1
|
Colmenares SU, Tsukamoto S, Hickmann C, Brennan LD, Khavani M, Mofrad M, Karpen G. Expanding the HP1a-binding consensus and molecular grammar for heterochromatin assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626544. [PMID: 39677692 PMCID: PMC11642857 DOI: 10.1101/2024.12.03.626544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The recruitment of Heterochromatin Protein 1 (HP1) partners is essential for heterochromatin assembly and function, yet our knowledge regarding their organization in heterochromatin remains limited. Here we show that interactors engage the Drosophila HP1 (HP1a) dimer through a degenerate and expanded form of the previously identified PxVxL motif, which we now term HP1a Access Codes (HACs). These HACs reside in disordered regions, possess high conservation among Drosophila homologs, and contain alternating hydrophobic residues nested in a cluster of positively charged amino acids. These findings and molecular dynamics simulations identify key electrostatic interactions that modulate HP1a-binding strength and provide a dramatically improved HP1a-binding consensus motif that can reveal protein partners and the molecular grammar involved in heterochromatin assembly. We propose HP1a acts as a scaffold for other heterochromatin components containing HAC motifs, which in turn may regulate the function and higher order structure of the heterochromatin compartment.
Collapse
|
2
|
Lv P, Zhao Z, Hirano Y, Du J. The CoREST complex regulates multiple histone modifications temporal-specifically in clock neurons. Open Biol 2024; 14:230355. [PMID: 38981515 DOI: 10.1098/rsob.230355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 07/11/2024] Open
Abstract
Epigenetic regulation is important for circadian rhythm. In previous studies, multiple histone modifications were found at the Period (Per) locus. However, most of these studies were not conducted in clock neurons. In our screen, we found that a CoREST mutation resulted in defects in circadian rhythm by affecting Per transcription. Based on previous studies, we hypothesized that CoREST regulates circadian rhythm by regulating multiple histone modifiers at the Per locus. Genetic and physical interaction experiments supported these regulatory relationships. Moreover, through tissue-specific chromatin immunoprecipitation assays in clock neurons, we found that the CoREST mutation led to time-dependent changes in corresponding histone modifications at the Per locus. Finally, we proposed a model indicating the role of the CoREST complex in the regulation of circadian rhythm. This study revealed the dynamic changes of histone modifications at the Per locus specifically in clock neurons. Importantly, it provides insights into the role of epigenetic factors in the regulation of dynamic gene expression changes in circadian rhythm.
Collapse
Affiliation(s)
- Pengfei Lv
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhangwu Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yukinori Hirano
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Juan Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
3
|
Depierre D, Perrois C, Schickele N, Lhoumaud P, Abdi-Galab M, Fosseprez O, Heurteau A, Margueron R, Cuvier O. Chromatin in 3D distinguishes dMes-4/NSD and Hypb/dSet2 in protecting genes from H3K27me3 silencing. Life Sci Alliance 2023; 6:e202302038. [PMID: 37684044 PMCID: PMC10491495 DOI: 10.26508/lsa.202302038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Cell type-specific barcoding of genomes requires the establishment of hundreds of heterochromatin domains where heterochromatin-associated repressive complexes hinder chromatin accessibility thereby silencing genes. At heterochromatin-euchromatin borders, regulation of accessibility not only depends on the delimitation of heterochromatin but may also involve interplays with nearby genes and their transcriptional activity, or alternatively on histone modifiers, chromatin barrier insulators, and more global demarcation of chromosomes into 3D compartmentalized domains and topological-associating domain (TADs). Here, we show that depletion of H3K36 di- or tri-methyl histone methyltransferases dMes-4/NSD or Hypb/dSet2 induces reproducible increasing levels of H3K27me3 at heterochromatin borders including in nearby promoters, thereby repressing hundreds of genes. Furthermore, dMes-4/NSD influences genes demarcated by insulators and TAD borders, within chromatin hubs, unlike transcription-coupled action of Hypb/dSet2 that protects genes independently of TADs. Insulator mutants recapitulate the increase of H3K27me3 upon dMes-4/NSD depletion unlike Hypb/dSet2. Hi-C data demonstrate how dMes-4/NSD blocks propagation of long-range interactions onto active regions. Our data highlight distinct mechanisms protecting genes from H3K27me3 silencing, highlighting a direct influence of H3K36me on repressive TADs.
Collapse
Affiliation(s)
- David Depierre
- Chromatin Dynamics and Cell Proliferation, Center of Integrative Biology, Molecular, Cellular and Developmental Biology (MCD/UMR5087), CNRS, Université Paul Sabatier de Toulouse, Toulouse, France
| | - Charlène Perrois
- Chromatin Dynamics and Cell Proliferation, Center of Integrative Biology, Molecular, Cellular and Developmental Biology (MCD/UMR5087), CNRS, Université Paul Sabatier de Toulouse, Toulouse, France
| | - Naomi Schickele
- Chromatin Dynamics and Cell Proliferation, Center of Integrative Biology, Molecular, Cellular and Developmental Biology (MCD/UMR5087), CNRS, Université Paul Sabatier de Toulouse, Toulouse, France
| | - Priscillia Lhoumaud
- Chromatin Dynamics and Cell Proliferation, Center of Integrative Biology, Molecular, Cellular and Developmental Biology (MCD/UMR5087), CNRS, Université Paul Sabatier de Toulouse, Toulouse, France
| | - Mahdia Abdi-Galab
- Chromatin Dynamics and Cell Proliferation, Center of Integrative Biology, Molecular, Cellular and Developmental Biology (MCD/UMR5087), CNRS, Université Paul Sabatier de Toulouse, Toulouse, France
| | - Olivier Fosseprez
- Chromatin Dynamics and Cell Proliferation, Center of Integrative Biology, Molecular, Cellular and Developmental Biology (MCD/UMR5087), CNRS, Université Paul Sabatier de Toulouse, Toulouse, France
| | - Alexandre Heurteau
- Chromatin Dynamics and Cell Proliferation, Center of Integrative Biology, Molecular, Cellular and Developmental Biology (MCD/UMR5087), CNRS, Université Paul Sabatier de Toulouse, Toulouse, France
| | - Raphaël Margueron
- Institut Curie, Paris Sciences et Lettres Research University; INSERM U934/ CNRS UMR3215, Paris, France
| | - Olivier Cuvier
- Chromatin Dynamics and Cell Proliferation, Center of Integrative Biology, Molecular, Cellular and Developmental Biology (MCD/UMR5087), CNRS, Université Paul Sabatier de Toulouse, Toulouse, France
| |
Collapse
|
4
|
Qiu X, Kong L, Chen H, Lin Y, Tu S, Wang L, Chen Z, Zeng M, Xiao J, Yuan P, Qiu M, Wang Y, Ye W, Duan K, Dong S, Wang Y. The Phytophthora sojae nuclear effector PsAvh110 targets a host transcriptional complex to modulate plant immunity. THE PLANT CELL 2023; 35:574-597. [PMID: 36222564 PMCID: PMC9806631 DOI: 10.1093/plcell/koac300] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/18/2022] [Indexed: 05/27/2023]
Abstract
Plants have evolved sophisticated immune networks to restrict pathogen colonization. In response, pathogens deploy numerous virulent effectors to circumvent plant immune responses. However, the molecular mechanisms by which pathogen-derived effectors suppress plant defenses remain elusive. Here, we report that the nucleus-localized RxLR effector PsAvh110 from the pathogen Phytophthora sojae, causing soybean (Glycine max) stem and root rot, modulates the activity of a transcriptional complex to suppress plant immunity. Soybean like-heterochromatin protein 1-2 (GmLHP1-2) and plant homeodomain finger protein 6 (GmPHD6) form a transcriptional complex with transcriptional activity that positively regulates plant immunity against Phytophthora infection. To suppress plant immunity, the nuclear effector PsAvh110 disrupts the assembly of the GmLHP1-2/GmPHD6 complex via specifically binding to GmLHP1-2, thus blocking its transcriptional activity. We further show that PsAvh110 represses the expression of a subset of immune-associated genes, including BRI1-associated receptor kinase 1-3 (GmBAK1-3) and pathogenesis-related protein 1 (GmPR1), via G-rich elements in gene promoters. Importantly, PsAvh110 is a conserved effector in different Phytophthora species, suggesting that the PsAvh110 regulatory mechanism might be widely utilized in the genus to manipulate plant immunity. Thus, our study reveals a regulatory mechanism by which pathogen effectors target a transcriptional complex to reprogram transcription.
Collapse
Affiliation(s)
- Xufang Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Kong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Han Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Yachun Lin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Siqun Tu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengzhu Zeng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Junhua Xiao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Peiguo Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, USA
| | - Min Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaixuan Duan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Shining Light on the Dark Side of the Genome. Cells 2022; 11:cells11030330. [PMID: 35159140 PMCID: PMC8834555 DOI: 10.3390/cells11030330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Heterochromatin has historically been considered the dark side of the genome. In part, this reputation derives from its concentration near centromeres and telomeres, regions of the genome repressive to nuclear functions such as DNA replication and transcription. The repetitive nature of heterochromatic DNA has only added to its “darkness”, as sequencing of these DNA regions has been only recently achieved. Despite such obstacles, research on heterochromatin blossomed over the past decades. Success in this area benefitted from efforts of Sergio Pimpinelli and colleagues who made landmark discoveries and promoted the growth of an international community of researchers. They discovered complexities of heterochromatin, demonstrating that a key component, Heterochromatin Protein 1a (HP1a), uses multiple mechanisms to associate with chromosomes and has positive and negative effects on gene expression, depending on the chromosome context. In addition, they updated the work of Carl Waddington using molecular tools that revealed how environmental stress promotes genome change due to transposable element movement. Collectively, their research and that of many others in the field have shined a bright light on the dark side of the genome and helped reveal many mysteries of heterochromatin.
Collapse
|
6
|
Schoelz JM, Feng JX, Riddle NC. The Drosophila HP1 family is associated with active gene expression across chromatin contexts. Genetics 2021; 219:iyab108. [PMID: 34849911 PMCID: PMC8633139 DOI: 10.1093/genetics/iyab108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
Drosophila Heterochromatin Protein 1a (HP1a) is essential for heterochromatin formation and is involved in transcriptional silencing. However, certain loci require HP1a to be transcribed. One model posits that HP1a acts as a transcriptional silencer within euchromatin while acting as an activator within heterochromatin. However, HP1a has been observed as an activator of a set of euchromatic genes. Therefore, it is not clear whether, or how, chromatin context informs the function of HP1 proteins. To understand the role of HP1 proteins in transcription, we examined the genome-wide binding profile of HP1a as well as two other Drosophila HP1 family members, HP1B and HP1C, to determine whether coordinated binding of these proteins is associated with specific transcriptional outcomes. We found that HP1 proteins share many of their endogenous binding targets. These genes are marked by active histone modifications and are expressed at higher levels than nontarget genes in both heterochromatin and euchromatin. In addition, HP1 binding targets displayed increased RNA polymerase pausing compared with nontarget genes. Specifically, colocalization of HP1B and HP1C was associated with the highest levels of polymerase pausing and gene expression. Analysis of HP1 null mutants suggests these proteins coordinate activity at transcription start sites to regulate transcription. Depletion of HP1B or HP1C alters expression of protein-coding genes bound by HP1 family members. Our data broaden understanding of the mechanism of transcriptional activation by HP1a and highlight the need to consider particular protein-protein interactions, rather than broader chromatin context, to predict impacts of HP1 at transcription start sites.
