1
|
Greer EL, Lee SS, Prahlad V. Chromatin and epigenetics in aging biology. Genetics 2025; 230:iyaf055. [PMID: 40202900 DOI: 10.1093/genetics/iyaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/03/2025] [Indexed: 04/11/2025] Open
Abstract
This book chapter will focus on modifications to chromatin itself, how chromatin modifications are regulated, and how these modifications are deciphered by the cell to impact aging. In this chapter, we will review how chromatin modifications change with age, examine how chromatin-modifying enzymes have been shown to regulate aging and healthspan, discuss how some of these epigenetic changes are triggered and how they can regulate the lifespan of the individual and its naïve descendants, and speculate on future directions for the field.
Collapse
Affiliation(s)
- Eric Lieberman Greer
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Veena Prahlad
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
2
|
Gray ZH, Honer MA, Ghatalia P, Shi Y, Whetstine JR. 20 years of histone lysine demethylases: From discovery to the clinic and beyond. Cell 2025; 188:1747-1783. [PMID: 40185081 DOI: 10.1016/j.cell.2025.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 04/07/2025]
Abstract
Twenty years ago, histone lysine demethylases (KDMs) were discovered. Since their discovery, they have been increasingly studied and shown to be important across species, development, and diseases. Considerable advances have been made toward understanding their (1) enzymology, (2) role as critical components of biological complexes, (3) role in normal cellular processes and functions, (4) implications in pathological conditions, and (5) therapeutic potential. This Review covers these key relationships related to the KDM field with the awareness that numerous laboratories have contributed to this field. The current knowledge coupled with future insights will shape our understanding about cell function, development, and disease onset and progression, which will allow for novel biomarkers to be identified and for optimal therapeutic options to be developed for KDM-related diseases in the years ahead.
Collapse
Affiliation(s)
- Zach H Gray
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Madison A Honer
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Pooja Ghatalia
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yang Shi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
3
|
Gadad SS, Camacho CV, Gong X, Thornton M, Malladi VS, Nagari A, Sundaresan A, Nandu T, Koul S, Peng Y, Kraus WL. X-Linked Cancer-Associated Polypeptide (XCP) from lncRNA1456 Cooperates with PHF8 to Regulate Gene Expression and Cellular Pathways in Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.21.644649. [PMID: 40196671 PMCID: PMC11974697 DOI: 10.1101/2025.03.21.644649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Recent studies have demonstrated that a subset of long "noncoding" RNAs (lncRNAs) produce functional polypeptides and proteins. In this study, we discovered a 132 amino acid protein in human breast cancer cells named XCP (X-linked Cancer-associated Polypeptide), which is encoded by lncRNA1456 (a.k.a. RHOXF1P3), a transcript previously thought to be noncoding. lncRNA1456 is a pancreas- and testis-specific RNA whose gene is located on chromosome X. We found that the expression of lncRNA1456 and XCP are highly upregulated in the luminal A, luminal B, and HER2 molecular subtypes of breast cancer. XCP modulates both estrogen-dependent and estrogen-independent growth of breast cancer cells by regulating cancer pathways, as shown in cell and xenograft models. XCP shares some homology with homeodomain-containing proteins and interacts with the histone demethylase plant homeodomain finger protein 8 (PHF8), which is also encoded by an X-linked gene. Mechanistically, XCP stimulates the histone demethylase activity of PHF8 to regulate gene expression in breast cancer cells. These findings identify XCP as a coregulator of transcription and emphasize the need to interrogate the potential functional roles of open reading frames originating from noncoding RNAs.
Collapse
Affiliation(s)
- Shrikanth S. Gadad
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Current address: Center of Emphasis in Cancer, Paul L. Foster School of Medicine, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
- These authors contributed equally to this work
| | - Cristel V. Camacho
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- These authors contributed equally to this work
| | - Xuan Gong
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Current address: Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Micah Thornton
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Computational Core Facility, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Venkat S. Malladi
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Computational Core Facility, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anusha Nagari
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Computational Core Facility, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aishwarya Sundaresan
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Computational Core Facility, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tulip Nandu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Computational Core Facility, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sneh Koul
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Computational Core Facility, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yan Peng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W. Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
4
|
Snabel RR, Cofiño-Fabrés C, Baltissen M, Schwach V, Passier R, Veenstra GJC. Cardiac differentiation roadmap for analysis of plasticity and balanced lineage commitment. Stem Cell Reports 2025; 20:102422. [PMID: 40020683 PMCID: PMC11960529 DOI: 10.1016/j.stemcr.2025.102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 03/03/2025] Open
Abstract
Stem cell-based models of human heart tissue and cardiac differentiation employ monolayer and 3D organoid cultures with different properties, cell type composition, and maturity. Here we show how cardiac monolayer, embryoid body, and engineered heart tissue trajectories compare in a single-cell roadmap of atrial and ventricular differentiation conditions. Using a multiomic approach and gene-regulatory network inference, we identified regulators of the epicardial, atrial, and ventricular cardiomyocyte lineages. We identified ZNF711 as a regulatory switch and safeguard for cardiomyocyte commitment. We show that ZNF711 ablation prevents cardiomyocyte differentiation in the absence of retinoic acid, causing progenitors to be diverted more prominently to epicardial and other lineages. Retinoic acid rescues this shift in lineage commitment and promotes atrial cardiomyocyte differentiation by regulation of shared and complementary target genes, showing interplay between ZNF711 and retinoic acid in cardiac lineage commitment.
Collapse
Affiliation(s)
- Rebecca R Snabel
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science, Radboud University, Nijmegen, the Netherlands
| | - Carla Cofiño-Fabrés
- Department of Bioengineering Technologies, Applied Stem Cell Technologies Group, TechMed Centre, University of Twente, Enschede, the Netherlands
| | - Marijke Baltissen
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science, Oncode Institute, Radboud University, Nijmegen, the Netherlands
| | - Verena Schwach
- Department of Bioengineering Technologies, Applied Stem Cell Technologies Group, TechMed Centre, University of Twente, Enschede, the Netherlands
| | - Robert Passier
- Department of Bioengineering Technologies, Applied Stem Cell Technologies Group, TechMed Centre, University of Twente, Enschede, the Netherlands.
| | - Gert Jan C Veenstra
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
5
|
Minerva M, Perilli L, Carbone S, Rossi MM, Lotti F, Lonoce L, Curcio MR, Grosso S. Electroencephalographic and Epilepsy Findings in ZNF711 Variants: A Case Series of Two Siblings. Neurol Int 2025; 17:14. [PMID: 39852778 PMCID: PMC11767995 DOI: 10.3390/neurolint17010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES ZNF711(Zinc finger protein 711) encodes a zinc finger protein of currently undefined function, located on the X chromosome. Current knowledge includes a limited number of case reports where this gene has been exclusively associated with X-linked intellectual disability (XLID). As far as we are aware, we report the first cases of epilepsy associated with this particular variant. Our aim is to further delineate the phenotypic spectrum of ZNF711 gene pathogenic variants, adding clinical features to this rare condition, following a genotype-first approach. CASE PRESENTATION We describe the familiar case of two male siblings presenting with moderate intellectual disability (ID), language delay, and motor stereotypies. Additionally, they experienced generalized tonic-clonic seizures (GTCSs) and myoclonic seizures with interictal electroencephalographic abnormalities. Both children underwent various genetic testing and counselling, including an extended next-generation sequencing (NGS) panel, revealing a hemizygous c.657C > G pathogenic variant in the ZNF711 gene from maternal inheritance. CONCLUSIONS This case expands the clinical range of ZNF711 variants by highlighting epilepsy as a potential comorbidity and suggesting other possible causal candidates for generalized epilepsy. Moreover, it emphasizes the need for further research into the phenotypic spectrum associated with this variant.
Collapse
Affiliation(s)
- Michele Minerva
- Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Wang H, Guo B, Guo X. Histone demethylases in neurodevelopment and neurodegenerative diseases. Int J Neurosci 2024; 134:1372-1382. [PMID: 37902510 DOI: 10.1080/00207454.2023.2276656] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023]
Abstract
Neurodevelopment can be precisely regulated by epigenetic mechanisms, including DNA methylations, noncoding RNAs, and histone modifications. Histone methylation was a reversible modification, catalyzed by histone methyltransferases and demethylases. So far, dozens of histone lysine demethylases (KDMs) have been discovered, and they (members from KDM1 to KDM7 family) are important for neurodevelopment by regulating cellular processes, such as chromatin structure and gene transcription. The role of KDM5C and KDM7B in neural development is particularly important, and mutations in both genes are frequently found in human X-linked mental retardation (XLMR). Functional disorders of specific KDMs, such as KDM1A can lead to the development of neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Several KDMs can serve as potential therapeutic targets in the treatment of neurodegenerative diseases. At present, the function of KDMs in neurodegenerative diseases is not fully understood, so more comprehensive and profound studies are needed. Here, the role and mechanism of histone demethylases were summarized in neurodevelopment, and the potential of them was introduced in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Haiying Wang
- Department of Sports Human Sciences, Hebei Social Science Foundation Project Research Group, Hebei Sport University, Shijiazhuang, Hebei, China
| | - Beiyi Guo
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Xiaoqiang Guo
- Department of Sports Human Sciences, Hebei Social Science Foundation Project Research Group, Hebei Sport University, Shijiazhuang, Hebei, China
| |
Collapse
|
7
|
Ding Z, Wang D, Zhang S, Yang X, Xu M, Li W, Shi Q, Gao B, Wang Y, Yan M. Role and mechanism of histone demethylase PHF8 in weightlessness osteoporosis. Exp Cell Res 2024; 442:114270. [PMID: 39389337 DOI: 10.1016/j.yexcr.2024.114270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
Weightlessness osteoporosis, which progresses continuously and has limited protective effects, has become one of the major problems that need to be solved in manned spaceflight. Our study aims to investigate the regulatory role of PHF8 in disuse osteoporosis by observing the expression of PHF8 in bone marrow mesenchymal stem cells (BMSCs) under simulated weightlessness conditions. Therefore, we used the model of ground-based microgravity simulated by disuse osteoporosis patients and tail suspension in mice to simulate microgravity in vivo, and measured the expression of PHF8 in bone tissue. Subsequently, we used the 2D gyroscope to simulate the weightless effect on bone marrow mesenchymal stem cells. In the weightless condition, we detected the proliferation, apoptosis, osteogenesis, and osteogenic differentiation functions of BMSCs. We also detected the expression of osteogenic-related transcription factors after knocking down and overexpressing PHF8. Our results show that the weightless effect can inhibit the proliferation, osteogenesis, and osteogenic differentiation functions of BMSCs, while enhancing their apoptosis; and overexpression of PHF8 can partially alleviate the osteoporosis caused by simulated weightlessness, providing new ideas and clues for potential drug targets to prevent weightlessness and disuse osteoporosis.
