1
|
Sun R, Fisher RP. The CDK9-SPT5 Axis in Control of Transcription Elongation by RNAPII. J Mol Biol 2025; 437:168746. [PMID: 39147127 PMCID: PMC11649480 DOI: 10.1016/j.jmb.2024.168746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
The RNA polymerase II (RNAPII) transcription cycle is regulated at every stage by a network of cyclin-dependent protein kinases (CDKs) and protein phosphatases. Progression of RNAPII from initiation to termination is marked by changing patterns of phosphorylation on the highly repetitive carboxy-terminal domain (CTD) of RPB1, its largest subunit, suggesting the existence of a CTD code. In parallel, the conserved transcription elongation factor SPT5, large subunit of the DRB sensitivity-inducing factor (DSIF), undergoes spatiotemporally regulated changes in phosphorylation state that may be directly linked to the transitions between transcription-cycle phases. Here we review insights gained from recent structural, biochemical, and genetic analyses of human SPT5, which suggest that two of its phosphorylated regions perform distinct functions at different points in transcription. Phosphorylation within a flexible, RNA-binding linker promotes release from the promoter-proximal pause-frequently a rate-limiting step in gene expression-whereas modifications in a repetitive carboxy-terminal region are thought to favor processive elongation, and are removed just prior to termination. Phosphorylations in both motifs depend on CDK9, catalytic subunit of positive transcription elongation factor b (P-TEFb); their different timing of accumulation on chromatin and function during the transcription cycle might reflect their removal by different phosphatases, different kinetics of phosphorylation by CDK9, or both. Perturbations of SPT5 regulation have profound impacts on viability and development in model organisms through largely unknown mechanisms, while enzymes that modify SPT5 have emerged as potential therapeutic targets in cancer; elucidating a putative SPT5 code is therefore a high priority.
Collapse
Affiliation(s)
- Rui Sun
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Robert P Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA.
| |
Collapse
|
2
|
Lee MK, Park NH, Lee SY, Kim T. Context-Dependent and Locus-Specific Role of H3K36 Methylation in Transcriptional Regulation. J Mol Biol 2025; 437:168796. [PMID: 39299382 DOI: 10.1016/j.jmb.2024.168796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
H3K36 methylation is a critical histone modification involved in transcription regulation. It involves the mono (H3K36me1), di (H3K36me2), and/or tri-methylation (H3K36me3) of lysine 36 on histone H3 by methyltransferases. In yeast, Set2 catalyzes all three methylation states. By contrast, in higher eukaryotes, at least eight methyltransferases catalyze different methylation states, including SETD2 for H3K36me3 and the NSD family for H3K36me2 in vivo. Both Set2 and SETD2 interact with the phosphorylated CTD of RNA Pol II, which links H3K36 methylation to transcription. In yeast, H3K36me3 and H3K36me2 peak at the 3' ends of genes. In higher eukaryotes, this is also true for H3K36me3 but not for H3K36me2, which is enriched at the 5' ends of genes and intergenic regions, suggesting that H3K36me2 and H3K36me3 may play different regulatory roles. Whether H3K36me1 demonstrates preferential distribution remains unclear. H3K36me3 is essential for inhibiting transcription elongation. It also suppresses cryptic transcription by promoting histone deacetylation by the histone deacetylases Rpd3S (yeast) and variant NuRD (higher eukaryotes). H3K36me3 also facilitates DNA methylation by DNMT3B, thereby preventing spurious transcription initiation. H3K36me3 not only represses transcription since it promotes the activation of mRNA and cryptic promoters in response to environmental changes by targeting the histone acetyltransferase NuA3 in yeast. Further research is needed to elucidate the methylation state- and locus-specific functions of H3K36me1 and the mechanisms that regulate it.
Collapse
Affiliation(s)
- Min Kyung Lee
- Department of Life Sciences and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Na Hyun Park
- Department of Life Sciences and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Soo Young Lee
- Department of Life Sciences and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - TaeSoo Kim
- Department of Life Sciences and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
3
|
VanBelzen J, Sakelaris B, Brickner DG, Marcou N, Riecke H, Mangan NM, Brickner JH. Chromatin endogenous cleavage provides a global view of yeast RNA polymerase II transcription kinetics. eLife 2024; 13:RP100764. [PMID: 39607887 PMCID: PMC11604220 DOI: 10.7554/elife.100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Abstract
Chromatin immunoprecipitation (ChIP-seq) is the most common approach to observe global binding of proteins to DNA in vivo. The occupancy of transcription factors (TFs) from ChIP-seq agrees well with an alternative method, chromatin endogenous cleavage (ChEC-seq2). However, ChIP-seq and ChEC-seq2 reveal strikingly different patterns of enrichment of yeast RNA polymerase II (RNAPII). We hypothesized that this reflects distinct populations of RNAPII, some of which are captured by ChIP-seq and some of which are captured by ChEC-seq2. RNAPII association with enhancers and promoters - predicted from biochemical studies - is detected well by ChEC-seq2 but not by ChIP-seq. Enhancer/promoter-bound RNAPII correlates with transcription levels and matches predicted occupancy based on published rates of enhancer recruitment, preinitiation assembly, initiation, elongation, and termination. The occupancy from ChEC-seq2 allowed us to develop a stochastic model for global kinetics of RNAPII transcription which captured both the ChEC-seq2 data and changes upon chemical-genetic perturbations to transcription. Finally, RNAPII ChEC-seq2 and kinetic modeling suggests that a mutation in the Gcn4 transcription factor that blocks interaction with the NPC destabilizes promoter-associated RNAPII without altering its recruitment to the enhancer.
Collapse
Affiliation(s)
- Jake VanBelzen
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Bennet Sakelaris
- Department of Engineering Sciences and Applied Mathematics, Northwestern UniversityEvanstonUnited States
| | - Donna G Brickner
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Nikita Marcou
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Hermann Riecke
- Department of Engineering Sciences and Applied Mathematics, Northwestern UniversityEvanstonUnited States
| | - Niall M Mangan
- Department of Engineering Sciences and Applied Mathematics, Northwestern UniversityEvanstonUnited States
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| |
Collapse
|
4
|
VanBelzen J, Sakelaris B, Brickner DG, Marcou N, Riecke H, Mangan N, Brickner JH. Chromatin endogenous cleavage provides a global view of yeast RNA polymerase II transcription kinetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602535. [PMID: 39026809 PMCID: PMC11257477 DOI: 10.1101/2024.07.08.602535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Chromatin immunoprecipitation (ChIP-seq) is the most common approach to observe global binding of proteins to DNA in vivo. The occupancy of transcription factors (TFs) from ChIP-seq agrees well with an alternative method, chromatin endogenous cleavage (ChEC-seq2). However, ChIP-seq and ChEC-seq2 reveal strikingly different patterns of enrichment of yeast RNA polymerase II. We hypothesized that this reflects distinct populations of RNAPII, some of which are captured by ChIP-seq and some of which are captured by ChEC-seq2. RNAPII association with enhancers and promoters - predicted from biochemical studies - is detected well by ChEC-seq2 but not by ChIP-seq. Enhancer/promoter bound RNAPII correlates with transcription levels and matches predicted occupancy based on published rates of enhancer recruitment, preinitiation assembly, initiation, elongation and termination. The occupancy from ChEC-seq2 allowed us to develop a stochastic model for global kinetics of RNAPII transcription which captured both the ChEC-seq2 data and changes upon chemical-genetic perturbations to transcription. Finally, RNAPII ChEC-seq2 and kinetic modeling suggests that a mutation in the Gcn4 transcription factor that blocks interaction with the NPC destabilizes promoter-associated RNAPII without altering its recruitment to the enhancer.
Collapse
Affiliation(s)
- Jake VanBelzen
- Department of Molecular Biosciences, Northwestern University
| | - Bennet Sakelaris
- Department of Engineering Sciences and Applied Mathematics, Northwestern University
| | | | - Nikita Marcou
- Department of Molecular Biosciences, Northwestern University
- Current address: Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Hermann Riecke
- Department of Engineering Sciences and Applied Mathematics, Northwestern University
| | - Niall Mangan
- Department of Engineering Sciences and Applied Mathematics, Northwestern University
| | | |
Collapse
|
5
|
Kainth AS, Zhang H, Gross DS. A critical role for Pol II CTD phosphorylation in heterochromatic gene activation. Gene 2024; 918:148473. [PMID: 38615982 DOI: 10.1016/j.gene.2024.148473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
How gene activation works in heterochromatin, and how the mechanism might differ from the one used in euchromatin, has been largely unexplored. Previous work has shown that in SIR-regulated heterochromatin of Saccharomyces cerevisiae, gene activation occurs in the absence of covalent histone modifications and other alterations of chromatin commonly associated with transcription.Here we demonstrate that such activation occurs in a substantial fraction of cells, consistent with frequent transcriptional bursting, and this raises the possibility that an alternative activation pathway might be used. We address one such possibility, Pol II CTD phosphorylation, and explore this idea using a natural telomere-linked gene, YFR057w, as a model. Unlike covalent histone modifications, we find that Ser2, Ser5 and Ser7 CTD phosphorylated Pol II is prevalent at the drug-induced heterochromatic gene. Particularly enriched relative to the euchromatic state is Ser2 phosphorylation. Consistent with a functional role for Ser2P, YFR057w is negligibly activated in cells deficient in the Ser2 CTD kinases Ctk1 and Bur1 even though the gene is strongly stimulated when it is placed in a euchromatic context. Collectively, our results are consistent with a critical role for Ser2 CTD phosphorylation in driving Pol II recruitment and transcription of a natural heterochromatic gene - an activity that may supplant the need for histone epigenetic modifications.