Collapse
Affiliation(s)
- John M Schoelz
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Justina X Feng
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nicole C Riddle
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
7
|
Casale AM, Cappucci U, Piacentini L. Unravelling HP1 functions: post-transcriptional regulation of stem cell fate. Chromosoma 2021; 130:103-111. [PMID: 34128099 PMCID: PMC8426308 DOI: 10.1007/s00412-021-00760-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/17/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
Heterochromatin protein 1 (HP1) is a non-histone chromosomal protein first identified in Drosophila as a major component of constitutive heterochromatin, required for stable epigenetic gene silencing in many species including humans. Over the years, several studies have highlighted additional roles of HP1 in different cellular processes including telomere maintenance, DNA replication and repair, chromosome segregation and, surprisingly, positive regulation of gene expression. In this review, we briefly summarize past research and recent results supporting the unexpected and emerging role of HP1 in activating gene expression. In particular, we discuss the role of HP1 in post-transcriptional regulation of mRNA processing because it has proved decisive in the control of germline stem cells homeostasis in Drosophila and has certainly added a new dimension to our understanding on HP1 targeting and functions in epigenetic regulation of stem cell behaviour.
Collapse
Affiliation(s)
- Assunta Maria Casale
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy.
| | - Ugo Cappucci
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Lucia Piacentini
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
8
|
Long non-coding RNA KIKAT/LINC01061 as a novel epigenetic regulator that relocates KDM4A on chromatin and modulates viral reactivation. PLoS Pathog 2021; 17:e1009670. [PMID: 34111227 PMCID: PMC8219169 DOI: 10.1371/journal.ppat.1009670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/22/2021] [Accepted: 05/26/2021] [Indexed: 12/22/2022] Open
Abstract
KDM4A is a histone lysine demethylase that has been described as an oncogene in various types of cancer. The importance of KDM4A-mediated epigenetic regulation in tumorigenesis is just emerging. Here, by using Kaposi’s sarcoma associated herpesvirus (KSHV) as a screening model, we identified 6 oncogenic virus-induced long non-coding RNAs (lncRNAs) with the potential to open chromatin. RNA immunoprecipitation revealed KSHV-induced KDM4A-associated transcript (KIKAT)/LINC01061 as a binding partner of KDM4A. Integrated ChIP-seq and RNA-seq analysis showed that the KIKAT/LINC01061 interaction may mediate relocalization of KDM4A from the transcription start site (TSS) of the AMOT promoter region and transactivation of AMOT, an angiostatin binding protein that regulates endothelial cell migration. Knockdown of AMOT diminished the migration ability of uninfected SLK and iSLK-BAC16 cells in response to KIKAT/LINC01061 overexpression. Thus, we conclude that KIKAT/LINC01061 triggered shifting of KDM4A as a potential epigenetic mechanism regulating gene transactivation. Dysregulation of KIKAT/LINC01061 expression may represent a novel pathological mechanism contributing to KDM4A oncogenicity. Epigenetic regulation of chromatin structure and gene function connects genotype to phenotype and diseases. Long non-coding RNA (lncRNA) is emerging as a novel type of epigenetic regulator exhibiting diverse biological functions. Aberrant lncRNA expression is associated with various diseases, including cancer. The widespread epigenetic changes that occur during the latent-to-lytic switch of herpes virus life cycle make it an attractive model to study epigenetic regulation. Using Kaposi’s sarcoma associated herpesvirus (KSHV) as a model, we screened the epigenetic function of lncRNAs whose expression was induced by reactivation of this oncogenic virus. KIKAT/LINC01061 was identified as a novel histone lysine-specific demethylase 4A (KDM4A) interacting lncRNA. KDM4A is the first identified histone trimethyl demethylase that has been demonstrated as an oncogene in various cancers. Our data reveal a novel lncRNA-mediated regulation of the epigenetic function of KDM4A and demonstrate this lncRNA-chromatin modifier interaction may serve as a potential target in cancer therapy.
Collapse
|
9
|
Zaidan NZ, Sridharan R. HP1γ regulates H3K36 methylation and pluripotency in embryonic stem cells. Nucleic Acids Res 2020; 48:12660-12674. [PMID: 33237287 PMCID: PMC7736818 DOI: 10.1093/nar/gkaa1091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 01/01/2023] Open
Abstract
The heterochromatin protein 1 (HP1) family members are canonical effectors and propagators of gene repression mediated by histone H3 lysine 9 (H3K9) methylation. HP1γ exhibits an increased interaction with active transcription elongation-associated factors in embryonic stem cells (ESCs) compared to somatic cells. However, whether this association has a functional consequence remains elusive. Here we find that genic HP1γ colocalizes and enhances enrichment of transcription elongation-associated H3K36me3 rather than H3K9me3. Unexpectedly, sustained H3K36me3 deposition is dependent on HP1γ. HP1γ-deleted ESCs display reduced H3K36me3 enrichment, concomitant with decreased expression at shared genes which function to maintain cellular homeostasis. Both the H3K9me3-binding chromodomain and histone binding ability of HP1γ are dispensable for maintaining H3K36me3 levels. Instead, the chromoshadow together with the hinge domain of HP1γ that confer protein and nucleic acid-binding ability are sufficient because they retain the ability to interact with NSD1, an H3K36 methyltransferase. HP1γ-deleted ESCs have a slower self-renewal rate and an impaired ability to differentiate towards cardiac mesoderm. Our findings reveal a requirement for HP1γ in faithful establishment of transcription elongation in ESCs, which regulates pluripotency.
Collapse
Affiliation(s)
- Nur Zafirah Zaidan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.,Genetics Training Program, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Rupa Sridharan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53715, USA
| |
Collapse
|
10
|
Ding Q, Koren A. Positive and Negative Regulation of DNA Replication Initiation. Trends Genet 2020; 36:868-879. [PMID: 32739030 PMCID: PMC7572746 DOI: 10.1016/j.tig.2020.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 12/25/2022]
Abstract
Genomic DNA is replicated every cell cycle by the programmed activation of replication origins at specific times and chromosomal locations. The factors that define the locations of replication origins and their typical activation times in eukaryotic cells are poorly understood. Previous studies highlighted the role of activating factors and epigenetic modifications in regulating replication initiation. Here, we review the role that repressive pathways - and their alleviation - play in establishing the genomic landscape of replication initiation. Several factors mediate this repression, in particular, factors associated with inactive chromatin. Repression can support organized, yet stochastic, replication initiation, and its absence could explain instances of rapid and random replication or re-replication.
Collapse
Affiliation(s)
- Qiliang Ding
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
11
|
Meyer-Nava S, Nieto-Caballero VE, Zurita M, Valadez-Graham V. Insights into HP1a-Chromatin Interactions. Cells 2020; 9:E1866. [PMID: 32784937 PMCID: PMC7465937 DOI: 10.3390/cells9081866] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022] Open
Abstract
Understanding the packaging of DNA into chromatin has become a crucial aspect in the study of gene regulatory mechanisms. Heterochromatin establishment and maintenance dynamics have emerged as some of the main features involved in genome stability, cellular development, and diseases. The most extensively studied heterochromatin protein is HP1a. This protein has two main domains, namely the chromoshadow and the chromodomain, separated by a hinge region. Over the years, several works have taken on the task of identifying HP1a partners using different strategies. In this review, we focus on describing these interactions and the possible complexes and subcomplexes associated with this critical protein. Characterization of these complexes will help us to clearly understand the implications of the interactions of HP1a in heterochromatin maintenance, heterochromatin dynamics, and heterochromatin's direct relationship to gene regulation and chromatin organization.
Collapse
Affiliation(s)
| | | | | | - Viviana Valadez-Graham
- Instituto de Biotecnología, Departamento de Genética del Desarrollo y Fisiología Molecular, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62210, Mexico; (S.M.-N.); (V.E.N.-C.); (M.Z.)
| |
Collapse
|
12
|
Wang J, Yu C, Zhang S, Ye J, Dai H, Wang H, Huang J, Cao X, Ma J, Ma H, Wang Y. Cell-type-dependent histone demethylase specificity promotes meiotic chromosome condensation in Arabidopsis. NATURE PLANTS 2020; 6:823-837. [PMID: 32572214 DOI: 10.1038/s41477-020-0697-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 05/17/2020] [Indexed: 05/25/2023]
Abstract
Histone demethylation is crucial for proper chromatin structure and to ensure normal development, and requires the large family of Jumonji C (JmjC)-containing demethylases; however, the molecular mechanisms that regulate the substrate specificity of these JmjC-containing demethylases remain largely unknown. Here, we show that the substrate specificity of the Arabidopsis histone demethylase JMJ16 is broadened from Lys 4 of histone H3 (H3K4) alone in somatic cells to both H3K4 and H3K9 when it binds to the meiocyte-specific histone reader MMD1. Consistent with this, the JMJ16 catalytic domain exhibits both H3K4 and H3K9 demethylation activities. Moreover, the JMJ16 C-terminal FYR domain interacts with the JMJ16 catalytic domain and probably restricts its substrate specificity. By contrast, MMD1 can compete with the N-terminal catalytic domain of JMJ16 for binding to the FYR-C domain, thereby expanding the substrate specificity of JMJ16 by preventing the FYR domain from binding to the catalytic domain. We propose that MMD1 and JMJ16 together in male meiocytes promote gene expression in an H3K9me3-dependent manner and thereby contribute to meiotic chromosome condensation.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
- Department of Biology, Eberly College of Science, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Chaoyi Yu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Shuaibin Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Juanying Ye
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hang Dai
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Hongkuan Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiyue Huang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China.
| | - Hong Ma
- Department of Biology, Eberly College of Science, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Raiymbek G, An S, Khurana N, Gopinath S, Larkin A, Biswas S, Trievel RC, Cho US, Ragunathan K. An H3K9 methylation-dependent protein interaction regulates the non-enzymatic functions of a putative histone demethylase. eLife 2020; 9:53155. [PMID: 32195666 PMCID: PMC7192584 DOI: 10.7554/elife.53155] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
H3K9 methylation (H3K9me) specifies the establishment and maintenance of transcriptionally silent epigenetic states or heterochromatin. The enzymatic erasure of histone modifications is widely assumed to be the primary mechanism that reverses epigenetic silencing. Here, we reveal an inversion of this paradigm where a putative histone demethylase Epe1 in fission yeast, has a non-enzymatic function that opposes heterochromatin assembly. Mutations within the putative catalytic JmjC domain of Epe1 disrupt its interaction with Swi6HP1 suggesting that this domain might have other functions besides enzymatic activity. The C-terminus of Epe1 directly interacts with Swi6HP1, and H3K9 methylation stimulates this protein-protein interaction in vitro and in vivo. Expressing the Epe1 C-terminus is sufficient to disrupt heterochromatin by outcompeting the histone deacetylase, Clr3 from sites of heterochromatin formation. Our results underscore how histone modifying proteins that resemble enzymes have non-catalytic functions that regulate the assembly of epigenetic complexes in cells. A cell’s identity depends on which of its genes are active. One way for cells to control this process is to change how accessible their genes are to the molecular machinery that switches them on and off. Special proteins called histones determine how accessible genes are by altering how loosely or tightly DNA is packed together. Histones can be modified by enzymes, which are proteins that add or remove specific chemical ‘tags’. These tags regulate how accessible genes are and provide cells with a memory of gene activity. For example, a protein found in yeast called Epe1 helps reactivate large groups of genes after cell division, effectively ‘re-setting’ the yeast’s genome and eliminating past memories of the genes being inactive. For a long time, Epe1 was thought to do this by removing methyl groups, a ‘tag’ that indicates a gene is inactive, from histones – that is, by acting like an enzyme. However, no direct evidence to support this hypothesis has been found. Raiymbek et al. therefore set out to determine exactly how Epe1 worked, and whether or not it did indeed behave like an enzyme. Initial experiments testing mutant versions of Epe1 in yeast cells showed that the changes expected to stop Epe1 from removing methyl groups instead prevented the protein from ‘homing’ to the sections of DNA it normally activates. Detailed microscope imaging, using live yeast cells engineered to produce proteins with fluorescent markers, revealed that this inability to ‘home’ was due to a loss of interaction with Epe1’s main partner, a protein called Swi6. This protein recognizes and binds histones that have methyl tags. Swi6 also acts as a docking site for proteins involved in deactivating genes in close proximity to these histones. Further biochemical studies revealed how the interaction between Epe1 and Swi6 can help in gene reactivation. The methyl tag on histones in inactive regions of the genome inadvertently helps Epe1 interact more efficiently with Swi6. Then, Epe1 can simply block every other protein that binds to Swi6 from participating in gene deactivation. This observation contrasts with the prevailing view where the active removal of methyl tags by proteins such as Epe1 switches genes from an inactive to an active state. This work shows for the first time that Epe1 influences the state of the genome through a process that does not involve enzyme activity. In other words, although the protein may ‘moonlight’ as an enzyme, its main job uses a completely different mechanism. More broadly, these results increase the understanding of the many different ways that gene activity, and ultimately cell identity, can be controlled.