Collapse
Affiliation(s)
- Ziyi Ding
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Dong Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Shilei Zhang
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Xinyuan Yang
- No. 5 Cadet Regiment, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China
| | - Meng Xu
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Weihang Li
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Quan Shi
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Bo Gao
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China.
| | - Yongchun Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi'an, China.
| | - Ming Yan
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
8
|
Fan T, Xie J, Huang G, Li L, Zeng X, Tao Q. PHF8/KDM7B: A Versatile Histone Demethylase and Epigenetic Modifier in Nervous System Disease and Cancers. EPIGENOMES 2024; 8:36. [PMID: 39311138 PMCID: PMC11417953 DOI: 10.3390/epigenomes8030036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/23/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
Many human diseases, such as malignant tumors and neurological diseases, have a complex pathophysiological etiology, often accompanied by aberrant epigenetic changes including various histone modifications. Plant homologous domain finger protein 8 (PHF8), also known as lysine-specific demethylase 7B (KDM7B), is a critical histone lysine demethylase (KDM) playing an important role in epigenetic modification. Characterized by the zinc finger plant homology domain (PHD) and the Jumonji C (JmjC) domain, PHF8 preferentially binds to H3K4me3 and erases repressive methyl marks, including H3K9me1/2, H3K27me1, and H4K20me1. PHF8 is indispensable for developmental processes and the loss of PHF8 enzyme activity is linked to neurodevelopmental disorders. Moreover, increasing evidence shows that PHF8 is highly expressed in multiple tumors as an oncogenic factor. These findings indicate that studying the role of PHF8 will facilitate the development of novel therapeutic agents by the manipulation of PHF8 demethylation activity. Herein, we summarize the current knowledge of PHF8 about its structure and demethylation activity and its involvement in development and human diseases, with an emphasis on nervous system disorders and cancer. This review will update our understanding of PHF8 and promote the clinical transformation of its predictive and therapeutic value.
Collapse
Affiliation(s)
- Tingyu Fan
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China; (T.F.); (G.H.)
| | - Jianlian Xie
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong; (J.X.); (L.L.)
| | - Guo Huang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China; (T.F.); (G.H.)
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong; (J.X.); (L.L.)
| | - Xi Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China; (T.F.); (G.H.)
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong; (J.X.); (L.L.)
| |
Collapse
|
9
|
Rua AJ, Alexandrescu AT. Formerly degenerate seventh zinc finger domain from transcription factor ZNF711 rehabilitated by experimental NMR structure. Protein Sci 2024; 33:e5149. [PMID: 39180464 PMCID: PMC11344264 DOI: 10.1002/pro.5149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024]
Abstract
Domain Z7 of nuclear transcription factor ZNF711 has the consensus last metal-ligand H23 found in odd-numbered zinc fingers of this protein replaced by a phenylalanine. Ever since the discovery of ZNF711, it has been thought that Z7 is probably non-functional because of the H23F substitution. The presence of H26 three positions downstream prompted us to examine if this histidine could substitute as the last metal-ligand. The Z7 domain adopts a stable tertiary structure upon metal-binding. The NMR structure of Zn2+-bound Z7 shows the classical ββα-fold of CCHH zinc fingers. Mutagenesis and pH titration experiments indicate that H26 is not involved in metal binding and that Z7 has a tridentate metal-binding site comprised of only residues C3, C6, and H19. By contrast, an F23H mutation that introduces a histidine in the consensus position forms a tetradentate ligand. The structure of the WT Z7 is stable causing restricted ring-flipping of phenylalanines 10 and 23. Dynamics are increased with either the H26A or F23H substitutions and aromatic ring rotation is no longer hindered in the two mutants. The mutations have only small effects on the Kd values for Zn2+ and Co2+ and retain the high thermal stability of the WT domain above 80°C. Like two previously reported designed zinc fingers with the last ligand replaced by water, the WT Z7 domain is catalytically active, hydrolyzing 4-nitrophenyl acetate. We discuss the implications of naturally occurring tridentate zinc fingers for cancer mutations and drug targeting of notoriously undruggable transcription factors.
Collapse
Affiliation(s)
- Antonio J. Rua
- Department of Molecular and Cellular BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Andrei T. Alexandrescu
- Department of Molecular and Cellular BiologyUniversity of ConnecticutStorrsConnecticutUSA
| |
Collapse
|
10
|
Hsu E, Hutchison K, Liu Y, Nicolet CM, Schreiner S, Zemke N, Farnham P. Reduction of ZFX levels decreases histone H4 acetylation and increases Pol2 pausing at target promoters. Nucleic Acids Res 2024; 52:6850-6865. [PMID: 38726870 PMCID: PMC11229363 DOI: 10.1093/nar/gkae372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 07/09/2024] Open
Abstract
The ZFX transcriptional activator binds to CpG island promoters, with a major peak at ∼200-250 bp downstream from transcription start sites. Because ZFX binds within the transcribed region, we investigated whether it regulates transcriptional elongation. We used GRO-seq to show that loss or reduction of ZFX increased Pol2 pausing at ZFX-regulated promoters. To further investigate the mechanisms by which ZFX regulates transcription, we determined regions of the protein needed for transactivation and for recruitment to the chromatin. Interestingly, although ZFX has 13 grouped zinc fingers, deletion of the first 11 fingers produces a protein that can still bind to chromatin and activate transcription. We next used TurboID-MS to detect ZFX-interacting proteins, identifying ZNF593, as well as proteins that interact with the N-terminal transactivation domain (which included histone modifying proteins), and proteins that interact with ZFX when it is bound to the chromatin (which included TAFs and other histone modifying proteins). Our studies support a model in which ZFX enhances elongation at target promoters by recruiting H4 acetylation complexes and reducing pausing.
Collapse
Affiliation(s)
- Emily Hsu
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Katherine Hutchison
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Yao Liu
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Charles M Nicolet
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Shannon Schreiner
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Nathan R Zemke
- Department of Cellular and Molecular Medicine, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Peggy J Farnham
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
11
|
Doi S, Suzuki T, Soeda S, Miyata N, Inazu T. Role of plant homeodomain finger protein 8 in P19 embryonic carcinoma cells revealed by genome editing and specific inhibitor. Biochem Biophys Rep 2024; 38:101670. [PMID: 38463639 PMCID: PMC10923654 DOI: 10.1016/j.bbrep.2024.101670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/01/2024] [Accepted: 02/16/2024] [Indexed: 03/12/2024] Open
Abstract
Plant homeodomain finger protein 8 (PHF8) is a histone demethylase that regulates the expression of various genes. PHF8 targets repressor histone markers and activates gene expression. Although PHF8 has been involved in X-linked mental retardation and certain types of cancers, the role of PHF8 remains largely unknown, and its relevance to the pathogenesis of these diseases is also uncertain. In the present study, we aimed to clarify the cellular function of PHF8 in P19 cells using Phf8 knockout (KO) cells generated via the CRISPR-Cas9 system and by performing PHF8 specific inhibitor experiments, instead of using PHF8 small interfering RNA transfection. After establishing Phf8 KO cells, we analyzed the effects of PHF8 on neuronal differentiation and cell proliferation. Both PHF8 deficiency and inhibition of its activity did not considerably affect neuronal differentiation, however, they showed an increased trend of promoted neurite outgrowth. Moreover, we found that PHF8 regulated cell proliferation via the MEK/ERK pathway. PHF8 deficiency and activity inhibition reduced the phosphorylation of ERK and MEK. The MEK expression level was associated with PHF8 expression, as revealed by chromatin immunoprecipitation analysis. These results suggested that PHF8 regulates cell proliferation via the MEK/ERK pathway in P19 embryonic carcinoma cells.
Collapse
Affiliation(s)
- Shusuke Doi
- Graduate School of Pharmacy, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | | | - Shuhei Soeda
- Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Naoki Miyata
- Institute of Dug Discovery Science, Nagoya City University, Mizuho, Nagoya, 467-8603, Japan
| | - Tetsuya Inazu
- Graduate School of Pharmacy, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
- Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
12
|
Gregory EF, Luxton GWG, Starr DA. Anchorage of H3K9-methylated heterochromatin to the nuclear periphery helps mediate P-cell nuclear migration though constricted spaces in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595380. [PMID: 38826247 PMCID: PMC11142143 DOI: 10.1101/2024.05.22.595380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Nuclei adjust their deformability while migrating through constrictions to enable structural changes and maintain nuclear integrity. The effect of heterochromatin anchored at the nucleoplasmic face of the inner nuclear membrane on nuclear morphology and deformability during in vivo nuclear migration through constricted spaces remains unclear. Here, we show that abolishing peripheral heterochromatin anchorage by eliminating CEC-4, a chromodomain protein that tethers H3K9-methylated chromatin to the nuclear periphery, disrupts constrained P-cell nuclear migration in Caenorhabditis elegans larvae in the absence of the established LINC complex-dependent pathway. CEC-4 acts in parallel to an actin and CDC-42-based pathway. We also demonstrate the necessity for the chromatin methyltransferases MET-2 and JMJD-1.2 during P-cell nuclear migration in the absence of functional LINC complexes. We conclude that H3K9-nethylated chromatin needs to be anchored to the nucleoplasmic face of the inner nuclear membrane to help facilitate nuclear migration through constricted spaces in vivo.
Collapse
Affiliation(s)
- Ellen F Gregory
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616 USA
| | - G W Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616 USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616 USA
| |
Collapse
|
13
|
Yuan L, Liang X, He L. Insights into the Dissociation Process and Binding Pattern of the BRCT7/8-PHF8 Complex. ACS OMEGA 2024; 9:20819-20831. [PMID: 38764655 PMCID: PMC11097150 DOI: 10.1021/acsomega.3c09433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/27/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
DNA topoisomerase 2-binding protein 1 (Topbp1) plays a crucial role in activating the ataxia-telangiectasia mutated and rad3-related (ATR) complex to initiate DNA damage repair responses. For this process to occur, it is necessary for PHF8 to dissociate from Topbp1. Topbp1 binds to the acidic patch sequence (APS) of PHF8 through its C-terminal BRCT7/8 domain, and disrupting this interaction could be a promising strategy for cancer treatment. To investigate the dissociation process and binding pattern of BRCT7/8-PHF8, we employed enhanced sampling techniques, such as steered molecular dynamics (SMD) simulations and accelerated molecular dynamics (aMD) simulations, along with self-organizing maps (SOM) and time-resolved force distribution analysis (TRFDA) methodologies. Our results demonstrate that the dissociation of PHF8 from BRCT7/8 starts from the N-terminus, leading to the unfolding of the N-terminal helix. Additionally, we identified critical residues that play a pivotal role in this dissociation process. These findings provide valuable insights into the disassociation of PHF8 from BRCT7/8, which could potentially guide the development of novel drugs targeting Topbp1 for cancer therapy.
Collapse
Affiliation(s)
- Longxiao Yuan
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Xiaodan Liang
- School
of Computer Sciences and Technology, Tiangong
University, Tianjin 300387, China
| | - Lei He
- Institute
for Fetology, The First Affiliated Hospital
of Soochow University, Suzhou 215006, China
| |
Collapse
|
14
|
Trimbour R, Deutschmann IM, Cantini L. Molecular mechanisms reconstruction from single-cell multi-omics data with HuMMuS. Bioinformatics 2024; 40:btae143. [PMID: 38460192 PMCID: PMC11065476 DOI: 10.1093/bioinformatics/btae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/20/2023] [Accepted: 03/07/2024] [Indexed: 03/11/2024] Open
Abstract
MOTIVATION The molecular identity of a cell results from a complex interplay between heterogeneous molecular layers. Recent advances in single-cell sequencing technologies have opened the possibility to measure such molecular layers of regulation. RESULTS Here, we present HuMMuS, a new method for inferring regulatory mechanisms from single-cell multi-omics data. Differently from the state-of-the-art, HuMMuS captures cooperation between biological macromolecules and can easily include additional layers of molecular regulation. We benchmarked HuMMuS with respect to the state-of-the-art on both paired and unpaired multi-omics datasets. Our results proved the improvements provided by HuMMuS in terms of transcription factor (TF) targets, TF binding motifs and regulatory regions prediction. Finally, once applied to snmC-seq, scATAC-seq and scRNA-seq data from mouse brain cortex, HuMMuS enabled to accurately cluster scRNA profiles and to identify potential driver TFs. AVAILABILITY AND IMPLEMENTATION HuMMuS is available at https://github.com/cantinilab/HuMMuS.
