1
|
Cheng AP, Huang L, Oberkofler L, Johnson NR, Glodeanu AS, Stillman K, Weiberg A. Fungal Argonaute proteins act in bidirectional cross-kingdom RNA interference during plant infection. Proc Natl Acad Sci U S A 2025; 122:e2422756122. [PMID: 40267130 PMCID: PMC12054834 DOI: 10.1073/pnas.2422756122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 03/11/2025] [Indexed: 04/25/2025] Open
Abstract
Argonaute (AGO) proteins bind to small RNAs to induce RNA interference (RNAi), a conserved gene regulatory mechanism in animal, plant, and fungal kingdoms. Small RNAs of the fungal plant pathogen Botrytis cinerea were previously shown to translocate into plant cells and to bind to the host AGO, which induced cross-kingdom RNAi to promote infection. However, the role of pathogen AGOs during host infection stayed elusive. In this study, we revealed that members of fungal plant pathogen B. cinerea BcAGO family contribute to plant infection. BcAGO1 binds to both fungal and plant small RNAs during infection and acts in bidirectional cross-kingdom RNAi, from fungus to plant and vice versa. BcAGO2 also binds fungal and plant small RNAs but acts independent from BcAGO1 by regulating distinct genes. Nevertheless, BcAGO2 is important for infection, as it is required for effective pathogen small RNA delivery into host cells and fungal induced cross-kingdom RNAi. Providing these mechanistic insights of pathogen AGOs promises to improve RNAi-based crop protection strategies.
Collapse
Affiliation(s)
- An-Po Cheng
- Faculty of Biology, Chair of Genetics, Faculty of Biology, Ludwig Maximilians University of Munich, Martinsried82152, Germany
| | - Lihong Huang
- Faculty of Biology, Chair of Genetics, Faculty of Biology, Ludwig Maximilians University of Munich, Martinsried82152, Germany
| | - Lorenz Oberkofler
- Faculty of Biology, Chair of Genetics, Faculty of Biology, Ludwig Maximilians University of Munich, Martinsried82152, Germany
| | - Nathan R. Johnson
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago5750, Chile
- Millennium Science Initiative—Millennium Institute for Integrative Biology, Santiago, Chile
| | - Adrian-Stefan Glodeanu
- Faculty of Biology, Chair of Genetics, Faculty of Biology, Ludwig Maximilians University of Munich, Martinsried82152, Germany
| | - Kyra Stillman
- Faculty of Biology, Chair of Genetics, Faculty of Biology, Ludwig Maximilians University of Munich, Martinsried82152, Germany
| | - Arne Weiberg
- Faculty of Biology, Chair of Genetics, Faculty of Biology, Ludwig Maximilians University of Munich, Martinsried82152, Germany
- Department of Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg22607, Germany
| |
Collapse
|
2
|
Jia H, Li P, Li M, Liu N, Dong J, Qu Q, Cao Z. Trans-Kingdom RNA Dialogues: miRNA and milRNA Networks as Biotechnological Tools for Sustainable Crop Defense and Pathogen Control. PLANTS (BASEL, SWITZERLAND) 2025; 14:1250. [PMID: 40284138 PMCID: PMC12030539 DOI: 10.3390/plants14081250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs approximately 20-24 nucleotides in length, which play a crucial role during gene regulation in plant-pathogen interaction. They negatively regulate the expression of target genes, primarily at the transcriptional or post-transcriptional level, through complementary base pairing with target gene sequences. Recent studies reveal that during pathogen infection, miRNAs produced by plants and miRNA-like RNAs (milRNAs) produced by fungi can regulate the expression of endogenous genes in their respective organisms and undergo trans-kingdom transfer. They can thereby negatively regulate the expression of target genes in recipient cells. These findings provide novel perspectives for deepening our understanding of the regulatory mechanisms underlying plant-pathogen interactions. Here, we summarize and discuss the roles of miRNAs and milRNAs in mediating plant-pathogen interactions via multiple pathways, providing new insights into the functions of these RNAs and their modes of action. Collectively, these insights lay a theoretical foundation for the targeted management of crop diseases.
Collapse
Affiliation(s)
- Hui Jia
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; (H.J.); (P.L.); (N.L.); (J.D.)
| | - Pan Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; (H.J.); (P.L.); (N.L.); (J.D.)
| | - Minye Li
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China;
| | - Ning Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; (H.J.); (P.L.); (N.L.); (J.D.)
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; (H.J.); (P.L.); (N.L.); (J.D.)
| | - Qing Qu
- College of Agriculture and Forestry, Hebei North University, Zhangjiakou 075000, China
| | - Zhiyan Cao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; (H.J.); (P.L.); (N.L.); (J.D.)