Collapse
Affiliation(s)
- Gulzhan Raiymbek
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Sojin An
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Nidhi Khurana
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Saarang Gopinath
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Ajay Larkin
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Saikat Biswas
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Raymond C Trievel
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States.,Department of Biophysics, University of Michigan, Ann Arbor, United States
| | - Uhn-Soo Cho
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States.,Department of Biophysics, University of Michigan, Ann Arbor, United States
| | - Kaushik Ragunathan
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| |
Collapse
|
14
|
Van-Lume B, Mata-Sucre Y, Báez M, Ribeiro T, Huettel B, Gagnon E, Leitch IJ, Pedrosa-Harand A, Lewis GP, Souza G. Evolutionary convergence or homology? Comparative cytogenomics of Caesalpinia group species (Leguminosae) reveals diversification in the pericentromeric heterochromatic composition. PLANTA 2019; 250:2173-2186. [PMID: 31696317 DOI: 10.1007/s00425-019-03287-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/25/2019] [Indexed: 05/02/2023]
Abstract
We demonstrated by cytogenomic analysis that the proximal heterochromatin of the Northeast Brazilian species of Caesalpinia group is enriched with phylogenetically conserved Ty3/Gypsy-Tekay RT, but diverge in the presence of Ty3/Gypsy-Athila RT and satDNA. The Caesalpinia Group includes 225 species and 27 monophyletic genera of which four occur in Northeastern Brazil: Erythrostemon (1 sp.), Cenostigma (7 spp.), Libidibia (1 sp.), and Paubrasilia (1 sp.). The last three genera are placed in different clades in the Caesalpinia Group phylogeny, and yet they are characterized by having a numerically stable karyotype 2n = 24 (16 M+8A) and GC-rich heterochromatic bands (chromomycin A3 positive/CMA+ bands) in the proximal chromosome regions. To characterize the composition of their heterochromatin and test for the homology of these chromosomal regions, genomic DNA was extracted from Cenostigma microphyllum, Libidibia ferrea, and Paubrasilia echinata, and sequenced at low coverage using the Illumina platform. The genomic repetitive fractions were characterized using a Galaxy/RepeatExplorer-Elixir platform. The most abundant elements of each genome were chromosomally located by fluorescent in situ hybridization (FISH) and compared to the CMA+ heterochromatin distribution. The repetitive fraction of the genomes of C. microphyllum, L. ferrea, and P. echinata were estimated to be 41.70%, 38.44%, and 72.51%, respectively. Ty3/Gypsy retrotransposons (RT), specifically the Tekay lineage, were the most abundant repeats in each of the three genomes. FISH mapping revealed species-specific patterns for the Tekay elements in the proximal regions of the chromosomes, co-localized with CMA+ bands. Other species-specific patterns were observed, e.g., for the Ty3/Gypsy RT Athila elements which were found in all the proximal heterochromatin of L. ferrea or restricted to the acrocentric chromosomes of C. microphyllum. This Athila labeling co-localized with satellite DNAs (satDNAs). Although the Caesalpinia Group diverged around 55 Mya, our results suggest an ancestral colonization of Tekay RT in the proximal heterochromatin. Thus, the present-day composition of the pericentromeric heterochromatin in these Northeast Brazilian species is a combination of the maintenance of an ancestral Tekay distribution with a species-specific accumulation of other repeats.
Collapse
Affiliation(s)
- Brena Van-Lume
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves S/N, Cidade Universitária, Recife, PE, 50670-420, Brazil
| | - Yennifer Mata-Sucre
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves S/N, Cidade Universitária, Recife, PE, 50670-420, Brazil
| | - Mariana Báez
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves S/N, Cidade Universitária, Recife, PE, 50670-420, Brazil
| | - Tiago Ribeiro
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves S/N, Cidade Universitária, Recife, PE, 50670-420, Brazil
- Department of Botany and Ecology, Institute of Biosciences, Federal University of Mato Grosso, Av. Fernando Correa da Costa, 2.367, Boa Esperança, Cuiabá, MT, 78060-900, Brazil
| | | | - Edeline Gagnon
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5NZ, UK
| | - Ilia J Leitch
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves S/N, Cidade Universitária, Recife, PE, 50670-420, Brazil
| | - Gwilym P Lewis
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Gustavo Souza
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves S/N, Cidade Universitária, Recife, PE, 50670-420, Brazil.
| |
Collapse
|
15
|
Soffers JHM, Li X, Saraf A, Seidel CW, Florens L, Washburn MP, Abmayr SM, Workman JL. Characterization of a metazoan ADA acetyltransferase complex. Nucleic Acids Res 2019; 47:3383-3394. [PMID: 30715476 PMCID: PMC6468242 DOI: 10.1093/nar/gkz042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/24/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
The Gcn5 acetyltransferase functions in multiple acetyltransferase complexes in yeast and metazoans. Yeast Gcn5 is part of the large SAGA (Spt-Ada-Gcn5 acetyltransferase) complex and a smaller ADA acetyltransferase complex. In flies and mammals, Gcn5 (and its homolog pCAF) is part of various versions of the SAGA complex and another large acetyltransferase complex, ATAC (Ada2A containing acetyltransferase complex). However, a complex analogous to the small ADA complex in yeast has never been described in metazoans. Previous studies in Drosophila hinted at the existence of a small complex which contains Ada2b, a partner of Gcn5 in the SAGA complex. Here we have purified and characterized the composition of this complex and show that it is composed of Gcn5, Ada2b, Ada3 and Sgf29. Hence, we have named it the metazoan 'ADA complex'. We demonstrate that the fly ADA complex has histone acetylation activity on histones and nucleosome substrates. Moreover, ChIP-Sequencing experiments identified Ada2b peaks that overlap with another SAGA subunit, Spt3, as well as Ada2b peaks that do not overlap with Spt3 suggesting that the ADA complex binds chromosomal sites independent of the larger SAGA complex.
Collapse
Affiliation(s)
| | - Xuanying Li
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Anita Saraf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Susan M Abmayr
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| |
Collapse
|
16
|
Tsurumi A, Xue S, Zhang L, Li J, Li WX. Genome-wide Kdm4 histone demethylase transcriptional regulation in Drosophila. Mol Genet Genomics 2019; 294:1107-1121. [PMID: 31020413 PMCID: PMC6813854 DOI: 10.1007/s00438-019-01561-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 04/03/2019] [Indexed: 12/23/2022]
Abstract
The histone lysine demethylase 4 (Kdm4/Jmjd2/Jhdm3) family is highly conserved across species and reverses di- and tri-methylation of histone H3 lysine 9 (H3K9) and lysine 36 (H3K36) at the N-terminal tail of the core histone H3 in various metazoan species including Drosophila, C.elegans, zebrafish, mice and humans. Previous studies have shown that the Kdm4 family plays a wide variety of important biological roles in different species, including development, oncogenesis and longevity by regulating transcription, DNA damage response and apoptosis. Only two functional Kdm4 family members have been identified in Drosophila, compared to five in mammals, thus providing a simple model system. Drosophila Kdm4 loss-of-function mutants do not survive past the early 2nd instar larvae stage and display a molting defect phenotype associated with deregulated ecdysone hormone receptor signaling. To further characterize and identify additional targets of Kdm4, we employed a genome-wide approach to investigate transcriptome alterations in Kdm4 mutants versus wild-type during early development. We found evidence of increased deregulated transcripts, presumably associated with a progressive accumulation of H3K9 and H3K36 methylation through development. Gene ontology analyses found significant enrichment of terms related to the ecdysteroid hormone signaling pathway important in development, as expected, and additionally previously unidentified potential targets that warrant further investigation. Since Kdm4 is highly conserved across species, our results may be applicable more widely to other organisms and our genome-wide dataset may serve as a useful resource for further studies.
Collapse
Affiliation(s)
- Amy Tsurumi
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA, 02114, USA.
- Department of Microbiology and Immunology, Harvard Medical School, 77 Ave. Louis Pasteur, Boston, MA, 02115, USA.
- Shriners Hospitals for Children-Boston®, 51 Blossom St., Boston, MA, 02114, USA.
| | - Shuang Xue
- Department of Medicine, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Lin Zhang
- Department of Medicine, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Jinghong Li
- Department of Medicine, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Willis X Li
- Department of Medicine, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| |
Collapse
|
17
|
DNA Damage Changes Distribution Pattern and Levels of HP1 Protein Isoforms in the Nucleolus and Increases Phosphorylation of HP1β-Ser88. Cells 2019; 8:cells8091097. [PMID: 31533340 PMCID: PMC6770535 DOI: 10.3390/cells8091097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/28/2022] Open
Abstract
The family of heterochromatin protein 1 (HP1) isoforms is essential for chromatin packaging, regulation of gene expression, and repair of damaged DNA. Here we document that γ-radiation reduced the number of HP1α-positive foci, but not HP1β and HP1γ foci, located in the vicinity of the fibrillarin-positive region of the nucleolus. The additional analysis confirmed that γ-radiation has the ability to significantly decrease the level of HP1α in rDNA promoter and rDNA encoding 28S rRNA. By mass spectrometry, we showed that treatment by γ-rays enhanced the HP1β serine 88 phosphorylation (S88ph), but other analyzed modifications of HP1β, including S161ph/Y163ph, S171ph, and S174ph, were not changed in cells exposed to γ-rays or treated by the HDAC inhibitor (HDACi). Interestingly, a combination of HDACi and γ-radiation increased the level of HP1α and HP1γ. The level of HP1β remained identical before and after the HDACi/γ-rays treatment, but HDACi strengthened HP1β interaction with the KRAB-associated protein 1 (KAP1) protein. Conversely, HP1γ did not interact with KAP1, although approximately 40% of HP1γ foci co-localized with accumulated KAP1. Especially HP1γ foci at the periphery of nucleoli were mostly absent of KAP1. Together, DNA damage changed the morphology, levels, and interaction properties of HP1 isoforms. Also, γ-irradiation-induced hyperphosphorylation of the HP1β protein; thus, HP1β-S88ph could be considered as an important marker of DNA damage.