Collapse
Affiliation(s)
- Remi Trimbour
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Machine Learning for Integrative Genomics Group, F-75015 Paris, France
- Institut de Biologie de l’Ecole Normale Supérieure, CNRS, INSERM, Ecole Normale Supérieure, Université PSL, 75005 Paris, France
| | - Ina Maria Deutschmann
- Institut de Biologie de l’Ecole Normale Supérieure, CNRS, INSERM, Ecole Normale Supérieure, Université PSL, 75005 Paris, France
| | - Laura Cantini
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Machine Learning for Integrative Genomics Group, F-75015 Paris, France
- Institut de Biologie de l’Ecole Normale Supérieure, CNRS, INSERM, Ecole Normale Supérieure, Université PSL, 75005 Paris, France
| |
Collapse
|
15
|
Rua AJ, Alexandrescu AT. Formerly degenerate seventh zinc finger domain from transcription factor ZNF711 rehabilitated by experimental NMR structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.06.588434. [PMID: 38645208 PMCID: PMC11030341 DOI: 10.1101/2024.04.06.588434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Domain Z7 of nuclear transcription factor ZNF711 has the consensus last metal-ligand H23 found in odd-numbered zinc-fingers of this protein replaced by a phenylalanine. Ever since the discovery of ZNF711 it has been thought that Z7 is probably non-functional because of the H23F substitution. The presence of H26 three positions downstream prompted us to examine if this histidine could substitute as the last metal ligand. The Z7 domain adopts a stable tertiary structure upon metal binding. The NMR structure of Zn2+-bound Z7 shows the classical ββα-fold of CCHH zinc fingers. Mutagenesis and pH titration experiments indicate that H26 is not involved in metal binding and that Z7 has a tridentate metal-binding site comprised of only residues C3, C6, and H19. By contrast, an F23H mutation that introduces a histidine in the consensus position forms a tetradentate ligand. The structure of the WT Z7 is stable causing restricted ring-flipping of phenyalanines 10 and 23. Dynamics are increased with either the H26A or F23H substitutions and aromatic ring rotation is no longer hindered in the two mutants. The mutations have only small effects on the Kd values for Zn2+ and Co2+ and retain the high thermal stability of the WT domain above 80 °C. Like two previously reported designed zinc fingers with the last ligand replaced by water, the WT Z7 domain is catalytically active, hydrolyzing 4-nitophenyl acetate. We discuss the implications of naturally occurring tridentate zinc fingers for cancer mutations and drug targeting of notoriously undruggable transcription factors. Our findings that Z7 can fold with only a subset of three metal ligands suggests the recent view that most everything about protein structure can be predicted through homology modeling might be premature for at least the resilient and versatile zinc-finger motif.
Collapse
Affiliation(s)
- Antonio J Rua
- Department of Molecular and Cellular Biology, University of Connecticut
| | | |
Collapse
|
16
|
Xie J, Lin H, Zuo A, Shao J, Sun W, Wang S, Song J, Yao W, Luo Y, Sun J, Wang M. The JMJD family of histone demethylase and their intimate links to cardiovascular disease. Cell Signal 2024; 116:111046. [PMID: 38242266 DOI: 10.1016/j.cellsig.2024.111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
The incidence rate and mortality rate of cardiovascular disease rank first in the world. It is associated with various high-risk factors, and there is no single cause. Epigenetic modifications, such as DNA methylation or histone modification, actively participate in the initiation and development of cardiovascular diseases. Histone lysine methylation is a type of histone post-translational modification. The human Jumonji C domain (JMJD) protein family consists of more than 30 members. JMJD proteins participate in many key nuclear processes and play a key role in the specific regulation of gene expression, DNA damage and repair, and DNA replication. Importantly, increasing evidence shows that JMJD proteins are abnormally expressed in cardiovascular diseases, which may be a potential mechanism for the occurrence and development of these diseases. Here, we discuss the key roles of JMJD proteins in various common cardiovascular diseases. This includes histone lysine demethylase, which has been studied in depth, and less-studied JMJD members. Furthermore, we focus on the epigenetic changes induced by each JMJD member, summarize recent research progress, and evaluate their relationship with cardiovascular diseases and therapeutic potential.
Collapse
Affiliation(s)
- Jiarun Xie
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Haoyu Lin
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Anna Zuo
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Junqiao Shao
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wei Sun
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Shaoting Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jianda Song
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wang Yao
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yanyu Luo
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jia Sun
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Ming Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
17
|
Lukauskas S, Tvardovskiy A, Nguyen NV, Stadler M, Faull P, Ravnsborg T, Özdemir Aygenli B, Dornauer S, Flynn H, Lindeboom RGH, Barth TK, Brockers K, Hauck SM, Vermeulen M, Snijders AP, Müller CL, DiMaggio PA, Jensen ON, Schneider R, Bartke T. Decoding chromatin states by proteomic profiling of nucleosome readers. Nature 2024; 627:671-679. [PMID: 38448585 PMCID: PMC10954555 DOI: 10.1038/s41586-024-07141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
DNA and histone modifications combine into characteristic patterns that demarcate functional regions of the genome1,2. While many 'readers' of individual modifications have been described3-5, how chromatin states comprising composite modification signatures, histone variants and internucleosomal linker DNA are interpreted is a major open question. Here we use a multidimensional proteomics strategy to systematically examine the interaction of around 2,000 nuclear proteins with over 80 modified dinucleosomes representing promoter, enhancer and heterochromatin states. By deconvoluting complex nucleosome-binding profiles into networks of co-regulated proteins and distinct nucleosomal features driving protein recruitment or exclusion, we show comprehensively how chromatin states are decoded by chromatin readers. We find highly distinctive binding responses to different features, many factors that recognize multiple features, and that nucleosomal modifications and linker DNA operate largely independently in regulating protein binding to chromatin. Our online resource, the Modification Atlas of Regulation by Chromatin States (MARCS), provides in-depth analysis tools to engage with our results and advance the discovery of fundamental principles of genome regulation by chromatin states.
Collapse
Affiliation(s)
- Saulius Lukauskas
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
- MRC Laboratory of Medical Sciences (LMS), London, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Andrey Tvardovskiy
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Nhuong V Nguyen
- MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Mara Stadler
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Statistics, Ludwig Maximilian University Munich, Munich, Germany
| | - Peter Faull
- MRC Laboratory of Medical Sciences (LMS), London, UK
- Proteomic Sciences Technology Platform, The Francis Crick Institute, London, UK
- Northwestern Proteomics Core Facility, Northwestern University, Chicago, IL, USA
| | - Tina Ravnsborg
- VILLUM Center for Bioanalytical Sciences and Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | - Scarlett Dornauer
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Helen Flynn
- Proteomic Sciences Technology Platform, The Francis Crick Institute, London, UK
| | - Rik G H Lindeboom
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Teresa K Barth
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Munich, Germany
- Clinical Protein Analysis Unit (ClinZfP), Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Kevin Brockers
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Munich, Germany
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Christian L Müller
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Statistics, Ludwig Maximilian University Munich, Munich, Germany
- Center for Computational Mathematics, Flatiron Institute, New York, NY, USA
| | - Peter A DiMaggio
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Ole N Jensen
- VILLUM Center for Bioanalytical Sciences and Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Robert Schneider
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
- Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Till Bartke
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany.
- MRC Laboratory of Medical Sciences (LMS), London, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
18
|
Dodge JD, Browder NJ, Pellegrino MW. Mitochondrial recovery by the UPR mt: Insights from C. elegans. Semin Cell Dev Biol 2024; 154:59-68. [PMID: 36792440 PMCID: PMC11684877 DOI: 10.1016/j.semcdb.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023]
Abstract
Mitochondria are multifaceted organelles, with such functions as the production of cellular energy to the regulation of cell death. However, mitochondria incur various sources of damage from the accumulation of reactive oxygen species and DNA mutations that can impact the protein folding environment and impair their function. Since mitochondrial dysfunction is often associated with reductions in organismal fitness and possibly disease, cells must have safeguards in place to protect mitochondrial function and promote recovery during times of stress. The mitochondrial unfolded protein response (UPRmt) is a transcriptional adaptation that promotes mitochondrial repair to aid in cell survival during stress. While the earlier discoveries into the regulation of the UPRmt stemmed from studies using mammalian cell culture, much of our understanding about this stress response has been bestowed to us by the model organism Caenorhabditis elegans. Indeed, the facile but powerful genetics of this relatively simple nematode has uncovered multiple regulators of the UPRmt, as well as several physiological roles of this stress response. In this review, we will summarize these major advancements originating from studies using C. elegans.
Collapse
Affiliation(s)
- Joshua D Dodge
- The University of Texas at Arlington, Department of Biology, Arlington, TX 76019, USA
| | - Nicholas J Browder
- The University of Texas at Arlington, Department of Biology, Arlington, TX 76019, USA
| | - Mark W Pellegrino
- The University of Texas at Arlington, Department of Biology, Arlington, TX 76019, USA.
| |
Collapse
|
19
|
Wu XN, Li JY, He Q, Li BQ, He YH, Pan X, Wang MY, Sang R, Ding JC, Gao X, Wu Z, Liu W. Targeting the PHF8/YY1 axis suppresses cancer cell growth through modulation of ROS. Proc Natl Acad Sci U S A 2024; 121:e2219352120. [PMID: 38165927 PMCID: PMC10786316 DOI: 10.1073/pnas.2219352120] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 11/17/2023] [Indexed: 01/04/2024] Open
Abstract
High levels of mitochondrial reactive oxygen species (mROS) are linked to cancer development, which is tightly controlled by the electron transport chain (ETC). However, the epigenetic mechanisms governing ETC gene transcription to drive mROS production and cancer cell growth remain to be fully characterized. Here, we report that protein demethylase PHF8 is overexpressed in many types of cancers, including colon and lung cancer, and is negatively correlated with ETC gene expression. While it is well known to demethylate histones to activate transcription, PHF8 demethylates transcription factor YY1, functioning as a co-repressor for a large set of nuclear-coded ETC genes to drive mROS production and cancer development. In addition to genetically ablating PHF8, pharmacologically targeting PHF8 with a specific chemical inhibitor, iPHF8, is potent in regulating YY1 methylation, ETC gene transcription, mROS production, and cell growth in colon and lung cancer cells. iPHF8 exhibits potency and safety in suppressing tumor growth in cell-line- and patient-derived xenografts in vivo. Our data uncover a key epigenetic mechanism underlying ETC gene transcriptional regulation, demonstrating that targeting the PHF8/YY1 axis has great potential to treat cancers.