Collapse
Affiliation(s)
- Amoldeep S Kainth
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, United States
| | - Hesheng Zhang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, United States
| | - David S Gross
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, United States.
| |
Collapse
|
6
|
Gupta A, Kumar A, Singh N, Patel M, Studitsky VM, Zhang KYJ, Akhtar MS. The Ser7 of RNA Pol II-CTD influences the recruitment of Cdc73 for mRNA transcription. Int J Biol Macromol 2024; 254:127881. [PMID: 37944716 DOI: 10.1016/j.ijbiomac.2023.127881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
The carboxyl terminal domain of the largest subunit of eukaryotic RNA polymerase II (RNAPII) consists of highly conserved tandem repeats of Tyr1Ser2Pro3Thr4Ser5Pro6Ser7, referred as CTD. The CTD undergoes posttranslational modifications where the interplay of kinases imparts specific CTD phosphorylations, recognized by regulatory proteins that help in the mRNA transcription. Here, the Ser5 phosphorylation (Ser5P) remains high during the transcription initiation, followed by the Ser2P which peaks towards the termination and the Ser7P remains high throughout the transcription process. The Paf1 elongation complex (Paf1C) through its Cdc73 subunit is recruited to the phosphorylated CTD and play active role during different stages of mRNA transcription. We show that the CTD binding domain of Cdc73 is an independent folding unit which interacts with the hyper phosphorylated CTD. The 500 ns MD simulation studies further identified the binding interface and the pattern of CTD phosphorylation involved in the interaction with Cdc73. The possible key residues were mutated and the subsequent pull down analysis suggests that the phosphorylated Ser2, Ser5 and Ser7 of the tandem CTD heptads interact respectively with Arg310, Arg268 and Arg300 of Cdc73. Our finding provides new insight for Cdc73 function during mRNA transcription.
Collapse
Affiliation(s)
- Adity Gupta
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashutosh Kumar
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Neha Singh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Madhu Patel
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vasily M Studitsky
- Department of Bioengineering, School of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Md Sohail Akhtar
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Pluta AJ, Studniarek C, Murphy S, Norbury CJ. Cyclin-dependent kinases: Masters of the eukaryotic universe. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1816. [PMID: 37718413 PMCID: PMC10909489 DOI: 10.1002/wrna.1816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
A family of structurally related cyclin-dependent protein kinases (CDKs) drives many aspects of eukaryotic cell function. Much of the literature in this area has considered individual members of this family to act primarily either as regulators of the cell cycle, the context in which CDKs were first discovered, or as regulators of transcription. Until recently, CDK7 was the only clear example of a CDK that functions in both processes. However, new data points to several "cell-cycle" CDKs having important roles in transcription and some "transcriptional" CDKs having cell cycle-related targets. For example, novel functions in transcription have been demonstrated for the archetypal cell cycle regulator CDK1. The increasing evidence of the overlap between these two CDK types suggests that they might play a critical role in coordinating the two processes. Here we review the canonical functions of cell-cycle and transcriptional CDKs, and provide an update on how these kinases collaborate to perform important cellular functions. We also provide a brief overview of how dysregulation of CDKs contributes to carcinogenesis, and possible treatment avenues. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | | | - Shona Murphy
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Chris J. Norbury
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
8
|
Chan J, Kumar A, Kono H. RNAPII driven post-translational modifications of nucleosomal histones. Trends Genet 2022; 38:1076-1095. [PMID: 35618507 DOI: 10.1016/j.tig.2022.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022]
Abstract
The current understanding of how specific distributions of histone post-translational modifications (PTMs) are achieved throughout the chromatin remains incomplete. This review focuses on the role of RNA polymerase II (RNAPII) in establishing H2BK120/K123 ubiquitination and H3K4/K36 methylation distribution. The rate of RNAPII transcription is mainly a function of the RNAPII elongation and recruitment rates. Two major mechanisms link RNAPII's transcription rate to the distribution of PTMs. First, the phosphorylation patterns of Ser2P/Ser5P in the C-terminal domain of RNAPII change as a function of time, since the start of elongation, linking them to the elongation rate. Ser2P/Ser5P recruits specific histone PTM enzymes/activators to the nucleosome. Second, multiple rounds of binding and catalysis by the enzymes are required to establish higher methylations (H3K4/36me3). Thus, methylation states are determined by the transcription rate. In summary, the first mechanism determines the location of methylations in the gene, while the second mechanism determines the methylation state.
Collapse
Affiliation(s)
- Justin Chan
- Molecular Modelling and Simulation (MMS) Team, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Amarjeet Kumar
- Molecular Modelling and Simulation (MMS) Team, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Hidetoshi Kono
- Molecular Modelling and Simulation (MMS) Team, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan.
| |
Collapse
|
9
|
Enserink JM, Chymkowitch P. Cell Cycle-Dependent Transcription: The Cyclin Dependent Kinase Cdk1 Is a Direct Regulator of Basal Transcription Machineries. Int J Mol Sci 2022; 23:ijms23031293. [PMID: 35163213 PMCID: PMC8835803 DOI: 10.3390/ijms23031293] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 01/22/2022] [Indexed: 12/21/2022] Open
Abstract
The cyclin-dependent kinase Cdk1 is best known for its function as master regulator of the cell cycle. It phosphorylates several key proteins to control progression through the different phases of the cell cycle. However, studies conducted several decades ago with mammalian cells revealed that Cdk1 also directly regulates the basal transcription machinery, most notably RNA polymerase II. More recent studies in the budding yeast Saccharomyces cerevisiae have revisited this function of Cdk1 and also revealed that Cdk1 directly controls RNA polymerase III activity. These studies have also provided novel insight into the physiological relevance of this process. For instance, cell cycle-stage-dependent activity of these complexes may be important for meeting the increased demand for various proteins involved in housekeeping, metabolism, and protein synthesis. Recent work also indicates that direct regulation of the RNA polymerase II machinery promotes cell cycle entry. Here, we provide an overview of the regulation of basal transcription by Cdk1, and we hypothesize that the original function of the primordial cell-cycle CDK was to regulate RNAPII and that it later evolved into specialized kinases that govern various aspects of the transcription machinery and the cell cycle.
Collapse
Affiliation(s)
- Jorrit M. Enserink
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
- Correspondence: (J.M.E.); (P.C.)
| | - Pierre Chymkowitch
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
- Department of Microbiology, Oslo University Hospital, 0372 Oslo, Norway
- Correspondence: (J.M.E.); (P.C.)
| |
Collapse
|
10
|
Barman P, Sen R, Kaja A, Ferdoush J, Guha S, Govind CK, Bhaumik SR. Genome-Wide Regulations of the Preinitiation Complex Formation and Elongating RNA Polymerase II by an E3 Ubiquitin Ligase, San1. Mol Cell Biol 2022; 42:e0036821. [PMID: 34661445 PMCID: PMC8773080 DOI: 10.1128/mcb.00368-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 10/12/2021] [Indexed: 11/20/2022] Open
Abstract
San1 ubiquitin ligase is involved in nuclear protein quality control via its interaction with intrinsically disordered proteins for ubiquitylation and proteasomal degradation. Since several transcription/chromatin regulatory factors contain intrinsically disordered domains and can be inhibitory to transcription when in excess, San1 might be involved in transcription regulation. To address this, we analyzed the role of San1 in the genome-wide association of TATA box binding protein (TBP; which nucleates preinitiation complex [PIC] formation for transcription initiation) and RNA polymerase II (Pol II). Our results reveal the roles of San1 in regulating TBP recruitment to the promoters and Pol II association with the coding sequences and, hence, PIC formation and coordination of elongating Pol II, respectively. Consistently, transcription is altered in the absence of San1. Such transcriptional alteration is associated with impaired ubiquitylation and proteasomal degradation of Spt16 and gene association of Paf1 but not the incorporation of centromeric histone, Cse4, into the active genes in the Δsan1 strain. Collectively, our results demonstrate distinct functions of a nuclear protein quality control factor in regulating the genome-wide PIC formation and elongating Pol II (and hence transcription), thus unraveling new gene regulatory mechanisms.
Collapse
Affiliation(s)
- Priyanka Barman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Rwik Sen
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Amala Kaja
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Jannatul Ferdoush
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Shalini Guha
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Chhabi K. Govind
- Department of Biological Sciences, Oakland University, Rochester, Minnesota, USA
| | - Sukesh R. Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| |
Collapse
|
11
|
Maudlin IE, Beggs JD. Conditional depletion of transcriptional kinases Ctk1 and Bur1 and effects on co-transcriptional spliceosome assembly and pre-mRNA splicing. RNA Biol 2021; 18:782-793. [PMID: 34705599 PMCID: PMC8782173 DOI: 10.1080/15476286.2021.1991673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/21/2021] [Indexed: 11/28/2022] Open
Abstract
From yeast to humans, pre-mRNA splicing occurs mainly co-transcriptionally, with splicing and transcription functionally coupled such that they influence one another. The recruitment model of co-transcriptional splicing proposes that core members of the transcription elongation machinery have the potential to influence co-transcriptional spliceosome assembly and pre-mRNA splicing. Here, we tested whether the transcription elongation kinases Bur1 and Ctk1 affect co-transcriptional spliceosome assembly and pre-mRNA splicing in the budding yeast Saccharomyces cerevisiae. In S. cerevisiae, Ctk1 is the major kinase that phosphorylates serine 2 of the carboxy-terminal domain of the largest subunit of RNA polymerase II, whilst Bur1 augments the kinase activity of Ctk1 and is the major kinase for elongation factor Spt5. We used the auxin-inducible degron system to conditionally deplete Bur1 and Ctk1 kinases, and investigated the effects on co-transcriptional spliceosome assembly and pre-mRNA splicing. Depletion of Ctk1 effectively reduced phosphorylation of serine 2 of the carboxy-terminal domain but did not impact co-transcriptional spliceosome assembly or pre-mRNA splicing. In striking contrast, depletion of Bur1 did not reduce phosphorylation of serine 2 of the carboxy-terminal domain, but reduced Spt5 phosphorylation and enhanced co-transcriptional spliceosome assembly and pre-mRNA splicing, suggesting a role for this kinase in modulating co-transcriptional splicing.