| |
Collapse
|
3
|
Zhong J, Situ J, He C, He J, Kong G, Li H, Jiang Z, Li M. A virulent milRNA of Fusarium oxysporum f. sp. cubense impairs plant resistance by targeting banana AP2 transcription factor coding gene MaPTI6L. HORTICULTURE RESEARCH 2025; 12:uhae361. [PMID: 40070402 PMCID: PMC11894533 DOI: 10.1093/hr/uhae361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/20/2024] [Indexed: 03/14/2025]
Abstract
Fungi produce microRNA-like RNAs (milRNAs) with functional importance in various biological processes. Our previous research identified a new milRNA Foc-milR87 from Fusarium oxysporum f. sp. cubense, which contributes to fungal virulence by targeting the pathogen glycosyl hydrolase encoding gene. However, the potential roles of fungal milRNAs in interactions with hosts are not well understood. This study demonstrated that Foc-milR87 specifically suppressed the expression of MaPTI6L, a pathogenesis-related gene that encodes a transcriptional activator in the banana (Musa acuminata Cavendish group cv. 'Baxi Jiao') genome, by targeting the 3'untranslated region (UTR) of MaPTI6L. Transient overexpression of MaPTI6L activated plant defense responses that depend on its nuclear localization, yet co-expression with Foc-milR87 attenuated these responses. MaPTI6L enhanced plant resistance by promoting transcription of the salicylic acid signaling pathway marker gene MaEDS1. Sequence analysis of the MaPTI6L gene in 19 banana varieties, particularly those resistant to Fusarium wilt, uncovered single nucleotide polymorphisms (SNPs) at Foc-milR87 target sites. Experimental validation showed that these SNPs significantly reduce the microRNA's ability to suppress target gene expression. Our findings reveal that Foc-milR87 plays an important role in impairing plant resistance by targeting MaPTI6L mRNA and reducing MaEDS1 transcription during the early infection stage, suggesting the 3'UTR of MaPTI6L as a promising target for genome editing in generation of disease-resistant banana cultivars.
Collapse
Affiliation(s)
- Jiaqi Zhong
- College of Plant Protection, South China Agricultural University, Guangzhou, GD 510642, China
| | - Junjian Situ
- College of Plant Protection, South China Agricultural University, Guangzhou, GD 510642, China
| | - Chengcheng He
- College of Plant Protection, South China Agricultural University, Guangzhou, GD 510642, China
| | - Jiahui He
- College of Plant Protection, South China Agricultural University, Guangzhou, GD 510642, China
| | - Guanghui Kong
- College of Plant Protection, South China Agricultural University, Guangzhou, GD 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, GD 510642, China
| | - Huaping Li
- College of Plant Protection, South China Agricultural University, Guangzhou, GD 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, GD 510642, China
| | - Zide Jiang
- College of Plant Protection, South China Agricultural University, Guangzhou, GD 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, GD 510642, China
| | - Minhui Li
- College of Plant Protection, South China Agricultural University, Guangzhou, GD 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, GD 510642, China
| |
Collapse
|
4
|
Khan F, Esmaeily M, Jin G, Sevin S, Jung C, Ham E, Kim Y. A sprayable long hairpin dsRNA formulated with layered double hydroxide against the western flower thrips, Frankliniella occidentalis: Control efficacy in a greenhouse and influence on beneficial insects. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 209:106331. [PMID: 40082028 DOI: 10.1016/j.pestbp.2025.106331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/03/2025] [Accepted: 02/12/2025] [Indexed: 03/16/2025]
Abstract
RNA interference (RNAi) is a cellular mechanism regulating gene expression at a post-transcriptional level in eukaryotes. Suppression of vacuolar-ATPase B subunit (vATPase-B) expression resulted in lethality to the western flower thrips, Frankliniella occidentalis, following oral administration of the gene-specific double-stranded RNA (dsRNA) for RNAi. This study aimed to enhance the insecticidal activity of sprayable dsRNA against the thrips. Initially, the study screened for differences in insecticidal activity across various frames of the target gene's open-reading frames using similarly sized (approximately 300 bp) dsRNAs, observing minimal variation. Subsequently, the optimal length of dsRNA was determined by preparing samples ranging from 100 to 700 bp, with lengths over 300 bp demonstrating high insecticidal activities. The study also compared linear and hairpin forms of dsRNA, with hairpin dsRNA exhibiting higher insecticidal activity. Additionally, two formulations of chitosan and layered double hydroxide (LDH) nanoparticles were assessed with dsRNAs against the same target region; the LDH formulation outperformed the chitosan in insecticidal activity. The effects of dsRNA on non-target organisms (NTOs) were evaluated against two honey bees, Apis mellifera and A. cerana, and a natural enemy, Orius laevigatus, where some dsRNAs with high sequence homology to the NTOs caused significant mortalities. The optimal size of hairpin dsRNA, formulated with LDH and harmless to NTOs, was then sprayed on F. occidentalis infesting greenhouse-cultivated hot peppers. The LDH-hairpin dsRNA spray achieved a significant reduction in thrips population, comparable to the control efficacy of the chemical insecticide, spinosad.
Collapse
Affiliation(s)
- Falguni Khan
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
| | - Mojtaba Esmaeily
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
| | - Gahyeon Jin
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
| | - Sedat Sevin
- Ankara University, Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Ankara, Turkiye; Agricultural Science and Technology Research Institution, Andong National University, Republic of Korea
| | - Chuleui Jung
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
| | - Eunhye Ham
- Our Lady's bird Research Institute, OR Inc., Seoul 01797, Republic of Korea
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea.