Collapse
|
18
|
Park SY, Seo J, Chun YS. Targeted Downregulation of kdm4a Ameliorates Tau-engendered Defects in Drosophila melanogaster. J Korean Med Sci 2019; 34:e225. [PMID: 31436053 PMCID: PMC6706347 DOI: 10.3346/jkms.2019.34.e225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/22/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tauopathies, a class of neurodegenerative diseases that includes Alzheimer's disease (AD), are characterized by the deposition of neurofibrillary tangles composed of hyperphosphorylated tau protein in the human brain. As abnormal alterations in histone acetylation and methylation show a cause and effect relationship with AD, we investigated the role of several Jumonji domain-containing histone demethylase (JHDM) genes, which have yet to be studied in AD pathology. METHODS To examine alterations of several JHDM genes in AD pathology, we performed bioinformatics analyses of JHDM gene expression profiles in brain tissue samples from deceased AD patients. Furthermore, to investigate the possible relationship between alterations in JHDM gene expression profiles and AD pathology in vivo, we examined whether tissue-specific downregulation of JHDM Drosophila homologs (kdm) can affect tauR406W-induced neurotoxicity using transgenic flies containing the UAS-Gal4 binary system. RESULTS The expression levels of JHDM1A, JHDM2A/2B, and JHDM3A/3B were significantly higher in postmortem brain tissue from patients with AD than from non-demented controls, whereas JHDM1B mRNA levels were downregulated in the brains of patients with AD. Using transgenic flies, we revealed that knockdown of kdm2 (homolog to human JHDM1), kdm3 (homolog to human JHDM2), kdm4a (homolog to human JHDM3A), or kdm4b (homolog to human JHDM3B) genes in the eye ameliorated the tauR406W-engendered defects, resulting in less severe phenotypes. However, kdm4a knockdown in the central nervous system uniquely ameliorated tauR406W-induced locomotion defects by restoring heterochromatin. CONCLUSION Our results suggest that downregulation of kdm4a expression may be a potential therapeutic target in AD.
Collapse
Affiliation(s)
- Sung Yeon Park
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jieun Seo
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Yang Sook Chun
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
19
|
Heterochromatin protein 1 (HP1) is intrinsically required for post-transcriptional regulation of Drosophila Germline Stem Cell (GSC) maintenance. Sci Rep 2019; 9:4372. [PMID: 30867469 PMCID: PMC6416348 DOI: 10.1038/s41598-019-40152-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/07/2019] [Indexed: 01/05/2023] Open
Abstract
A very important open question in stem cells regulation is how the fine balance between GSCs self-renewal and differentiation is orchestrated at the molecular level. In the past several years much progress has been made in understanding the molecular mechanisms underlying intrinsic and extrinsic controls of GSC regulation but the complex gene regulatory networks that regulate stem cell behavior are only partially understood. HP1 is a dynamic epigenetic determinant mainly involved in heterochromatin formation, epigenetic gene silencing and telomere maintenance. Furthermore, recent studies have revealed the importance of HP1 in DNA repair, sister chromatid cohesion and, surprisingly, in positive regulation of gene expression. Here, we show that HP1 plays a crucial role in the control of GSC homeostasis in Drosophila. Our findings demonstrate that HP1 is required intrinsically to promote GSC self-renewal and progeny differentiation by directly stabilizing the transcripts of key genes involved in GSCs maintenance.
Collapse
|
20
|
Lee DH, Ryu HW, Kim GW, Kwon SH. Comparison of three heterochromatin protein 1 homologs in Drosophila. J Cell Sci 2019; 132:jcs.222729. [PMID: 30659116 DOI: 10.1242/jcs.222729] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/22/2018] [Indexed: 01/20/2023] Open
Abstract
Heterochromatin protein 1 (HP1) is an epigenetic regulator of chromatin structure and genome function in eukaryotes. Despite shared features, most eukaryotes have a minimum of three HP1 homologs with differential localization patterns and functions. Most studies focus on Drosophila HP1a [also known as Su(var)205], and little is known about the properties of HP1b and HP1c. To determine the features of the three HP1 homologs, we performed the first comprehensive comparative analysis of Drosophila HP1 homologs. HP1 differentially homodimerizes and heterodimerizes in vivo and in vitro HP1b and HP1c, but not HP1a, are localized to both the nucleus and cytoplasm. The C-terminal extension region (CTE) targets HP1c and HP1b to the cytoplasm. Biochemical approaches show that HP1 binds to various interacting partners with different binding affinities. Each HP1 associates differently with RNA polymerase II; a gene reporter assay revealed that HP1a and HP1b, but not HP1c, inhibit transcriptional activity, suggesting that HP1c serves as a positive regulator in transcription. Thus, these studies provide the basic clues pertaining to the molecular mechanism by which HP1 might control cellular processes in a homolog-specific manner.
Collapse
Affiliation(s)
- Dong Hoon Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea.,Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyun Wook Ryu
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Go Woon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea .,Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
21
|
Janssen A, Colmenares SU, Lee T, Karpen GH. Timely double-strand break repair and pathway choice in pericentromeric heterochromatin depend on the histone demethylase dKDM4A. Genes Dev 2018; 33:103-115. [PMID: 30578303 PMCID: PMC6317320 DOI: 10.1101/gad.317537.118] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022]
Abstract
Repair of DNA double-strand breaks (DSBs) must be orchestrated properly within diverse chromatin domains in order to maintain genetic stability. Euchromatin and heterochromatin domains display major differences in histone modifications, biophysical properties, and spatiotemporal dynamics of DSB repair. However, it is unclear whether differential histone-modifying activities are required for DSB repair in these distinct domains. We showed previously that the Drosophila melanogaster KDM4A (dKDM4A) histone demethylase is required for heterochromatic DSB mobility. Here we used locus-specific DSB induction in Drosophila animal tissues and cultured cells to more deeply interrogate the impact of dKDM4A on chromatin changes, temporal progression, and pathway utilization during DSB repair. We found that dKDM4A promotes the demethylation of heterochromatin-associated histone marks at DSBs in heterochromatin but not euchromatin. Most importantly, we demonstrate that dKDM4A is required to complete DSB repair in a timely manner and regulate the relative utilization of homologous recombination (HR) and nonhomologous end-joining (NHEJ) repair pathways but exclusively for heterochromatic DSBs. We conclude that the temporal kinetics and pathway utilization during heterochromatic DSB repair depend on dKDM4A-dependent demethylation of heterochromatic histone marks. Thus, distinct pre-existing chromatin states require specialized epigenetic alterations to ensure proper DSB repair.
Collapse
Affiliation(s)
- Aniek Janssen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA.,Innovative Genomics Institute, Berkeley, California 94720, USA
| | - Serafin U Colmenares
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA.,Innovative Genomics Institute, Berkeley, California 94720, USA
| | - Timothy Lee
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Gary H Karpen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA.,Innovative Genomics Institute, Berkeley, California 94720, USA
| |
Collapse
|
22
|
Song W, Zsindely N, Faragó A, Marsh JL, Bodai L. Systematic genetic interaction studies identify histone demethylase Utx as potential target for ameliorating Huntington's disease. Hum Mol Genet 2018; 27:649-666. [PMID: 29281014 PMCID: PMC5886221 DOI: 10.1093/hmg/ddx432] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 01/29/2023] Open
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disease caused by alterations in the huntingtin gene (htt). Transcriptional dysregulation is an early event in HD progression. Protein acetylation and methylation particularly on histones regulates chromatin structure thereby preventing or facilitating transcription. Although protein acetylation has been found to affect HD symptoms, little is known about the potential role of protein methylation in HD pathology. In recent years, a series of proteins have been described that are responsible for methylating and demethylating histones as well as other proteins. We carried out systematic genetic interaction studies testing lysine and arginine methylases and demethylases in a Drosophila melanogaster HD model. We found that modulating methylation enzymes that typically affect histone positions H3K4, H3K36 or H3K79 had varying effects on HD pathology while modulating ones that typically affect constitutive heterochromatin marks at H3K9 and H4K20 generally had limited impact on HD pathology. In contrast, modulating enzymes acting on the facultative heterochromatin mark at H3K27 had specific effects on HD pathology, with reduction of the demethylase Utx rescuing HTT-induced pathology while reducing Polycomb Repressive Complex2 core methylase components led to more aggressive pathology. Further exploration of the mechanism underlying the methylation-specific interactions suggest that these lysine and arginine methylases and demethylases are likely exerting their influence through non-histone targets. These results highlight a novel therapeutic approach for HD in the form of Utx inhibition.
Collapse
Affiliation(s)
- Wan Song
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Nóra Zsindely
- Department of Biochemistry and Molecular Biology, University of Szeged, 6726 Szeged, Hungary
| | - Anikó Faragó
- Department of Biochemistry and Molecular Biology, University of Szeged, 6726 Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - J Lawrence Marsh
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - László Bodai
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
- Department of Biochemistry and Molecular Biology, University of Szeged, 6726 Szeged, Hungary
| |
Collapse
|
23
|
Drosophila Histone Demethylase KDM4A Has Enzymatic and Non-enzymatic Roles in Controlling Heterochromatin Integrity. Dev Cell 2017; 42:156-169.e5. [PMID: 28743002 DOI: 10.1016/j.devcel.2017.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 03/21/2017] [Accepted: 06/16/2017] [Indexed: 11/23/2022]
Abstract
Eukaryotic genomes are broadly divided between gene-rich euchromatin and the highly repetitive heterochromatin domain, which is enriched for proteins critical for genome stability and transcriptional silencing. This study shows that Drosophila KDM4A (dKDM4A), previously characterized as a euchromatic histone H3 K36 demethylase and transcriptional regulator, predominantly localizes to heterochromatin and regulates heterochromatin position-effect variegation (PEV), organization of repetitive DNAs, and DNA repair. We demonstrate that dKDM4A demethylase activity is dispensable for PEV. In contrast, dKDM4A enzymatic activity is required to relocate heterochromatic double-strand breaks outside the domain, as well as for organismal survival when DNA repair is compromised. Finally, DNA damage triggers dKDM4A-dependent changes in the levels of H3K56me3, suggesting that dKDM4A demethylates this heterochromatic mark to facilitate repair. We conclude that dKDM4A, in addition to its previously characterized role in euchromatin, utilizes both enzymatic and structural mechanisms to regulate heterochromatin organization and functions.
