44-H68-V70 hydrophobic patch of the conjugated Ub subunit binds within the canonical hydrophobic groove of BAK. This Ub occludes the binding of prodeath BID activators in the groove and impairs BID-triggered BAK activation and membrane permeabilization. Reduced interaction between Ub and BAK subunits allows BID to activate K113-ubiquitinated BAK. These mechanistic insights suggest a nonsignaling function of Ub in that it directly antagonizes stimuli targeting Ub-modified proteins rather than by recruiting downstream partners for cellular messaging.
Collapse
Affiliation(s)
- Peng Cheng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuzhu Hou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingxing Bian
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueru Fang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanfang Rao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuo Cao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanjun Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuai Zhang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanke Chen
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xu Dong
- Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, 430074, China.
| | - Zhu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
15
|
Czabotar PE, Garcia-Saez AJ. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nat Rev Mol Cell Biol 2023; 24:732-748. [PMID: 37438560 DOI: 10.1038/s41580-023-00629-4] [Citation(s) in RCA: 225] [Impact Index Per Article: 112.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/14/2023]
Abstract
The proteins of the BCL-2 family are key regulators of mitochondrial apoptosis, acting as either promoters or inhibitors of cell death. The functional interplay and balance between the opposing BCL-2 family members control permeabilization of the outer mitochondrial membrane, leading to the release of activators of the caspase cascade into the cytosol and ultimately resulting in cell death. Despite considerable research, our knowledge about the mechanisms of the BCL-2 family of proteins remains insufficient, which complicates cell fate predictions and does not allow us to fully exploit these proteins as targets for drug discovery. Detailed understanding of the formation and molecular architecture of the apoptotic pore in the outer mitochondrial membrane remains a holy grail in the field, but new studies allow us to begin constructing a structural model of its arrangement. Recent literature has also revealed unexpected activities for several BCL-2 family members that challenge established concepts of how they regulate mitochondrial permeabilization. In this Review, we revisit the most important advances in the field and integrate them into a new structure-function-based classification of the BCL-2 family members that intends to provide a comprehensive model for BCL-2 action in apoptosis. We close this Review by discussing the potential of drugging the BCL-2 family in diseases characterized by aberrant apoptosis.
Collapse
Affiliation(s)
- Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Ana J Garcia-Saez
- Membrane Biophysics, Institute of Genetics, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
16
|
Wang H, Guo M, Wei H, Chen Y. Structural basis of the specificity and interaction mechanism of Bmf binding to pro-survival Bcl-2 family proteins. Comput Struct Biotechnol J 2023; 21:3760-3767. [PMID: 37560128 PMCID: PMC10407628 DOI: 10.1016/j.csbj.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/11/2023] Open
Abstract
The apoptotic pathway is regulated by protein-protein interactions between members of the Bcl-2 family. Pro-survival Bcl-2 family proteins act as cell guardians and protect cells against death. Selective binding and neutralization of BH3-only proteins with pro-survival Bcl-2 family proteins is critical for initiating apoptosis. In this study, the binding assay shows that the BH3 peptide derived from the BH3-only protein Bmf has a high affinity for the pro-survival proteins Bcl-2 and Bcl-xL, but a much lower affinity for Mcl-1. The complex structures of Bmf BH3 with Bcl-2, Bcl-xL and Mcl-1 reveal that the α-helical Bmf BH3 accommodates into the canonical groove of these pro-survival proteins, but the conformational changes and some interactions are different among the three complexes. Bmf BH3 forms conserved hydrophobic and salt bridge interactions with Bcl-2 and Bcl-xL, and also establishes several hydrogen bonds to support their binding. However, the highly conserved Asp-Arg salt bridge is not formed in the Mcl-1/Bmf BH3 complex, and few hydrogen bonds are observed. Furthermore, mutational analysis shows that substitutions of less-conserved residues in the α2-α3 region of these pro-survival Bcl-2 family proteins, as well as the highly conserved Arg, lead to significant changes in their binding affinity to Bmf BH3, while substitutions of less-conserved residues in Bmf BH3 have a more dramatic effect on its affinity to Mcl-1. This study provides structural insight into the specificity and interaction mechanism of Bmf BH3 binding to pro-survival Bcl-2 family proteins, and helps guide the design of BH3 mimics targeting pro-survival Bcl-2 family proteins.
Collapse
Affiliation(s)
- Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
17
|
Gonzalo Ó, Benedi A, Vela L, Anel A, Naval J, Marzo I. Study of the Bcl-2 Interactome by BiFC Reveals Differences in the Activation Mechanism of Bax and Bak. Cells 2023; 12:cells12050800. [PMID: 36899936 PMCID: PMC10000386 DOI: 10.3390/cells12050800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Evasion of apoptosis is one of the hallmarks of cancer cells. Proteins of the Bcl-2 family are key regulators of the intrinsic pathway of apoptosis, and alterations in some of these proteins are frequently found in cancer cells. Permeabilization of the outer mitochondrial membrane, regulated by pro- and antiapoptotic members of the Bcl-2 family of proteins, is essential for the release of apoptogenic factors leading to caspase activation, cell dismantlement, and death. Mitochondrial permeabilization depends on the formation of oligomers of the effector proteins Bax and Bak after an activation event mediated by BH3-only proteins and regulated by antiapoptotic members of the Bcl-2 family. In the present work, we have studied interactions between different members of the Bcl-2 family in living cells via the BiFC technique. Despite the limitations of this technique, present data suggest that native proteins of the Bcl-2 family acting inside living cells establish a complex network of interactions, which would fit nicely into "mixed" models recently proposed by others. Furthermore, our results point to differences in the regulation of Bax and Bak activation by proteins of the antiapoptotic and BH3-only subfamilies. We have also applied the BiFC technique to explore the different molecular models proposed for Bax and Bak oligomerization. Bax and Bak's mutants lacking the BH3 domain were still able to associate and give BiFC signals, suggesting the existence of alternative surfaces of interaction between two Bax or Bak molecules. These results agree with the widely accepted symmetric model for the dimerization of these proteins and also suggest that other regions, different from the α6 helix, could be involved in the oligomerization of BH3-in groove dimers.
Collapse
|
18
|
Dai H, Peterson KL, Flatten KS, Meng XW, Venkatachalam A, Correia C, Ramirez-Alvarado M, Pang YP, Kaufmann SH. A BAK subdomain that binds mitochondrial lipids selectively and releases cytochrome C. Cell Death Differ 2023; 30:794-808. [PMID: 36376382 PMCID: PMC9984382 DOI: 10.1038/s41418-022-01083-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
How BAK and BAX induce mitochondrial outer membrane (MOM) permeabilization (MOMP) during apoptosis is incompletely understood. Here we have used molecular dynamics simulations, surface plasmon resonance, and assays for membrane permeabilization in vitro and in vivo to assess the structure and function of selected BAK subdomains and their derivatives. Results of these studies demonstrate that BAK helical regions α5 and α6 bind the MOM lipid cardiolipin. While individual peptides corresponding to these helical regions lack the full biological activity of BAK, tandem peptides corresponding to α4-α5, α5-α6, or α6-α7/8 can localize exogenous proteins to mitochondria, permeabilize liposomes composed of MOM lipids, and cause MOMP in the absence of the remainder of the BAK protein. Importantly, the ability of these tandem helices to induce MOMP under cell-free conditions is diminished by mutations that disrupt the U-shaped helix-turn-helix structure of the tandem peptides or decrease their lipid binding. Likewise, BAK-induced apoptosis in intact cells is diminished by CLS1 gene interruption, which decreases mitochondrial cardiolipin content, or by BAK mutations that disrupt the U-shaped tandem peptide structure or diminish lipid binding. Collectively, these results suggest that BAK structural rearrangements during apoptosis might mobilize helices involved in specific protein-lipid interactions that are critical for MOMP.