| |
Collapse
|
5
|
Liu X, Geng S, Ye D, Xu W, Zheng Y, Wang F, Lei J, Wu Y, Jiang H, Hu Y, Chen D, Yan T, Guo R, Qiu J. Global discovery, expression pattern, and regulatory role of miRNA-like RNAs in Ascosphaera apis infecting the Asian honeybee larvae. Front Microbiol 2025; 16:1551625. [PMID: 40104596 PMCID: PMC11914139 DOI: 10.3389/fmicb.2025.1551625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
Ascosphaera apis, a specialized fungal pathogen, causes lethal infection in honeybee larvae. miRNA-like small RNAs (milRNAs) are fungal small non-coding RNAs similar to miRNAs, which have been shown to regulate fungal hyphal growth, spore formation, and pathogenesis. Based on the transcriptome data, differentially expressed miRNA-like RNAs (DEmilRNAs) in A. apis infecting the Apis cerana cerana worker 4-, 5-, and 6-day-old larvae (Aa-4, Aa-5, and Aa-6) were screened and subjected to trend analysis, followed by target prediction and annotation as well as investigation of regulatory networks, with a focus on sub-networks relative to MAPK signaling pathway, glycerolipid metabolism, superoxide dismutase, and enzymes related to chitin synthesis and degradation. A total of 606 milRNAs, with a length distribution ranging from 18 nt to 25 nt, were identified. The first nucleotide of these milRNAs presented a bias toward U, and the bias patterns across bases of milRNAs were similar in the aforementioned three groups. There were 253 milRNAs, of which 68 up-and 54 down-regulated milRNAs shared by these groups. Additionally, the expression and sequences of three milRNAs were validated by stem-loop RT-PCR and Sanger sequencing. Trend analysis indicated that 79 DEmilRNAs were classified into three significant profiles (Profile4, Profile6, and Profile7). Target mRNAs of DEmilRNAs in these three significant profiles were engaged in 42 GO terms such as localization, antioxidant activity, and nucleoid. These targets were also involved in 120 KEGG pathways including lysine biosynthesis, pyruvate metabolism, and biosynthesis of antibiotics. Further investigation suggested that DEmilRNA-targeted mRNAs were associated with the MAPK signaling pathway, glycerolipid metabolism, superoxide dismutase, and enzymes related to chitin synthesis and degradation. Moreover, the binding relationships between aap-milR10516-x and ChsD as well as between aap-milR-2478-y and mkh1 were confirmed utilizing a combination of dual-luciferase reporter gene assay and RT-qPCR. Our data not only provide new insights into the A. apis proliferation and invasion, but also lay a basis for illustrating the DEmilRNA-modulated mechanisms underlying the A. apis infection.
Collapse
Affiliation(s)
- Xiaoyu Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sihai Geng
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| | - Daoyou Ye
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhua Xu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yidi Zheng
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fangji Wang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianpeng Lei
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Wu
- Apiculture Science Institute of Jilin Province, Jiling, China
| | - Haibin Jiang
- Apiculture Science Institute of Jilin Province, Jiling, China
| | - Ying Hu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dafu Chen
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| | - Tizhen Yan
- Dongguan Maternal and Children Health Hospital, Dongguan, China
| | - Rui Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| | - Jianfeng Qiu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| |
Collapse
|
6
|
Mosquera S, Ginésy M, Bocos-Asenjo IT, Amin H, Diez-Hermano S, Diez JJ, Niño-Sánchez J. Spray-induced gene silencing to control plant pathogenic fungi: A step-by-step guide. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:801-825. [PMID: 39912551 DOI: 10.1111/jipb.13848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 12/31/2024] [Indexed: 02/07/2025]
Abstract
RNA interference (RNAi)-based control technologies are gaining popularity as potential alternatives to synthetic fungicides in the ongoing effort to manage plant pathogenic fungi. Among these methods, spray-induced gene silencing (SIGS) emerges as particularly promising due to its convenience and feasibility for development. This approach is a new technology for plant disease management, in which double-stranded RNAs (dsRNAs) targeting essential or virulence genes are applied to plants or plant products and subsequently absorbed by plant pathogens, triggering a gene silencing effect and the inhibition of the infection process. Spray-induced gene silencing has demonstrated efficacy in laboratory settings against various fungal pathogens. However, as research progressed from the laboratory to the greenhouse and field environments, novel challenges arose, such as ensuring the stability of dsRNAs and their effective delivery to fungal targets. Here, we provide a practical guide to SIGS for the control of plant pathogenic fungi. This guide outlines the essential steps and considerations needed for designing and assessing dsRNA molecules. It also addresses key challenges inherent to SIGS, including delivery and stability of dsRNA molecules, and how nanoencapsulation of dsRNAs can aid in overcoming these obstacles. Additionally, the guide underscores existing knowledge gaps that warrant further research and aims to provide assistance to researchers, especially those new to the field, encouraging the advancement of SIGS for the control of a broad range of fungal pathogens.