Collapse
|
24
|
Boldyreva LV, Goncharov FP, Demakova OV, Zykova TY, Levitsky VG, Kolesnikov NN, Pindyurin AV, Semeshin VF, Zhimulev IF. Protein and Genetic Composition of Four Chromatin Types in Drosophila melanogaster Cell Lines. Curr Genomics 2017; 18:214-226. [PMID: 28367077 PMCID: PMC5345337 DOI: 10.2174/1389202917666160512164913] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Recently, we analyzed genome-wide protein binding data for the Drosophila cell lines S2, Kc, BG3 and Cl.8 (modENCODE Consortium) and identified a set of 12 proteins enriched in the regions corresponding to interbands of salivary gland polytene chromosomes. Using these data, we developed a bioinformatic pipeline that partitioned the Drosophila genome into four chromatin types that we hereby refer to as aquamarine, lazurite, malachite and ruby. RESULTS Here, we describe the properties of these chromatin types across different cell lines. We show that aquamarine chromatin tends to harbor transcription start sites (TSSs) and 5' untranslated regions (5'UTRs) of the genes, is enriched in diverse "open" chromatin proteins, histone modifications, nucleosome remodeling complexes and transcription factors. It encompasses most of the tRNA genes and shows enrichment for non-coding RNAs and miRNA genes. Lazurite chromatin typically encompasses gene bodies. It is rich in proteins involved in transcription elongation. Frequency of both point mutations and natural deletion breakpoints is elevated within lazurite chromatin. Malachite chromatin shows higher frequency of insertions of natural transposons. Finally, ruby chromatin is enriched for proteins and histone modifications typical for the "closed" chromatin. Ruby chromatin has a relatively low frequency of point mutations and is essentially devoid of miRNA and tRNA genes. Aquamarine and ruby chromatin types are highly stable across cell lines and have contrasting properties. Lazurite and malachite chromatin types also display characteristic protein composition, as well as enrichment for specific genomic features. We found that two types of chromatin, aquamarine and ruby, retain their complementary protein patterns in four Drosophila cell lines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Igor F. Zhimulev
- Address correspondence to this author at the Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; Tel: +7 383 363-90-41; Fax: +7 383 363-90-78; E-mail:
| |
Collapse
|
25
|
Yang WS, Campbell M, Chang PC. SUMO modification of a heterochromatin histone demethylase JMJD2A enables viral gene transactivation and viral replication. PLoS Pathog 2017; 13:e1006216. [PMID: 28212444 PMCID: PMC5333917 DOI: 10.1371/journal.ppat.1006216] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/02/2017] [Accepted: 02/02/2017] [Indexed: 11/20/2022] Open
Abstract
Small ubiquitin-like modifier (SUMO) modification of chromatin has profound effects on transcription regulation. By using Kaposi’s sarcoma associated herpesvirus (KSHV) as a model, we recently demonstrated that epigenetic modification of viral chromatin by SUMO-2/3 is involved in regulating gene expression and viral reactivation. However, how this modification orchestrates transcription reprogramming through targeting histone modifying enzymes remains largely unknown. Here we show that JMJD2A, the first identified Jumonji C domain-containing histone demethylase, is the histone demethylase responsible for SUMO-2/3 enrichment on the KSHV genome during viral reactivation. Using in vitro and in vivo SUMOylation assays, we found that JMJD2A is SUMOylated on lysine 471 by KSHV K-bZIP, a viral SUMO-2/3-specific E3 ligase, in a SUMO-interacting motif (SIM)-dependent manner. SUMOylation is required for stabilizing chromatin association and gene transactivation by JMJD2A. These finding suggest that SUMO-2/3 modification plays an essential role in the epigenetic regulatory function of JMJD2A. Consistently, hierarchical clustering analysis of RNA-seq data showed that a SUMO-deficient mutant of JMJD2A was more closely related to JMJD2A knockdown than to wild-type. Our previous report demonstrated that JMJD2A coated and maintained the “ready to activate” status of the viral genome. Consistent with our previous report, a SUMO-deficient mutant of JMJD2A reduced viral gene expression and virion production. Importantly, JMJD2A has been implicated as an oncogene in various cancers by regulating proliferation. We therefore further analyzed the role of SUMO modification of JMJD2A in regulating cell proliferation. Interestingly, the SUMO-deficient mutant of JMJD2A failed to rescue the proliferation defect of JMJD2A knockdown cells. Emerging specific inhibitors of JMJD2A have been generated for evaluation in cancer studies. Our results revealed that SUMO conjugation mediates an epigenetic regulatory function of JMJD2A and suggests that inhibiting JMJD2A SUMOylation may be a novel avenue for anti-cancer therapy. Epigenetic dysregulation connects genotype to diseases. An understanding of epigenetic regulation holds promise for clinical use. The profound epigenetic changes that occur during the latent-to-lytic switch of the Kaposi’s sarcoma associated herpesvirus (KSHV) life cycle make it an attractive model system for studies of epigenetic regulation. Using this model, our recent work showed that the demethylase JMJD2A and SUMO-2/3 specific modifications of viral and host chromatin are associated with epigenetic regulation of transcription during reactivation. However, how SUMO modification and histone modifying enzymes interface to orchestrate epigenetic regulation remains largely unknown. Here, we demonstrate JMJD2A as an example of a histone demethylase that is SUMO-2/3 modified by the KSHV encoded SUMO E3 ligase, K-bZIP. SUMO modification of JMJD2A is essential for stabilizing its chromatin binding and exerting its transcriptional derepression activity. Emerging evidence has implicated JMJD2A as an oncogene involved in the progression of various human tumors. The essential role of SUMO in regulating the biological function of JMJD2A suggests that SUMOylation of JMJD2A may be one of the potential underlying mechanisms responsible for JMJD2A-mediated oncogenesis. In this regard, inhibition of JMJD2A SUMOylation could be a new strategy for anti-cancer therapy.
Collapse
Affiliation(s)
- Wan-Shan Yang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, R.O.C.
| | - Mel Campbell
- UC Davis Cancer Center, University of California, Davis, Davis, California, United States of America
| | - Pei-Ching Chang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, R.O.C.
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
26
|
Swenson JM, Colmenares SU, Strom AR, Costes SV, Karpen GH. The composition and organization of Drosophila heterochromatin are heterogeneous and dynamic. eLife 2016; 5:e16096. [PMID: 27514026 PMCID: PMC4981497 DOI: 10.7554/elife.16096] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/06/2016] [Indexed: 12/13/2022] Open
Abstract
Heterochromatin is enriched for specific epigenetic factors including Heterochromatin Protein 1a (HP1a), and is essential for many organismal functions. To elucidate heterochromatin organization and regulation, we purified Drosophila melanogaster HP1a interactors, and performed a genome-wide RNAi screen to identify genes that impact HP1a levels or localization. The majority of the over four hundred putative HP1a interactors and regulators identified were previously unknown. We found that 13 of 16 tested candidates (83%) are required for gene silencing, providing a substantial increase in the number of identified components that impact heterochromatin properties. Surprisingly, image analysis revealed that although some HP1a interactors and regulators are broadly distributed within the heterochromatin domain, most localize to discrete subdomains that display dynamic localization patterns during the cell cycle. We conclude that heterochromatin composition and architecture is more spatially complex and dynamic than previously suggested, and propose that a network of subdomains regulates diverse heterochromatin functions.
Collapse
Affiliation(s)
- Joel M Swenson
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Serafin U Colmenares
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Amy R Strom
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Sylvain V Costes
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Gary H Karpen
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
27
|
Abstract
Epigenetic regulation of chromatin structure is a fundamental process for eukaryotes. Regulators include DNA methylation, microRNAs and chromatin modifications. Within the chromatin modifiers, one class of enzymes that can functionally bind and modify chromatin, through the removal of methyl marks, is the histone lysine demethylases. Here, we summarize the current findings of the 13 known histone lysine demethylases in Drosophila melanogaster, and discuss the critical role of these histone-modifying enzymes in the maintenance of genomic functions. Additionally, as histone demethylase dysregulation has been identified in cancer, we discuss the advantages for using Drosophila as a model system to study tumorigenesis.
Collapse
Affiliation(s)
- Andreana Holowatyj
- a Department of Oncology ; Wayne State University School of Medicine ; Detroit , MI USA
| | | | | |
Collapse
|
28
|
Abstract
The proto-oncogene c-Jun plays crucial roles in tumorigenesis, and its aberrant expression has been implicated in many cancers. Previous studies have shown that the c-Jun gene is positively autoregulated by its product. Notably, it has also been reported that c-Jun proteins are enriched in its gene body region. However, the role of c-Jun proteins in its gene body region has yet to be uncovered. HP1a is an evolutionarily conserved heterochromatin-associated protein, which plays an essential role in heterochromatin-mediated gene silencing. Interestingly, accumulating evidence shows that HP1a is also localized to euchromatic regions to positively regulate gene transcription. However, the underlying mechanism has not been defined. In this study, we demonstrate that HP1a is involved in the positive autoregulatory loop of the Jra gene, the c-Jun homolog in Drosophila. Jra recruits the HP1a/KDM4A complex to its gene body region upon osmotic stress to reduce H3K36 methylation levels and disrupt H3K36 methylation-dependent histone deacetylation, resulting in high levels of histone acetylation in the Jra gene body region, thus promoting gene transcription. These results not only expand our knowledge toward the mechanism of c-Jun regulation, but also reveal the mechanism by which HP1a exerts its positive regulatory function in gene expression.
Collapse
Affiliation(s)
- Yan Liu
- a College of Life Sciences; Hebei United University ; Tangshan , China
| | | |
Collapse
|
29
|
Pack LR, Yamamoto KR, Fujimori DG. Opposing Chromatin Signals Direct and Regulate the Activity of Lysine Demethylase 4C (KDM4C). J Biol Chem 2016; 291:6060-70. [PMID: 26747609 DOI: 10.1074/jbc.m115.696864] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Indexed: 12/23/2022] Open
Abstract
Histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 9 trimethylation (H3K9me3) are epigenetic marks with opposing roles in transcription regulation. Whereas colocalization of these modifications is generally excluded in the genome, how this preclusion is established remains poorly understood. Lysine demethylase 4C (KDM4C), an H3K9me3 demethylase, localizes predominantly to H3K4me3-containing promoters through its hybrid tandem tudor domain (TTD) (1, 2), providing a model for how these modifications might be excluded. We quantitatively investigated the contribution of the TTD to the catalysis of H3K9me3 demethylation by KDM4C and demonstrated that TTD-mediated recognition of H3K4me3 stimulates demethylation of H3K9me3 in cis on peptide and mononucleosome substrates. Our findings support a multivalent interaction mechanism, by which an activating mark, H3K4me3, recruits and stimulates KDM4C to remove the repressive H3K9me3 mark, thus facilitating exclusion. In addition, our work suggests that differential TTD binding properties across the KDM4 demethylase family may differentiate their targets in the genome.
Collapse
Affiliation(s)
- Lindsey R Pack
- From the Department of Cellular and Molecular Pharmacology, the Tetrad Graduate Program, and
| | | | - Danica Galonić Fujimori
- From the Department of Cellular and Molecular Pharmacology, the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| |
Collapse
|
30
|
Torres IO, Fujimori DG. Functional coupling between writers, erasers and readers of histone and DNA methylation. Curr Opin Struct Biol 2015; 35:68-75. [PMID: 26496625 DOI: 10.1016/j.sbi.2015.09.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/18/2015] [Accepted: 09/30/2015] [Indexed: 12/13/2022]
Abstract
DNA and histone lysine methylation are dynamic chemical modifications that play a crucial role in the establishment of gene expression patterns during development. Both types of genomic methylation patterns are enzymatically regulated by the opposing activities of enzymes that introduce and remove these marks, known as methylation 'writers' and 'erasers', respectively. The appropriate localization and activity of these enzymes on chromatin is, in part, regulated by chromatin 'readers', protein modules that recognize histone and DNA modifications. Such reading modules are either encoded within the same polypeptide as the catalytic domains of writers and erasers, or present in protein partners that associate with them. Here, we review recent structural, biochemical and biological studies that demonstrate that there are multiple mechanisms by which reader domains can regulate the writers and erasers of histone and DNA methylation.
Collapse
Affiliation(s)
- Idelisse Ortiz Torres
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Danica Galonić Fujimori
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
31
|
Heterochromatin remodeling by CDK12 contributes to learning in Drosophila. Proc Natl Acad Sci U S A 2015; 112:13988-93. [PMID: 26508632 DOI: 10.1073/pnas.1502943112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dynamic regulation of chromatin structure is required to modulate the transcription of genes in eukaryotes. However, the factors that contribute to the plasticity of heterochromatin structure are elusive. Here, we report that cyclin-dependent kinase 12 (CDK12), a transcription elongation-associated RNA polymerase II (RNAPII) kinase, antagonizes heterochromatin enrichment in Drosophila chromosomes. Notably, loss of CDK12 induces the ectopic accumulation of heterochromatin protein 1 (HP1) on euchromatic arms, with a prominent enrichment on the X chromosome. Furthermore, ChIP and sequencing analysis reveals that the heterochromatin enrichment on the X chromosome mainly occurs within long genes involved in neuronal functions. Consequently, heterochromatin enrichment reduces the transcription of neuronal genes in the adult brain and results in a defect in Drosophila courtship learning. Taken together, these results define a previously unidentified role of CDK12 in controlling the epigenetic transition between euchromatin and heterochromatin and suggest a chromatin regulatory mechanism in neuronal behaviors.