Collapse
Affiliation(s)
- Xiao-Nan Wu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Jia-yuan Li
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Qi He
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Bo-qun Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Yao-hui He
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Xu Pan
- Xiamen University-Amogene Joint Research and Development Center for Genetic Diagnostics, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Ming-yue Wang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Rui Sang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Jian-cheng Ding
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Xiang Gao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Zhen Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| |
Collapse
|
20
|
Liu Y, Hu L, Wu Z, Yuan K, Hong G, Lian Z, Feng J, Li N, Li D, Wong J, Chen J, Liu M, He J, Pang X. Loss of PHF8 induces a viral mimicry response by activating endogenous retrotransposons. Nat Commun 2023; 14:4225. [PMID: 37454216 PMCID: PMC10349869 DOI: 10.1038/s41467-023-39943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Immunotherapy has become established as major treatment modality for multiple types of solid tumors, including colorectal cancer. Identifying novel immunotherapeutic targets to enhance anti-tumor immunity and sensitize current immune checkpoint blockade (ICB) in colorectal cancer is needed. Here we report the histone demethylase PHD finger protein 8 (PHF8, KDM7B), a Jumonji C domain-containing protein that erases repressive histone methyl marks, as an essential mediator of immune escape. Ablation the function of PHF8 abrogates tumor growth, activates anti-tumor immune memory, and augments sensitivity to ICB therapy in mouse models of colorectal cancer. Strikingly, tumor PHF8 deletion stimulates a viral mimicry response in colorectal cancer cells, where the depletion of key components of endogenous nucleic acid sensing diminishes PHF8 loss-meditated antiviral immune responses and anti-tumor effects in vivo. Mechanistically, PHF8 inhibition elicits H3K9me3-dependent retrotransposon activation by promoting proteasomal degradation of the H3K9 methyltransferase SETDB1 in a demethylase-independent manner. Moreover, PHF8 expression is anti-correlated with canonical immune signatures and antiviral immune responses in human colorectal adenocarcinoma. Overall, our study establishes PHF8 as an epigenetic checkpoint, and targeting PHF8 is a promising viral mimicry-inducing approach to enhance intrinsic anti-tumor immunity or to conquer immune resistance.
Collapse
Affiliation(s)
- Yanan Liu
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | - Longmiao Hu
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhengzhen Wu
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | - Kun Yuan
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | | | - Zhengke Lian
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | - Juanjuan Feng
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | - Na Li
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiekai Chen
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | | | - Xiufeng Pang
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
21
|
Das ND, Niwa H, Umehara T. Chemical Inhibitors Targeting the Histone Lysine Demethylase Families with Potential for Drug Discovery. EPIGENOMES 2023; 7:epigenomes7010007. [PMID: 36975603 PMCID: PMC10048553 DOI: 10.3390/epigenomes7010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/21/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
The dynamic regulation of histone methylation and demethylation plays an important role in the regulation of gene expression. Aberrant expression of histone lysine demethylases has been implicated in various diseases including intractable cancers, and thus lysine demethylases serve as promising therapeutic targets. Recent studies in epigenomics and chemical biology have led to the development of a series of small-molecule demethylase inhibitors that are potent, specific, and have in vivo efficacy. In this review, we highlight emerging small-molecule inhibitors targeting the histone lysine demethylases and their progress toward drug discovery.
Collapse
|
22
|
Horton JR, Zhou J, Chen Q, Zhang X, Bedford MT, Cheng X. A complete methyl-lysine binding aromatic cage constructed by two domains of PHF2. J Biol Chem 2023; 299:102862. [PMID: 36596360 PMCID: PMC9898751 DOI: 10.1016/j.jbc.2022.102862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
The N-terminal half of PHF2 harbors both a plant homeodomain (PHD) and a Jumonji domain. The PHD recognizes both histone H3 trimethylated at lysine 4 and methylated nonhistone proteins including vaccinia-related kinase 1 (VRK1). The Jumonji domain erases the repressive dimethylation mark from histone H3 lysine 9 (H3K9me2) at select promoters. The N-terminal amino acid sequences of H3 (AR2TK4) and VRK1 (PR2VK4) bear an arginine at position 2 and lysine at position 4. Here, we show that the PHF2 N-terminal half binds to H3 and VRK1 peptides containing K4me3, with dissociation constants (KD values) of 160 nM and 42 nM, respectively, which are 4 × and 21 × lower (and higher affinities) than for the isolated PHD domain of PHF2. X-ray crystallography revealed that the K4me3-containing peptide is positioned within the PHD and Jumonji interface, with the positively charged R2 residue engaging acidic residues of the PHD and Jumonji domains and with the K4me3 moiety encircled by aromatic residues from both domains. We suggest that the micromolar binding affinities commonly observed for isolated methyl-lysine reader domains could be improved via additional functional interactions within the same polypeptide or its binding partners.
Collapse
Affiliation(s)
- John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qin Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
23
|
Shao P, Liu Q, Qi HH. KDM7 Demethylases: Regulation, Function and Therapeutic Targeting. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1433:167-184. [PMID: 37751140 DOI: 10.1007/978-3-031-38176-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
It was more than a decade ago that PHF8, KDM7A/JHDM1D and PHF2 were first proposed to be a histone demethylase family and were named as KDM7 (lysine demethylase) family. Since then, knowledge of their demethylation activities, roles as co-regulators of transcription and roles in development and diseases such as cancer has been steadily growing. The demethylation activities of PHF8 and KDM7A toward various methylated histones including H3K9me2/1, H3K27me2 and H4K20me1 have been identified and proven in various cell types. In contrast, PHF2, due to a mutation of a key residue in an iron-binding domain, demethylates H3K9me2 upon PKA-mediated phosphorylation. Interestingly, it was reported that PHF2 possesses an unusual H4K20me3 demethylation activity, which was not observed for PHF8 and KDM7A. PHF8 has been most extensively studied with respect to its roles in development and oncogenesis, revealing that it contributes to regulation of the cell cycle, cell viability and cell migration. Moreover, accumulating lines of evidence demonstrated that the KDM7 family members are subjected to post-transcriptional and post-translational regulations, leading to a higher horizon for evaluating their actual protein expression and functions in development and cancer. This chapter provides a general view of the current understanding of the regulation and functions of the KDM7 family and discusses their potential as therapeutic targets in cancer as well as perspectives for further studies.
Collapse
Affiliation(s)
- Peng Shao
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA, 52242, USA
| | - Qi Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA, 52242, USA
| | - Hank Heng Qi
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA, 52242, USA.
| |
Collapse
|
24
|
Zhao J, Huai J. Role of primary aging hallmarks in Alzheimer´s disease. Theranostics 2023; 13:197-230. [PMID: 36593969 PMCID: PMC9800733 DOI: 10.7150/thno.79535] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, which severely threatens the health of the elderly and causes significant economic and social burdens. The causes of AD are complex and include heritable but mostly aging-related factors. The primary aging hallmarks include genomic instability, telomere wear, epigenetic changes, and loss of protein stability, which play a dominant role in the aging process. Although AD is closely associated with the aging process, the underlying mechanisms involved in AD pathogenesis have not been well characterized. This review summarizes the available literature about primary aging hallmarks and their roles in AD pathogenesis. By analyzing published literature, we attempted to uncover the possible mechanisms of aberrant epigenetic markers with related enzymes, transcription factors, and loss of proteostasis in AD. In particular, the importance of oxidative stress-induced DNA methylation and DNA methylation-directed histone modifications and proteostasis are highlighted. A molecular network of gene regulatory elements that undergoes a dynamic change with age may underlie age-dependent AD pathogenesis, and can be used as a new drug target to treat AD.
Collapse
|
25
|
Estève PO, Sen S, Vishnu US, Ruse C, Chin HG, Pradhan S. Poly ADP-ribosylation of SET8 leads to aberrant H4K20 methylation in mammalian nuclear genome. Commun Biol 2022; 5:1292. [PMID: 36434141 PMCID: PMC9700808 DOI: 10.1038/s42003-022-04241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
In mammalian cells, SET8 mediated Histone H4 Lys 20 monomethylation (H4K20me1) has been implicated in regulating mitotic condensation, DNA replication, DNA damage response, and gene expression. Here we show SET8, the only known enzyme for H4K20me1 is post-translationally poly ADP-ribosylated by PARP1 on lysine residues. PARP1 interacts with SET8 in a cell cycle-dependent manner. Poly ADP-ribosylation on SET8 renders it catalytically compromised, and degradation via ubiquitylation pathway. Knockdown of PARP1 led to an increase of SET8 protein levels, leading to aberrant H4K20me1 and H4K20me3 domains in the genome. H4K20me1 is associated with higher gene transcription levels while the increase of H4K20me3 levels was predominant in DNA repeat elements. Hence, SET8 mediated chromatin remodeling in mammalian cells are modulated by poly ADP-ribosylation by PARP1.
Collapse
Affiliation(s)
- Pierre-Olivier Estève
- grid.273406.40000 0004 0376 1796New England Biolabs Inc, 240 County Road, Ipswich, MA 01938 USA
| | - Sagnik Sen
- grid.273406.40000 0004 0376 1796New England Biolabs Inc, 240 County Road, Ipswich, MA 01938 USA
| | - Udayakumar S. Vishnu
- grid.273406.40000 0004 0376 1796New England Biolabs Inc, 240 County Road, Ipswich, MA 01938 USA
| | - Cristian Ruse
- grid.273406.40000 0004 0376 1796New England Biolabs Inc, 240 County Road, Ipswich, MA 01938 USA ,grid.479574.c0000 0004 1791 3172Present Address: Moderna Therapeutics, 200 Technology Square, Cambridge, MA 02139 USA
| | - Hang Gyeong Chin
- grid.273406.40000 0004 0376 1796New England Biolabs Inc, 240 County Road, Ipswich, MA 01938 USA
| | - Sriharsa Pradhan
- grid.273406.40000 0004 0376 1796New England Biolabs Inc, 240 County Road, Ipswich, MA 01938 USA
| |
Collapse
|
26
|
Temaj G, Saha S, Dragusha S, Ejupi V, Buttari B, Profumo E, Beqa L, Saso L. Ribosomopathies and cancer: pharmacological implications. Expert Rev Clin Pharmacol 2022; 15:729-746. [PMID: 35787725 DOI: 10.1080/17512433.2022.2098110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The ribosome is a ribonucleoprotein organelle responsible for protein synthesis, and its biogenesis is a highly coordinated process that involves many macromolecular components. Any acquired or inherited impairment in ribosome biogenesis or ribosomopathies is associated with the development of different cancers and rare genetic diseases. Interference with multiple steps of protein synthesis has been shown to promote tumor cell death. AREAS COVERED We discuss the current insights about impaired ribosome biogenesis and their secondary consequences on protein synthesis, transcriptional and translational responses, proteotoxic stress, and other metabolic pathways associated with cancer and rare diseases. Studies investigating the modulation of different therapeutic chemical entities targeting cancer in in vitro and in vivo models have also been detailed. EXPERT OPINION Despite the association between inherited mutations affecting ribosome biogenesis and cancer biology, the development of therapeutics targeting the essential cellular machinery has only started to emerge. New chemical entities should be designed to modulate different checkpoints (translating oncoproteins, dysregulation of specific ribosome-assembly machinery, ribosomal stress, and rewiring ribosomal functions). Although safe and effective therapies are lacking, consideration should also be given to using existing drugs alone or in combination for long-term safety, with known risks for feasibility in clinical trials and synergistic effects.