Collapse
Affiliation(s)
- Sandra Mosquera
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| | - Mireille Ginésy
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| | - Irene Teresa Bocos-Asenjo
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| | - Huma Amin
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| | - Sergio Diez-Hermano
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| | - Julio Javier Diez
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| | - Jonatan Niño-Sánchez
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| |
Collapse
|
7
|
Howard JM, Manning AC, Clark RC, Williams T, Nobile CJ, Kazakov S, Barberan-Soler S. Characterization of transcriptomic changes across Coccidioides morphologies using RiboMarker®-enhanced RNA sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.634332. [PMID: 39990421 PMCID: PMC11844464 DOI: 10.1101/2025.02.11.634332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Coccidioides is a dimorphic, pathogenic fungus responsible for transmission of the mammalian disease colloquially known as "Valley fever". To better understand the molecular basis of Coccidioides pathogenesis, previous studies have characterized transcriptomes that define transitions between the saprobic and pathogenic life stages of the two species that cause Valley fever - Coccidioides immitis and Coccidioides posadasii . However, none of these studies have focused on small RNA profiles, which have been shown in several pathogenic fungi to play crucial roles in host-pathogen communication, affecting virulence and infectivity. In this study, we analyzed changes in small RNA expression across three major morphologies of C. posadasii : arthroconidia, mycelia, and spherules, from both intracellular and extracellular fractions. Utilizing RiboMarker® small RNA and RNA fragment library preparation, we show enhanced coverage across the transcriptome by increasing incorporation of normally incompatible RNAs into the sequencing pool. Using these data, we observed transcriptomic shifts during the transition of arthroconidia to either mycelia or spherules, marked largely by changes in both protein-coding, tRNA, and unannotated loci. As little is known regarding the mechanisms governing these life stage transitions, these data provide better insight into those small RNA- and fragment-producing genes and loci that may be required for progression between Coccidioides saprobic and parasitic life cycles. Additionally, analysis of fragmentation patterns across all morphologies suggests unique patterns of RNA fragmentation across a cohort of RNA species that correlate with a given ecotype. Finally, we noted evidence of RNA export to the extracellular space, particularly regarding snRNA and tRNA-derived fragments as well as mRNA-derived transcripts, during the transition to either mycelia or spherules, which may play roles in cell-cell, and/or host-pathogen communication. Going forward, this newly established intra- and extracellular Coccidioides sRNA atlas will provide a foundation for potential biomarker discovery and contribute to our understanding of the molecular basis for virulence in Valley fever.
Collapse
|
8
|
Zhao R, Suo X, Meng X, Wang Y, Dai P, Hu T, Cao K, Wang S, Li B. Global Analysis of microRNA-like RNAs Reveals Differential Regulation of Pathogenicity and Development in Fusarium oxysporum HS2 Causing Apple Replant Disease. J Fungi (Basel) 2024; 10:883. [PMID: 39728379 DOI: 10.3390/jof10120883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024] Open
Abstract
This study investigated the expression profiles of microRNA-like RNAs (milRNAs) in Fusarium oxysporum HS2 (FoHS2), a key pathogen causing Apple replant disease (ARD), across spore to mycelium formation stages. Using small RNA sequencing (sRNA-seq) and bioinformatics, we identified and analyzed milRNAs, revealing their targeting of 2364 mRNAs involved in 20 functional categories, including metabolic and cellular processes, based on gene ontology (GO) analysis. An analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that these mRNAs are related to carbohydrate and amino acid metabolism pathways. Notably, the highest number of differentially or specifically expressed milRNAs (DEmilRNAs/SEmilRNAs) was found during the spore stage, with FoHS2-milR19 targeting genes encoding histone acetyltransferases, methyltransferases, and cell wall-degrading enzymes (CWDEs), which are crucial for growth, development, and pathogenicity. We validated the reliability of our sRNA-seq data and the expression of target genes using stem-loop RT-PCR and qRT-PCR. Our results highlight the stage-specific expression of milRNAs in FoHS2, particularly in the spore stage, suggesting a key role in regulating host life activities and providing a theoretical basis for developing RNA-based pesticides to control ARD.
Collapse
Affiliation(s)
- Ruxin Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Xiangmin Suo
- Shijiazhuang Institute of Fruit, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Xianglong Meng
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Yanan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Pengbo Dai
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Tongle Hu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Keqiang Cao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Shutong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Bo Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
- Institute of Agricultural Information and Economics, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| |
Collapse
|
9
|
Coyle MC, Elya CN, Bronski MJ, Eisen MB. Entomophthovirus: an insect-derived iflavirus that infects a behavior-manipulating fungal pathogen of dipterans. G3 (BETHESDA, MD.) 2024; 14:jkae198. [PMID: 39158097 PMCID: PMC11457076 DOI: 10.1093/g3journal/jkae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/20/2024]
Abstract
We report a virus infecting Entomophthora muscae, a behavior-manipulating fungal pathogen of dipterans. The virus, which we name Berkeley Entomophthovirus, is a positive-strand RNA virus in the iflaviridae family of capsid-forming viruses, which are mostly known to infect insects. The viral RNA is expressed at high levels in fungal cells in vitro and during in vivo infections of Drosophila melanogaster, and virus particles can be seen intracellularly in E. muscae. This virus, of which we find two closely related variants in our culture of E. muscae, is also closely related to three different viruses reported from metagenomic surveys, two of which were isolated from wild dipterans, and a third isolated from wild ticks. By analyzing sequencing data from these earlier reports, we find abundant reads aligning to E. muscae specifically in the samples from which viral reads were sequenced. These data establish a wide and perhaps obligate association with E. muscae in the wild, consistent with our laboratory data that E. muscae is the host for these closely related viruses. Because of this, we propose the name Entomophthovirus (EV) for this group of highly related virus variants. As other members of the iflaviridae have been reported to cause behavioral changes in insects, we speculate on the possibility that EV plays a role in the behavioral manipulation of flies infected with E. muscae.