Collapse
Affiliation(s)
- Isabella E. Maudlin
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jean D. Beggs
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
12
|
Schnell AP, Kohrt S, Thoma-Kress AK. Latency Reversing Agents: Kick and Kill of HTLV-1? Int J Mol Sci 2021; 22:ijms22115545. [PMID: 34073995 PMCID: PMC8197370 DOI: 10.3390/ijms22115545] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), the cause of adult T-cell leukemia/lymphoma (ATLL), is a retrovirus, which integrates into the host genome and persistently infects CD4+ T-cells. Virus propagation is stimulated by (1) clonal expansion of infected cells and (2) de novo infection. Viral gene expression is induced by the transactivator protein Tax, which recruits host factors like positive transcription elongation factor b (P-TEFb) to the viral promoter. Since HTLV-1 gene expression is repressed in vivo by viral, cellular, and epigenetic mechanisms in late phases of infection, HTLV-1 avoids an efficient CD8+ cytotoxic T-cell (CTL) response directed against the immunodominant viral Tax antigen. Hence, therapeutic strategies using latency reversing agents (LRAs) sought to transiently activate viral gene expression and antigen presentation of Tax to enhance CTL responses towards HTLV-1, and thus, to expose the latent HTLV-1 reservoir to immune destruction. Here, we review strategies that aimed at enhancing Tax expression and Tax-specific CTL responses to interfere with HTLV-1 latency. Further, we provide an overview of LRAs including (1) histone deacetylase inhibitors (HDACi) and (2) activators of P-TEFb, that have mainly been studied in context of human immunodeficiency virus (HIV), but which may also be powerful in the context of HTLV-1.
Collapse
|
13
|
Structure and activation mechanism of the yeast RNA Pol II CTD kinase CTDK-1 complex. Proc Natl Acad Sci U S A 2021; 118:2019163118. [PMID: 33431688 DOI: 10.1073/pnas.2019163118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The C-terminal domain (CTD) kinase I (CTDK-1) complex is the primary RNA Polymerase II (Pol II) CTD Ser2 kinase in budding yeast. CTDK-1 consists of a cyclin-dependent kinase (CDK) Ctk1, a cyclin Ctk2, and a unique subunit Ctk3 required for CTDK-1 activity. Here, we present a crystal structure of CTDK-1 at 1.85-Å resolution. The structure reveals that, compared to the canonical two-component CDK-cyclin system, the third component Ctk3 of CTDK-1 plays a critical role in Ctk1 activation by stabilizing a key element of CDK regulation, the T-loop, in an active conformation. In addition, Ctk3 contributes to the assembly of CTDK-1 through extensive interactions with both Ctk1 and Ctk2. We also demonstrate that CTDK-1 physically and genetically interacts with the serine/arginine-like protein Gbp2. Together, the data in our work reveal a regulatory mechanism of CDK complexes.
Collapse
|
14
|
Kaczmarek Michaels K, Mohd Mostafa S, Ruiz Capella J, Moore CL. Regulation of alternative polyadenylation in the yeast Saccharomyces cerevisiae by histone H3K4 and H3K36 methyltransferases. Nucleic Acids Res 2020; 48:5407-5425. [PMID: 32356874 PMCID: PMC7261179 DOI: 10.1093/nar/gkaa292] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
Adjusting DNA structure via epigenetic modifications, and altering polyadenylation (pA) sites at which precursor mRNA is cleaved and polyadenylated, allows cells to quickly respond to environmental stress. Since polyadenylation occurs co-transcriptionally, and specific patterns of nucleosome positioning and chromatin modifications correlate with pA site usage, epigenetic factors potentially affect alternative polyadenylation (APA). We report that the histone H3K4 methyltransferase Set1, and the histone H3K36 methyltransferase Set2, control choice of pA site in Saccharomyces cerevisiae, a powerful model for studying evolutionarily conserved eukaryotic processes. Deletion of SET1 or SET2 causes an increase in serine-2 phosphorylation within the C-terminal domain of RNA polymerase II (RNAP II) and in the recruitment of the cleavage/polyadenylation complex, both of which could cause the observed switch in pA site usage. Chemical inhibition of TOR signaling, which causes nutritional stress, results in Set1- and Set2-dependent APA. In addition, Set1 and Set2 decrease efficiency of using single pA sites, and control nucleosome occupancy around pA sites. Overall, our study suggests that the methyltransferases Set1 and Set2 regulate APA induced by nutritional stress, affect the RNAP II C-terminal domain phosphorylation at Ser2, and control recruitment of the 3′ end processing machinery to the vicinity of pA sites.
Collapse
Affiliation(s)
- Katarzyna Kaczmarek Michaels
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Salwa Mohd Mostafa
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.,Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Julia Ruiz Capella
- Department of Biotechnology, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid 28223, Spain
| | - Claire L Moore
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.,Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| |
Collapse
|
15
|
Pilarova K, Herudek J, Blazek D. CDK12: cellular functions and therapeutic potential of versatile player in cancer. NAR Cancer 2020; 2:zcaa003. [PMID: 34316683 PMCID: PMC8210036 DOI: 10.1093/narcan/zcaa003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/16/2022] Open
Abstract
Cyclin-dependent kinase 12 (CDK12) phosphorylates the C-terminal domain of RNA polymerase II and is needed for the optimal transcription elongation and translation of a subset of human protein-coding genes. The kinase has a pleiotropic effect on the maintenance of genome stability, and its inactivation in prostate and ovarian tumours results in focal tandem duplications, a CDK12-unique genome instability phenotype. CDK12 aberrations were found in many other malignancies and have the potential to be used as biomarkers for therapeutic intervention. Moreover, the inhibition of CDK12 emerges as a promising strategy for treatment in several types of cancers. In this review, we summarize mechanisms that CDK12 utilizes for the regulation of gene expression and discuss how the perturbation of CDK12-sensitive genes contributes to the disruption of cell cycle progression and the onset of genome instability. Furthermore, we describe tumour-suppressive and oncogenic functions of CDK12 and its potential as a biomarker and inhibition target in anti-tumour treatments.
Collapse
Affiliation(s)
- Kveta Pilarova
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Jan Herudek
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Dalibor Blazek
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| |
Collapse
|
16
|
A SUMO-dependent pathway controls elongating RNA Polymerase II upon UV-induced damage. Sci Rep 2019; 9:17914. [PMID: 31784551 PMCID: PMC6884465 DOI: 10.1038/s41598-019-54027-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/30/2019] [Indexed: 02/01/2023] Open
Abstract
RNA polymerase II (RNAPII) is the workhorse of eukaryotic transcription and produces messenger RNAs and small nuclear RNAs. Stalling of RNAPII caused by transcription obstacles such as DNA damage threatens functional gene expression and is linked to transcription-coupled DNA repair. To restore transcription, persistently stalled RNAPII can be disassembled and removed from chromatin. This process involves several ubiquitin ligases that have been implicated in RNAPII ubiquitylation and proteasomal degradation. Transcription by RNAPII is heavily controlled by phosphorylation of the C-terminal domain of its largest subunit Rpb1. Here, we show that the elongating form of Rpb1, marked by S2 phosphorylation, is specifically controlled upon UV-induced DNA damage. Regulation of S2-phosphorylated Rpb1 is mediated by SUMOylation, the SUMO-targeted ubiquitin ligase Slx5-Slx8, the Cdc48 segregase as well as the proteasome. Our data suggest an RNAPII control pathway with striking parallels to known disassembly mechanisms acting on defective RNA polymerase III.
Collapse
|
17
|
Duan J, Liu Q, Su S, Cha J, Zhou Y, Tang R, Liu X, Wang Y, Liu Y, He Q. The Neurospora RNA polymerase II kinase CTK negatively regulates catalase expression in a chromatin context-dependent manner. Environ Microbiol 2019; 22:76-90. [PMID: 31599077 DOI: 10.1111/1462-2920.14821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/25/2019] [Accepted: 10/02/2019] [Indexed: 01/15/2023]
Abstract
Clearance and adaptation to reactive oxygen species (ROS) are crucial for cell survival. As in other eukaryotes, the Neurospora catalases are the main enzymes responsible for ROS clearance and their expression are tightly regulated by the growth and environmental conditions. The RNA polymerase II carboxyl terminal domain (RNAPII CTD) kinase complex (CTK complex) is known as a positive elongation factor for many inducible genes by releasing paused RNAPII near the transcription start site and promoting transcription elongation. However, here we show that deletion of CTK complex components in Neurospora led to high CAT-3 expression level and resistance to H2 O2 -induced ROS stress. The catalytic activity of CTK-1 is required for such a response. On the other hand, CTK-1 overexpression led to decreased expression of CAT-3. ChIP assays shows that CTK-1 phosphorylates the RNAPII CTD at Ser2 residues in the cat-3 ORF region during transcription elongation and deletion of CTK-1 led to dramatic decreases of SET-2 recruitment and H3K36me3 modification. As a result, histones at the cat-3 locus become hyperacetylated to promote its transcription. Together, these results demonstrate that the CTK complex is negative regulator of cat-3 expression by affecting its chromatin structure.
Collapse
Affiliation(s)
- Jiabin Duan
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qingqing Liu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Sodgerel Su
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Joonseok Cha
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Yike Zhou
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ruiqi Tang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiao Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Wang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
18
|
Chirackal Manavalan AP, Pilarova K, Kluge M, Bartholomeeusen K, Rajecky M, Oppelt J, Khirsariya P, Paruch K, Krejci L, Friedel CC, Blazek D. CDK12 controls G1/S progression by regulating RNAPII processivity at core DNA replication genes. EMBO Rep 2019; 20:e47592. [PMID: 31347271 PMCID: PMC6727028 DOI: 10.15252/embr.201847592] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 06/09/2019] [Accepted: 06/24/2019] [Indexed: 12/31/2022] Open
Abstract
CDK12 is a kinase associated with elongating RNA polymerase II (RNAPII) and is frequently mutated in cancer. CDK12 depletion reduces the expression of homologous recombination (HR) DNA repair genes, but comprehensive insight into its target genes and cellular processes is lacking. We use a chemical genetic approach to inhibit analog-sensitive CDK12, and find that CDK12 kinase activity is required for transcription of core DNA replication genes and thus for G1/S progression. RNA-seq and ChIP-seq reveal that CDK12 inhibition triggers an RNAPII processivity defect characterized by a loss of mapped reads from 3'ends of predominantly long, poly(A)-signal-rich genes. CDK12 inhibition does not globally reduce levels of RNAPII-Ser2 phosphorylation. However, individual CDK12-dependent genes show a shift of P-Ser2 peaks into the gene body approximately to the positions where RNAPII occupancy and transcription were lost. Thus, CDK12 catalytic activity represents a novel link between regulation of transcription and cell cycle progression. We propose that DNA replication and HR DNA repair defects as a consequence of CDK12 inactivation underlie the genome instability phenotype observed in many cancers.