Collapse
Affiliation(s)
- Haiming Dai
- Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Kevin L Peterson
- Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Karen S Flatten
- Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - X Wei Meng
- Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Cristina Correia
- Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Yuan-Ping Pang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Scott H Kaufmann
- Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
19
|
Huang AS, Chin HS, Reljic B, Djajawi TM, Tan IKL, Gong JN, Stroud DA, Huang DCS, van Delft MF, Dewson G. Mitochondrial E3 ubiquitin ligase MARCHF5 controls BAK apoptotic activity independently of BH3-only proteins. Cell Death Differ 2023; 30:632-646. [PMID: 36171332 PMCID: PMC9984372 DOI: 10.1038/s41418-022-01067-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/08/2022] Open
Abstract
Intrinsic apoptosis is principally governed by the BCL-2 family of proteins, but some non-BCL-2 proteins are also critical to control this process. To identify novel apoptosis regulators, we performed a genome-wide CRISPR-Cas9 library screen, and it identified the mitochondrial E3 ubiquitin ligase MARCHF5/MITOL/RNF153 as an important regulator of BAK apoptotic function. Deleting MARCHF5 in diverse cell lines dependent on BAK conferred profound resistance to BH3-mimetic drugs. The loss of MARCHF5 or its E3 ubiquitin ligase activity surprisingly drove BAK to adopt an activated conformation, with resistance to BH3-mimetics afforded by the formation of inhibitory complexes with pro-survival proteins MCL-1 and BCL-XL. Importantly, these changes to BAK conformation and pro-survival association occurred independently of BH3-only proteins and influence on pro-survival proteins. This study identifies a new mechanism by which MARCHF5 regulates apoptotic cell death by restraining BAK activating conformation change and provides new insight into how cancer cells respond to BH3-mimetic drugs. These data also highlight the emerging role of ubiquitin signalling in apoptosis that may be exploited therapeutically.
Collapse
Affiliation(s)
- Allan Shuai Huang
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Hui San Chin
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Boris Reljic
- Bio21 Molecular Science & Biotechnology Institute, 30 Flemington Road, Parkville, Melbourne, 3052, Australia
- Department of Biochemistry and Pharmacology Biology, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Tirta M Djajawi
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Iris K L Tan
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Jia-Nan Gong
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
- NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, the Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Disease, Beijing, China
| | - David A Stroud
- Bio21 Molecular Science & Biotechnology Institute, 30 Flemington Road, Parkville, Melbourne, 3052, Australia
- Department of Biochemistry and Pharmacology Biology, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
- Murdoch Children's Research Institute, The Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - David C S Huang
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Mark F van Delft
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia.
| | - Grant Dewson
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
20
|
Moldoveanu T. Apoptotic mitochondrial poration by a growing list of pore-forming BCL-2 family proteins. Bioessays 2023; 45:e2200221. [PMID: 36650950 PMCID: PMC9975053 DOI: 10.1002/bies.202200221] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
The pore-forming BCL-2 family proteins are effectors of mitochondrial poration in apoptosis initiation. Two atypical effectors-BOK and truncated BID (tBID)-join the canonical effectors BAK and BAX. Gene knockout revealed developmental phenotypes in the absence the effectors, supporting their roles in vivo. During apoptosis effectors are activated and change shape from dormant monomers to dynamic oligomers that associate with and permeabilize mitochondria. BID is activated by proteolysis, BOK accumulates on inhibition of its degradation by the E3 ligase gp78, while BAK and BAX undergo direct activation by BH3-only initiators, autoactivation, and crossactivation. Except tBID, effector oligomers on the mitochondria appear as arcs and rings in super-resolution microscopy images. The BH3-in-groove dimers of BAK and BAX, the tBID monomers, and uncharacterized BOK species are the putative building blocks of apoptotic pores. Effectors interact with lipids and bilayers but the mechanism of membrane poration remains elusive. I discuss effector-mediated mitochondrial poration.
Collapse
Affiliation(s)
- Tudor Moldoveanu
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences,Correspondence:
| |
Collapse
|
21
|
Barisch C, Holthuis JCM, Cosentino K. Membrane damage and repair: a thin line between life and death. Biol Chem 2023; 404:467-490. [PMID: 36810295 DOI: 10.1515/hsz-2022-0321] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
Bilayered membranes separate cells from their surroundings and form boundaries between intracellular organelles and the cytosol. Gated transport of solutes across membranes enables cells to establish vital ion gradients and a sophisticated metabolic network. However, an advanced compartmentalization of biochemical reactions makes cells also particularly vulnerable to membrane damage inflicted by pathogens, chemicals, inflammatory responses or mechanical stress. To avoid potentially lethal consequences of membrane injuries, cells continuously monitor the structural integrity of their membranes and readily activate appropriate pathways to plug, patch, engulf or shed the damaged membrane area. Here, we review recent insights into the cellular mechanisms that underly an effective maintenance of membrane integrity. We discuss how cells respond to membrane lesions caused by bacterial toxins and endogenous pore-forming proteins, with a primary focus on the intimate crosstalk between membrane proteins and lipids during wound formation, detection and elimination. We also discuss how a delicate balance between membrane damage and repair determines cell fate upon bacterial infection or activation of pro-inflammatory cell death pathways.
Collapse
Affiliation(s)
- Caroline Barisch
- Molecular Infection Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| | - Joost C M Holthuis
- Molecular Cell Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| | - Katia Cosentino
- Molecular Cell Biophysics Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| |
Collapse
|
22
|
Moujalled DM, Brown FC, Chua CC, Dengler MA, Pomilio G, Anstee NS, Litalien V, Thompson E, Morley T, MacRaild S, Tiong IS, Morris R, Dun K, Zordan A, Shah J, Banquet S, Halilovic E, Morris E, Herold MJ, Lessene G, Adams JM, Huang DCS, Roberts AW, Blombery P, Wei AH. Acquired mutations in BAX confer resistance to BH3-mimetic therapy in acute myeloid leukemia. Blood 2023; 141:634-644. [PMID: 36219880 PMCID: PMC10651776 DOI: 10.1182/blood.2022016090] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/18/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022] Open
Abstract
Randomized trials in acute myeloid leukemia (AML) have demonstrated improved survival by the BCL-2 inhibitor venetoclax combined with azacitidine in older patients, and clinical trials are actively exploring the role of venetoclax in combination with intensive chemotherapy in fitter patients with AML. As most patients still develop recurrent disease, improved understanding of relapse mechanisms is needed. We find that 17% of patients relapsing after venetoclax-based therapy for AML have acquired inactivating missense or frameshift/nonsense mutations in the apoptosis effector gene BAX. In contrast, such variants were rare after genotoxic chemotherapy. BAX variants arose within either leukemic or preleukemic compartments, with multiple mutations observed in some patients. In vitro, AML cells with mutated BAX were competitively selected during prolonged exposure to BCL-2 antagonists. In model systems, AML cells rendered deficient for BAX, but not its close relative BAK, displayed resistance to BCL-2 targeting, whereas sensitivity to conventional chemotherapy was variable. Acquired mutations in BAX during venetoclax-based therapy represent a novel mechanism of resistance to BH3-mimetics and a potential barrier to the long-term efficacy of drugs targeting BCL-2 in AML.