Collapse
Affiliation(s)
- Maxwell C Coyle
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Carolyn N Elya
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Michael J Bronski
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Michael B Eisen
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Stakheev AA, Taliansky M, Kalinina NO, Zavriev SK. RNAi-Based Approaches to Control Mycotoxin Producers: Challenges and Perspectives. J Fungi (Basel) 2024; 10:682. [PMID: 39452634 PMCID: PMC11508363 DOI: 10.3390/jof10100682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Mycotoxin contamination of food and feed is a worldwide problem that needs to be addressed with highly efficient and biologically safe techniques. RNA interference (RNAi) is a natural mechanism playing an important role in different processes in eukaryotes, including the regulation of gene expression, maintenance of genome stability, protection against viruses and others. Recently, RNAi-based techniques have been widely applied for the purposes of food safety and management of plant diseases, including those caused by mycotoxin-producing fungi. In this review, we summarize the current state-of-the-art RNAi-based approaches for reducing the aggressiveness of key toxigenic fungal pathogens and mycotoxin contamination of grain and its products. The ways of improving RNAi efficiency for plant protection and future perspectives of this technique, including progress in methods of double-stranded RNA production and its delivery to the target cells, are also discussed.
Collapse
Affiliation(s)
- Alexander A. Stakheev
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Michael Taliansky
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Natalia O. Kalinina
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Sergey K. Zavriev
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| |
Collapse
|
11
|
Jackson E, Li J, Weerasinghe T, Li X. The Ubiquitous Wilt-Inducing Pathogen Fusarium oxysporum-A Review of Genes Studied with Mutant Analysis. Pathogens 2024; 13:823. [PMID: 39452695 PMCID: PMC11510031 DOI: 10.3390/pathogens13100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Fusarium oxysporum is one of the most economically important plant fungal pathogens, causing devastating Fusarium wilt diseases on a diverse range of hosts, including many key crop plants. Consequently, F. oxysporum has been the subject of extensive research to help develop and improve crop protection strategies. The sequencing of the F. oxysporum genome 14 years ago has greatly accelerated the discovery and characterization of key genes contributing to F. oxysporum biology and virulence. In this review, we summarize important findings on the molecular mechanisms of F. oxysporum growth, reproduction, and virulence. In particular, we focus on genes studied through mutant analysis, covering genes involved in diverse processes such as metabolism, stress tolerance, sporulation, and pathogenicity, as well as the signaling pathways that regulate them. In doing so, we hope to present a comprehensive review of the molecular understanding of F. oxysporum that will aid the future study of this and related species.
Collapse
Affiliation(s)
- Edan Jackson
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Josh Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Thilini Weerasinghe
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
12
|
Gervais NC, Shapiro RS. Discovering the hidden function in fungal genomes. Nat Commun 2024; 15:8219. [PMID: 39300175 DOI: 10.1038/s41467-024-52568-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
New molecular technologies have helped unveil previously unexplored facets of the genome beyond the canonical proteome, including microproteins and short ORFs, products of alternative splicing, regulatory non-coding RNAs, as well as transposable elements, cis-regulatory DNA, and other highly repetitive regions of DNA. In this Review, we highlight what is known about this 'hidden genome' within the fungal kingdom. Using well-established model systems as a contextual framework, we describe key elements of this hidden genome in diverse fungal species, and explore how these factors perform critical functions in regulating fungal metabolism, stress tolerance, and pathogenesis. Finally, we discuss new technologies that may be adapted to further characterize the hidden genome in fungi.
Collapse
Affiliation(s)
- Nicholas C Gervais
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
13
|
da Silva Nonato N, Nunes LS, da Silveira Martins AW, Pinhal D, Domingues WB, Bellido-Quispe DK, Remião MH, Campos VF. miRNA heterologous production in bacteria: A systematic review focusing on the choice of plasmid features and bacterial/prokaryotic microfactory. Plasmid 2024; 131-132:102731. [PMID: 39349126 DOI: 10.1016/j.plasmid.2024.102731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
Bacteria, the primary microorganisms used for industrial molecule production, do not naturally generate miRNAs. This study aims to systematically review current literature on miRNA expression systems in bacteria and address three key questions: (1) Which microorganism is most efficient for heterologous miRNA production? (2) What essential elements should be included in a plasmid construction to optimize miRNA expression? (3) Which commercial plasmid is most used for miRNA expression? Initially, 832 studies were identified across three databases, with fifteen included in this review. Three species-Escherichia coli, Salmonella typhimurium, and Rhodovulum sulfidophilum-were found as host organisms for recombinant miRNA expression. A total of 78 miRNAs were identified, out of which 75 were produced in E. coli, one in R. sulfidophilum (miR-29b), and two in S. typhimurium (mi-INHA and miRNA CCL22). Among gram-negative bacteria, R. sulfidophilum emerged as an efficient platform for heterologous production, thanks to features like nucleic acid secretion, RNase non-secretion, and seawater cultivation capability. However, E. coli remains the widely recognized model for large-scale miRNA production in biotechnology market. Regarding plasmids for miRNA expression in bacteria, those with an lpp promoter and multiple cloning sites appear to be the most suitable due to their robust expression cassette. The reengineering of recombinant constructs holds potential, as improvements in construct characteristics maximize the expression of desired molecules. The utilization of recombinant bacteria as platforms for producing new molecules is a widely used approach, with a focus on miRNAs expression for therapeutic contexts.