Collapse
Affiliation(s)
| | - Kveta Pilarova
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Michael Kluge
- Institut für InformatikLudwig‐Maximilians‐Universität MünchenMünchenGermany
| | - Koen Bartholomeeusen
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
- Present address:
Department of Biomedical SciencesInstitute of Tropical MedicineAntwerpBelgium
| | - Michal Rajecky
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Jan Oppelt
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Prashant Khirsariya
- Department of ChemistryCZ OpenscreenFaculty of ScienceMasaryk UniversityBrnoCzech Republic
- Center of Biomolecular and Cellular EngineeringInternational Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic
| | - Kamil Paruch
- Department of ChemistryCZ OpenscreenFaculty of ScienceMasaryk UniversityBrnoCzech Republic
- Center of Biomolecular and Cellular EngineeringInternational Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic
| | - Lumir Krejci
- Center of Biomolecular and Cellular EngineeringInternational Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic
- Department of BiologyMasaryk UniversityBrnoCzech Republic
- National Centre for Biomolecular ResearchMasaryk UniversityBrnoCzech Republic
| | - Caroline C Friedel
- Institut für InformatikLudwig‐Maximilians‐Universität MünchenMünchenGermany
| | - Dalibor Blazek
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| |
Collapse
|
19
|
Chun Y, Joo YJ, Suh H, Batot G, Hill CP, Formosa T, Buratowski S. Selective Kinase Inhibition Shows That Bur1 (Cdk9) Phosphorylates the Rpb1 Linker In Vivo. Mol Cell Biol 2019; 39:e00602-18. [PMID: 31085683 PMCID: PMC6639251 DOI: 10.1128/mcb.00602-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/21/2019] [Accepted: 05/03/2019] [Indexed: 12/14/2022] Open
Abstract
Cyclin-dependent kinases play multiple roles in RNA polymerase II transcription. Cdk7/Kin28, Cdk9/Bur1, and Cdk12/Ctk1 phosphorylate the polymerase and other factors to drive the dynamic exchange of initiation and elongation complex components over the transcription cycle. We engineered strains of the yeast Saccharomyces cerevisiae for rapid, specific inactivation of individual kinases by addition of a covalent inhibitor. While effective, the sensitized kinases can display some idiosyncrasies, and inhibition can be surprisingly transient. As expected, inhibition of Cdk7/Kin28 blocked phosphorylation of the Rpb1 C-terminal domain heptad repeats at serines 5 and 7, the known target sites. However, serine 2 phosphorylation was also abrogated, supporting an obligatory sequential phosphorylation mechanism. Consistent with our previous results using gene deletions, Cdk12/Ctk1 is the predominant kinase responsible for serine 2 phosphorylation. Phosphorylation of the Rpb1 linker enhances binding of the Spt6 tandem SH2 domain, and here we show that Bur1/Cdk9 is the kinase responsible for these modifications in vivo.
Collapse
Affiliation(s)
- Yujin Chun
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Yoo Jin Joo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Hyunsuk Suh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Gaëlle Batot
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Christopher P Hill
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Tim Formosa
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
20
|
Calvo O, Grandin N, Jordán-Pla A, Miñambres E, González-Polo N, Pérez-Ortín JE, Charbonneau M. The telomeric Cdc13-Stn1-Ten1 complex regulates RNA polymerase II transcription. Nucleic Acids Res 2019; 47:6250-6268. [PMID: 31006804 PMCID: PMC6614848 DOI: 10.1093/nar/gkz279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/18/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
Specialized telomeric proteins have an essential role in maintaining genome stability through chromosome end protection and telomere length regulation. In the yeast Saccharomyces cerevisiae, the evolutionary conserved CST complex, composed of the Cdc13, Stn1 and Ten1 proteins, largely contributes to these functions. Here, we report genetic interactions between TEN1 and several genes coding for transcription regulators. Molecular assays confirmed this novel function of Ten1 and further established that it regulates the occupancies of RNA polymerase II and the Spt5 elongation factor within transcribed genes. Since Ten1, but also Cdc13 and Stn1, were found to physically associate with Spt5, we propose that Spt5 represents the target of CST in transcription regulation. Moreover, CST physically associates with Hmo1, previously shown to mediate the architecture of S-phase transcribed genes. The fact that, genome-wide, the promoters of genes down-regulated in the ten1-31 mutant are prefentially bound by Hmo1, leads us to propose a potential role for CST in synchronizing transcription with replication fork progression following head-on collisions.
Collapse
Affiliation(s)
- Olga Calvo
- Instituto de Biología Funcional y Genómica, CSIC-USAL, Salamanca, Spain
| | - Nathalie Grandin
- GReD laboratory, CNRS UMR6293, INSERM U1103, Faculty of Medicine, University Clermont-Auvergne, 28 place Henri Dunant, BP 38, 63001 Clermont-Ferrand Cedex, France
| | - Antonio Jordán-Pla
- ERI Biotecmed, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain
| | | | | | - José E Pérez-Ortín
- ERI Biotecmed, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain
| | - Michel Charbonneau
- GReD laboratory, CNRS UMR6293, INSERM U1103, Faculty of Medicine, University Clermont-Auvergne, 28 place Henri Dunant, BP 38, 63001 Clermont-Ferrand Cedex, France
| |
Collapse
|
21
|
Srivastava R, Duan R, Ahn SH. Multiple roles of CTDK-I throughout the cell. Cell Mol Life Sci 2019; 76:2789-2797. [PMID: 31037337 PMCID: PMC11105739 DOI: 10.1007/s00018-019-03118-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/08/2019] [Accepted: 04/24/2019] [Indexed: 11/27/2022]
Abstract
The heterotrimeric carboxy-terminal domain kinase I (CTDK-I) in yeast is a cyclin-dependent kinase complex that is evolutionally conserved throughout eukaryotes and phosphorylates the C-terminal domain of the largest subunit of RNA polymerase II (RNApII) on the second-position serine (Ser2) residue of YSPTSPS heptapeptide repeats. CTDK-I plays indispensable roles in transcription elongation and transcription-coupled processing, such as the 3'-end processing of nascent mRNA transcripts. However, recent studies have revealed additional roles of CTDK-I beyond its primary effect on transcription by RNApII. Here, we describe recent advances in the regulation of genomic stability and rDNA integrity by CTDK-I and highlight the previously underappreciated cellular roles of CTDK-I in rRNA synthesis by RNA polymerase I and translational initiation and elongation. These multiple roles of CTDK-I throughout the cell expand our understanding of how this complex functions to coordinate diverse cellular processes through gene expression and how the human orthologue exerts its roles in diseased states such as tumorigenesis.
Collapse
Affiliation(s)
- Rakesh Srivastava
- Plant Molecular Biology and Genetic Engineering Division, CSIR-National Botanical Research Institute, Lucknow, U.P., 226001, India
| | - Ruxin Duan
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University ERICA Campus, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Seong Hoon Ahn
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University ERICA Campus, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
22
|
Oqani RK, Lin T, Lee JE, Kang JW, Shin HY, Il Jin D. Iws1 and Spt6 Regulate Trimethylation of Histone H3 on Lysine 36 through Akt Signaling and are Essential for Mouse Embryonic Genome Activation. Sci Rep 2019; 9:3831. [PMID: 30846735 PMCID: PMC6405902 DOI: 10.1038/s41598-019-40358-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/15/2019] [Indexed: 11/08/2022] Open
Abstract
The mRNA processing and export factor, Iws1, interacts with the histone H3/H4 chaperone, Spt6 (Supt6 in mouse gene ontology) and recruits the lysine methyltransferase, Setd2, to chromatin to regulate H3K36me3. This recruitment is known to be crucial for pre-mRNA splicing and Iws1 has been shown to interact with REF1/Aly to mediate mRNA export. However, the role of this complex has not yet been examined in embryonic development. Here, we show that knockdown of either Iws1 or Supt6 blocked embryo development, primarily at the 8/16-cell stage, indicating that Iws1 and Supt6 are crucial for mouse preimplantation development. In the knockdown embryos, we observed decreases in pre-mRNA splicing, mRNA export and the expression of the lineage-specific transcription factor, Nanog. We found that either Iws1 or Supt6 are required for H3K36 trimethylation and that concurrent knockdown of both Iws1 and Supt6 blocks embryonic development at the 2-cell stage. We show that H3K36me3 is modulated by the Pi3k/Akt pathway, as inhibition of this pathway reduced the global level of H3K36me3 while activation of the pathway increased the level of this modification in 2-cell embryos. We observed that Iws1 interacts with nuclear Akt in early embryos, and herein propose that Akt modulates H3K36me3 through interaction with Iws1. Together, our results indicate that the Iws1 and Supt6 play crucial roles in embryonic genome activation, lineage specification, and histone modification during mouse early development.