Collapse
Affiliation(s)
- Donia M. Moujalled
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- Department of Clinical Haematology, The Alfred, Melbourne, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Fiona C. Brown
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- Department of Clinical Haematology, The Alfred, Melbourne, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Chong Chyn Chua
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- Department of Clinical Haematology, The Alfred, Melbourne, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Michael A. Dengler
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Australia
| | - Giovanna Pomilio
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- Department of Clinical Haematology, The Alfred, Melbourne, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Natasha S. Anstee
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- Department of Clinical Haematology, The Alfred, Melbourne, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Veronique Litalien
- Department of Clinical Haematology, The Alfred, Melbourne, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | | | - Thomas Morley
- Department of Clinical Haematology, The Alfred, Melbourne, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Sarah MacRaild
- Department of Clinical Haematology, The Alfred, Melbourne, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Ing S. Tiong
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- Department of Clinical Haematology, The Alfred, Melbourne, Australia
- Department of Pathology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | - Rhiannon Morris
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Karen Dun
- Victorian Cancer and Cytogenetics Service, St. Vincent’s Hospital, Melbourne, Fitzroy, Australia
| | - Adrian Zordan
- Victorian Cancer and Cytogenetics Service, St. Vincent’s Hospital, Melbourne, Fitzroy, Australia
| | - Jaynish Shah
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Sebastien Banquet
- Oncology Research and Development Unit, Institut de Recherches International Servier, Paris, France
| | - Ensar Halilovic
- Novartis Institutes for BioMedical Research, Novartis, Cambridge, MA
| | - Erick Morris
- Novartis Institutes for BioMedical Research, Novartis, Cambridge, MA
| | - Marco J. Herold
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Guillaume Lessene
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Jerry M. Adams
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - David C. S. Huang
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Andrew W. Roberts
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- The University of Melbourne, Melbourne, Australia
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | | | - Andrew H. Wei
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- Department of Clinical Haematology, The Alfred, Melbourne, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- The University of Melbourne, Melbourne, Australia
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
23
|
Role of C-terminal domain of Mycobacterium tuberculosis PE6 (Rv0335c) protein in host mitochondrial stress and macrophage apoptosis. Apoptosis 2023; 28:136-165. [PMID: 36258102 PMCID: PMC9579591 DOI: 10.1007/s10495-022-01778-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 11/02/2022]
Abstract
PE/PPE proteins of Mycobacterium tuberculosis (Mtb) target the host organelles to dictate the outcome of infection. This study investigated the significance of PE6/Rv0335c protein's unique C-terminal in causing host mitochondrial perturbations and apoptosis. In-silico analysis revealed that similar to eukaryotic apoptotic Bcl2 proteins, Rv0335c had disordered, hydrophobic C-terminal and two BH3-like motifs in which one was located at C-terminal. Also, Rv0335c's N terminal had mitochondrial targeting sequence. Since, C-terminal of Bcl2 proteins are crucial for mitochondria targeting and apoptosis; it became relevant to evaluate the role of Rv0335c's C-terminal domain in modulating host mitochondrial functions and apoptosis. To confirm this, in-vitro experiments were conducted with Rv0335c whole protein and Rv0335c∆Cterm (C-terminal domain deleted Rv0335c) protein. Rv0335c∆Cterm caused significant reduction in mitochondrial perturbations and Caspase-mediated apoptosis of THP1 macrophages in comparison to Rv0335c. However, the deletion of C-terminal domain didn't affect Rv0335c's ability to localize to mitochondria. Nine Ca2+ binding residues were predicted within Rv0335c and four of them were at the C-terminal. In-vitro studies confirmed that Rv0335c caused significant increase in intracellular calcium influx whereas Rv0335c∆Cterm had insignificant effect on Ca2+ influx. Rv0335c has been reported to be a TLR4 agonist and, we observed a significant reduction in the expression of TLR4-HLA-DR-TNF-α in response to Rv0335c∆Cterm protein also suggesting the role of Rv0335c's C-terminal domain in host-pathogen interaction. These findings indicate the possibility of Rv0335c as a molecular mimic of eukaryotic Bcl2 proteins which equips it to cause host mitochondrial perturbations and apoptosis that may facilitate pathogen persistence.
Collapse
|
24
|
Li Y, Pang J, Wang J, Dai G, Bo Q, Wang X, Wang W. Knockdown of PDCD4 ameliorates neural cell apoptosis and mitochondrial injury through activating the PI3K/AKT/mTOR signal in Parkinson's disease. J Chem Neuroanat 2023; 129:102239. [PMID: 36736747 DOI: 10.1016/j.jchemneu.2023.102239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a complex neurodegenerative disorder and hampers normal living. It has been reported that programmed cell death 4 (PDCD4) is associated with tumor suppression, inflammatory response, and apoptosis. OBJECTIVE The aim of this study was to investigate the role of PDCD4 in PD. METHODS The in vivo and in vitro PD models were established by MPTP-induced mice and MMP+ stimulated MN9D cells, respectively. The expression of PDCD4 was detected by western blot. The MN9D cell viability and apoptosis were determined by MTT and flow cytometry assay. Moreover, the MN9D cell mitochondrial injury was evaluated by JC-1 staining. RESULTS In this study, PDCD4 was highly expressed in brain tissue of MPTP-induced PD mouse model. In a loss-function experiments, knockdown of PDCD4 promoted MN9D cell viability and allayed MPP+-triggered MN9D cell apoptosis. Furthermore, knockdown of PDCD4 ameliorated MPP+-evoked MN9D cell mitochondrial injury. Mechanically, knockdown of PDCD4 abolished the effect of MMP+ stimulation via activating phosphoinositide 3-kinase(PI3K)/AKT/mammalian target of rapamycin (mTOR) signal. Notably, the protective effects of shPDCD4 on cell apoptosis and mitochondrial injury were suppressed by PI3K inhibitor LY294002. CONCLUSION In summary,knockdown of PDCD4 ameliorates neural cell apoptosis and mitochondrial injury through activating the PI3K/AKT/mTOR signal, providing a novel target for PD treatment. AVAILABILITY OF DATA AND MATERIALS All data generated or analyzed during this study are included in this published article.
Collapse
Affiliation(s)
- Yanmin Li
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiangzhuang, Hebei 050031, China; Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, Hebei, 050031, China.
| | - Jianmin Pang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiangzhuang, Hebei 050031, China
| | - Jing Wang
- Department of Respiratory Medicine, Harrison International Peace Hospital, Hengshui, Hebei 053000, China
| | - Guining Dai
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiangzhuang, Hebei 050031, China; Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, Hebei, 050031, China
| | - Qianlan Bo
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiangzhuang, Hebei 050031, China; Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, Hebei, 050031, China
| | - Xiayue Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiangzhuang, Hebei 050031, China; Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, Hebei, 050031, China
| | - Wei Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiangzhuang, Hebei 050031, China; Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, Hebei, 050031, China
| |
Collapse
|
25
|
Nainu F, Ophinni Y, Shiratsuchi A, Nakanishi Y. Apoptosis and Phagocytosis as Antiviral Mechanisms. Subcell Biochem 2023; 106:77-112. [PMID: 38159224 DOI: 10.1007/978-3-031-40086-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Viruses are infectious entities that make use of the replication machinery of their hosts to produce more progenies, causing disease and sometimes death. To counter viral infection, metazoan hosts are equipped with various defense mechanisms, from the rapid-evoking innate immune responses to the most advanced adaptive immune responses. Previous research demonstrated that cells in fruit flies and mice infected with Drosophila C virus and influenza, respectively, undergo apoptosis, which triggers the engulfment of apoptotic virus-infected cells by phagocytes. This process involves the recognition of eat-me signals on the surface of virus-infected cells by receptors of specialized phagocytes, such as macrophages and neutrophils in mice and hemocytes in fruit flies, to facilitate the phagocytic elimination of virus-infected cells. Inhibition of phagocytosis led to severe pathologies and death in both species, indicating that apoptosis-dependent phagocytosis of virus-infected cells is a conserved antiviral mechanism in multicellular organisms. Indeed, our understanding of the mechanisms underlying apoptosis-dependent phagocytosis of virus-infected cells has shed a new perspective on how hosts defend themselves against viral infection. This chapter explores the mechanisms of this process and its potential for developing new treatments for viral diseases.
Collapse
Affiliation(s)
- Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia.
| | - Youdiil Ophinni
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
- Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Akiko Shiratsuchi
- Center for Medical Education, Sapporo Medical University, Sapporo, Japan
- Division of Biological Function and Regulation, Graduate School of Medicine, Sapporo Medical University, Sapporo, Japan
| | | |
Collapse
|
26
|
Pore-forming proteins as drivers of membrane permeabilization in cell death pathways. Nat Rev Mol Cell Biol 2022; 24:312-333. [PMID: 36543934 DOI: 10.1038/s41580-022-00564-w] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/24/2022]
Abstract
Regulated cell death (RCD) relies on activation and recruitment of pore-forming proteins (PFPs) that function as executioners of specific cell death pathways: apoptosis regulator BAX (BAX), BCL-2 homologous antagonist/killer (BAK) and BCL-2-related ovarian killer protein (BOK) for apoptosis, gasdermins (GSDMs) for pyroptosis and mixed lineage kinase domain-like protein (MLKL) for necroptosis. Inactive precursors of PFPs are converted into pore-forming entities through activation, membrane recruitment, membrane insertion and oligomerization. These mechanisms involve protein-protein and protein-lipid interactions, proteolytic processing and phosphorylation. In this Review, we discuss the structural rearrangements incurred by RCD-related PFPs and describe the mechanisms that manifest conversion from autoinhibited to membrane-embedded molecular states. We further discuss the formation and maturation of membrane pores formed by BAX/BAK/BOK, GSDMs and MLKL, leading to diverse pore architectures. Lastly, we highlight commonalities and differences of PFP mechanisms involving BAX/BAK/BOK, GSDMs and MLKL and conclude with a discussion on how, in a population of challenged cells, the coexistence of cell death modalities may have profound physiological and pathophysiological implications.