Collapse
|
32
|
Xie XJ, Hsu FN, Gao X, Xu W, Ni JQ, Xing Y, Huang L, Hsiao HC, Zheng H, Wang C, Zheng Y, Xiaoli AM, Yang F, Bondos SE, Ji JY. CDK8-Cyclin C Mediates Nutritional Regulation of Developmental Transitions through the Ecdysone Receptor in Drosophila. PLoS Biol 2015. [PMID: 26222308 PMCID: PMC4519132 DOI: 10.1371/journal.pbio.1002207] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The steroid hormone ecdysone and its receptor (EcR) play critical roles in orchestrating developmental transitions in arthropods. However, the mechanism by which EcR integrates nutritional and developmental cues to correctly activate transcription remains poorly understood. Here, we show that EcR-dependent transcription, and thus, developmental timing in Drosophila, is regulated by CDK8 and its regulatory partner Cyclin C (CycC), and the level of CDK8 is affected by nutrient availability. We observed that cdk8 and cycC mutants resemble EcR mutants and EcR-target genes are systematically down-regulated in both mutants. Indeed, the ability of the EcR-Ultraspiracle (USP) heterodimer to bind to polytene chromosomes and the promoters of EcR target genes is also diminished. Mass spectrometry analysis of proteins that co-immunoprecipitate with EcR and USP identified multiple Mediator subunits, including CDK8 and CycC. Consistently, CDK8-CycC interacts with EcR-USP in vivo; in particular, CDK8 and Med14 can directly interact with the AF1 domain of EcR. These results suggest that CDK8-CycC may serve as transcriptional cofactors for EcR-dependent transcription. During the larval–pupal transition, the levels of CDK8 protein positively correlate with EcR and USP levels, but inversely correlate with the activity of sterol regulatory element binding protein (SREBP), the master regulator of intracellular lipid homeostasis. Likewise, starvation of early third instar larvae precociously increases the levels of CDK8, EcR and USP, yet down-regulates SREBP activity. Conversely, refeeding the starved larvae strongly reduces CDK8 levels but increases SREBP activity. Importantly, these changes correlate with the timing for the larval–pupal transition. Taken together, these results suggest that CDK8-CycC links nutrient intake to developmental transitions (EcR activity) and fat metabolism (SREBP activity) during the larval–pupal transition. During the larval-pupal transition in Drosophila, CDK8-CycC helps to link nutrient intake to development by activating ecdysone receptor-dependent transcription and to fat metabolism by inhibiting SREBP-activated gene expression. Arthropods are estimated to account for over 80% of animal species on earth. Characterized by their rigid exoskeletons, juvenile arthropods must periodically shed their thick outer cuticles by molting in order to grow. The steroid hormone ecdysone plays an essential role in regulating the timing of developmental transitions, but exactly how ecdysone and its receptor EcR activates transcription correctly after integrating nutritional and developmental cues remains unknown. Our developmental genetic analyses of two Drosophila mutants, cdk8 and cycC, show that they are lethal during the prepupal stage, with aberrant accumulation of fat and a severely delayed larval–pupal transition. As we have reported previously, CDK8-CycC inhibits fat accumulation by directly inactivating SREBP, a master transcription factor that controls the expression of lipogenic genes, which explains the abnormal fat accumulation in the cdk8 and cycC mutants. We find that CDK8 and CycC are required for EcR to bind to its target genes, serving as transcriptional cofactors for EcR-dependent gene expression. The expression of EcR target genes is compromised in cdk8 and cycC mutants and underpins the retarded pupariation phenotype. Starvation of feeding larvae precociously up-regulates CDK8 and EcR, prematurely down-regulates SREBP activity, and leads to early pupariation, whereas re-feeding starved larvae has opposite effects. Taken together, these results suggest that CDK8 and CycC play important roles in coordinating nutrition intake with fat metabolism by directly inhibiting SREBP-dependent gene expression and regulating developmental timing by activating EcR-dependent transcription in Drosophila.
Collapse
Affiliation(s)
- Xiao-Jun Xie
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Fu-Ning Hsu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Xinsheng Gao
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Los Angeles, United States of America
| | - Jian-Quan Ni
- Gene Regulatory Laboratory, School of Medicine, Tsinghua University, Beijing, China
| | - Yue Xing
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Liying Huang
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Los Angeles, United States of America
| | - Hao-Ching Hsiao
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Frelinghuysen Road, Piscataway, New Jersey, United States of America
| | - Chenguang Wang
- Key Laboratory of Tianjin Radiation and Molecular Nuclear Medicine; Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Yani Zheng
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Alus M. Xiaoli
- Department of Medicine, Division of Endocrinology, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Fajun Yang
- Department of Medicine, Division of Endocrinology, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sarah E. Bondos
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
33
|
Gacek-Matthews A, Noble LM, Gruber C, Berger H, Sulyok M, Marcos AT, Strauss J, Andrianopoulos A. KdmA, a histone H3 demethylase with bipartite function, differentially regulates primary and secondary metabolism in Aspergillus nidulans. Mol Microbiol 2015; 96:839-60. [PMID: 25712266 PMCID: PMC4949671 DOI: 10.1111/mmi.12977] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2015] [Indexed: 12/28/2022]
Abstract
Aspergillus nidulans kdmA encodes a member of the KDM4 family of jumonji histone demethylase proteins, highly similar to metazoan orthologues both within functional domains and in domain architecture. This family of proteins exhibits demethylase activity towards lysines 9 and 36 of histone H3 and plays a prominent role in gene expression and chromosome structure in many species. Mass spectrometry mapping of A. nidulans histones revealed that around 3% of bulk histone H3 carried trimethylated H3K9 (H3K9me3) but more than 90% of histones carried either H3K36me2 or H3K36me3. KdmA functions as H3K36me3 demethylase and has roles in transcriptional regulation. Genetic manipulation of KdmA levels is tolerated without obvious effect in most conditions, but strong phenotypes are evident under various conditions of stress. Transcriptome analysis revealed that – in submerged early and late cultures – between 25% and 30% of the genome is under KdmA influence respectively. Transcriptional imbalance in the kdmA deletion mutant may contribute to the lethal phenotype observed upon exposure of mutant cells to low‐density visible light on solid medium. Although KdmA acts as transcriptional co‐repressor of primary metabolism genes, it is required for full expression of several genes involved in biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Agnieszka Gacek-Matthews
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Campus Tulln, Tulln, 3430, Austria
| | - Luke M Noble
- Department of Genetics, University of Melbourne, Victoria, 3010, Australia
| | - Clemens Gruber
- Department of Chemistry, BOKU-University of Natural Resources and Life Sciences, Campus Muthgasse, Vienna, A-1190, Austria
| | - Harald Berger
- Health and Environment Department, AIT - Austrian Institute of Technology GmbH, Campus Tulln, Tulln, 3430, Austria
| | - Michael Sulyok
- Center for Analytical Chemistry, Department IFA Tulln, BOKU-University of Natural Resources and Life Sciences, Campus Tulln, Tulln, 3430, Austria
| | - Ana T Marcos
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Joseph Strauss
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Campus Tulln, Tulln, 3430, Austria.,Health and Environment Department, AIT - Austrian Institute of Technology GmbH, Campus Tulln, Tulln, 3430, Austria
| | | |
Collapse
|
34
|
Garfinkel BP, Melamed-Book N, Anuka E, Bustin M, Orly J. HP1BP3 is a novel histone H1 related protein with essential roles in viability and growth. Nucleic Acids Res 2015; 43:2074-90. [PMID: 25662603 PMCID: PMC4344522 DOI: 10.1093/nar/gkv089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/17/2014] [Accepted: 01/23/2015] [Indexed: 12/28/2022] Open
Abstract
The dynamic architecture of chromatin is vital for proper cellular function, and is maintained by the concerted action of numerous nuclear proteins, including that of the linker histone H1 variants, the most abundant family of nucleosome-binding proteins. Here we show that the nuclear protein HP1BP3 is widely expressed in most vertebrate tissues and is evolutionarily and structurally related to the H1 family. HP1BP3 contains three globular domains and a highly positively charged C-terminal domain, resembling similar domains in H1. Fluorescence recovery after photobleaching (FRAP) studies indicate that like H1, binding of HP1BP3 to chromatin depends on both its C and N terminal regions and is affected by the cell cycle and post translational modifications. HP1BP3 contains functional motifs not found in H1 histones, including an acidic stretch and a consensus HP1-binding motif. Transcriptional profiling of HeLa cells lacking HP1BP3 showed altered expression of 383 genes, suggesting a role for HP1BP3 in modulation of gene expression. Significantly, Hp1bp3(-/-) mice present a dramatic phenotype with 60% of pups dying within 24 h of birth and the surviving animals exhibiting a lifelong 20% growth retardation. We suggest that HP1BP3 is a ubiquitous histone H1 like nuclear protein with distinct and non-redundant functions necessary for survival and growth.
Collapse
Affiliation(s)
- Benjamin P Garfinkel
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Naomi Melamed-Book
- Bio-Imaging Unit, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Eli Anuka
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Michael Bustin
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph Orly
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
35
|
Huang F, Paulson A, Dutta A, Venkatesh S, Smolle M, Abmayr SM, Workman JL. Histone acetyltransferase Enok regulates oocyte polarization by promoting expression of the actin nucleation factor spire. Genes Dev 2015; 28:2750-63. [PMID: 25512562 PMCID: PMC4265678 DOI: 10.1101/gad.249730.114] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
KAT6 histone acetyltransferases (HATs) are highly conserved in eukaryotes and have been shown to play important roles in transcriptional regulation. Here, we demonstrate that the Drosophila KAT6 Enok acetylates histone H3 Lys 23 (H3K23) in vitro and in vivo. Mutants lacking functional Enok exhibited defects in the localization of Oskar (Osk) to the posterior end of the oocyte, resulting in loss of germline formation and abdominal segments in the embryo. RNA sequencing (RNA-seq) analysis revealed that spire (spir) and maelstrom (mael), both required for the posterior localization of Osk in the oocyte, were down-regulated in enok mutants. Chromatin immunoprecipitation showed that Enok is localized to and acetylates H3K23 at the spir and mael genes. Furthermore, Gal4-driven expression of spir in the germline can largely rescue the defective Osk localization in enok mutant ovaries. Our results suggest that the Enok-mediated H3K23 acetylation (H3K23Ac) promotes the expression of spir, providing a specific mechanism linking oocyte polarization to histone modification.
Collapse
Affiliation(s)
- Fu Huang
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Ariel Paulson
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Arnob Dutta
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | - Michaela Smolle
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Susan M Abmayr
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;
| |
Collapse
|
36
|
Kunowska N, Rotival M, Yu L, Choudhary J, Dillon N. Identification of protein complexes that bind to histone H3 combinatorial modifications using super-SILAC and weighted correlation network analysis. Nucleic Acids Res 2015; 43:1418-32. [PMID: 25605797 PMCID: PMC4330348 DOI: 10.1093/nar/gku1350] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The large number of chemical modifications that are found on the histone proteins of eukaryotic cells form multiple complex combinations, which can act as recognition signals for reader proteins. We have used peptide capture in conjunction with super-SILAC quantification to carry out an unbiased high-throughput analysis of the composition of protein complexes that bind to histone H3K9/S10 and H3K27/S28 methyl-phospho modifications. The accurate quantification allowed us to perform Weighted correlation network analysis (WGCNA) to obtain a systems-level view of the histone H3 histone tail interactome. The analysis reveals the underlying modularity of the histone reader network with members of nuclear complexes exhibiting very similar binding signatures, which suggests that many proteins bind to histones as part of pre-organized complexes. Our results identify a novel complex that binds to the double H3K9me3/S10ph modification, which includes Atrx, Daxx and members of the FACT complex. The super-SILAC approach allows comparison of binding to multiple peptides with different combinations of modifications and the resolution of the WGCNA analysis is enhanced by maximizing the number of combinations that are compared. This makes it a useful approach for assessing the effects of changes in histone modification combinations on the composition and function of bound complexes.