Collapse
Affiliation(s)
| | - Sarmistha Saha
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | | | - Valon Ejupi
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Lule Beqa
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Italy
| |
Collapse
|
27
|
Lensch S, Herschl MH, Ludwig CH, Sinha J, Hinks MM, Mukund A, Fujimori T, Bintu L. Dynamic spreading of chromatin-mediated gene silencing and reactivation between neighboring genes in single cells. eLife 2022; 11:e75115. [PMID: 35678392 PMCID: PMC9183234 DOI: 10.7554/elife.75115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/23/2022] [Indexed: 12/02/2022] Open
Abstract
In mammalian cells genes that are in close proximity can be transcriptionally coupled: silencing or activating one gene can affect its neighbors. Understanding these dynamics is important for natural processes, such as heterochromatin spreading during development and aging, and when designing synthetic gene regulation circuits. Here, we systematically dissect this process in single cells by recruiting and releasing repressive chromatin regulators at dual-gene synthetic reporters, and measuring how fast gene silencing and reactivation spread as a function of intergenic distance and configuration of insulator elements. We find that silencing by KRAB, associated with histone methylation, spreads between two genes within hours, with a time delay that increases with distance. This fast KRAB-mediated spreading is not blocked by the classical cHS4 insulators. Silencing by histone deacetylase HDAC4 of the upstream gene can also facilitate background silencing of the downstream gene by PRC2, but with a days-long delay that does not change with distance. This slower silencing can sometimes be stopped by insulators. Gene reactivation of neighboring genes is also coupled, with strong promoters and insulators determining the order of reactivation. Our data can be described by a model of multi-gene regulation that builds upon previous knowledge of heterochromatin spreading, where both gene silencing and gene reactivation can act at a distance, allowing for coordinated dynamics via chromatin regulator recruitment.
Collapse
Affiliation(s)
- Sarah Lensch
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Michael H Herschl
- University of California, Berkeley—University of California, San Francisco Graduate Program in BioengineeringBerkeleyUnited States
| | - Connor H Ludwig
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Joydeb Sinha
- Department of Chemical and Systems Biology, Stanford UniversityStanfordUnited States
| | - Michaela M Hinks
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Adi Mukund
- Biophysics Program, Stanford UniversityStanfordUnited States
| | - Taihei Fujimori
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| |
Collapse
|
28
|
Wilson C, Moyano AL, Cáceres A. Perspectives on Mechanisms Supporting Neuronal Polarity From Small Animals to Humans. Front Cell Dev Biol 2022; 10:878142. [PMID: 35517494 PMCID: PMC9062071 DOI: 10.3389/fcell.2022.878142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Axon-dendrite formation is a crucial milestone in the life history of neurons. During this process, historically referred as “the establishment of polarity,” newborn neurons undergo biochemical, morphological and functional transformations to generate the axonal and dendritic domains, which are the basis of neuronal wiring and connectivity. Since the implementation of primary cultures of rat hippocampal neurons by Gary Banker and Max Cowan in 1977, the community of neurobiologists has made significant achievements in decoding signals that trigger axo-dendritic specification. External and internal cues able to switch on/off signaling pathways controlling gene expression, protein stability, the assembly of the polarity complex (i.e., PAR3-PAR6-aPKC), cytoskeleton remodeling and vesicle trafficking contribute to shape the morphology of neurons. Currently, the culture of hippocampal neurons coexists with alternative model systems to study neuronal polarization in several species, from single-cell to whole-organisms. For instance, in vivo approaches using C. elegans and D. melanogaster, as well as in situ imaging in rodents, have refined our knowledge by incorporating new variables in the polarity equation, such as the influence of the tissue, glia-neuron interactions and three-dimensional development. Nowadays, we have the unique opportunity of studying neurons differentiated from human induced pluripotent stem cells (hiPSCs), and test hypotheses previously originated in small animals and propose new ones perhaps specific for humans. Thus, this article will attempt to review critical mechanisms controlling polarization compiled over decades, highlighting points to be considered in new experimental systems, such as hiPSC neurons and human brain organoids.
Collapse
|
29
|
Moubarak RS, de Pablos-Aragoneses A, Ortiz-Barahona V, Gong Y, Gowen M, Dolgalev I, Shadaloey SAA, Argibay D, Karz A, Von Itter R, Vega-Sáenz de Miera EC, Sokolova E, Darvishian F, Tsirigos A, Osman I, Hernando E. The histone demethylase PHF8 regulates TGFβ signaling and promotes melanoma metastasis. SCIENCE ADVANCES 2022; 8:eabi7127. [PMID: 35179962 PMCID: PMC8856617 DOI: 10.1126/sciadv.abi7127] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 12/14/2021] [Indexed: 05/17/2023]
Abstract
The contribution of epigenetic dysregulation to metastasis remains understudied. Through a meta-analysis of gene expression datasets followed by a mini-screen, we identified Plant Homeodomain Finger protein 8 (PHF8), a histone demethylase of the Jumonji C protein family, as a previously unidentified prometastatic gene in melanoma. Loss- and gain-of-function approaches demonstrate that PHF8 promotes cell invasion without affecting proliferation in vitro and increases dissemination but not subcutaneous tumor growth in vivo, thus supporting its specific contribution to the acquisition of metastatic potential. PHF8 requires its histone demethylase activity to enhance melanoma cell invasion. Transcriptomic and epigenomic analyses revealed that PHF8 orchestrates a molecular program that directly controls the TGFβ signaling pathway and, as a consequence, melanoma invasion and metastasis. Our findings bring a mechanistic understanding of epigenetic regulation of metastatic fitness in cancer, which may pave the way for improved therapeutic interventions.
Collapse
Affiliation(s)
- Rana S. Moubarak
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | | | | | - Yixiao Gong
- Applied Bioinformatics Laboratories, NYU School of Medicine, NY 10016, USA
| | - Michael Gowen
- NYU School of Medicine Institute for Computational Medicine, New York, NY 10016, USA
| | - Igor Dolgalev
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Applied Bioinformatics Laboratories, NYU School of Medicine, NY 10016, USA
| | - Sorin A. A. Shadaloey
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
| | - Diana Argibay
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
| | - Alcida Karz
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
| | - Richard Von Itter
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
| | | | - Elena Sokolova
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
| | - Farbod Darvishian
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Applied Bioinformatics Laboratories, NYU School of Medicine, NY 10016, USA
- NYU School of Medicine Institute for Computational Medicine, New York, NY 10016, USA
| | - Iman Osman
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
- Ronald O. Perelman Department of Dermatology, NYU School of Medicine, New York, NY 10016, USA
| | - Eva Hernando
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| |
Collapse
|
30
|
Histone Modifications in Neurological Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1382:95-107. [DOI: 10.1007/978-3-031-05460-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Wu G, Peng H, Tang M, Yang M, Wang J, Hu Y, Li Z, Li J, Li Z, Song L. ZNF711 down-regulation promotes CISPLATIN resistance in epithelial ovarian cancer via interacting with JHDM2A and suppressing SLC31A1 expression. EBioMedicine 2021; 71:103558. [PMID: 34521054 PMCID: PMC8441092 DOI: 10.1016/j.ebiom.2021.103558] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 01/07/2023] Open
Abstract
Background Resistance to platinum-based chemotherapy is a major cause of therapeutic failure during the treatment of epithelial ovarian cancer (EOC) patients. Our study aims to elucidate the molecular mechanisms by which ZNF711 down regulation promotes CISPLATIN resistance in EOC. Methods ZNF711 expression in 150 EOC specimens was examined using immunohistochemistry. ZNF711 expression and the survival of EOC patients were assessed with a Kaplan-Meier analysis. The effects of ZNF711 expression on CDDP resistance were studied by IC50, Annexin V, and colony formation in vitro, and in an in vivo intra-peritoneal tumor model. The molecular mechanism was determined using a luciferase reporter assay, ChIP assay, CAPTURE approach, and co-IP assay. Findings ZNF711 down-regulation exerts a great impact on CDDP resistance for EOC patients by suppressing SLC31A1 and inhibiting CDDP influx. ZNF711 down-regulation promoted, while ZNF711 overexpression drastically inhibited CDDP resistance, both in vivo and in vitro. Mechanistically, the histone demethylase JHDM2A was recruited to the SLC31A1 promoter by ZNF711 and decreased the H3K9me2 level, resulting in the activation of SLC31A1 transcription and enhancement of CDDP uptake. Importantly, co-treatment with the histone methylation inhibitor, BIX-01294, increased the therapeutic efficacy of CDDP treatment in ZNF711-suppressed EOC cells. Interpretation These findings both verified the clinical importance of ZNF711 in CDDP resistance and provide novel therapeutic regimens for EOC treatment. Funding This work was supported by the Natural Science Foundation of China; Guangzhou Science and Technology Plan Projects; Natural Science Foundation of Guangdong Province; The Fundamental Research Funds for the Central Universities; and China Postdoctoral Science Foundation.
Collapse
Affiliation(s)
- Geyan Wu
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hu Peng
- Department of Gynecological Oncology, Hubei Cancer Hospital, Wuhan 430071, China
| | - Miaoling Tang
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Meisongzhu Yang
- Department of biochemistry, Zhongshan school of medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jun Wang
- Department of Gynecologic Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), Kunming 650118, China
| | - Yameng Hu
- Department of biochemistry, Zhongshan school of medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ziwen Li
- Department of biochemistry, Zhongshan school of medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jun Li
- Department of biochemistry, Zhongshan school of medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zheng Li
- Department of Gynecologic Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), Kunming 650118, China.
| | - Libing Song
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
32
|
Molecular Characterization of Choroideremia-Associated Deletions Reveals an Unexpected Regulation of CHM Gene Transcription. Genes (Basel) 2021; 12:genes12081111. [PMID: 34440285 PMCID: PMC8392058 DOI: 10.3390/genes12081111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/03/2022] Open
Abstract
Choroideremia (CHM) is a X-linked recessive chorioretinal dystrophy due to deficiency of the CHM gene product, i.e., Rab escort protein isoform 1 (REP1). To date, gene therapy for CHM has shown variable effectiveness, likely because the underlying pathogenic mechanisms as well as genotype-phenotype correlation are not yet fully known. Small nucleotide variants leading to premature termination codons (PTCs) are a major cause of CHM, but about 20% of patients has CHM gene deletions. To improve understanding of the disease mechanisms, we analyzed molecular features of seven deletions involving the CHM gene sequence. We mapped the deletion breakpoints by using polymerase chain reaction, sequencing and array comparative genomic hybridization; to identify rearrangement-promoting DNA sequences, we analyzed genomic architecture surrounding the breakpoint regions. Moreover, in some CHM patients with different mutation types, we measured transcript level of CHM and of CHML, encoding the REP2 isoform. Scattered along the whole CHM gene and in close proximity to the deletion breakpoints we found numerous repeat elements that generate a locus-specific rearrangement hot spot. Unexpectedly, patients with non-PTC variants had increased expression of the aberrant CHM mRNA; CHML expression was higher than normal in a patient lacking CHM and its putative regulatory sequences. This latest evidence suggests that mechanisms regulating CHM and CHML gene expression are worthy of further study, because their full knowledge could be also useful for developing effective therapies for this hitherto untreatable inherited retinal degeneration.
Collapse
|
33
|
Poeta L, Padula A, Lioi MB, van Bokhoven H, Miano MG. Analysis of a Set of KDM5C Regulatory Genes Mutated in Neurodevelopmental Disorders Identifies Temporal Coexpression Brain Signatures. Genes (Basel) 2021; 12:genes12071088. [PMID: 34356104 PMCID: PMC8305412 DOI: 10.3390/genes12071088] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of transcriptional pathways is observed in multiple forms of neurodevelopmental disorders (NDDs), such as intellectual disability (ID), epilepsy and autism spectrum disorder (ASD). We previously demonstrated that the NDD genes encoding lysine-specific demethylase 5C (KDM5C) and its transcriptional regulators Aristaless related-homeobox (ARX), PHD Finger Protein 8 (PHF8) and Zinc Finger Protein 711 (ZNF711) are functionally connected. Here, we show their relation to each other with respect to the expression levels in human and mouse datasets and in vivo mouse analysis indicating that the coexpression of these syntenic X-chromosomal genes is temporally regulated in brain areas and cellular sub-types. In co-immunoprecipitation assays, we found that the homeotic transcription factor ARX interacts with the histone demethylase PHF8, indicating that this transcriptional axis is highly intersected. Furthermore, the functional impact of pathogenic mutations of ARX, KDM5C, PHF8 and ZNF711 was tested in lymphoblastoid cell lines (LCLs) derived from children with varying levels of syndromic ID establishing the direct correlation between defects in the KDM5C-H3K4me3 pathway and ID severity. These findings reveal novel insights into epigenetic processes underpinning NDD pathogenesis and provide new avenues for assessing developmental timing and critical windows for potential treatments.