Collapse
Affiliation(s)
- Nyelson da Silva Nonato
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Leandro Silva Nunes
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Amanda Weege da Silveira Martins
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Danillo Pinhal
- Laboratório Genômica e Evolução Molecular, Instituto de Biociências de Botucatu, Departamento de Genética, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - William Borges Domingues
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Dionet Keny Bellido-Quispe
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Mariana Härter Remião
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Vinicius Farias Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
14
|
Un Jan Contreras S, Redfern LK, Maguire LW, Promi SI, Gardner CM. Small Interfering RNAs (siRNAs) Negatively Impact Growth and Gene Expression of Environmentally Relevant Bacteria in In Vitro Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13856-13865. [PMID: 39066708 DOI: 10.1021/acs.est.4c01685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Rising global populations have amplified food scarcity and ushered in the development of genetically modified (GM) crops containing small interference RNAs (siRNAs) that control gene expression to overcome these challenges. The use of RNA interference (RNAi) in agriculture remains controversial due to uncertainty regarding the unintended release of genetic material and downstream nontarget effects, which have not been assessed in environmental bacteria to date. To evaluate the impacts of siRNAs used in agriculture on environmental bacteria, this study assessed microbial growth and viability as well as transcription activity with and without the presence of environmental stressors. Results showed a statistically significant reduction in growth capacity and maximum biomass achieved when bacteria are exposed to siRNAs alone and with additional external stress (p < 0.05). Further transcriptomic analysis demonstrated that nutrient cycling gene activities were found to be consistently and significantly altered following siRNA exposure, particularly among carbon (xylA, FBPase, limEH, Chitinase, rgl, rgh, rgaE, mannanase, ara) and nitrogen (ureC, nasA, narB, narG, nirK) cycling genes (p < 0.05). Decreases in carbon cycling gene transcription profiles were generally significantly enhanced when siRNA exposure was coupled with nutrient or antimicrobial stress. Collectively, findings suggest that certain conditions facilitate the uptake of siRNAs from their surrounding environments that can negatively affect bacterial growth and gene expression activity, with uncertain downstream impacts on ecosystem homeostasis.
Collapse
Affiliation(s)
- S Un Jan Contreras
- Department of Civil and Environmental Engineering, Washington State University, 405 Spokane St., Pullman, Washington 99164, United States
| | - L K Redfern
- Department of Bioengineering, Civil Engineering, and Environmental Engineering, Florida Gulf Coast University, 10501 FGCU Blvd., Fort Myers, Florida 33965, United States
| | - L W Maguire
- Maseeh Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, 301E E Dean Keeton St c1700, Austin, Texas 78712, United States
| | - S I Promi
- Maseeh Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, 301E E Dean Keeton St c1700, Austin, Texas 78712, United States
| | - C M Gardner
- Department of Civil and Environmental Engineering, Washington State University, 405 Spokane St., Pullman, Washington 99164, United States
- Maseeh Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, 301E E Dean Keeton St c1700, Austin, Texas 78712, United States
| |
Collapse
|
15
|
Carlier F, Castro Ramirez S, Kilani J, Chehboub S, Loïodice I, Taddei A, Gladyshev E. Remodeling of perturbed chromatin can initiate de novo transcriptional and post-transcriptional silencing. Proc Natl Acad Sci U S A 2024; 121:e2402944121. [PMID: 39052837 PMCID: PMC11295056 DOI: 10.1073/pnas.2402944121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
In eukaryotes, repetitive DNA can become silenced de novo, either transcriptionally or post-transcriptionally, by processes independent of strong sequence-specific cues. The mechanistic nature of such processes remains poorly understood. We found that in the fungus Neurospora crassa, de novo initiation of both transcriptional and post-transcriptional silencing was linked to perturbed chromatin, which was produced experimentally by the aberrant activity of transcription factors at the tetO operator array. Transcriptional silencing was mediated by canonical constitutive heterochromatin. On the other hand, post-transcriptional silencing resembled repeat-induced quelling but occurred normally when homologous recombination was inactivated. All silencing of the tetO array was dependent on SAD-6, fungal ortholog of the SWI/SNF chromatin remodeler ATRX (Alpha Thalassemia/Mental Retardation Syndrome X-Linked), which was required to maintain nucleosome occupancy at the perturbed locus. In addition, we found that two other types of sequences (the lacO array and native AT-rich DNA) could also undergo recombination-independent quelling associated with perturbed chromatin. These results suggested a model in which the de novo initiation of transcriptional and post-transcriptional silencing is coupled to the remodeling of perturbed chromatin.
Collapse
Affiliation(s)
- Florian Carlier
- Institut Pasteur, Department of Mycology, Molecular Genetics and Epigenetics Unit, Université Paris Cité, Paris75015, France
| | - Sebastian Castro Ramirez
- Institut Pasteur, Department of Mycology, Molecular Genetics and Epigenetics Unit, Université Paris Cité, Paris75015, France
| | - Jaafar Kilani
- Institut Pasteur, Department of Mycology, Molecular Genetics and Epigenetics Unit, Université Paris Cité, Paris75015, France
| | - Sara Chehboub
- Institut Pasteur, Department of Mycology, Molecular Genetics and Epigenetics Unit, Université Paris Cité, Paris75015, France
| | - Isabelle Loïodice
- Institut Curie, UMR3664 Nuclear Dynamics, CNRS, Université Paris Sciences et Lettres, Sorbonne Université, Paris75005, France
| | - Angela Taddei
- Institut Curie, UMR3664 Nuclear Dynamics, CNRS, Université Paris Sciences et Lettres, Sorbonne Université, Paris75005, France
| | - Eugene Gladyshev
- Institut Pasteur, Department of Mycology, Molecular Genetics and Epigenetics Unit, Université Paris Cité, Paris75015, France
| |
Collapse
|
16
|
Spada M, Pugliesi C, Fambrini M, Pecchia S. Challenges and Opportunities Arising from Host- Botrytis cinerea Interactions to Outline Novel and Sustainable Control Strategies: The Key Role of RNA Interference. Int J Mol Sci 2024; 25:6798. [PMID: 38928507 PMCID: PMC11203536 DOI: 10.3390/ijms25126798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The necrotrophic plant pathogenic fungus Botrytis cinerea (Pers., 1794), the causative agent of gray mold disease, causes significant losses in agricultural production. Control of this fungal pathogen is quite difficult due to its wide host range and environmental persistence. Currently, the management of the disease is still mainly based on chemicals, which can have harmful effects not only on the environment and on human health but also because they favor the development of strains resistant to fungicides. The flexibility and plasticity of B. cinerea in challenging plant defense mechanisms and its ability to evolve strategies to escape chemicals require the development of new control strategies for successful disease management. In this review, some aspects of the host-pathogen interactions from which novel and sustainable control strategies could be developed (e.g., signaling pathways, molecules involved in plant immune mechanisms, hormones, post-transcriptional gene silencing) were analyzed. New biotechnological tools based on the use of RNA interference (RNAi) are emerging in the crop protection scenario as versatile, sustainable, effective, and environmentally friendly alternatives to the use of chemicals. RNAi-based fungicides are expected to be approved soon, although they will face several challenges before reaching the market.