Collapse
Affiliation(s)
- Natalia Kunowska
- Gene Regulation and Chromatin Group, MRC Clinical Sciences Centre, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Maxime Rotival
- Integrative Genomics and Medicine Group, MRC Clinical Sciences Centre, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Lu Yu
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Jyoti Choudhary
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Niall Dillon
- Gene Regulation and Chromatin Group, MRC Clinical Sciences Centre, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
37
|
Accari SL, Fisher PR. Emerging Roles of JmjC Domain-Containing Proteins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 319:165-220. [DOI: 10.1016/bs.ircmb.2015.07.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Alekseyenko AA, Gorchakov AA, Zee BM, Fuchs SM, Kharchenko PV, Kuroda MI. Heterochromatin-associated interactions of Drosophila HP1a with dADD1, HIPP1, and repetitive RNAs. Genes Dev 2014; 28:1445-60. [PMID: 24990964 PMCID: PMC4083088 DOI: 10.1101/gad.241950.114] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Heterochromatin protein 1 (HP1a) plays conserved roles in gene silencing and heterochromatin and is also implicated in transcription, DNA replication, and repair. Using BioTAP-XL mass spectrometry and sequencing across multiple life stages of Drosophila, Alekseyenko et al. identify HP1a chromatin-associated protein and RNA interactions. They discover 13 novel candidates among the top interactions. Furthermore, HP1a selectively associates with a broad set of RNAs transcribed from repetitive regions. The validation of several novel HP1a protein interactors reveals new HP1a links to chromatin organization and function. Heterochromatin protein 1 (HP1a) has conserved roles in gene silencing and heterochromatin and is also implicated in transcription, DNA replication, and repair. Here we identify chromatin-associated protein and RNA interactions of HP1a by BioTAP-XL mass spectrometry and sequencing from Drosophila S2 cells, embryos, larvae, and adults. Our results reveal an extensive list of known and novel HP1a-interacting proteins, of which we selected three for validation. A strong novel interactor, dADD1 (Drosophila ADD1) (CG8290), is highly enriched in heterochromatin, harbors an ADD domain similar to human ATRX, displays selective binding to H3K9me2 and H3K9me3, and is a classic genetic suppressor of position-effect variegation. Unexpectedly, a second hit, HIPP1 (HP1 and insulator partner protein-1) (CG3680), is strongly connected to CP190-related complexes localized at putative insulator sequences throughout the genome in addition to its colocalization with HP1a in heterochromatin. A third interactor, the histone methyltransferase MES-4, is also enriched in heterochromatin. In addition to these protein–protein interactions, we found that HP1a selectively associated with a broad set of RNAs transcribed from repetitive regions. We propose that this rich network of previously undiscovered interactions will define how HP1a complexes perform their diverse functions in cells and developing organisms.
Collapse
Affiliation(s)
- Artyom A Alekseyenko
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Andrey A Gorchakov
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; Institute of Molecular and Cellular Biology, Novosibirsk 630090, Russia
| | - Barry M Zee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Stephen M Fuchs
- Department of Biology, Tufts University, Medford, Massachusetts 02155, USA
| | - Peter V Kharchenko
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA; Hematology/Oncology Program, Children's Hospital, Boston, Massachusetts 02115, USA
| | - Mitzi I Kuroda
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
39
|
A developmental genetic analysis of the lysine demethylase KDM2 mutations in Drosophila melanogaster. Mech Dev 2014; 133:36-53. [PMID: 25016215 DOI: 10.1016/j.mod.2014.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 06/11/2014] [Accepted: 06/17/2014] [Indexed: 12/19/2022]
Abstract
Post-translational modification of histones plays essential roles in the transcriptional regulation of genes in eukaryotes. Methylation on basic residues of histones is regulated by histone methyltransferases and histone demethylases, and misregulation of these enzymes has been linked to a range of diseases such as cancer. Histone lysine demethylase 2 (KDM2) family proteins have been shown to either promote or suppress tumorigenesis in different human malignancies. However, the roles and regulation of KDM2 in development are poorly understood, and the exact roles of KDM2 in regulating demethylation remain controversial. Since KDM2 proteins are highly conserved in multicellular animals, we analyzed the KDM2 ortholog in Drosophila. We have observed that dKDM2 is a nuclear protein and its level fluctuates during fly development. We generated three deficiency lines that disrupt the dKdm2 locus, and together with 10 transposon insertion lines within the dKdm2 locus, we characterized the developmental defects of these alleles. The alleles of dKdm2 define three phenotypic classes, and the intragenic complementation observed among these alleles and our subsequent analyses suggest that dKDM2 is not required for viability. In addition, loss of dKDM2 appears to have rather weak effects on histone H3 lysine 36 and 4 methylation (H3K36me and H3K4me) in the third instar wandering larvae, and we observed no effect on methylation of H3K9me2, H3K27me2 and H3K27me3 in dKdm2 mutants. Taken together, these genetic, molecular and biochemical analyses suggest that dKDM2 is not required for viability of flies, indicating that dKdm2 is likely redundant with other histone lysine demethylases in regulating normal development in Drosophila.
Collapse
|
40
|
Abstract
Epigenetic mechanisms play a crucial role in regulating gene expression. The main mechanisms involve methylation of DNA and covalent modifications of histones by methylation, acetylation, phosphorylation, or ubiquitination. The complex interplay of different epigenetic mechanisms is mediated by enzymes acting in the nucleus. Modifications in DNA methylation are performed mainly by DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) proteins, while a plethora of enzymes, such as histone acetyltransferases (HATs), histone deacetylases (HDACs), histone methyltransferases (HMTs), and histone demethylases (HDMs) regulate covalent histone modifications. In many diseases, such as cancer, the epigenetic regulatory system is often disturbed. Vitamin D interacts with the epigenome on multiple levels. Firstly, critical genes in the vitamin D signaling system, such as those coding for vitamin D receptor (VDR) and the enzymes 25-hydroxylase (CYP2R1), 1α-hydroxylase (CYP27B1), and 24-hydroxylase (CYP24A1) have large CpG islands in their promoter regions and therefore can be silenced by DNA methylation. Secondly, VDR protein physically interacts with coactivator and corepressor proteins, which in turn are in contact with chromatin modifiers, such as HATs, HDACs, HMTs, and with chromatin remodelers. Thirdly, a number of genes encoding for chromatin modifiers and remodelers, such as HDMs of the Jumonji C (JmjC)-domain containing proteins and lysine-specific demethylase (LSD) families are primary targets of VDR and its ligands. Finally, there is evidence that certain VDR ligands have DNA demethylating effects. In this review we will discuss regulation of the vitamin D system by epigenetic modifications and how vitamin D contributes to the maintenance of the epigenome, and evaluate its impact in health and disease.
Collapse
Affiliation(s)
- Irfete S Fetahu
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Comprehensive Cancer Center, Medical University of Vienna Vienna, Austria
| | - Julia Höbaus
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Comprehensive Cancer Center, Medical University of Vienna Vienna, Austria
| | - Enikő Kállay
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Comprehensive Cancer Center, Medical University of Vienna Vienna, Austria
| |
Collapse
|
41
|
Pick H, Kilic S, Fierz B. Engineering chromatin states: chemical and synthetic biology approaches to investigate histone modification function. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:644-56. [PMID: 24768924 DOI: 10.1016/j.bbagrm.2014.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/26/2014] [Accepted: 04/16/2014] [Indexed: 01/11/2023]
Abstract
Patterns of histone post-translational modifications (PTMs) and DNA modifications establish a landscape of chromatin states with regulatory impact on gene expression, cell differentiation and development. These diverse modifications are read out by effector protein complexes, which ultimately determine their functional outcome by modulating the activity state of underlying genes. From genome-wide studies employing high-throughput ChIP-Seq methods as well as proteomic mass spectrometry studies, a large number of PTMs are known and their coexistence patterns and associations with genomic regions have been mapped in a large number of different cell types. Conversely, the molecular interplay between chromatin effector proteins and modified chromatin regions as well as their resulting biological output is less well understood on a molecular level. Within the last decade a host of chemical approaches has been developed with the goal to produce synthetic chromatin with a defined arrangement of PTMs. These methods now permit systematic functional studies of individual histone and DNA modifications, and additionally provide a discovery platform to identify further interacting nuclear proteins. Complementary chemical- and synthetic-biology methods have emerged to directly observe and modulate the modification landscape in living cells and to readily probe the effect of altered PTM patterns on biological processes. Herein, we review current methodologies allowing chemical and synthetic biological engineering of distinct chromatin states in vitro and in vivo with the aim of obtaining a molecular understanding of histone and DNA modification function. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
Collapse
Affiliation(s)
- Horst Pick
- Fondation Sandoz Chair in Biophysical Chemistry of Macromolecules, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Sinan Kilic
- Fondation Sandoz Chair in Biophysical Chemistry of Macromolecules, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Beat Fierz
- Fondation Sandoz Chair in Biophysical Chemistry of Macromolecules, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
42
|
Sinha KM, Yasuda H, Zhou X, deCrombrugghe B. Osterix and NO66 histone demethylase control the chromatin of Osterix target genes during osteoblast differentiation. J Bone Miner Res 2014; 29:855-65. [PMID: 24115157 PMCID: PMC3961497 DOI: 10.1002/jbmr.2103] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 08/07/2013] [Accepted: 08/22/2013] [Indexed: 11/10/2022]
Abstract
Commitment of Runx2-expressing precursor osteoblasts to functional osteoblasts and then to osteocytes is triggered by Osterix (Osx), which activates its target genes in those cells during bone formation. It is not yet known whether Osx has a role in remodeling the chromatin architecture of its target genes during the transition from preosteoblast to osteoblast. In testing the hypothesis that Osx is indispensable for active chromatin architecture, we first showed that in Osx-null calvarial cells occupancy of the transcriptional activators, including lysine 4 methyl transferase (Wdr5), c-Myc, and H2A.Z, at the Osx target gene Bsp was very markedly decreased. The levels of methylation of lysines 4 and 36 and acetylation of histone H3, markers for active chromatin, were also reduced at the Bsp gene in these cells. In contrast, occupancy of the transcriptional repressors HP1 and the nucleolar protein 66 (NO66), a histone demethylase previously identified as an Osx-interacting protein, was increased at the Bsp gene in Osx-null calvarial cells. Furthermore, the Bsp promoter was hypermethylated in embryonic stem (ES) cells and in embryonic day 9.5 (E9.5) embryos but was markedly hypomethylated in the calvaria of E18.5 embryos, coinciding with robust Bsp expression. In contrast, CpG methylation in the Bsp promoter remained high in Osx-null calvaria compared to Osx-wild-type calvaria. Our data also revealed that NO66 interacted with DNA Methyltransferase 1A (DNMT1A), histone deacetylase 1A (HDAC1A), and HP1, which are known to control histone and DNA methylation. In addition, HP1 stimulated the demethylase activity of NO66 for its substrates "trimethylation of histone H3 at lysine 4" (H3K4me3) and "trimethylation of histone H3 at lysine 36" (H3K36me3). Our findings strongly suggest that in the absence of Osx, the chromatin of Osx target genes is transcriptionally inactive. We propose that Osx is a molecular switch for the formation of an active chromatin state during osteoblast differentiation, whereas NO66 helps gene repression through histone demethylation and/or formation of a repressor complex, resulting in multilayered control of the chromatin architecture of specific osteoblast genes.