Collapse
Affiliation(s)
- Loredana Poeta
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, CNR, 80131 Naples, Italy;
- Department of Science, University of Basilicata, 85100 Potenza, Italy;
- Correspondence: (L.P.); (M.G.M.); Tel.: +39-(0)-816132261/445 (M.G.M.)
| | - Agnese Padula
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, CNR, 80131 Naples, Italy;
| | | | - Hans van Bokhoven
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, 6525 GA Nijmegen, The Netherlands;
| | - Maria Giuseppina Miano
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, CNR, 80131 Naples, Italy;
- Correspondence: (L.P.); (M.G.M.); Tel.: +39-(0)-816132261/445 (M.G.M.)
| |
Collapse
|
34
|
Iacobucci S, Padilla N, Gabrielli M, Navarro C, Lombardi M, Vicioso-Mantis M, Verderio C, de la Cruz X, Martínez-Balbás MA. The histone demethylase PHF8 regulates astrocyte differentiation and function. Development 2021; 148:268981. [PMID: 34081130 DOI: 10.1242/dev.194951] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 04/15/2021] [Indexed: 12/24/2022]
Abstract
Epigenetic factors have been shown to play a crucial role in X-linked intellectual disability (XLID). Here, we investigate the contribution of the XLID-associated histone demethylase PHF8 to astrocyte differentiation and function. Using genome-wide analyses and biochemical assays in mouse astrocytic cultures, we reveal a regulatory crosstalk between PHF8 and the Notch signaling pathway that balances the expression of the master astrocytic gene Nfia. Moreover, PHF8 regulates key synaptic genes in astrocytes by maintaining low levels of H4K20me3. Accordingly, astrocytic-PHF8 depletion has a striking effect on neuronal synapse formation and maturation in vitro. These data reveal that PHF8 is crucial in astrocyte development to maintain chromatin homeostasis and limit heterochromatin formation at synaptogenic genes. Our studies provide insights into the involvement of epigenetics in intellectual disability.
Collapse
Affiliation(s)
- Simona Iacobucci
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Natalia Padilla
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR), Passeig de la Vall d'Hebron, 119; E-08035 Barcelona, Spain. Institut Català per la Recerca i Estudis Avançats (ICREA), Barcelona 08018, Spain
| | - Martina Gabrielli
- CNR Institute of Neuroscience, via Vanvitelli 32, 20129 Milan, Italy
| | - Claudia Navarro
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Marta Lombardi
- CNR Institute of Neuroscience, via Vanvitelli 32, 20129 Milan, Italy
| | - Marta Vicioso-Mantis
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Claudia Verderio
- CNR Institute of Neuroscience, via Vanvitelli 32, 20129 Milan, Italy
| | - Xavier de la Cruz
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR), Passeig de la Vall d'Hebron, 119; E-08035 Barcelona, Spain. Institut Català per la Recerca i Estudis Avançats (ICREA), Barcelona 08018, Spain
| | - Marian A Martínez-Balbás
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| |
Collapse
|
35
|
Histone Methylation Regulation in Neurodegenerative Disorders. Int J Mol Sci 2021; 22:ijms22094654. [PMID: 33925016 PMCID: PMC8125694 DOI: 10.3390/ijms22094654] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Advances achieved with molecular biology and genomics technologies have permitted investigators to discover epigenetic mechanisms, such as DNA methylation and histone posttranslational modifications, which are critical for gene expression in almost all tissues and in brain health and disease. These advances have influenced much interest in understanding the dysregulation of epigenetic mechanisms in neurodegenerative disorders. Although these disorders diverge in their fundamental causes and pathophysiology, several involve the dysregulation of histone methylation-mediated gene expression. Interestingly, epigenetic remodeling via histone methylation in specific brain regions has been suggested to play a critical function in the neurobiology of psychiatric disorders, including that related to neurodegenerative diseases. Prominently, epigenetic dysregulation currently brings considerable interest as an essential player in neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS) and drugs of abuse, including alcohol abuse disorder, where it may facilitate connections between genetic and environmental risk factors or directly influence disease-specific pathological factors. We have discussed the current state of histone methylation, therapeutic strategies, and future perspectives for these disorders. While not somatically heritable, the enzymes responsible for histone methylation regulation, such as histone methyltransferases and demethylases in neurons, are dynamic and reversible. They have become promising potential therapeutic targets to treat or prevent several neurodegenerative disorders. These findings, along with clinical data, may provide links between molecular-level changes and behavioral differences and provide novel avenues through which the epigenome may be targeted early on in people at risk for neurodegenerative disorders.
Collapse
|
36
|
Mossink B, Negwer M, Schubert D, Nadif Kasri N. The emerging role of chromatin remodelers in neurodevelopmental disorders: a developmental perspective. Cell Mol Life Sci 2021; 78:2517-2563. [PMID: 33263776 PMCID: PMC8004494 DOI: 10.1007/s00018-020-03714-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Neurodevelopmental disorders (NDDs), including intellectual disability (ID) and autism spectrum disorders (ASD), are a large group of disorders in which early insults during brain development result in a wide and heterogeneous spectrum of clinical diagnoses. Mutations in genes coding for chromatin remodelers are overrepresented in NDD cohorts, pointing towards epigenetics as a convergent pathogenic pathway between these disorders. In this review we detail the role of NDD-associated chromatin remodelers during the developmental continuum of progenitor expansion, differentiation, cell-type specification, migration and maturation. We discuss how defects in chromatin remodelling during these early developmental time points compound over time and result in impaired brain circuit establishment. In particular, we focus on their role in the three largest cell populations: glutamatergic neurons, GABAergic neurons, and glia cells. An in-depth understanding of the spatiotemporal role of chromatin remodelers during neurodevelopment can contribute to the identification of molecular targets for treatment strategies.
Collapse
Affiliation(s)
- Britt Mossink
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Moritz Negwer
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
37
|
Wilson C, Cáceres A. New insights on epigenetic mechanisms supporting axonal development: histone marks and miRNAs. FEBS J 2020; 288:6353-6364. [PMID: 33332753 DOI: 10.1111/febs.15673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/21/2020] [Accepted: 12/15/2020] [Indexed: 11/27/2022]
Abstract
Mechanisms supporting axon growth and the establishment of neuronal polarity have remained largely disconnected from their genetic and epigenetic fundamentals. Recently, post-transcriptional modifications of histones involved in chromatin folding and transcription, and microRNAs controlling translation have emerged as regulators of axonal specification, growth, and guidance. In this article, we review novel evidence supporting the concept that epigenetic mechanisms work at both transcriptional and post-transcriptional levels to shape axons. We also discuss the role of splicing on axonal growth, as one of the most (if not the most) powerful post-transcriptional mechanism to diversify genetic information. Overall, we think exploring the gap between epigenetics and axonal growth raises new questions and perspectives to the development of axons in physiological and pathological contexts.
Collapse
Affiliation(s)
- Carlos Wilson
- Centro de Investigación en Medicina Traslacional "Severo R Amuchástegui" (CIMETSA), Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC), Córdoba, Argentina.,Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-UNC), Córdoba, Argentina.,Universidad Nacional de Córdoba (UNC), Argentina
| | - Alfredo Cáceres
- Centro de Investigación en Medicina Traslacional "Severo R Amuchástegui" (CIMETSA), Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC), Córdoba, Argentina
| |
Collapse
|
38
|
He J, Zheng Z, Luo X, Hong Y, Su W, Cai C. Histone Demethylase PHF8 Is Required for the Development of the Zebrafish Inner Ear and Posterior Lateral Line. Front Cell Dev Biol 2020; 8:566504. [PMID: 33330448 PMCID: PMC7719749 DOI: 10.3389/fcell.2020.566504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/14/2020] [Indexed: 11/13/2022] Open
Abstract
Histone demethylase PHF8 is crucial for multiple developmental processes, and hence, the awareness of its function in developing auditory organs needs to be increased. Using in situ hybridization (ISH) labeling, the mRNA expression of PHF8 in the zebrafish lateral line system and otic vesicle was monitored. The knockdown of PHF8 by morpholino significantly disrupted the development of the posterior lateral line system, which impacted cell migration and decreased the number of lateral line neuromasts. The knockdown of PHF8 also resulted in severe malformation of the semicircular canal and otoliths in terms of size, quantity, and position during the inner ear development. The loss of function of PHF8 also induced a defective differentiation in sensory hair cells in both lateral line neuromasts and the inner ear. ISH analysis of embryos that lacked PHF8 showed alterations in the expression of many target genes of several signaling pathways concerning cell migration and deposition, including the Wnt and FGF pathways. In summary, the current findings established PHF8 as a novel epigenetic element in developing auditory organs, rendering it a potential candidate for hearing loss therapy.
Collapse
Affiliation(s)
- Jing He
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China.,Teaching Hospital of Fujian Medical University, Xiamen, China.,Xiamen Key Laboratory of Otolaryngology, Head and Neck Surgery, Xiamen, China
| | - Zhiwei Zheng
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Xianyang Luo
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China.,Teaching Hospital of Fujian Medical University, Xiamen, China.,Xiamen Key Laboratory of Otolaryngology, Head and Neck Surgery, Xiamen, China
| | - Yongjun Hong
- Department of Otorhinolaryngology, Zhongshan Hospital of Xiamen, School of Medicine, Xiamen University, Xiamen, China
| | - Wenling Su
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China.,Teaching Hospital of Fujian Medical University, Xiamen, China.,Xiamen Key Laboratory of Otolaryngology, Head and Neck Surgery, Xiamen, China
| | - Chengfu Cai
- Department of Otorhinolaryngology, Zhongshan Hospital of Xiamen, School of Medicine, Xiamen University, Xiamen, China.,Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China.,Teaching Hospital of Fujian Medical University, Xiamen, China.,Xiamen Key Laboratory of Otolaryngology, Head and Neck Surgery, Xiamen, China
| |
Collapse
|
39
|
Feng H, Lu J, Song X, Thongkum A, Zhang F, Lou L, Reizes O, Almasan A, Gong Z. CK2 kinase-mediated PHF8 phosphorylation controls TopBP1 stability to regulate DNA replication. Nucleic Acids Res 2020; 48:10940-10952. [PMID: 33010150 PMCID: PMC7641741 DOI: 10.1093/nar/gkaa756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 11/12/2022] Open
Abstract
ATR functions as a master regulator of the DNA-damage response. ATR activation requires the ATR activator, topoisomerase IIβ-binding protein 1 (TopBP1). However, the underlying mechanism of TopBP1 regulation and how its regulation affects DNA replication remain unknown. Here, we report a specific interaction between TopBP1 and the histone demethylase PHF8. The TopBP1/PHF8 interaction is mediated by the BRCT 7+8 domain of TopBP1 and phosphorylation of PHF8 at Ser854. This interaction is cell-cycle regulated and phosphorylation-dependent. PHF8 is phosphorylated by CK2, which regulates binding of PHF8 to TopBP1. Importantly, PHF8 regulates TopBP1 protein level by preventing its ubiquitination and degradation mediated by the E3 ligase UBR5. Interestingly, PHF8pS854 is likely to contribute to regulation of TopBP1 stability and DNA replication checkpoint. Further, both TopBP1 and PHF8 are required for efficient replication fork restart. Together, these data identify PHF8 as a TopBP1-binding protein and provide mechanistic insight into how PHF8 regulates TopBP1 stability to maintain DNA replication.