Collapse
Affiliation(s)
- Maria Spada
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Susanna Pecchia
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
17
|
Sato Y, Kondo H, Suzuki N. Argonaute-independent, Dicer-dependent antiviral defense against RNA viruses. Proc Natl Acad Sci U S A 2024; 121:e2322765121. [PMID: 38865263 PMCID: PMC11194562 DOI: 10.1073/pnas.2322765121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/07/2024] [Indexed: 06/14/2024] Open
Abstract
Antiviral RNA interference (RNAi) is conserved from yeasts to mammals. Dicer recognizes and cleaves virus-derived double-stranded RNA (dsRNA) and/or structured single-stranded RNA (ssRNA) into small-interfering RNAs, which guide effector Argonaute to homologous viral RNAs for digestion and inhibit virus replication. Thus, Argonaute is believed to be essential for antiviral RNAi. Here, we show Argonaute-independent, Dicer-dependent antiviral defense against dsRNA viruses using Cryphonectria parasitica (chestnut blight fungus), which is a model filamentous ascomycetous fungus and hosts a variety of viruses. The fungus has two dicer-like genes (dcl1 and dcl2) and four argonaute-like genes (agl1 to agl4). We prepared a suite of single to quadruple agl knockout mutants with or without dcl disruption. We tested these mutants for antiviral activities against diverse dsRNA viruses and ssRNA viruses. Although both DCL2 and AGL2 worked as antiviral players against some RNA viruses, DCL2 without argonaute was sufficient to block the replication of other RNA viruses. Overall, these results indicate the existence of a Dicer-alone defense and different degrees of susceptibility to it among RNA viruses. We discuss what determines the great difference in susceptibility to the Dicer-only defense.
Collapse
Affiliation(s)
- Yukiyo Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama710-0046, Japan
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama710-0046, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama710-0046, Japan
| |
Collapse
|
18
|
Padilla-Padilla EA, De la Rosa C, Aragón W, Ávila-Sandoval AK, Torres M, Dorantes-Acosta AE, Arteaga-Vázquez MA, Formey D, Serrano M. Identification of Arabidopsis thaliana small RNAs responsive to the fungal pathogen Botrytis cinerea at an early stage of interaction. PLoS One 2024; 19:e0304790. [PMID: 38875250 PMCID: PMC11178217 DOI: 10.1371/journal.pone.0304790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/19/2024] [Indexed: 06/16/2024] Open
Abstract
In plants, small RNAs (sRNAs), mainly microRNAs (miRNAs) and small interfering RNAs (siRNAs), have been described as key regulators of plant development, growth, and abiotic and biotic responses. Despite reports indicating the involvement of certain sRNAs in regulating the interaction between Botrytis cinerea (a major necrotrophic fungal phytopathogen) and host plants, there remains a lack of analysis regarding the potential regulatory roles of plant sRNAs during early stages of the interaction despite early immune responses observed then during infection. We present the first transcriptome-wide analysis of small RNA expression on the early interaction between the necrotrophic fungus Botrytis cinerea and the model plant Arabidopsis thaliana. We found that evolutionary conserved A. thaliana miRNAs were the sRNAs that accumulated the most in the presence of B. cinerea. The upregulation of miR167, miR159 and miR319 was of particular interest because these, together with their target transcripts, are involved in the fine regulation of the plant hormone signaling pathways. We also describe that miR173, which triggers the production of secondary siRNAs from TAS1 and TAS2 loci, as well as secondary siRNAs derived from these loci, is upregulated in response to B. cinerea. Thus, at an early stage of the interaction there are transcriptional changes of sRNA-guided silencing pathway genes and of a subset of sRNAs that targeted genes from the PPR gene superfamily, and these may be important mechanisms regulating the interaction between A. thaliana and B. cinerea. This work provides the basis for a better understanding of the regulation mediated by sRNAs during early B. cinerea-plant interaction and may help in the development of more effective strategies for its control.