Collapse
Affiliation(s)
- Reza K Oqani
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Tao Lin
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jae Eun Lee
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jeong Won Kang
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyun Young Shin
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Dong Il Jin
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
23
|
Joo YJ, Ficarro SB, Chun Y, Marto JA, Buratowski S. In vitro analysis of RNA polymerase II elongation complex dynamics. Genes Dev 2019; 33:578-589. [PMID: 30846429 PMCID: PMC6499329 DOI: 10.1101/gad.324202.119] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/19/2019] [Indexed: 11/24/2022]
Abstract
Here, Joo et al. present the first system reproducing the RNA pol II CTD phosphorylation cycle in vitro and proteomic analysis of elongation complexes. Their findings show that CTD phosphorylations are determined by time after initiation, not how far the polymerase has traveled. RNA polymerase II elongation complexes (ECs) were assembled from nuclear extract on immobilized DNA templates and analyzed by quantitative mass spectrometry. Time-course experiments showed that initiation factor TFIIF can remain bound to early ECs, while levels of core elongation factors Spt4–Spt5, Paf1C, Spt6–Spn1, and Elf1 remain steady. Importantly, the dynamic phosphorylation patterns of the Rpb1 C-terminal domain (CTD) and the factors that recognize them change as a function of postinitiation time rather than distance elongated. Chemical inhibition of Kin28/Cdk7 in vitro blocks both Ser5 and Ser2 phosphorylation, affects initiation site choice, and inhibits elongation efficiency. EC components dependent on CTD phosphorylation include capping enzyme, cap-binding complex, Set2, and the polymerase-associated factor (PAF1) complex. By recapitulating many known features of in vivo elongation, this system reveals new details that clarify how EC-associated factors change at each step of transcription.
Collapse
Affiliation(s)
- Yoo Jin Joo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Scott B Ficarro
- Department of Cancer Biology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.,Blais Proteomics Center, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yujin Chun
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.,Blais Proteomics Center, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
24
|
Collin P, Jeronimo C, Poitras C, Robert F. RNA Polymerase II CTD Tyrosine 1 Is Required for Efficient Termination by the Nrd1-Nab3-Sen1 Pathway. Mol Cell 2019; 73:655-669.e7. [PMID: 30639244 DOI: 10.1016/j.molcel.2018.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/09/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022]
Abstract
In Saccharomyces cerevisiae, transcription termination at protein-coding genes is coupled to the cleavage of the nascent transcript, whereas most non-coding RNA transcription relies on a cleavage-independent termination pathway involving Nrd1, Nab3, and Sen1 (NNS). Termination involves RNA polymerase II CTD phosphorylation, but a systematic analysis of the contribution of individual residues would improve our understanding of the role of the CTD in this process. Here we investigated the effect of mutating phosphorylation sites in the CTD on termination. We observed widespread termination defects at protein-coding genes in mutants for Ser2 or Thr4 but rare defects in Tyr1 mutants for this genes class. Instead, mutating Tyr1 led to widespread termination defects at non-coding genes terminating via NNS. Finally, we showed that Tyr1 is important for pausing in the 5' end of genes and that slowing down transcription suppresses termination defects. Our work highlights the importance of Tyr1-mediated pausing in NNS-dependent termination.
Collapse
Affiliation(s)
- Pierre Collin
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Célia Jeronimo
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Christian Poitras
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
25
|
Nemec CM, Singh AK, Ali A, Tseng SC, Syal K, Ringelberg KJ, Ho YH, Hintermair C, Ahmad MF, Kar RK, Gasch AP, Akhtar MS, Eick D, Ansari AZ. Noncanonical CTD kinases regulate RNA polymerase II in a gene-class-specific manner. Nat Chem Biol 2018; 15:123-131. [PMID: 30598543 PMCID: PMC6339578 DOI: 10.1038/s41589-018-0194-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 11/09/2018] [Indexed: 11/09/2022]
Abstract
Phosphorylation of the carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) governs stage-specific interactions with different cellular machines. The CTD consists of Y1S2P3T4S5P6S7 heptad repeats, and sequential phosphorylations of Ser7, Ser5 and Ser2 occur universally across Pol II-transcribed genes. Phosphorylation of Thr4, however, appears to selectively modulate transcription of specific classes of genes. Here, we identify 10 new Thr4 kinases from different kinase structural groups. Irreversible chemical inhibition of the most active Thr4 kinase, Hrr25, reveals a novel role for this kinase in transcription termination of specific class of noncoding snoRNA genes. Genome-wide profiles of Hrr25 reveal a selective enrichment at 3ʹ regions of noncoding genes that display termination defects. Importantly, phospho-Thr4 marks placed by Hrr25 are recognized by Rtt103, a key component of the termination machinery. Our results suggest that these uncommon CTD kinases selectively place phospho-Thr4 marks to regulate expression of targeted genes.
Collapse
Affiliation(s)
- Corey M Nemec
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Amit K Singh
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, India
| | - Asfa Ali
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Sandra C Tseng
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Kirtimaan Syal
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Yi-Hsuan Ho
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Corinna Hintermair
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center of Integrated Protein Science, Munich, Germany
| | - Mohammad Faiz Ahmad
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Rajesh Kumar Kar
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Audrey P Gasch
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Md Sohail Akhtar
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, India.,Academy of Scientific and Innovative Research, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, India
| | - Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center of Integrated Protein Science, Munich, Germany
| | - Aseem Z Ansari
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
26
|
Expression, purification and crystallization of the complex of RNA polymerase II carboxyl-terminal repeat domain kinase subunits CTK2-CTK3 from Saccharomyces cerevisiae. Protein Expr Purif 2018; 154:112-117. [PMID: 30240633 DOI: 10.1016/j.pep.2018.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 11/23/2022]
Abstract
Carboxyl-terminal repeat domain (CTD) of the largest subunit Rpb1 of RNA polymerace II is essential for transcription regulation. Heptapeptide repeat of CTD of Rpb1 is phosphorylated by carboxyl-terminal repeat domain kinase (CTDK-I), composed of CTK1, CTK2 and CTK3, in order to regulate transcription and transcription associated processes. The yeast specific protein CTK3 binds to cyclin CTK2 to form a heterodimer serving as a regulational factor to control CTK1 activity by binding to CTK1. Structural information of CTK2-CTK3 complex is yet to be elucidated. Here, we report the co-expression of CTK2-CTK3 complex from Saccharomyces cerevisiae with N-terminal His6-tag in CTK3 in Escherichia coli (E. coli), purification of the complex by four chromatographic steps and crystallization of the complex as well as the diffraction data collection and processing. This study provides some essential information and a guide for structural and functional study of CTK2-CTK3 complex and CTDK-I in the future.
Collapse
|
27
|
|
28
|
Cdk-related kinase 9 regulates RNA polymerase II mediated transcription in Toxoplasma gondii. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:572-585. [PMID: 29466697 DOI: 10.1016/j.bbagrm.2018.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/31/2018] [Accepted: 02/13/2018] [Indexed: 11/20/2022]
Abstract
Cyclin-dependent kinases are an essential part of eukaryotic transcriptional machinery. In Apicomplexan parasites, the role and relevance of the kinases in the multistep process of transcription seeks more attention given the absence of full repertoire of canonical Cdks and cognate cyclin partners. In this study, we functionally characterize T. gondii Cdk-related kinase 9 (TgCrk9) showing maximal homology to eukaryotic Cdk9. An uncanonical cyclin, TgCyclin L, colocalizes with TgCrk9 in the parasite nucleus and co-immunoprecipitate, could activate the kinase in-vitro. We identify two threonines in conserved T-loop domain of TgCrk9 that are important for its activity. The activated TgCrk9 phosphorylates C-terminal domain (CTD) of TgRpb1, the largest subunit of RNA polymerase II highlighting its role in transcription. Selective chemical inhibition of TgCrk9 affected serine 2 phosphorylation in the heptapeptide repeats of TgRpb1-CTD towards 3' end of genes consistent with a possible role in transcription elongation. Interestingly, TgCrk9 kinase activity is regulated by the upstream TgCrk7 based CAK complex. TgCrk9 was found to functionally complement the role of its yeast counterpart Bur1 establishing its role as an important transcriptional kinase. In this study, we provide robust evidence that TgCrk9 is an important part of transcription machinery regulating gene expression in T. gondii.
Collapse
|
29
|
Battaglia S, Lidschreiber M, Baejen C, Torkler P, Vos SM, Cramer P. RNA-dependent chromatin association of transcription elongation factors and Pol II CTD kinases. eLife 2017; 6. [PMID: 28537551 PMCID: PMC5457138 DOI: 10.7554/elife.25637] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/22/2017] [Indexed: 11/13/2022] Open
Abstract
For transcription through chromatin, RNA polymerase (Pol) II associates with elongation factors (EFs). Here we show that many EFs crosslink to RNA emerging from transcribing Pol II in the yeast Saccharomyces cerevisiae. Most EFs crosslink preferentially to mRNAs, rather than unstable non-coding RNAs. RNA contributes to chromatin association of many EFs, including the Pol II serine 2 kinases Ctk1 and Bur1 and the histone H3 methyltransferases Set1 and Set2. The Ctk1 kinase complex binds RNA in vitro, consistent with direct EF-RNA interaction. Set1 recruitment to genes in vivo depends on its RNA recognition motifs (RRMs). These results strongly suggest that nascent RNA contributes to EF recruitment to transcribing Pol II. We propose that EF-RNA interactions facilitate assembly of the elongation complex on transcribed genes when RNA emerges from Pol II, and that loss of EF-RNA interactions upon RNA cleavage at the polyadenylation site triggers disassembly of the elongation complex. DOI:http://dx.doi.org/10.7554/eLife.25637.001
Collapse
Affiliation(s)
- Sofia Battaglia
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Michael Lidschreiber
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Biosciences and Nutrition, Center for Innovative Medicine and Science for Life Laboratory, Novum, Karolinska Institutet, Huddinge, Sweden
| | - Carlo Baejen
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Phillipp Torkler
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Seychelle M Vos
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Biosciences and Nutrition, Center for Innovative Medicine and Science for Life Laboratory, Novum, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
30
|
Different phosphoisoforms of RNA polymerase II engage the Rtt103 termination factor in a structurally analogous manner. Proc Natl Acad Sci U S A 2017; 114:E3944-E3953. [PMID: 28465432 DOI: 10.1073/pnas.1700128114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) orchestrates dynamic recruitment of specific cellular machines during different stages of transcription. Signature phosphorylation patterns of Y1S2P3T4S5P6S7 heptapeptide repeats of the CTD engage specific "readers." Whereas phospho-Ser5 and phospho-Ser2 marks are ubiquitous, phospho-Thr4 is reported to only impact specific genes. Here, we identify a role for phospho-Thr4 in transcription termination at noncoding small nucleolar RNA (snoRNA) genes. Quantitative proteomics reveals an interactome of known readers as well as protein complexes that were not known to rely on Thr4 for association with Pol II. The data indicate a key role for Thr4 in engaging the machinery used for transcription elongation and termination. We focus on Rtt103, a protein that binds phospho-Ser2 and phospho-Thr4 marks and facilitates transcription termination at protein-coding genes. To elucidate how Rtt103 engages two distinct CTD modifications that are differentially enriched at noncoding genes, we relied on NMR analysis of Rtt103 in complex with phospho-Thr4- or phospho-Ser2-bearing CTD peptides. The structural data reveal that Rtt103 interacts with phospho-Thr4 in a manner analogous to its interaction with phospho-Ser2-modified CTD. The same set of hydrogen bonds involving either the oxygen on phospho-Thr4 and the hydroxyl on Ser2, or the phosphate on Ser2 and the Thr4 hydroxyl, can be formed by rotation of an arginine side chain, leaving the intermolecular interface otherwise unperturbed. This economy of design enables Rtt103 to engage Pol II at distinct sets of genes with differentially enriched CTD marks.