Collapse
Affiliation(s)
- Haihua Feng
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Jingchen Lu
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA.,Department of Medical Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaotian Song
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Angkana Thongkum
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Fan Zhang
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Lihong Lou
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Ofer Reizes
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Alexandru Almasan
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Zihua Gong
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA.,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
40
|
Beyer JN, Raniszewski NR, Burslem GM. Advances and Opportunities in Epigenetic Chemical Biology. Chembiochem 2020; 22:17-42. [PMID: 32786101 DOI: 10.1002/cbic.202000459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/10/2020] [Indexed: 12/13/2022]
Abstract
The study of epigenetics has greatly benefited from the development and application of various chemical biology approaches. In this review, we highlight the key targets for modulation and recent methods developed to enact such modulation. We discuss various chemical biology techniques to study DNA methylation and the post-translational modification of histones as well as their effect on gene expression. Additionally, we address the wealth of protein synthesis approaches to yield histones and nucleosomes bearing epigenetic modifications. Throughout, we highlight targets that present opportunities for the chemical biology community, as well as exciting new approaches that will provide additional insight into the roles of epigenetic marks.
Collapse
Affiliation(s)
- Jenna N Beyer
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | - Nicole R Raniszewski
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | - George M Burslem
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA.,Department of Cancer Biology and Epigenetics Institute Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| |
Collapse
|
41
|
Targeting the histone demethylase PHF8-mediated PKCα-Src-PTEN axis in HER2-negative gastric cancer. Proc Natl Acad Sci U S A 2020; 117:24859-24866. [PMID: 32958674 PMCID: PMC7547212 DOI: 10.1073/pnas.1919766117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Targeted treatments for advanced gastric cancer (GC) are needed, particularly for HER2-negative GC, which represents the majority of cases (80 to 88%). In this study, in silico analyses of the lysine histone demethylases (KDMs) involved in diverse biological processes and diseases revealed that PHD finger protein 8 (PHF8, KDM7B) was significantly associated with poor clinical outcome in HER2-negative GC. The depletion of PHF8 significantly reduced cancer progression in GC cells and in mouse xenografts. PHF8 regulated genes involved in cell migration/motility based on a microarray analysis. Of note, PHF8 interacted with c-Jun on the promoter of PRKCA which encodes PKCα. The depletion of PHF8 or PKCα greatly up-regulated PTEN expression, which could be rescued by ectopic expression of a PKCα expression vector or an active Src. These suggest that PTEN destabilization occurs mainly via the PKCα-Src axis. GC cells treated with midostaurin or bosutinib significantly suppressed migration in vitro and in zebrafish models. Immunohistochemical analyses of PHF8, PKCα, and PTEN showed a positive correlation between PHF8 and PKCα but negative correlations between PHF8 and PTEN and between PKCα and PTEN. Moreover, high PHF8-PKCα expression was significantly correlated with worse prognosis. Together, our results suggest that the PKCα-Src-PTEN pathway regulated by PHF8/c-Jun is a potential prognostic/therapeutic target in HER2-negative advanced GC.
Collapse
|
42
|
Abay-Nørgaard S, Attianese B, Boreggio L, Salcini AE. Regulators of H3K4 methylation mutated in neurodevelopmental disorders control axon guidance in Caenorhabditis elegans. Development 2020; 147:dev.190637. [PMID: 32675280 PMCID: PMC7420840 DOI: 10.1242/dev.190637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Abstract
Post-translational histone modifications regulate chromatin compaction and gene expression to control many aspects of development. Mutations in genes encoding regulators of H3K4 methylation are causally associated with neurodevelopmental disorders characterized by intellectual disability and deficits in motor functions. However, it remains unclear how H3K4 methylation influences nervous system development and contributes to the aetiology of disease. Here, we show that the catalytic activity of set-2, the Caenorhabditis elegans homologue of the H3K4 methyltransferase KMT2F/G (SETD1A/B) genes, controls embryonic transcription of neuronal genes and is required for establishing proper axon guidance, and for neuronal functions related to locomotion and learning. Moreover, we uncover a striking correlation between components of the H3K4 regulatory machinery mutated in neurodevelopmental disorders and the process of axon guidance in C. elegans. Thus, our study supports an epigenetic-based model for the aetiology of neurodevelopmental disorders, based on an aberrant axon guidance process originating from deregulated H3K4 methylation. Summary: Analysis of mutants lacking many known H3K4 regulators reveals the role of H3K4 methylation in C. elegans neuronal functions and suggests that aberrant axon guidance is a shared trait in neurodevelopmental diseases.
Collapse
Affiliation(s)
- Steffen Abay-Nørgaard
- BRIC, University of Copenhagen, Biotech Research and Innovation Centre, Ole Maaloes vej 5, 2200, Copenhagen, Denmark
| | - Benedetta Attianese
- BRIC, University of Copenhagen, Biotech Research and Innovation Centre, Ole Maaloes vej 5, 2200, Copenhagen, Denmark
| | - Laura Boreggio
- BRIC, University of Copenhagen, Biotech Research and Innovation Centre, Ole Maaloes vej 5, 2200, Copenhagen, Denmark
| | - Anna Elisabetta Salcini
- BRIC, University of Copenhagen, Biotech Research and Innovation Centre, Ole Maaloes vej 5, 2200, Copenhagen, Denmark
| |
Collapse
|
43
|
Li X, Tian L, Zhang L, Xu B, Zhang Y, Li Q. Clinical Significance of ZNF711 in Human Breast Cancer. Onco Targets Ther 2020; 13:6593-6601. [PMID: 32753895 PMCID: PMC7351981 DOI: 10.2147/ott.s251702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/28/2020] [Indexed: 01/31/2023] Open
Abstract
Purpose To investigate the clinicopathologic and prognostic significance of the zinc-finger protein 711 (ZNF711) in breast cancer (BCa). Materials and Methods The relevance of ZNF711 in BCa was analyzed using bioinformatics. The expression of ZNF711 was detected by immunohistochemistry in paraffin blocks of BCa. To evaluate its clinical significance, the correlation between the expression of ZNF711 and BCa clinical indicators, including estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2), was analyzed. Finally, the Kaplan-Meier method was applied to explore the prognostic value of ZNF711. Results ZNF711 expression was decreased in BCa and was negatively correlated with ER expression (P < 0.05) and positively correlated with HER-2 expression (P < 0.01), but there was no significant correlation between ZNF711 and PR expression. ZNF711 expression was not correlated with age, tumor diameter, or lymph node metastasis; however, ZNF711 expression was correlated with staging in BCa. Survival analysis results showed that the ZNF711-positive group patients had a poorer prognosis compared with the ZNF711-negative group. Conclusion The expression of ZNF711 was deceased in BCa and closely related to ER and HER-2 expression. Therefore, ZNF711 could not only serve as a predictor of BCa with poor prognosis but also as a potential biomarker for targeted therapy.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, People's Republic of China
| | - Liu Tian
- Psychiatry and Mental Health Center, Shenyang Mental Health Center, Shenyang, Liaoning 110168, People's Republic of China
| | - Lina Zhang
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, People's Republic of China
| | - Baojin Xu
- Departments of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, People's Republic of China
| | - Yong Zhang
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, People's Republic of China
| | - Qiang Li
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, People's Republic of China
| |
Collapse
|
44
|
Poeta L, Padula A, Attianese B, Valentino M, Verrillo L, Filosa S, Shoubridge C, Barra A, Schwartz CE, Christensen J, van Bokhoven H, Helin K, Lioi MB, Collombat P, Gecz J, Altucci L, Di Schiavi E, Miano MG. Histone demethylase KDM5C is a SAHA-sensitive central hub at the crossroads of transcriptional axes involved in multiple neurodevelopmental disorders. Hum Mol Genet 2020; 28:4089-4102. [PMID: 31691806 DOI: 10.1093/hmg/ddz254] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 12/26/2022] Open
Abstract
A disproportional large number of neurodevelopmental disorders (NDDs) is caused by variants in genes encoding transcription factors and chromatin modifiers. However, the functional interactions between the corresponding proteins are only partly known. Here, we show that KDM5C, encoding a H3K4 demethylase, is at the intersection of transcriptional axes under the control of three regulatory proteins ARX, ZNF711 and PHF8. Interestingly, mutations in all four genes (KDM5C, ARX, ZNF711 and PHF8) are associated with X-linked NDDs comprising intellectual disability as a core feature. in vitro analysis of the KDM5C promoter revealed that ARX and ZNF711 function as antagonist transcription factors that activate KDM5C expression and compete for the recruitment of PHF8. Functional analysis of mutations in these genes showed a correlation between phenotype severity and the reduction in KDM5C transcriptional activity. The KDM5C decrease was associated with a lack of repression of downstream target genes Scn2a, Syn1 and Bdnf in the embryonic brain of Arx-null mice. Aiming to correct the faulty expression of KDM5C, we studied the effect of the FDA-approved histone deacetylase inhibitor suberanilohydroxamic acid (SAHA). In Arx-KO murine ES-derived neurons, SAHA was able to rescue KDM5C depletion, recover H3K4me3 signalling and improve neuronal differentiation. Indeed, in ARX/alr-1-deficient Caenorhabditis elegans animals, SAHA was shown to counteract the defective KDM5C/rbr-2-H3K4me3 signalling, recover abnormal behavioural phenotype and ameliorate neuronal maturation. Overall, our studies indicate that KDM5C is a conserved and druggable effector molecule across a number of NDDs for whom the use of SAHA may be considered a potential therapeutic strategy.