Collapse
|
27
|
Flores‐Romero H, Hohorst L, John M, Albert M, King LE, Beckmann L, Szabo T, Hertlein V, Luo X, Villunger A, Frenzel LP, Kashkar H, Garcia‐Saez AJ. BCL-2-family protein tBID can act as a BAX-like effector of apoptosis. EMBO J 2022; 41:e108690. [PMID: 34931711 PMCID: PMC8762556 DOI: 10.15252/embj.2021108690] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
During apoptosis, the BCL-2-family protein tBID promotes mitochondrial permeabilization by activating BAX and BAK and by blocking anti-apoptotic BCL-2 members. Here, we report that tBID can also mediate mitochondrial permeabilization by itself, resulting in release of cytochrome c and mitochondrial DNA, caspase activation and apoptosis even in absence of BAX and BAK. This previously unrecognized activity of tBID depends on helix 6, homologous to the pore-forming regions of BAX and BAK, and can be blocked by pro-survival BCL-2 proteins. Importantly, tBID-mediated mitochondrial permeabilization independent of BAX and BAK is physiologically relevant for SMAC release in the immune response against Shigella infection. Furthermore, it can be exploited to kill leukaemia cells with acquired venetoclax resistance due to lack of active BAX and BAK. Our findings define tBID as an effector of mitochondrial permeabilization in apoptosis and provide a new paradigm for BCL-2 proteins, with implications for anti-bacterial immunity and cancer therapy.
Collapse
Affiliation(s)
- Hector Flores‐Romero
- Institute for GeneticsUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Interfaculty Institute of BiochemistryEberhard‐Karls‐Universität TübingenTübingenGermany
| | - Lisa Hohorst
- Institute for GeneticsUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Malina John
- Interfaculty Institute of BiochemistryEberhard‐Karls‐Universität TübingenTübingenGermany
| | - Marie‐Christine Albert
- Institute for Molecular Immunology, and Center for Molecular Medicine Cologne (CMMC)Faculty of MedicineUniversity Hospital of CologneUniversity of CologneCologneGermany
| | - Louise E King
- Institute for GeneticsUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Laura Beckmann
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Department I of Internal MedicineUniversity Hospital of CologneCologneGermany
- Center of Integrated Oncology ABCDUniversity Hospital of CologneCologneGermany
| | - Tamas Szabo
- Division of Developmental ImmunologyBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Vanessa Hertlein
- Interfaculty Institute of BiochemistryEberhard‐Karls‐Universität TübingenTübingenGermany
- Present address:
Children Cancer Research Institute (CCRI)ViennaAustria
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied DiseasesFred & Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaMEUSA
- Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Andreas Villunger
- Division of Developmental ImmunologyBiocenterMedical University of InnsbruckInnsbruckAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
| | - Lukas P Frenzel
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Department I of Internal MedicineUniversity Hospital of CologneCologneGermany
- Center of Integrated Oncology ABCDUniversity Hospital of CologneCologneGermany
| | - Hamid Kashkar
- Institute for Molecular Immunology, and Center for Molecular Medicine Cologne (CMMC)Faculty of MedicineUniversity Hospital of CologneUniversity of CologneCologneGermany
| | - Ana J Garcia‐Saez
- Institute for GeneticsUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Interfaculty Institute of BiochemistryEberhard‐Karls‐Universität TübingenTübingenGermany
| |
Collapse
|
28
|
Mechanism of selective induction of apoptosis of HCT116 tumor cells in circulating blood by riboflavin photochemistry. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B: BIOLOGY 2022; 237:112588. [DOI: 10.1016/j.jphotobiol.2022.112588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/28/2022]
|
29
|
Sekar G, Singh G, Qin X, Guibao CD, Schwam B, Inde Z, Grace CR, Zhang W, Slavish PJ, Lin W, Chen T, Lee RE, Rankovic Z, Sarosiek K, Moldoveanu T. Small molecule SJ572946 activates BAK to initiate apoptosis. iScience 2022; 25:105064. [PMID: 36147946 PMCID: PMC9485059 DOI: 10.1016/j.isci.2022.105064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/29/2022] [Accepted: 08/30/2022] [Indexed: 01/11/2023] Open
Abstract
Poration of the outer mitochondrial membrane by the effector BCL-2 proteins BAK and BAX initiates apoptosis. BH3-only initiators BID and BIM trigger conformational changes in BAK and BAX transforming them from globular dormant proteins to oligomers of the apoptotic pores. Small molecules that can directly activate effectors are being sought for applications in cancer treatment. Here, we describe the small molecule SJ572946, discovered in a fragment-based screen that binds to the activation groove of BAK and selectively triggers BAK activation over that of BAX in liposome and mitochondrial permeabilization assays. SJ572946 independently kills BAK-expressing BCL2allKO HCT116 cells revealing on target cellular activity. In combination with apoptotic inducers and BH3 mimetics, SJ572946 kills experimental cancer cell lines. SJ572946 also cooperates with the endogenous BAK activator BID in activating a misfolded BAK mutant substantially impaired in activation. SJ572946 is a proof-of-concept tool for probing BAK-mediated apoptosis in preclinical cancer research.
Collapse
Affiliation(s)
- Giridhar Sekar
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Geetika Singh
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Children’s GMP, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Xingping Qin
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston,02115 MA, USA
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, Boston, 02115 MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston,02115 MA, USA
| | - Cristina D. Guibao
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Brittany Schwam
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Zintis Inde
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston,02115 MA, USA
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, Boston, 02115 MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston,02115 MA, USA
| | - Christy R. Grace
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Weixing Zhang
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - P. Jake Slavish
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Richard E. Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Kristopher Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston,02115 MA, USA
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, Boston, 02115 MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston,02115 MA, USA
| | - Tudor Moldoveanu
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Roeck, AR 72205, USA
| |
Collapse
|
30
|
Wolf P, Schoeniger A, Edlich F. Pro-apoptotic complexes of BAX and BAK on the outer mitochondrial membrane. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119317. [PMID: 35752202 DOI: 10.1016/j.bbamcr.2022.119317] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/02/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
In multicellular organisms the regulated cell death apoptosis is critically important for both ontogeny and homeostasis. Mitochondria are indispensable for stress-induced apoptosis. The BCL-2 protein family controls mitochondrial apoptosis and initiates cell death through the pro-apoptotic activities of BAX and BAK at the outer mitochondrial membrane (OMM). Cellular survival is ensured by the retrotranslocation of mitochondrial BAX and BAK into the cytosol by anti-apoptotic BCL-2 proteins. BAX/BAK-dependent OMM permeabilization releases the mitochondrial cytochrome c (cyt c), which initiates activation of caspase-9. The caspase cascade leads to cell shrinkage, plasma membrane blebbing, chromatin condensation, and apoptotic body formation. Although it is clear that ultimately complexes of active BAX and BAK commit the cell to apoptosis, the nature of these complexes is still enigmatic. Excessive research has described a range of complexes, varying from a few molecules to several 10,000, in different systems. BAX/BAK complexes potentially form ring-like structures that could expose the inner mitochondrial membrane. It has been suggested that these pores allow the efflux of small proteins and even mitochondrial DNA. Here we summarize the current state of knowledge for mitochondrial BAX/BAK complexes and the interactions between these proteins and the membrane.