Collapse
|
31
|
Shaping the cellular landscape with Set2/SETD2 methylation. Cell Mol Life Sci 2017; 74:3317-3334. [PMID: 28386724 DOI: 10.1007/s00018-017-2517-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/15/2022]
Abstract
Chromatin structure is a major barrier to gene transcription that must be disrupted and re-set during each round of transcription. Central to this process is the Set2/SETD2 methyltransferase that mediates co-transcriptional methylation to histone H3 at lysine 36 (H3K36me). Studies reveal that H3K36me not only prevents inappropriate transcriptional initiation from arising within gene bodies, but that it has other conserved functions that include the repair of damaged DNA and regulation of pre-mRNA splicing. Consistent with the importance of Set2/SETD2 in chromatin biology, mutations of SETD2, or mutations at or near H3K36 in H3.3, have recently been found to underlie cancer development. This review will summarize the latest insights into the functions of Set2/SETD2 in genome regulation and cancer development.
Collapse
|
32
|
Abstract
Transcription and splicing are fundamental steps in gene expression. These processes have been studied intensively over the past four decades, and very recent findings are challenging some of the formerly established ideas. In particular, splicing was shown to occur much faster than previously thought, with the first spliced products observed as soon as splice junctions emerge from RNA polymerase II (Pol II). Splicing was also found coupled to a specific phosphorylation pattern of Pol II carboxyl-terminal domain (CTD), suggesting a new layer of complexity in the CTD code. Moreover, phosphorylation of the CTD may be scarcer than expected, and other post-translational modifications of the CTD are emerging with unanticipated roles in gene expression regulation.
Collapse
Affiliation(s)
- Noélia Custódio
- a Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Lisboa , Portugal
| | - Maria Carmo-Fonseca
- a Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Lisboa , Portugal
| |
Collapse
|
33
|
Sathianathan A, Ravichandran P, Lippi JM, Cohen L, Messina A, Shaju S, Swede MJ, Ginsburg DS. The Eaf3/5/7 Subcomplex Stimulates NuA4 Interaction with Methylated Histone H3 Lys-36 and RNA Polymerase II. J Biol Chem 2016; 291:21195-21207. [PMID: 27535225 DOI: 10.1074/jbc.m116.718742] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Indexed: 11/06/2022] Open
Abstract
NuA4 is the only essential lysine acetyltransferase complex in Saccharomyces cerevisiae, where it has been shown to stimulate transcription initiation and elongation. Interaction with nucleosomes is stimulated by histone H3 Lys-4 and Lys-36 methylation, but the mechanism of this interaction is unknown. Eaf3, Eaf5, and Eaf7 form a subcomplex within NuA4 that may also function independently of the lysine acetyltransferase complex. The Eaf3/5/7 complex and the Rpd3C(S) histone deacetylase complex have both been shown to bind di- and trimethylated histone H3 Lys-36 stimulated by Eaf3. We investigated the role of the Eaf3/5/7 subcomplex in NuA4 binding to nucleosomes. Different phenotypes of eaf3/5/7Δ mutants support functions for the complex as both part of and independent of NuA4. Further evidence for Eaf3/5/7 within NuA4 came from mutations in the subcomplex leading to ∼40% reductions in H4 acetylation in bulk histones, probably caused by binding defects to both nucleosomes and RNA polymerase II. In vitro binding assays showed that Eaf3/5/7 specifically stimulates NuA4 binding to di- and trimethylated histone H3 Lys-36 and that this binding is important for NuA4 occupancy in transcribed ORFs. Consistent with the role of NuA4 in stimulating transcription elongation, loss of EAF5 or EAF7 resulted in a processivity defect. Overall, these results reveal the function of Eaf3/5/7 within NuA4 to be important for both NuA4 and RNA polymerase II binding.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marci J Swede
- Health Sciences Departments, LIU Post, Brookville, New York 11548
| | | |
Collapse
|
34
|
Engineered Covalent Inactivation of TFIIH-Kinase Reveals an Elongation Checkpoint and Results in Widespread mRNA Stabilization. Mol Cell 2016; 63:433-44. [PMID: 27477907 DOI: 10.1016/j.molcel.2016.06.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/09/2016] [Accepted: 06/23/2016] [Indexed: 12/25/2022]
Abstract
During transcription initiation, the TFIIH-kinase Kin28/Cdk7 marks RNA polymerase II (Pol II) by phosphorylating the C-terminal domain (CTD) of its largest subunit. Here we describe a structure-guided chemical approach to covalently and specifically inactivate Kin28 kinase activity in vivo. This method of irreversible inactivation recapitulates both the lethal phenotype and the key molecular signatures that result from genetically disrupting Kin28 function in vivo. Inactivating Kin28 impacts promoter release to differing degrees and reveals a "checkpoint" during the transition to productive elongation. While promoter-proximal pausing is not observed in budding yeast, inhibition of Kin28 attenuates elongation-licensing signals, resulting in Pol II accumulation at the +2 nucleosome and reduced transition to productive elongation. Furthermore, upon inhibition, global stabilization of mRNA masks different degrees of reduction in nascent transcription. This study resolves long-standing controversies on the role of Kin28 in transcription and provides a rational approach to irreversibly inhibit other kinases in vivo.
Collapse
|
35
|
Jeronimo C, Collin P, Robert F. The RNA Polymerase II CTD: The Increasing Complexity of a Low-Complexity Protein Domain. J Mol Biol 2016; 428:2607-2622. [DOI: 10.1016/j.jmb.2016.02.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/27/2016] [Accepted: 02/02/2016] [Indexed: 01/18/2023]
|
36
|
Recruitment of Saccharomyces cerevisiae Cmr1/Ydl156w to Coding Regions Promotes Transcription Genome Wide. PLoS One 2016; 11:e0148897. [PMID: 26848854 PMCID: PMC4744024 DOI: 10.1371/journal.pone.0148897] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 01/25/2016] [Indexed: 12/03/2022] Open
Abstract
Cmr1 (changed mutation rate 1) is a largely uncharacterized nuclear protein that has recently emerged in several global genetic interaction and protein localization studies. It clusters with proteins involved in DNA damage and replication stress response, suggesting a role in maintaining genome integrity. Under conditions of proteasome inhibition or replication stress, this protein localizes to distinct sub-nuclear foci termed as intranuclear quality control (INQ) compartments, which sequester proteins for their subsequent degradation. Interestingly, it also interacts with histones, chromatin remodelers and modifiers, as well as with proteins involved in transcription including subunits of RNA Pol I and Pol III, but not with those of Pol II. It is not known whether Cmr1 plays a role in regulating transcription of Pol II target genes. Here, we show that Cmr1 is recruited to the coding regions of transcribed genes of S. cerevisiae. Cmr1 occupancy correlates with the Pol II occupancy genome-wide, indicating that it is recruited to coding sequences in a transcription-dependent manner. Cmr1-enriched genes include Gcn4 targets and ribosomal protein genes. Furthermore, our results show that Cmr1 recruitment to coding sequences is stimulated by Pol II CTD kinase, Kin28, and the histone deacetylases, Rpd3 and Hos2. Finally, our genome-wide analyses implicate Cmr1 in regulating Pol II occupancy at transcribed coding sequences. However, it is dispensable for maintaining co-transcriptional histone occupancy and histone modification (acetylation and methylation). Collectively, our results show that Cmr1 facilitates transcription by directly engaging with transcribed coding regions.
Collapse
|
37
|
Suh H, Ficarro SB, Kang UB, Chun Y, Marto JA, Buratowski S. Direct Analysis of Phosphorylation Sites on the Rpb1 C-Terminal Domain of RNA Polymerase II. Mol Cell 2016; 61:297-304. [PMID: 26799764 PMCID: PMC4724063 DOI: 10.1016/j.molcel.2015.12.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/30/2015] [Accepted: 12/14/2015] [Indexed: 11/20/2022]
Abstract
Dynamic interactions between RNA polymerase II and various mRNA-processing and chromatin-modifying enzymes are mediated by the changing phosphorylation pattern on the C-terminal domain (CTD) of polymerase subunit Rpb1 during different stages of transcription. Phosphorylations within the repetitive heptamer sequence (YSPTSPS) of CTD have primarily been defined using antibodies, but these do not distinguish different repeats or allow comparative quantitation. Using a CTD modified for mass spectrometry (msCTD), we show that Ser5-P and Ser2-P occur throughout the length of CTD and are far more abundant than other phosphorylation sites. msCTD extracted from cells mutated in several CTD kinases or phosphatases showed the expected changes in phosphorylation. Furthermore, msCTD associated with capping enzyme was enriched for Ser5-P while that bound to the transcription termination factor Rtt103 had higher levels of Ser2-P. These results suggest a relatively sparse and simple "CTD code."