Collapse
Affiliation(s)
- Krishna M. Sinha
- Department of Endocrine Neoplasia & Hormonal Disorders, The University of Texas M.D. Anderson Cancer Center, Houston, TX77030; USA. 1515 Holcomb Blvd., Unit 1463, Houston, TX77030, USA, Tel.: +1 713 563 9117, Fax: +1 713 792 9833
| | - Hideyo Yasuda
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, TX77030; USA. 1515 Holcomb Blvd., Unit 1463, Houston, TX77030, USA, Tel.: +1 713 563 9117, Fax: +1 713 792 9833
| | - Xin Zhou
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, TX77030; USA. 1515 Holcomb Blvd., Unit 1463, Houston, TX77030, USA, Tel.: +1 713 563 9117, Fax: +1 713 792 9833
| | - Benoit deCrombrugghe
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, TX77030; USA. 1515 Holcomb Blvd., Unit 1463, Houston, TX77030, USA, Tel.: +1 713 563 9117, Fax: +1 713 792 9833
| |
Collapse
|
43
|
Fierz B. Synthetic chromatin approaches to probe the writing and erasing of histone modifications. ChemMedChem 2014; 9:495-504. [PMID: 24497444 DOI: 10.1002/cmdc.201300487] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/18/2014] [Indexed: 11/11/2022]
Abstract
Posttranslational modifications (PTMs) of chromatin are involved in gene regulation, thereby contributing to cell differentiation, lineage determination, and organism development. Discrete chromatin states are established by the action of a large set of enzymes that catalyze the deposition, propagation, and removal of histone PTMs, thereby modulating gene expression. Given their central role in determining and maintaining cellular phenotype, as well as in controlling chromatin processes such as DNA repair, the dysregulation of these enzymes can have serious consequences, and can result in cancer and neurodegenerative diseases. Thus, such chromatin regulator proteins are promising drug targets. However, they are often present in large, modular protein complexes that specifically recognize target chromatin regions and exhibit intricate regulation through preexisting histone marks. This renders the study of their enzymatic mechanisms complex. Recent developments in the chemical production of defined chromatin substrates show great promise for improving our understanding of the activity of chromatin regulator complexes at the molecular level. Herein I discuss examples highlighting the application of synthetic chromatin to study the enzymatic mechanisms and regulatory pathways of these crucial protein complexes in detail, with potential implications for assay development in pharmacological research.
Collapse
Affiliation(s)
- Beat Fierz
- Fondation Sandoz Chair in Biophysical Chemistry of Macromolecules, École Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)
| |
Collapse
|
44
|
Font-Burgada J, Reina O, Rossell D, Azorín F. chroGPS, a global chromatin positioning system for the functional analysis and visualization of the epigenome. Nucleic Acids Res 2014; 42:2126-37. [PMID: 24271395 PMCID: PMC3936722 DOI: 10.1093/nar/gkt1186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/31/2013] [Accepted: 11/02/2013] [Indexed: 11/15/2022] Open
Abstract
Development of tools to jointly visualize the genome and the epigenome remains a challenge. chroGPS is a computational approach that addresses this question. chroGPS uses multidimensional scaling techniques to represent similarity between epigenetic factors, or between genetic elements on the basis of their epigenetic state, in 2D/3D reference maps. We emphasize biological interpretability, statistical robustness, integration of genetic and epigenetic data from heterogeneous sources, and computational feasibility. Although chroGPS is a general methodology to create reference maps and study the epigenetic state of any class of genetic element or genomic region, we focus on two specific kinds of maps: chroGPS(factors), which visualizes functional similarities between epigenetic factors, and chroGPS(genes), which describes the epigenetic state of genes and integrates gene expression and other functional data. We use data from the modENCODE project on the genomic distribution of a large collection of epigenetic factors in Drosophila, a model system extensively used to study genome organization and function. Our results show that the maps allow straightforward visualization of relationships between factors and elements, capturing relevant information about their functional properties that helps to interpret epigenetic information in a functional context and derive testable hypotheses.
Collapse
Affiliation(s)
- Joan Font-Burgada
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Rexac, 10, 08028 Barcelona, Spain, Institute for Research in Biomedicine, IRB Barcelona, Baldiri Reixac, 10, 08028 Barcelona, Spain and Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| | - Oscar Reina
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Rexac, 10, 08028 Barcelona, Spain, Institute for Research in Biomedicine, IRB Barcelona, Baldiri Reixac, 10, 08028 Barcelona, Spain and Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| | - David Rossell
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Rexac, 10, 08028 Barcelona, Spain, Institute for Research in Biomedicine, IRB Barcelona, Baldiri Reixac, 10, 08028 Barcelona, Spain and Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Rexac, 10, 08028 Barcelona, Spain, Institute for Research in Biomedicine, IRB Barcelona, Baldiri Reixac, 10, 08028 Barcelona, Spain and Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
45
|
Drosophila Kdm4 demethylases in histone H3 lysine 9 demethylation and ecdysteroid signaling. Sci Rep 2013; 3:2894. [PMID: 24100631 PMCID: PMC3792421 DOI: 10.1038/srep02894] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/20/2013] [Indexed: 11/18/2022] Open
Abstract
The dynamic regulation of chromatin structure by histone post-translational modification is an essential regulatory mechanism that controls global gene transcription. The Kdm4 family of H3K9me2,3 and H3K36me2,3 dual specific histone demethylases has been implicated in development and tumorigenesis. Here we show that DrosophilaKdm4A and Kdm4B are together essential for mediating ecdysteroid hormone signaling during larval development. Loss of Kdm4 genes leads to globally elevated levels of the heterochromatin marker H3K9me2,3 and impedes transcriptional activation of ecdysone response genes, resulting in developmental arrest. We further show that Kdm4A interacts with the Ecdysone Receptor (EcR) and colocalizes with EcR at its target gene promoter. Our studies suggest that Kdm4A may function as a transcriptional co-activator by removing the repressive histone mark H3K9me2,3 from cognate promoters.
Collapse
|
46
|
Abstract
Lysine methylation is one of the most prominent histone posttranslational modifications that regulate chromatin structure. Changes in histone lysine methylation status have been observed during cancer formation, which is thought to be a consequence of the dysregulation of histone lysine methyltransferases or the opposing demethylases. KDM4/JMJD2 proteins are demethylases that target histone H3 on lysines 9 and 36 and histone H1.4 on lysine 26. This protein family consists of three ~130-kDa proteins (KDM4A-C) and KDM4D/JMJD2D, which is half the size, lacks the double PHD and Tudor domains that are epigenome readers and present in the other KDM4 proteins, and has a different substrate specificity. Various studies have shown that KDM4A/JMJD2A, KDM4B/JMJD2B, and/or KDM4C/JMJD2C are overexpressed in breast, colorectal, lung, prostate, and other tumors and are required for efficient cancer cell growth. In part, this may be due to their ability to modulate transcription factors such as the androgen and estrogen receptor. Thus, KDM4 proteins present themselves as novel potential drug targets. Accordingly, multiple attempts are under way to develop KDM4 inhibitors, which could complement the existing arsenal of epigenetic drugs that are currently limited to DNA methyltransferases and histone deacetylases.
Collapse
Affiliation(s)
- William L Berry
- Department of Cell Biology and Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
47
|
Lee YH, Kuo CY, Stark JM, Shih HM, Ann DK. HP1 promotes tumor suppressor BRCA1 functions during the DNA damage response. Nucleic Acids Res 2013; 41:5784-98. [PMID: 23589625 PMCID: PMC3675466 DOI: 10.1093/nar/gkt231] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The DNA damage response (DDR) involves both the control of DNA damage repair and signaling to cell cycle checkpoints. Therefore, unraveling the underlying mechanisms of the DDR is important for understanding tumor suppression and cellular resistance to clastogenic cancer therapeutics. Because the DDR is likely to be influenced by chromatin regulation at the sites of DNA damage, we investigated the role of heterochromatin protein 1 (HP1) during the DDR process. We monitored double-strand breaks (DSBs) using the γH2AX foci marker and found that depleting cells of HP1 caused genotoxic stress, a delay in the repair of DSBs and elevated levels of apoptosis after irradiation. Furthermore, we found that these defects in repair were associated with impaired BRCA1 function. Depleting HP1 reduced recruitment of BRCA1 to DSBs and caused defects in two BRCA1-mediated DDR events: (i) the homologous recombination repair pathway and (ii) the arrest of cell cycle at the G2/M checkpoint. In contrast, depleting HP1 from cells did not affect the non-homologous end-joining (NHEJ) pathway: instead it elevated the recruitment of the 53BP1 NHEJ factor to DSBs. Notably, all three subtypes of HP1 seemed to be almost equally important for these DDR functions. We suggest that the dynamic interaction of HP1 with chromatin and other DDR factors could determine DNA repair choice and cell fate after DNA damage. We also suggest that compromising HP1 expression could promote tumorigenesis by impairing the function of the BRCA1 tumor suppressor.
Collapse
Affiliation(s)
- Young-Ho Lee
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | | | | | | | | |
Collapse
|
48
|
Sdek P, Oyama K, Angelis E, Chan SS, Schenke-Layland K, MacLellan WR. Epigenetic regulation of myogenic gene expression by heterochromatin protein 1 alpha. PLoS One 2013; 8:e58319. [PMID: 23505487 PMCID: PMC3594309 DOI: 10.1371/journal.pone.0058319] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 02/02/2013] [Indexed: 12/17/2022] Open
Abstract
Heterochromatin protein 1 (HP1) is an essential heterochromatin-associated protein typically involved in the epigenetic regulation of gene silencing. However, recent reports have demonstrated that HP1 can also activate gene expression in certain contexts including differentiation. To explore the role of each of the three mammalian HP1 family members (α, β and γ) in skeletal muscle, their expression was individually disrupted in differentiating skeletal myocytes. Among the three isoforms of HP1, HP1α was specifically required for myogenic gene expression in myoblasts only. Knockdown of HP1α led to a defect in transcription of skeletal muscle-specific genes including Lbx1, MyoD and myogenin. HP1α binds to the genomic region of myogenic genes and depletion of HP1α results in a paradoxical increase in histone H3 lysine 9 trimethylation (H3K9me3) at these sites. JHDM3A, a H3K9 demethylase also binds to myogenic gene's genomic regions in myoblasts in a HP1α-dependent manner. JHDM3A interacts with HP1α and knockdown of JHDM3A in myoblasts recapitulates the decreased myogenic gene transcription seen with HP1α depletion. These results propose a novel mechanism for HP1α-dependent gene activation by interacting with the demethylase JHDM3A and that HP1α is required for maintenance of myogenic gene expression in myoblasts.
Collapse
Affiliation(s)
- Patima Sdek
- Departments of Medicine/Cardiology, Center for Cardiovascular Biology, Institute for Stem Cell Research, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Kyohei Oyama
- Departments of Medicine/Cardiology, Center for Cardiovascular Biology, Institute for Stem Cell Research, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Ekaterini Angelis
- Departments of Medicine/Cardiology, Center for Cardiovascular Biology, Institute for Stem Cell Research, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Shing S. Chan
- Departments of Medicine/Cardiology, Center for Cardiovascular Biology, Institute for Stem Cell Research, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Katja Schenke-Layland
- Departments of Medicine/Cardiology, Center for Cardiovascular Biology, Institute for Stem Cell Research, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - W. Robb MacLellan
- Departments of Medicine/Cardiology, Center for Cardiovascular Biology, Institute for Stem Cell Research, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
49
|
|
50
|
Nikolov M, Fischle W. Systematic analysis of histone modification readout. ACTA ACUST UNITED AC 2013; 9:182-94. [DOI: 10.1039/c2mb25328c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|