Collapse
Affiliation(s)
- Philipp Wolf
- Institute of Biochemistry, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Axel Schoeniger
- Institute of Biochemistry, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Frank Edlich
- Institute of Biochemistry, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
31
|
Chlamydia trachomatis inhibits apoptosis in infected cells by targeting the pro-apoptotic proteins Bax and Bak. Cell Death Differ 2022; 29:2046-2059. [PMID: 35397654 PMCID: PMC9525694 DOI: 10.1038/s41418-022-00995-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractApoptosis acts in defense against microbial infection, and many infectious agents have developed strategies to inhibit host cell apoptosis. The human pathogen Chlamydia trachomatis (Ctr) is an obligate intracellular bacterium that strongly inhibits mitochondrial apoptosis of its human host cell but there is no agreement how the bacteria achieve this. We here provide a molecular analysis of chlamydial apoptosis-inhibition in infected human cells and demonstrate that the block of apoptosis occurs during the activation of the effectors of mitochondrial apoptosis, Bak and Bax. We use small-molecule Bcl-2-family inhibitors and gene targeting to show that previous models cannot explain the anti-apoptotic effect of chlamydial infection. Although the anti-apoptotic Bcl-2-family protein Mcl-1 was strongly upregulated upon infection, Mcl-1-deficient cells and cells where Mcl-1 was pharmacologically inactivated were still protected. Ctr-infection could inhibit both Bax- and Bak-induced apoptosis. Apoptotic Bax-oligomerization and association with the outer mitochondrial membrane was reduced upon chlamydial infection. Infection further inhibited apoptosis induced conformational changes of Bak, as evidenced by changes to protease sensitivity, oligomerization and release from the mitochondrial porin VDAC2. Mitochondria isolated from Ctr-infected cells were protected against the pro-apoptotic Bcl-2-family proteins Bim and tBid but this protection was lost upon protease digestion. However, the protective effect of Ctr-infection was reduced in cells lacking the Bax/Bak-regulator VDAC2. We further found that OmpA, a porin of the outer membrane of Ctr, associated upon experimental expression with mitochondria and inhibited apoptosis, phenocopying the effect of the infection. These results identify a novel way of apoptosis inhibition, involving only the most downstream modulator of mitochondrial apoptosis and suggest that Chlamydia has a protein dedicated to the inhibition of apoptosis to secure its survival in human cells.
Collapse
|
32
|
Robin AY, Miller MS, Iyer S, Shi MX, Wardak AZ, Lio D, Smith NA, Smith BJ, Birkinshaw RW, Czabotar PE, Kluck RM, Colman PM. Structure of the BAK-activating antibody 7D10 bound to BAK reveals an unexpected role for the α1-α2 loop in BAK activation. Cell Death Differ 2022; 29:1757-1768. [PMID: 35279694 PMCID: PMC9433411 DOI: 10.1038/s41418-022-00961-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 11/08/2022] Open
Abstract
Pro-apoptotic BAK and BAX are activated by BH3-only proteins to permeabilise the outer mitochondrial membrane. The antibody 7D10 also activates BAK on mitochondria and its epitope has previously been mapped to BAK residues in the loop connecting helices α1 and α2 of BAK. A crystal structure of the complex between the Fv fragment of 7D10 and the BAK mutant L100A suggests a possible mechanism of activation involving the α1-α2 loop residue M60. M60 mutants of BAK have reduced stability and elevated sensitivity to activation by BID, illustrating that M60, through its contacts with residues in helices α1, α5 and α6, is a linchpin stabilising the inert, monomeric structure of BAK. Our data demonstrate that BAK's α1-α2 loop is not a passive covalent connector between secondary structure elements, but a direct restraint on BAK's activation.
Collapse
Affiliation(s)
- Adeline Y Robin
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Michelle S Miller
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Sweta Iyer
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Melissa X Shi
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Ahmad Z Wardak
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Daisy Lio
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Nicholas A Smith
- Department of Chemistry and Physics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Brian J Smith
- Department of Chemistry and Physics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Richard W Birkinshaw
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Peter E Czabotar
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Ruth M Kluck
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.
| | - Peter M Colman
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
33
|
Ke FS, Holloway S, Uren RT, Wong AW, Little MH, Kluck RM, Voss AK, Strasser A. The BCL-2 family member BID plays a role during embryonic development in addition to its BH3-only protein function by acting in parallel to BAX, BAK and BOK. EMBO J 2022; 41:e110300. [PMID: 35758142 PMCID: PMC9340487 DOI: 10.15252/embj.2021110300] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/31/2022] Open
Abstract
The intrinsic apoptosis pathway, regulated by the BCL-2 protein family, is essential for embryonic development. Using mice lacking all known apoptosis effectors, BAX, BAK and BOK, we have previously defined the processes during development that require apoptosis. Rare Bok-/- Bax-/- Bak-/- triple knockout (TKO) mice developed to adulthood and several tissues that were thought to require apoptosis during development appeared normal. This raises the question if all apoptosis had been abolished in the TKO mice or if other BCL-2 family members could act as effectors of apoptosis. Here, we investigated the role of BID, generally considered to link the extrinsic and intrinsic apoptosis pathways, acting as a BH3-only protein initiating apoptosis upstream of BAX and BAK. We found that Bok-/- Bax-/- Bak-/- Bid-/- quadruple knockout (QKO) mice have additional developmental anomalies compared to TKO mice, consistent with a role of BID, not only upstream but also in parallel to BAX, BAK and BOK. Mitochondrial experiments identified a small cytochrome c-releasing activity of full-length BID. Collectively, these findings suggest a new effector role for BID in the intrinsic apoptosis pathway.
Collapse
Affiliation(s)
- Francine S Ke
- The Walter and Eliza Hall Institute of Medical Research (WEHI)MelbourneVicAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVicAustralia
| | - Steven Holloway
- The Walter and Eliza Hall Institute of Medical Research (WEHI)MelbourneVicAustralia
| | - Rachel T Uren
- The Walter and Eliza Hall Institute of Medical Research (WEHI)MelbourneVicAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVicAustralia
| | - Agnes W Wong
- The Walter and Eliza Hall Institute of Medical Research (WEHI)MelbourneVicAustralia
| | - Melissa H Little
- Department of PaediatricsUniversity of MelbourneMelbourneVicAustralia
- Murdoch Children's Medical Research InstituteMelbourneVicAustralia
| | - Ruth M Kluck
- The Walter and Eliza Hall Institute of Medical Research (WEHI)MelbourneVicAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVicAustralia
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research (WEHI)MelbourneVicAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVicAustralia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research (WEHI)MelbourneVicAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVicAustralia
| |
Collapse
|
34
|
Athanasopoulou K, Adamopoulos PG, Daneva GN, Scorilas A. Decoding the concealed transcriptional signature of the apoptosis-related BCL2 antagonist/killer 1 (BAK1) gene in human malignancies. Apoptosis 2022; 27:869-882. [DOI: 10.1007/s10495-022-01753-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 11/29/2022]
|
35
|
Sora V, Papaleo E. Structural Details of BH3 Motifs and BH3-Mediated Interactions: an Updated Perspective. Front Mol Biosci 2022; 9:864874. [PMID: 35685242 PMCID: PMC9171138 DOI: 10.3389/fmolb.2022.864874] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
Apoptosis is a mechanism of programmed cell death crucial in organism development, maintenance of tissue homeostasis, and several pathogenic processes. The B cell lymphoma 2 (BCL2) protein family lies at the core of the apoptotic process, and the delicate balance between its pro- and anti-apoptotic members ultimately decides the cell fate. BCL2 proteins can bind with each other and several other biological partners through the BCL2 homology domain 3 (BH3), which has been also classified as a possible Short Linear Motif and whose distinctive features remain elusive even after decades of studies. Here, we aim to provide an updated overview of the structural features characterizing BH3s and BH3-mediated interactions (with a focus on human proteins), elaborating on the plasticity of BCL2 proteins and the motif properties. We also discussed the implication of these findings for the discovery of interactors of the BH3-binding groove of BCL2 proteins and the design of mimetics for therapeutic purposes.