Collapse
Affiliation(s)
- Hyunsuk Suh
- Department of Biochemical Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology and Blais Proteomics Center, Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Scott B Ficarro
- Department of Biochemical Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology and Blais Proteomics Center, Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Un-Beom Kang
- Department of Biochemical Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology and Blais Proteomics Center, Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Yujin Chun
- Department of Biochemical Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jarrod A Marto
- Department of Biochemical Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology and Blais Proteomics Center, Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Stephen Buratowski
- Department of Biochemical Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Paulo JA, O'Connell JD, Gaun A, Gygi SP. Proteome-wide quantitative multiplexed profiling of protein expression: carbon-source dependency in Saccharomyces cerevisiae. Mol Biol Cell 2015; 26:4063-74. [PMID: 26399295 PMCID: PMC4710237 DOI: 10.1091/mbc.e15-07-0499] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/18/2015] [Indexed: 12/27/2022] Open
Abstract
A mass spectrometry–based tandem mass tag 9-plex strategy was used to determine alterations in relative protein abundance due to three carbon sources—glucose, galactose, and raffinose. More than 4700 proteins were quantified across all nine samples; 1003 demonstrated statistically significant differences in abundance in at least one condition. The global proteomic alterations in the budding yeast Saccharomyces cerevisiae due to differences in carbon sources can be comprehensively examined using mass spectrometry–based multiplexing strategies. In this study, we investigate changes in the S. cerevisiae proteome resulting from cultures grown in minimal media using galactose, glucose, or raffinose as the carbon source. We used a tandem mass tag 9-plex strategy to determine alterations in relative protein abundance due to a particular carbon source, in triplicate, thereby permitting subsequent statistical analyses. We quantified more than 4700 proteins across all nine samples; 1003 proteins demonstrated statistically significant differences in abundance in at least one condition. The majority of altered proteins were classified as functioning in metabolic processes and as having cellular origins of plasma membrane and mitochondria. In contrast, proteins remaining relatively unchanged in abundance included those having nucleic acid–related processes, such as transcription and RNA processing. In addition, the comprehensiveness of the data set enabled the analysis of subsets of functionally related proteins, such as phosphatases, kinases, and transcription factors. As a resource, these data can be mined further in efforts to understand better the roles of carbon source fermentation in yeast metabolic pathways and the alterations observed therein, potentially for industrial applications, such as biofuel feedstock production.
Collapse
Affiliation(s)
- Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | | | - Aleksandr Gaun
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
39
|
Mühlbacher W, Mayer A, Sun M, Remmert M, Cheung ACM, Niesser J, Soeding J, Cramer P. Structure of Ctk3, a subunit of the RNA polymerase II CTD kinase complex, reveals a noncanonical CTD-interacting domain fold. Proteins 2015. [PMID: 26219431 DOI: 10.1002/prot.24869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
CTDK-I is a yeast kinase complex that phosphorylates the C-terminal repeat domain (CTD) of RNA polymerase II (Pol II) to promote transcription elongation. CTDK-I contains the cyclin-dependent kinase Ctk1 (homologous to human CDK9/CDK12), the cyclin Ctk2 (human cyclin K), and the yeast-specific subunit Ctk3, which is required for CTDK-I stability and activity. Here we predict that Ctk3 consists of a N-terminal CTD-interacting domain (CID) and a C-terminal three-helix bundle domain. We determine the X-ray crystal structure of the N-terminal domain of the Ctk3 homologue Lsg1 from the fission yeast Schizosaccharomyces pombe at 2.0 Å resolution. The structure reveals eight helices arranged into a right-handed superhelical fold that resembles the CID domain present in transcription termination factors Pcf11, Nrd1, and Rtt103. Ctk3 however shows different surface properties and no binding to CTD peptides. Together with the known structure of Ctk1 and Ctk2 homologues, our results lead to a molecular framework for analyzing the structure and function of the CTDK-I complex.
Collapse
Affiliation(s)
- Wolfgang Mühlbacher
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, Göttingen, 37077, Germany
| | - Andreas Mayer
- Gene Center Munich and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, Munich, 81377, Germany
| | - Mai Sun
- Gene Center Munich and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, Munich, 81377, Germany
| | - Michael Remmert
- Gene Center Munich and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, Munich, 81377, Germany
| | - Alan C M Cheung
- Gene Center Munich and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, Munich, 81377, Germany
| | - Jürgen Niesser
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, Göttingen, 37077, Germany
| | - Johannes Soeding
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, Göttingen, 37077, Germany
| | - Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, Göttingen, 37077, Germany
| |
Collapse
|
40
|
Srivastava R, Ahn SH. Modifications of RNA polymerase II CTD: Connections to the histone code and cellular function. Biotechnol Adv 2015; 33:856-72. [PMID: 26241863 DOI: 10.1016/j.biotechadv.2015.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/08/2015] [Accepted: 07/28/2015] [Indexed: 12/24/2022]
Abstract
At the onset of transcription, many protein machineries interpret the cellular signals that regulate gene expression. These complex signals are mostly transmitted to the indispensable primary proteins involved in transcription, RNA polymerase II (RNAPII) and histones. RNAPII and histones are so well coordinated in this cellular function that each cellular signal is precisely allocated to specific machinery depending on the stage of transcription. The carboxy-terminal domain (CTD) of RNAPII in eukaryotes undergoes extensive posttranslational modification, called the 'CTD code', that is indispensable for coupling transcription with many cellular processes, including mRNA processing. The posttranslational modification of histones, known as the 'histone code', is also critical for gene transcription through the reversible and dynamic remodeling of chromatin structure. Notably, the histone code is closely linked with the CTD code, and their combinatorial effects enable the delicate regulation of gene transcription. This review elucidates recent findings regarding the CTD modifications of RNAPII and their coordination with the histone code, providing integrative pathways for the fine-tuned regulation of gene expression and cellular function.
Collapse
Affiliation(s)
- Rakesh Srivastava
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Seong Hoon Ahn
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Republic of Korea.
| |
Collapse
|
41
|
Allepuz-Fuster P, Martínez-Fernández V, Garrido-Godino AI, Alonso-Aguado S, Hanes SD, Navarro F, Calvo O. Rpb4/7 facilitates RNA polymerase II CTD dephosphorylation. Nucleic Acids Res 2014; 42:13674-88. [PMID: 25416796 PMCID: PMC4267648 DOI: 10.1093/nar/gku1227] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/04/2014] [Accepted: 11/10/2014] [Indexed: 12/11/2022] Open
Abstract
The Rpb4 and Rpb7 subunits of eukaryotic RNA polymerase II (RNAPII) participate in a variety of processes from transcription, DNA repair, mRNA export and decay, to translation regulation and stress response. However, their mechanism(s) of action remains unclear. Here, we show that the Rpb4/7 heterodimer in Saccharomyces cerevisiae plays a key role in controlling phosphorylation of the carboxy terminal domain (CTD) of the Rpb1 subunit of RNAPII. Proper phosphorylation of the CTD is critical for the synthesis and processing of RNAPII transcripts. Deletion of RPB4, and mutations that disrupt the integrity of Rpb4/7 or its recruitment to the RNAPII complex, increased phosphorylation of Ser2, Ser5, Ser7 and Thr4 within the CTD. RPB4 interacted genetically with genes encoding CTD phosphatases (SSU72, FCP1), CTD kinases (KIN28, CTK1, SRB10) and a prolyl isomerase that targets the CTD (ESS1). We show that Rpb4 is important for Ssu72 and Fcp1 phosphatases association, recruitment and/or accessibility to the CTD, and that this correlates strongly with Ser5P and Ser2P levels, respectively. Our data also suggest that Fcp1 is the Thr4P phosphatase in yeast. Based on these and other results, we suggest a model in which Rpb4/7 helps recruit and potentially stimulate the activity of CTD-modifying enzymes, a role that is central to RNAPII function.
Collapse
Affiliation(s)
- Paula Allepuz-Fuster
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Salamanca 37007, Spain
| | - Verónica Martínez-Fernández
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén 23071, Spain
| | - Ana I. Garrido-Godino
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén 23071, Spain
| | - Sergio Alonso-Aguado
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Salamanca 37007, Spain
| | - Steven D. Hanes
- Department of Biochemistry and Molecular Biology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Francisco Navarro
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén 23071, Spain
| | - Olga Calvo
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Salamanca 37007, Spain
| |
Collapse
|
42
|
Spain MM, Ansari SA, Pathak R, Palumbo MJ, Morse RH, Govind CK. The RSC complex localizes to coding sequences to regulate Pol II and histone occupancy. Mol Cell 2014; 56:653-66. [PMID: 25457164 DOI: 10.1016/j.molcel.2014.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 09/26/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
ATP-dependent chromatin remodelers regulate chromatin structure during multiple stages of transcription. We report that RSC, an essential chromatin remodeler, is recruited to the open reading frames (ORFs) of actively transcribed genes genome wide, suggesting a role for RSC in regulating transcription elongation. Consistent with such a role, Pol II occupancy in the ORFs of weakly transcribed genes is drastically reduced upon depletion of the RSC catalytic subunit Sth1. RSC inactivation also reduced histone H3 occupancy across transcribed regions. Remarkably, the strongest effects on Pol II and H3 occupancy were confined to the genes displaying the greatest RSC ORF enrichment. Additionally, RSC recruitment to the ORF requires the activities of the SAGA and NuA4 HAT complexes and is aided by the activities of the Pol II CTD Ser2 kinases Bur1 and Ctk1. Overall, our findings strongly implicate ORF-associated RSC in governing Pol II function and in maintaining chromatin structure over transcribed regions.