Collapse
Affiliation(s)
- Loredana Poeta
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy
| | - Agnese Padula
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy.,University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Benedetta Attianese
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy
| | - Mariaelena Valentino
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy
| | - Lucia Verrillo
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy.,University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Stefania Filosa
- Institute of Biosciences and BioResources, National Research Council (CNR), Naples, Italy.,Istituto Neurologico Mediterraneo (Neuromed), Pozzilli, Isernia, Italy
| | - Cheryl Shoubridge
- Intellectual Disability Research, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Robinson Research Institute, Department of Paediatrics, University of Adelaide, Adelaide, South Australia, Australia
| | - Adriano Barra
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy
| | | | - Jesper Christensen
- University of Copenhagen, Biotech Research and Innovation Centre (BRIC), Copenhagen, Denmark.,University of Copenhagen, The Novo Nordisk Foundation Center for Stem Cell Biology (Danstem), Copenhagen, Denmark
| | - Hans van Bokhoven
- Department of Human Genetics, Donders Institute for Brain, Behaviour and Cognition, Radboudumc, Nijmegen, The Netherlands
| | - Kristian Helin
- University of Copenhagen, Biotech Research and Innovation Centre (BRIC), Copenhagen, Denmark.,University of Copenhagen, The Novo Nordisk Foundation Center for Stem Cell Biology (Danstem), Copenhagen, Denmark
| | | | | | - Jozef Gecz
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Lucia Altucci
- University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources, National Research Council (CNR), Naples, Italy
| | - Maria Giuseppina Miano
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy
| |
Collapse
|
45
|
Ni W, Perez AA, Schreiner S, Nicolet CM, Farnham P. Characterization of the ZFX family of transcription factors that bind downstream of the start site of CpG island promoters. Nucleic Acids Res 2020; 48:5986-6000. [PMID: 32406922 PMCID: PMC7293018 DOI: 10.1093/nar/gkaa384] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/09/2020] [Accepted: 05/04/2020] [Indexed: 01/17/2023] Open
Abstract
Our study focuses on a family of ubiquitously expressed human C2H2 zinc finger proteins comprised of ZFX, ZFY and ZNF711. Although their protein structure suggests that ZFX, ZFY and ZNF711 are transcriptional regulators, the mechanisms by which they influence transcription have not yet been elucidated. We used CRISPR-mediated deletion to create bi-allelic knockouts of ZFX and/or ZNF711 in female HEK293T cells (which naturally lack ZFY). We found that loss of either ZFX or ZNF711 reduced cell growth and that the double knockout cells have major defects in proliferation. RNA-seq analysis revealed that thousands of genes showed altered expression in the double knockout clones, suggesting that these TFs are critical regulators of the transcriptome. To gain insight into how these TFs regulate transcription, we created mutant ZFX proteins and analyzed them for DNA binding and transactivation capability. We found that zinc fingers 11-13 are necessary and sufficient for DNA binding and, in combination with the N terminal region, constitute a functional transactivator. Our functional analyses of the ZFX family provides important new insights into transcriptional regulation in human cells by members of the large, but under-studied family of C2H2 zinc finger proteins.
Collapse
Affiliation(s)
- Weiya Ni
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew A Perez
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Shannon Schreiner
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Charles M Nicolet
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Peggy J Farnham
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
46
|
Bioinformatics analysis of the network of histone H3 lysine 9 trimethylation in acute myeloid leukaemia. Oncol Rep 2020; 44:543-554. [PMID: 32468066 PMCID: PMC7336454 DOI: 10.3892/or.2020.7627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022] Open
Abstract
Changes in histone H3 lysine 9 trimethylation (H3K9me3) may be related to the development of drug-resistant acute myeloid leukaemia (AML); insights into the network of H3K9me3 may improve patient prognosis. Patient data were derived from the Gene Expression Omnibus (GEO) database and data from AML cells treated with chidamide, a novel benzamide chemical class of histone deacetylase inhibitor (HDACi), in vitro were derived from ChIP-seq. Patients and AML cell data were analysed using GEO2R, GOseq, KOBAS, the STRING database and Cytoscape 3.5.1. We identified several genes related to the upregulation or downregulation of H3K9me3 in AML patients; some of these genes were related to apoptosis, autophagy, and the pathway of cell longevity. AML cells treated with chidamide in vitro showed the same gene changes. The protein interactions in the network did not have significantly more interactions than expected, suggesting the need for more research to identify these interactions. One compelling result from the protein interaction study was that sirtuin 1 (SIRT1) may have an indirect interaction with lysine-specific demethylase 4A (KDM4A). These results help explain alterations of H3K9me3 in AML that may direct further studies aimed at improving patient prognosis. These results may also provide a basis for chidamide as a treatment strategy for AML patients in the future.
Collapse
|
47
|
Zhang L, Huo Q, Ge C, Zhao F, Zhou Q, Chen X, Tian H, Chen T, Xie H, Cui Y, Yao M, Li H, Li J. ZNF143-Mediated H3K9 Trimethylation Upregulates CDC6 by Activating MDIG in Hepatocellular Carcinoma. Cancer Res 2020; 80:2599-2611. [PMID: 32312832 DOI: 10.1158/0008-5472.can-19-3226] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/14/2020] [Accepted: 04/15/2020] [Indexed: 11/16/2022]
Abstract
Zinc finger protein 143 (ZNF143) belongs to the zinc finger protein family and possesses transcription factor activity by binding sequence-specific DNA. The exact biological role of ZNF143 in hepatocellular carcinoma (HCC) has not been investigated. Here we report that ZNF143 is overexpressed in HCC tissues and its overexpression correlates with poor prognosis. Gain- and loss-of-function experiments showed that ZNF143 promoted HCC cell proliferation, colony formation, and tumor growth in vitro and in vivo. ZNF143 accelerated HCC cell-cycle progression by activating cell division cycle 6 (CDC6). Mechanistically, ZNF143 promoted expression of CDC6 by directly activating transcription of histone demethylase mineral dust-induced gene (MDIG), which in turn reduced H3K9me3 enrichment in the CDC6 promoter region. Consistently, ZNF143 expression correlated significantly with MDIG and CDC6 expression in HCC. Collectively, we propose a model for a ZNF143-MDIG-CDC6 oncoprotein axis that provides novel insight into ZNF143, which may serve as a therapeutic target in HCC. SIGNIFICANCE: These findings describe the mechanism by which ZNF143 promotes HCC proliferation and provide important clues for exploring new targets and strategies for clinical treatment of human liver cancer.
Collapse
Affiliation(s)
- Lili Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qi Huo
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chao Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fangyu Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qingqing Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoxia Chen
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | - Haiyang Xie
- Department of General Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Cui
- Cancer Institute of Guangxi, Nanning, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Jinjun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
48
|
Al-Naama N, Mackeh R, Kino T. C 2H 2-Type Zinc Finger Proteins in Brain Development, Neurodevelopmental, and Other Neuropsychiatric Disorders: Systematic Literature-Based Analysis. Front Neurol 2020; 11:32. [PMID: 32117005 PMCID: PMC7034409 DOI: 10.3389/fneur.2020.00032] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are multifaceted pathologic conditions manifested with intellectual disability, autistic features, psychiatric problems, motor dysfunction, and/or genetic/chromosomal abnormalities. They are associated with skewed neurogenesis and brain development, in part through dysfunction of the neural stem cells (NSCs) where abnormal transcriptional regulation on key genes play significant roles. Recent accumulated evidence highlights C2H2-type zinc finger proteins (C2H2-ZNFs), the largest transcription factor family in humans, as important targets for the pathologic processes associated with NDDs. In this review, we identified their significant accumulation (74 C2H2-ZNFs: ~10% of all human member proteins) in brain physiology and pathology. Specifically, we discuss their physiologic contribution to brain development, particularly focusing on their actions in NSCs. We then explain their pathologic implications in various forms of NDDs, such as morphological brain abnormalities, intellectual disabilities, and psychiatric disorders. We found an important tendency that poly-ZNFs and KRAB-ZNFs tend to be involved in the diseases that compromise gross brain structure and human-specific higher-order functions, respectively. This may be consistent with their characteristic appearance in the course of species evolution and corresponding contribution to these brain activities.
Collapse
Affiliation(s)
- Njoud Al-Naama
- Laboratory of Molecular and Genomic Endocrinology, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Rafah Mackeh
- Laboratory of Molecular and Genomic Endocrinology, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Tomoshige Kino
- Laboratory of Molecular and Genomic Endocrinology, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| |
Collapse
|
49
|
Liu Q, Borcherding NC, Shao P, Maina PK, Zhang W, Qi HH. Contribution of synergism between PHF8 and HER2 signalling to breast cancer development and drug resistance. EBioMedicine 2020; 51:102612. [PMID: 31923801 PMCID: PMC7000350 DOI: 10.1016/j.ebiom.2019.102612] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND HER2 plays a critical role in tumourigenesis and is associated with poor prognosis of patients with HER2-positive breast cancers. Although anti-HER2 drugs are beneficial for treating breast cancer, de novo, or acquired resistance often develops. Epigenetic factors are increasingly targeted for therapy; however, such mechanisms that interact with HER2 signalling are poorly understood. METHODS RNA sequencing was performed to identify PHF8 targets downstream of HER2 signalling. CHIP-qPCR were used to investigate how PHF8 regulates HER2 transcription. ELISA determined cytokine secretion. Cell-based assay revealed a feed forward loop in HER2 signalling and then evaluated in vivo. FINDINGS We report the synergistic interplay between histone demethylase PHF8 and HER2 signalling. Specifically, PHF8 levels were elevated in HER2-positive breast cancers and upregulated by HER2. PHF8 functioned as a coactivator that regulated the expression of HER2, markers of the HER2-driven epithelial-to-mesenchymal transition and cytokines. The HER2-PHF8-IL-6 regulatory axis was active in cell lines and in newly established MMTV-Her2/MMTV-Cre/Phf8fl°x/fl°x mouse models, which revealed the oncogenic function of Phf8 in breast cancer for the first time. Further, the PHF8-IL-6 axis contributed to the resistance to trastuzumab in vitro and may play a critical role in the infiltration of T cells in HER2-driven breast cancers. INTERPRETATION These findings provided informative mechanistic insight into the potential application of PHF8 inhibitors to overcome resistance to anti-HER2 therapies. FUNDING This work was supported by Carver Trust Young Investigator Award (01-224 to H.H.Q); and a Breast Cancer Research Award (to H.H.Q.).
Collapse
Affiliation(s)
- Qi Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA; Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Nicholas C Borcherding
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Peng Shao
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA; Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Peterson K Maina
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA; Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610-0275, USA
| | - Hank H Qi
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
50
|
Huang H, Wenbing Y, Dong A, He Z, Yao R, Guo W. Chidamide Enhances the Cytotoxicity of Cytarabine and Sorafenib in Acute Myeloid Leukemia Cells by Modulating H3K9me3 and Autophagy Levels. Front Oncol 2019; 9:1276. [PMID: 31850196 PMCID: PMC6901797 DOI: 10.3389/fonc.2019.01276] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/04/2019] [Indexed: 12/19/2022] Open
Abstract
Previous studies showed that chidamide enhances the cytotoxicity of drugs in acute myeloid leukemia (AML) cells. Therefore, we examined whether chidamide enhanced the cytotoxicity of drugs in AML cells by affecting H3K9me3 and autophagy levels. AML cells (THP-1 and MV4-11 cells) were treated with chidamide, cytarabine (Ara-c), or sorafenib alone or in combination. Cell proliferation and survival rates were analyzed by MTT, flow cytometry, and Western blotting assays. The results showed that a low dose of chidamide enhanced the cytotoxicity of Ara-c or sorafenib in AML cells, decreasing proliferation and increasing apoptosis. H3K9me3 levels as assessed by Western blotting were upregulated by chidamide treatment. Chromatin immunoprecipitation sequencing, which was used to investigate potential signaling pathways, indicated that the autophagy pathway might play a role in the effects of chidamide. The level of autophagy induced in AML cells upon treatment with Ara-c or sorafenib was inhibited by chidamide, and autophagy markers (LC3, P62) were tested by Western blotting. SIRT1 messenger RNA (mRNA) and protein levels were lower in AML cells treated with Ara-c or sorafenib in combination with chidamide than those in cells treated with these drugs alone. Additionally, the Integrative Genomics Viewer results indicate that the H3K9me3 changes were related to SIRT1-binding sites. Together, these results show that chidamide enhances the cytotoxicity of two chemotherapy drugs in AML cells by increasing the H3K9me3 level and inhibiting autophagy via decreasing the expression of SIRT1. Chidamide may be a potential treatment strategy for AML in the future, especially for refractory AML patients.
Collapse
Affiliation(s)
- He Huang
- Department of Hematology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yang Wenbing
- Department of Hematology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Aishu Dong
- Department of Emergency, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhewei He
- The Second Clinic College of Wenzhou Medical University, Wenzhou, China
| | - Rongxing Yao
- Department of Hematology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenjian Guo
- Department of Hematology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|