Collapse
Affiliation(s)
- Valentina Sora
- Cancer Structural Biology, Danish Cancer Society Research Center, Copenhagen, Denmark
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Elena Papaleo
- Cancer Structural Biology, Danish Cancer Society Research Center, Copenhagen, Denmark
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Elena Papaleo, ,
| |
Collapse
|
36
|
Protein-protein and protein-lipid interactions of pore-forming BCL-2 family proteins in apoptosis initiation. Biochem Soc Trans 2022; 50:1091-1103. [PMID: 35521828 DOI: 10.1042/bst20220323] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 01/26/2023]
Abstract
Apoptosis is a common cell death program that is important in human health and disease. Signaling in apoptosis is largely driven through protein-protein interactions. The BCL-2 family proteins function in protein-protein interactions as key regulators of mitochondrial poration, the process that initiates apoptosis through the release of cytochrome c, which activates the apoptotic caspase cascade leading to cellular demolition. The BCL-2 pore-forming proteins BAK and BAX are the key executors of mitochondrial poration. We review the state of knowledge of protein-protein and protein-lipid interactions governing the apoptotic function of BAK and BAX, as determined through X-ray crystallography and NMR spectroscopy studies. BAK and BAX are dormant, globular α-helical proteins that participate in protein-protein interactions with other pro-death BCL-2 family proteins, transforming them into active, partially unfolded proteins that dimerize and associate with and permeabilize mitochondrial membranes. We compare the protein-protein interactions observed in high-resolution structures with those derived in silico by AlphaFold, making predictions based on combining experimental and in silico approaches to delineate the structural basis for novel protein-protein interaction complexes of BCL-2 family proteins.
Collapse
|
37
|
Singh G, Guibao CD, Seetharaman J, Aggarwal A, Grace CR, McNamara DE, Vaithiyalingam S, Waddell MB, Moldoveanu T. Structural basis of BAK activation in mitochondrial apoptosis initiation. Nat Commun 2022; 13:250. [PMID: 35017502 PMCID: PMC8752837 DOI: 10.1038/s41467-021-27851-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 12/14/2021] [Indexed: 12/31/2022] Open
Abstract
BCL-2 proteins regulate mitochondrial poration in apoptosis initiation. How the pore-forming BCL-2 Effector BAK is activated remains incompletely understood mechanistically. Here we investigate autoactivation and direct activation by BH3-only proteins, which cooperate to lower BAK threshold in membrane poration and apoptosis initiation. We define in trans BAK autoactivation as the asymmetric “BH3-in-groove” triggering of dormant BAK by active BAK. BAK autoactivation is mechanistically similar to direct activation. The structure of autoactivated BAK BH3-BAK complex reveals the conformational changes leading to helix α1 destabilization, which is a hallmark of BAK activation. Helix α1 is destabilized and restabilized in structures of BAK engaged by rationally designed, high-affinity activating and inactivating BID-like BH3 ligands, respectively. Altogether our data support the long-standing hit-and-run mechanism of BAK activation by transient binding of BH3-only proteins, demonstrating that BH3-induced structural changes are more important in BAK activation than BH3 ligand affinity. The authors show that the mechanism of BAK activation in mitochondrial apoptosis involves cooperation between direct activation by BH3-only protein BID and BAK autoactivation, providing a unifying basis for BAK triggering by BH3 ligands.
Collapse
Affiliation(s)
- Geetika Singh
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA.,Integrative Biomedical Sciences Program, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA
| | - Cristina D Guibao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jayaraman Seetharaman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anup Aggarwal
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christy R Grace
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dan E McNamara
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - M Brett Waddell
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tudor Moldoveanu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA. .,Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
38
|
Shanmugam MK, Sethi G. Molecular mechanisms of cell death. MECHANISMS OF CELL DEATH AND OPPORTUNITIES FOR THERAPEUTIC DEVELOPMENT 2022:65-92. [DOI: 10.1016/b978-0-12-814208-0.00002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
39
|
Dai H, Meng XW, Ye K, Jia J, Kaufmann SH. Therapeutics targeting BCL2 family proteins. MECHANISMS OF CELL DEATH AND OPPORTUNITIES FOR THERAPEUTIC DEVELOPMENT 2022:197-260. [DOI: 10.1016/b978-0-12-814208-0.00007-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
40
|
Senichkin VV, Pervushin NV, Zamaraev AV, Sazonova EV, Zuev AP, Streletskaia AY, Prikazchikova TA, Zatsepin TS, Kovaleva OV, Tchevkina EM, Zhivotovsky B, Kopeina GS. Bak and Bcl-xL Participate in Regulating Sensitivity of Solid Tumor Derived Cell Lines to Mcl-1 Inhibitors. Cancers (Basel) 2021; 14:cancers14010181. [PMID: 35008345 PMCID: PMC8750033 DOI: 10.3390/cancers14010181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Apoptosis is one of the best-known types of programmed cell death. This process is regulated by a number of genes and proteins, among which the Bcl-2 protein family plays a key role. This family includes anti- and proapoptotic proteins. Cancer cell resistance to apoptosis is commonly associated with overexpression of the antiapoptotic members of Bcl-2 family proteins, in particular, Bcl-2, Bcl-xL, and Mcl-1. Subsequently, these proteins represent perspective targets for anticancer therapy. Here, using an inhibitory approach, we found that Bak and Bcl-xL regulate sensitivity of cancer cells to Mcl-1 inhibition. Abstract BH3 mimetics represent a promising tool in cancer treatment. Recently, the drugs targeting the Mcl-1 protein progressed into clinical trials, and numerous studies are focused on the investigation of their activity in various preclinical models. We investigated two BH3 mimetics to Mcl-1, A1210477 and S63845, and found their different efficacies in on-target doses, despite the fact that both agents interacted with the target. Thus, S63845 induced apoptosis more effectively through a Bak-dependent mechanism. There was an increase in the level of Bcl-xL protein in cells with acquired resistance to Mcl-1 inhibition. Cell lines sensitive to S63845 demonstrated low expression of Bcl-xL. Tumor tissues from patients with lung adenocarcinoma were characterized by decreased Bcl-xL and increased Bak levels of both mRNA and proteins. Concomitant inhibition of Bcl-xL and Mcl-1 demonstrated dramatic cytotoxicity in six of seven studied cell lines. We proposed that co-targeting Bcl-xL and Mcl-1 might lead to a release of Bak, which cannot be neutralized by other anti-apoptotic proteins. Surprisingly, in Bak-knockout cells, inhibition of Mcl-1 and Bcl-xL still resulted in pronounced cell death, arguing against a sole role of Bak in the studied phenomenon. We demonstrate that Bak and Bcl-xL are co-factors for, respectively, sensitivity and resistance to Mcl-1 inhibition.
Collapse
Affiliation(s)
- Viacheslav V. Senichkin
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (V.V.S.); (N.V.P.); (A.V.Z.); (E.V.S.); (A.P.Z.); (A.Y.S.)
| | - Nikolay V. Pervushin
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (V.V.S.); (N.V.P.); (A.V.Z.); (E.V.S.); (A.P.Z.); (A.Y.S.)
| | - Alexey V. Zamaraev
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (V.V.S.); (N.V.P.); (A.V.Z.); (E.V.S.); (A.P.Z.); (A.Y.S.)
| | - Elena V. Sazonova
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (V.V.S.); (N.V.P.); (A.V.Z.); (E.V.S.); (A.P.Z.); (A.Y.S.)
| | - Anton P. Zuev
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (V.V.S.); (N.V.P.); (A.V.Z.); (E.V.S.); (A.P.Z.); (A.Y.S.)
| | - Alena Y. Streletskaia
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (V.V.S.); (N.V.P.); (A.V.Z.); (E.V.S.); (A.P.Z.); (A.Y.S.)
| | | | - Timofei S. Zatsepin
- Skolkovo Institute of Science and Technology, 121205 Skolkovo, Russia; (T.A.P.); (T.S.Z.)
- Faculty of Chemistry, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga V. Kovaleva
- NN Blokhin Russian Cancer Research Center, Department of Oncogenes Regulation, 115478 Moscow, Russia; (O.V.K.); (E.M.T.)
| | - Elena M. Tchevkina
- NN Blokhin Russian Cancer Research Center, Department of Oncogenes Regulation, 115478 Moscow, Russia; (O.V.K.); (E.M.T.)
| | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (V.V.S.); (N.V.P.); (A.V.Z.); (E.V.S.); (A.P.Z.); (A.Y.S.)