Collapse
Affiliation(s)
- Marla M Spain
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Suraiya A Ansari
- Laboratory of Molecular Genetics, Wadsworth Center, NY State Department of Health, Albany, NY 12208, USA
| | - Rakesh Pathak
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Michael J Palumbo
- Laboratory of Molecular Genetics, Wadsworth Center, NY State Department of Health, Albany, NY 12208, USA
| | - Randall H Morse
- Laboratory of Molecular Genetics, Wadsworth Center, NY State Department of Health, Albany, NY 12208, USA
| | - Chhabi K Govind
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.
| |
Collapse
|
43
|
Spain MM, Govind CK. A role for phosphorylated Pol II CTD in modulating transcription coupled histone dynamics. Transcription 2014; 2:78-81. [PMID: 21468233 DOI: 10.4161/trns.2.2.14638] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 12/22/2010] [Accepted: 12/27/2010] [Indexed: 11/19/2022] Open
Abstract
Histone acetylation modulates histone occupancy both at promoters and in coding sequences. Based on our recent observation that HDACs in the budding yeast, Saccharomyces cerevisiae, are co-transcriptionally recruited to coding regions by elongating polymerases, we propose a model in which Pol II facilitates recruitment of chromatin remodeling complexes as well as other factors required for productive elongation.
Collapse
Affiliation(s)
- Marla M Spain
- Department of Biological Sciences; Oakland University; Rochester, MI USA
| | | |
Collapse
|
44
|
Bartkowiak B, Greenleaf AL. Phosphorylation of RNAPII: To P-TEFb or not to P-TEFb? Transcription 2014; 2:115-119. [PMID: 21826281 DOI: 10.4161/trns.2.3.15004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 01/27/2011] [Accepted: 01/31/2011] [Indexed: 11/19/2022] Open
Abstract
The C-terminal domain of RNA polymerase II undergoes a cycle of phosphorylation which allows it to temporally couple transcription with transcription-associated processes. The characterization of hitherto unrecognized metazoan elongation phase CTD kinase activities expands our understanding of this coupling. We discuss the circumstances that delayed the recognition of these kinase activities.
Collapse
Affiliation(s)
- Bartlomiej Bartkowiak
- Department of Biochemistry; Duke Center for RNA Biology; Duke University Medical Center; Durham, NC USA
| | | |
Collapse
|
45
|
Ginsburg DS, Anlembom TE, Wang J, Patel SR, Li B, Hinnebusch AG. NuA4 links methylation of histone H3 lysines 4 and 36 to acetylation of histones H4 and H3. J Biol Chem 2014; 289:32656-70. [PMID: 25301943 DOI: 10.1074/jbc.m114.585588] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cotranscriptional methylation of histone H3 lysines 4 and 36 by Set1 and Set2, respectively, stimulates interaction between nucleosomes and histone deacetylase complexes to block cryptic transcription in budding yeast. We previously showed that loss of all H3K4 and H3K36 methylation in a set1Δset2Δ mutant reduces interaction between native nucleosomes and the NuA4 lysine acetyltransferase (KAT) complex. We now provide evidence that NuA4 preferentially binds H3 tails mono- and dimethylated on H3K4 and di- and trimethylated on H3K36, an H3 methylation pattern distinct from that recognized by the RPD3C(S) and Hos2/Set3 histone deacetylase complexes (HDACs). Loss of H3K4 or H3K36 methylation in set1Δ or set2Δ mutants reduces NuA4 interaction with bulk nucleosomes in vitro and in vivo, and reduces NuA4 occupancy of transcribed coding sequences at particular genes. We also provide evidence that NuA4 acetylation of lysine residues in the histone H4 tail stimulates SAGA interaction with nucleosomes and its recruitment to coding sequences and attendant acetylation of histone H3 in vivo. Thus, H3 methylation exerts opposing effects of enhancing nucleosome acetylation by both NuA4 and SAGA as well as stimulating nucleosome deacetylation by multiple HDACs to maintain the proper level of histone acetylation in transcribed coding sequences.
Collapse
Affiliation(s)
- Daniel S Ginsburg
- From the Biomedical Sciences Department, LIU Post, Brookville, New York 11548,
| | | | - Jianing Wang
- From the Biomedical Sciences Department, LIU Post, Brookville, New York 11548
| | - Sanket R Patel
- From the Biomedical Sciences Department, LIU Post, Brookville, New York 11548
| | - Bing Li
- the Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, and
| | - Alan G Hinnebusch
- the Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
46
|
Fromm M, Avramova Z. ATX1/AtCOMPASS and the H3K4me3 marks: how do they activate Arabidopsis genes? CURRENT OPINION IN PLANT BIOLOGY 2014; 21:75-82. [PMID: 25047977 DOI: 10.1016/j.pbi.2014.07.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/26/2014] [Accepted: 07/02/2014] [Indexed: 06/03/2023]
Abstract
Despite the proven correlation between gene transcriptional activity and the levels of tri-methyl marks on histone 3 lysine4 (H3K4me3) of their nucleosomes, whether H3K4me3 contributes to, or 'registers', activated transcription is still controversial. Other questions of broad relevance are whether histone-modifying proteins are involved in the recruitment of Pol II and the general transcription machinery and whether they have roles other than their enzyme activities. We address these questions as well as the roles of the ARABIDOPSIS HOMOLOG OF TRITHORAX1 (ATX1), of the COMPASS-related (AtCOMPASS) protein complex, and of their product, H3K4me3, at ATX1-dependent genes. We suggest that the ambiguity about the role of H3K4me3 as an activating mark is due to the unknown duality of the ATX1/AtCOMPASS to facilitate PIC assembly and to generate H3K4me3, which is essential for activating transcriptional elongation.
Collapse
Affiliation(s)
- Michael Fromm
- Department of Agronomy and Plant Science Innovation, UNL, Lincoln, NE 68588-6008, USA
| | - Zoya Avramova
- School of Biological Science, UNL, Lincoln, NE 68588-6008, USA.
| |
Collapse
|
47
|
Histone deacetylases and phosphorylated polymerase II C-terminal domain recruit Spt6 for cotranscriptional histone reassembly. Mol Cell Biol 2014; 34:4115-29. [PMID: 25182531 DOI: 10.1128/mcb.00695-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Spt6 is a multifunctional histone chaperone involved in the maintenance of chromatin structure during elongation by RNA polymerase II (Pol II). Spt6 has a tandem SH2 (tSH2) domain within its C terminus that recognizes Pol II C-terminal domain (CTD) peptides phosphorylated on Ser2, Ser5, or Try1 in vitro. Deleting the tSH2 domain, however, only has a partial effect on Spt6 occupancy in vivo, suggesting that more complex mechanisms are involved in the Spt6 recruitment. Our results show that the Ser2 kinases Bur1 and Ctk1, but not the Ser5 kinase Kin28, cooperate in recruiting Spt6, genome-wide. Interestingly, the Ser2 kinases promote the association of Spt6 in early transcribed regions and not toward the 3' ends of genes, where phosphorylated Ser2 reaches its maximum level. In addition, our results uncover an unexpected role for histone deacetylases (Rpd3 and Hos2) in promoting Spt6 interaction with elongating Pol II. Finally, our data suggest that phosphorylation of the Pol II CTD on Tyr1 promotes the association of Spt6 with the 3' ends of transcribed genes, independently of Ser2 phosphorylation. Collectively, our results show that a complex network of interactions, involving the Spt6 tSH2 domain, CTD phosphorylation, and histone deacetylases, coordinate the recruitment of Spt6 to transcribed genes in vivo.
Collapse
|
48
|
Abstract
CDKs (cyclin-dependent kinases) ensure directionality and fidelity of the eukaryotic cell division cycle. In a similar fashion, the transcription cycle is governed by a conserved subfamily of CDKs that phosphorylate Pol II (RNA polymerase II) and other substrates. A genetic model organism, the fission yeast Schizosaccharomyces pombe, has yielded robust models of cell-cycle control, applicable to higher eukaryotes. From a similar approach combining classical and chemical genetics, fundamental principles of transcriptional regulation by CDKs are now emerging. In the present paper, we review the current knowledge of each transcriptional CDK with respect to its substrate specificity, function in transcription and effects on chromatin modifications, highlighting the important roles of CDKs in ensuring quantity and quality control over gene expression in eukaryotes.
Collapse
|
49
|
Bowman EA, Kelly WG. RNA polymerase II transcription elongation and Pol II CTD Ser2 phosphorylation: A tail of two kinases. Nucleus 2014; 5:224-36. [PMID: 24879308 DOI: 10.4161/nucl.29347] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The transition between initiation and productive elongation during RNA Polymerase II (Pol II) transcription is a well-appreciated point of regulation across many eukaryotes. Elongating Pol II is modified by phosphorylation of serine 2 (Ser2) on its carboxy terminal domain (CTD) by two kinases, Bur1/Ctk1 in yeast and Cdk9/Cdk12 in metazoans. Here, we discuss the roles and regulation of these kinases and their relationship to Pol II elongation control, and focus on recent data from work in C. elegans that point out gaps in our current understand of transcription elongation.
Collapse
Affiliation(s)
- Elizabeth A Bowman
- National Institute of Environmental Health Sciences; Research Triangle Park, NC USA
| | | |
Collapse
|
50
|
Antisense-mediated FLC transcriptional repression requires the P-TEFb transcription elongation factor. Proc Natl Acad Sci U S A 2014; 111:7468-73. [PMID: 24799695 DOI: 10.1073/pnas.1406635111] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The functional significance of noncoding transcripts is currently a major question in biology. We have been studying the function of a set of antisense transcripts called COOLAIR that encompass the whole transcription unit of the Arabidopsis floral repressor FLOWERING LOCUS C (FLC). Alternative polyadenylation of COOLAIR transcripts correlates with different FLC sense expression states. Suppressor mutagenesis aimed at understanding the importance of this sense-antisense transcriptional circuitry has identified a role for Arabidopsis cyclin-dependent kinase C (CDKC;2) in FLC repression. CDKC;2 functions in an Arabidopsis positive transcription elongation factor b (P-TEFb) complex and influences global RNA polymerase II (Pol II) Ser(2) phosphorylation levels. CDKC;2 activity directly promotes COOLAIR transcription but does not affect an FLC transgene missing the COOLAIR promoter. In the endogenous gene context, however, the reduction of COOLAIR transcription by cdkc;2 disrupts a COOLAIR-mediated repression mechanism that increases FLC expression. This disruption then feeds back to indirectly increase COOLAIR expression. This tight interconnection between sense and antisense transcription, together with differential promoter sensitivity to P-TEFb, is central to quantitative regulation of this important floral repressor gene.
Collapse
|