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
- Correspondence: (B.Z.); (G.S.K.)
| | - Gelina S. Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (V.V.S.); (N.V.P.); (A.V.Z.); (E.V.S.); (A.P.Z.); (A.Y.S.)
- Correspondence: (B.Z.); (G.S.K.)
| |
Collapse
|
41
|
Bui ATN, Son H, Park S, Oh S, Kim JS, Cho JH, Hwang HJ, Kim JH, Yi GS, Chi SW. Artificial intelligence-based identification of octenidine as a Bcl-xL inhibitor. Biochem Biophys Res Commun 2021; 588:97-103. [PMID: 34953212 DOI: 10.1016/j.bbrc.2021.12.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/16/2021] [Indexed: 11/18/2022]
Abstract
Apoptosis plays an essential role in maintaining cellular homeostasis and preventing cancer progression. Bcl-xL, an anti-apoptotic protein, is an important modulator of the mitochondrial apoptosis pathway and is a promising target for anticancer therapy. In this study, we identified octenidine as a novel Bcl-xL inhibitor through structural feature-based deep learning and molecular docking from a library of approved drugs. The NMR experiments demonstrated that octenidine binds to the Bcl-2 homology 3 (BH3) domain-binding hydrophobic region that consists of the BH1, BH2, and BH3 domains in Bcl-xL. A structural model of the Bcl-xL/octenidine complex revealed that octenidine binds to Bcl-xL in a similar manner to that of the well-known Bcl-2 family protein antagonist ABT-737. Using the NanoBiT protein-protein interaction system, we confirmed that the interaction between Bcl-xL and Bak-BH3 domains within cells was inhibited by octenidine. Furthermore, octenidine inhibited the proliferation of MCF-7 breast and H1299 lung cancer cells by promoting apoptosis. Taken together, our results shed light on a novel mechanism in which octenidine directly targets anti-apoptotic Bcl-xL to trigger mitochondrial apoptosis in cancer cells.
Collapse
Affiliation(s)
- Anh Thi Ngoc Bui
- Disease Target Structure Research Center, KRIBB, Daejeon, 31441, Republic of Korea
| | - Hyojin Son
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Seulki Park
- Disease Target Structure Research Center, KRIBB, Daejeon, 31441, Republic of Korea
| | - Sohee Oh
- Disease Target Structure Research Center, KRIBB, Daejeon, 31441, Republic of Korea
| | - Jin-Sik Kim
- Disease Target Structure Research Center, KRIBB, Daejeon, 31441, Republic of Korea
| | - Jin Hwa Cho
- Disease Target Structure Research Center, KRIBB, Daejeon, 31441, Republic of Korea
| | - Hye-Jin Hwang
- Disease Target Structure Research Center, KRIBB, Daejeon, 31441, Republic of Korea; Department of Proteome Structural Biology, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jeong-Hoon Kim
- Disease Target Structure Research Center, KRIBB, Daejeon, 31441, Republic of Korea; Department of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea; Graduate School of New Drug Discovery and Development, Chungnam National University, Republic of Korea.
| | - Gwan-Su Yi
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea.
| | - Seung-Wook Chi
- Disease Target Structure Research Center, KRIBB, Daejeon, 31441, Republic of Korea; Department of Proteome Structural Biology, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
42
|
Apoptosis, Pyroptosis, and Necroptosis-Oh My! The Many Ways a Cell Can Die. J Mol Biol 2021; 434:167378. [PMID: 34838807 DOI: 10.1016/j.jmb.2021.167378] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/12/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022]
Abstract
Cell death is an essential process in all living organisms and occurs through different mechanisms. The three main types of programmed cell death are apoptosis, pyroptosis, and necroptosis, and each of these pathways employs complex molecular and cellular mechanisms. Although there are mechanisms and outcomes specific to each pathway, they share common components and features. In this review, we discuss recent discoveries in these three best understood modes of cell death, highlighting their singularities, and examining the intriguing notion that common players shape different individual pathways in this highly interconnected and coordinated cell death system. Understanding the similarities and differences of these cell death processes is crucial to enable targeted strategies to manipulate these pathways for therapeutic benefit.
Collapse
|
43
|
Speir M, Chan AH, Simpson DS, Khan T, Saunders TL, Poon IK, Atkin-Smith GK. The Australasian Cell Death Society (ACDS): celebrating 50 years of Australasian cell death research. Immunol Cell Biol 2021; 100:9-14. [PMID: 34761822 DOI: 10.1111/imcb.12510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Mary Speir
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Amy H Chan
- Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research, The University of Queensland, St Lucia, QLD, Australia
| | - Daniel S Simpson
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Tashbib Khan
- Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA, USA
| | - Tahnee L Saunders
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ivan Kh Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Georgia K Atkin-Smith
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
44
|
Townsend PA, Kozhevnikova MV, Cexus ONF, Zamyatnin AA, Soond SM. BH3-mimetics: recent developments in cancer therapy. J Exp Clin Cancer Res 2021; 40:355. [PMID: 34753495 PMCID: PMC8576916 DOI: 10.1186/s13046-021-02157-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 01/11/2023] Open
Abstract
The hopeful outcomes from 30 years of research in BH3-mimetics have indeed served a number of solid paradigms for targeting intermediates from the apoptosis pathway in a variety of diseased states. Not only have such rational approaches in drug design yielded several key therapeutics, such outputs have also offered insights into the integrated mechanistic aspects of basic and clinical research at the genetics level for the future. In no other area of medical research have the effects of such work been felt, than in cancer research, through targeting the BAX-Bcl-2 protein-protein interactions. With these promising outputs in mind, several mimetics, and their potential therapeutic applications, have also been developed for several other pathological conditions, such as cardiovascular disease and tissue fibrosis, thus highlighting the universal importance of the intrinsic arm of the apoptosis pathway and its input to general tissue homeostasis. Considering such recent developments, and in a field that has generated so much scientific interest, we take stock of how the broadening area of BH3-mimetics has developed and diversified, with a focus on their uses in single and combined cancer treatment regimens and recently explored therapeutic delivery methods that may aid the development of future therapeutics of this nature.
Collapse
Affiliation(s)
- Paul A Townsend
- University of Surrey, Guildford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russian Federation.
- University of Manchester, Manchester, UK.
| | - Maria V Kozhevnikova
- University of Surrey, Guildford, UK
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Andrey A Zamyatnin
- University of Surrey, Guildford, UK
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
- Lomonosov Moscow State University, Moscow, Russian Federation
- Sirius University of Science and Technology, Sochi, Russian Federation
| | - Surinder M Soond
- University of Surrey, Guildford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russian Federation.
| |
Collapse
|
45
|
Martens MD, Karch J, Gordon JW. The molecular mosaic of regulated cell death in the cardiovascular system. Biochim Biophys Acta Mol Basis Dis 2021; 1868:166297. [PMID: 34718119 DOI: 10.1016/j.bbadis.2021.166297] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/07/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022]
Abstract
Cell death is now understood to be a highly regulated process that contributes to normal development and tissue homeostasis, alongside its role in the etiology of various pathological conditions. Through detailed molecular analysis, we have come to know that all cells do not always die in the same way, and that there are at least 7 processes involved, including: apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, and autophagy-mediated cell death. These processes act as pieces in the mosaic of cardiomyocyte cell death, which come together depending on context and stimulus. This review details each individual process, as well as highlights how they come together to produce various cardiac pathologies. By knowing how the pieces go together we can aim towards the development of efficacious therapeutics, which will enable us to prevent cardiomyocyte loss in the face of stress, both reducing mortality and improving quality of life.
Collapse
Affiliation(s)
- Matthew D Martens
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada; The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Canada
| | - Jason Karch
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada; College of Nursing, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada; The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Canada.
| |
Collapse
|
46
|
Sandow JJ, Tan IK, Huang AS, Masaldan S, Bernardini JP, Wardak AZ, Birkinshaw RW, Ninnis RL, Liu Z, Dalseno D, Lio D, Infusini G, Czabotar PE, Webb AI, Dewson G. Dynamic reconfiguration of pro-apoptotic BAK on membranes. EMBO J 2021; 40:e107237. [PMID: 34523147 DOI: 10.15252/embj.2020107237] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022] Open
Abstract
BAK and BAX, the effectors of intrinsic apoptosis, each undergo major reconfiguration to an activated conformer that self-associates to damage mitochondria and cause cell death. However, the dynamic structural mechanisms of this reconfiguration in the presence of a membrane have yet to be fully elucidated. To explore the metamorphosis of membrane-bound BAK, we employed hydrogen-deuterium exchange mass spectrometry (HDX-MS). The HDX-MS profile of BAK on liposomes comprising mitochondrial lipids was consistent with known solution structures of inactive BAK. Following activation, HDX-MS resolved major reconfigurations in BAK. Mutagenesis guided by our HDX-MS profiling revealed that the BCL-2 homology (BH) 4 domain maintains the inactive conformation of BAK, and disrupting this domain is sufficient for constitutive BAK activation. Moreover, the entire N-terminal region preceding the BAK oligomerisation domains became disordered post-activation and remained disordered in the activated oligomer. Removal of the disordered N-terminus did not impair, but rather slightly potentiated, BAK-mediated membrane permeabilisation of liposomes and mitochondria. Together, our HDX-MS analyses reveal new insights into the dynamic nature of BAK activation on a membrane, which may provide new opportunities for therapeutic targeting.
Collapse
Affiliation(s)
- Jarrod J Sandow
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Iris Kl Tan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Alan S Huang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Shashank Masaldan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Jonathan P Bernardini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Ahmad Z Wardak
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - Richard W Birkinshaw
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Robert L Ninnis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Ziyan Liu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Destiny Dalseno
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Daisy Lio
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - Giuseppi Infusini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Andrew I Webb
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Grant Dewson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
47
|
Sperl LE, Rührnößl F, Schiller A, Haslbeck M, Hagn F. High-resolution analysis of the conformational transition of pro-apoptotic Bak at the lipid membrane. EMBO J 2021; 40:e107159. [PMID: 34523144 PMCID: PMC8521305 DOI: 10.15252/embj.2020107159] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 12/21/2022] Open
Abstract
Permeabilization of the outer mitochondrial membrane by pore-forming Bcl2 proteins is a crucial step for the induction of apoptosis. Despite a large set of data suggesting global conformational changes within pro-apoptotic Bak during pore formation, high-resolution structural details in a membrane environment remain sparse. Here, we used NMR and HDX-MS (Hydrogen deuterium exchange mass spectrometry) in lipid nanodiscs to gain important high-resolution structural insights into the conformational changes of Bak at the membrane that are dependent on a direct activation by BH3-only proteins. Furthermore, we determined the first high-resolution structure of the Bak transmembrane helix. Upon activation, α-helix 1 in the soluble domain of Bak dissociates from the protein and adopts an unfolded and dynamic potentially membrane-bound state. In line with this finding, comparative protein folding experiments with Bak and anti-apoptotic BclxL suggest that α-helix 1 in Bak is a metastable structural element contributing to its pro-apoptotic features. Consequently, mutagenesis experiments aimed at stabilizing α-helix 1 yielded Bak variants with delayed pore-forming activity. These insights will contribute to a better mechanistic understanding of Bak-mediated membrane permeabilization.
Collapse
Affiliation(s)
- Laura E Sperl
- Bavarian NMR Center at the Department of ChemistryTechnical University of MunichGarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Florian Rührnößl
- Center for Functional Protein Assemblies and Department of ChemistryTechnical University of MunichGarchingGermany
| | - Anita Schiller
- Bavarian NMR Center at the Department of ChemistryTechnical University of MunichGarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Martin Haslbeck
- Center for Functional Protein Assemblies and Department of ChemistryTechnical University of MunichGarchingGermany
| | - Franz Hagn
- Bavarian NMR Center at the Department of ChemistryTechnical University of MunichGarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| |
Collapse
|
48
|
Liu D, Hou X, Wu W, Zanfagnin V, Li Y, Correia C, Zhao Z, Zhao C, Liu Z, Zhang T, Fang Z, Wang H, Xu C, Weroha SJ, Kaufmann SH, Dai H. Constitutive BAK/MCL1 complexes predict paclitaxel and S63845 sensitivity of ovarian cancer. Cell Death Dis 2021; 12:789. [PMID: 34385422 PMCID: PMC8361168 DOI: 10.1038/s41419-021-04073-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/08/2021] [Accepted: 04/26/2021] [Indexed: 12/03/2022]
Abstract
We previously found that preformed complexes of BAK with antiapoptotic BCL2 proteins predict BH3 mimetic sensitivities in lymphohematopoietic cells. These complexes have not previously been examined in solid tumors or in the context of conventional anticancer drugs. Here we show the relative amount of BAK found in preformed complexes with MCL1 or BCLXL varies across ovarian cancer cell lines and patient-derived xenografts (PDXs). Cells bearing BAK/MCL1 complexes were more sensitive to paclitaxel and the MCL1 antagonist S63845. Likewise, PDX models with BAK/MCL1 complexes were more likely to respond to paclitaxel. Mechanistically, BIM induced by low paclitaxel concentrations interacted preferentially with MCL1 and displaced MCL1-bound BAK. Further studies indicated that cells with preformed BAK/MCL1 complexes were sensitive to the paclitaxel/S63845 combination, while cells without BAK/MCL1 complexes were not. Our study suggested that the assessment of BAK/MCL1 complexes might be useful for predicting response to paclitaxel alone or in combination with BH3 mimetics.
Collapse
Affiliation(s)
- Dongyan Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xiaonan Hou
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Wangyu Wu
- Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | | | - Yunjian Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Cristina Correia
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zhiyang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Chenggang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Zhirong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Tao Zhang
- Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhiyou Fang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Chao Xu
- University of Science and Technology of China, Hefei, 230026, China
| | - Saravut J Weroha
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Scott H Kaufmann
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.
- Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Haiming Dai
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
49
|
Fang B, Hu C, Ding Y, Qin H, Luo Y, Xu Z, Meng J, Chen Z. Discovery of
4
H
‐thieno[3,2‐
b
]pyrrole derivatives as potential anticancer agents. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bo Fang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences Chongqing China
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, Chongqing University of Arts and Sciences Chongqing China
| | - Chunsheng Hu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences Chongqing China
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, Chongqing University of Arts and Sciences Chongqing China
| | - Yong Ding
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences Chongqing China
| | - Hongxia Qin
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, Chongqing University of Arts and Sciences Chongqing China
| | - Yafei Luo
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences Chongqing China
| | - Zhigang Xu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences Chongqing China
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, Chongqing University of Arts and Sciences Chongqing China
| | - Jiangping Meng
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences Chongqing China
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, Chongqing University of Arts and Sciences Chongqing China
| | - Zhongzhu Chen
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences Chongqing China
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, Chongqing University of Arts and Sciences Chongqing China
| |
Collapse
|
50
|
Dadsena S, King LE, García-Sáez AJ. Apoptosis regulation at the mitochondria membrane level. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183716. [PMID: 34343535 DOI: 10.1016/j.bbamem.2021.183716] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 02/05/2023]
Abstract
Mitochondrial outer membrane permeabilization (MOMP) is a key checkpoint in apoptosis that activates the caspase cascade and irreversibly causes the majority of cells to die. The proteins of the Bcl-2 family are master regulators of apoptosis that form a complex interaction network within the mitochondrial membrane that determines the induction of MOMP. This culminates in the activation of the effector members Bax and Bak, which permeabilize the mitochondrial outer membrane to mediate MOMP. Although the key role of Bax and Bak has been established, many questions remain unresolved regarding molecular mechanisms that control the apoptotic pore. In this review, we discuss the recent progress in our understanding of the regulation of Bax/Bak activity within the mitochondrial membrane.
Collapse
Affiliation(s)
- Shashank Dadsena
- Institute for Genetics, CECAD Research Center, University of Cologne, Germany
| | - Louise E King
- Institute for Genetics, CECAD Research Center, University of Cologne, Germany
| | - Ana J García-Sáez
- Institute for Genetics, CECAD Research Center, University of Cologne, Germany.
| |
Collapse
|