Collapse
Affiliation(s)
- Emir Alejandro Padilla-Padilla
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Ciudad Universitaria, Coyoacán, Ciudad de México
| | - Carlos De la Rosa
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Wendy Aragón
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- Instituto de Biociencias, Universidad Autónoma de Chiapas, Chiapas, México
| | - Ana Karen Ávila-Sandoval
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Martha Torres
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Ana Elena Dorantes-Acosta
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Veracruz, México
| | - Mario A Arteaga-Vázquez
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Veracruz, México
| | - Damien Formey
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
19
|
Pardo-Medina J, Dahlmann TA, Nowrousian M, Limón MC, Avalos J. The RNAi Machinery in the Fungus Fusarium fujikuroi Is Not Very Active in Synthetic Medium and Is Related to Transposable Elements. Noncoding RNA 2024; 10:31. [PMID: 38804363 PMCID: PMC11130915 DOI: 10.3390/ncrna10030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Small RNAS (sRNAs) participate in regulatory RNA interference (RNAi) mechanisms in a wide range of eukaryotic organisms, including fungi. The fungus Fusarium fujikuroi, a model for the study of secondary metabolism, contains a complete set of genes for RNAi pathways. We have analyzed by high-throughput sequencing the content of sRNAs in total RNA samples of F. fujikuroi grown in synthetic medium in the dark or after 1 h of illumination, using libraries below 150 nt, covering sRNAs and their precursors. For comparison, a parallel analysis with Fusarium oxysporum was carried out. The sRNA reads showed a higher proportion of 5' uracil in the RNA samples of the expected sizes in both species, indicating the occurrence of genuine sRNAs, and putative miRNA-like sRNAs (milRNAS) were identified with prediction software. F. fujikuroi carries at least one transcriptionally expressed Ty1/copia-like retrotransposable element, in which sRNAs were found in both sense and antisense DNA strands, while in F. oxysporum skippy-like elements also show sRNA formation. The finding of sRNA in these mobile elements indicates an active sRNA-based RNAi pathway. Targeted deletion of dcl2, the only F. fujikuroi Dicer gene with significant expression under the conditions tested, did not produce appreciable phenotypic or transcriptomic alterations.
Collapse
Affiliation(s)
- Javier Pardo-Medina
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain;
| | - Tim A. Dahlmann
- Department of Molecular and Cellular Botany, Ruhr-University Bochum, ND 7/176 Universitätsstr. 150, 44780 Bochum, Germany; (T.A.D.); (M.N.)
| | - Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr-University Bochum, ND 7/176 Universitätsstr. 150, 44780 Bochum, Germany; (T.A.D.); (M.N.)
| | - M. Carmen Limón
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain;
| | - Javier Avalos
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain;
| |
Collapse
|
20
|
Xie L, Bi Y, He C, Situ J, Wang M, Kong G, Xi P, Jiang Z, Li M. Unveiling microRNA-like small RNAs implicated in the initial infection of Fusarium oxysporum f. sp. cubense through small RNA sequencing. Mycology 2024; 16:293-308. [PMID: 40083400 PMCID: PMC11899247 DOI: 10.1080/21501203.2024.2345917] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/16/2024] [Indexed: 03/16/2025] Open
Abstract
Banana Fusarium wilt (BFW), caused by Fusarium oxysporum f. sp. cubense (Foc), poses a major challenge to the worldwide banana industry. Fungal microRNA-like small RNAs (milRNAs) play crucial roles in regulating fungal growth, conidiation, development, and pathogenicity. However, the milRNAs and their functions in the pathogenesis of Foc remain poorly understood. In this study, we employed high-throughput sequencing and bioinformatics to profile Foc sRNAs during both pure culture and early infection stages. Our analysis identified six milRNAs exhibiting significantly upregulated expression at the initial Foc infection. Of these, milR106's biogenesis was found to be Dicer-dependent, whereas milR87, milR133, milR138, and milR148 were associated with Dicer and Argonaute proteins. Genetic manipulation and phenotype analysis confirmed that milR106 is crucial for Foc virulence by regulating conidiation, hydrogen peroxide sensitivity, and infective growth. Gene Ontology analysis of milRNA targets in the banana genome revealed enrichment in defence response to fungus and cellular response to hypoxia, implying the importance of these target genes in response to pathogen infection. In conclusion, our sRNA profiling of Foc identified several infection-induced milRNAs. The corresponding results provide valuable molecular targets for the development of an efficient strategy to control BFW.
Collapse
Affiliation(s)
- Lifei Xie
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yuntian Bi
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Chengcheng He
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Junjian Situ
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Meng Wang
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Guanghui Kong
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Pinggen Xi
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zide Jiang
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Minhui Li
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| |
Collapse
|
21
|
Liu Y, Li T, Zhu H, Cao L, Liang L, Liu D, Shen Q. Methionine inducing carbohydrate esterase secretion of Trichoderma harzianum enhances the accessibility of substrate glycosidic bonds. Microb Cell Fact 2024; 23:120. [PMID: 38664812 PMCID: PMC11046756 DOI: 10.1186/s12934-024-02394-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The conversion of plant biomass into biochemicals is a promising way to alleviate energy shortage, which depends on efficient microbial saccharification and cellular metabolism. Trichoderma spp. have plentiful CAZymes systems that can utilize all-components of lignocellulose. Acetylation of polysaccharides causes nanostructure densification and hydrophobicity enhancement, which is an obstacle for glycoside hydrolases to hydrolyze glycosidic bonds. The improvement of deacetylation ability can effectively release the potential for polysaccharide degradation. RESULTS Ammonium sulfate addition facilitated the deacetylation of xylan by inducing the up-regulation of multiple carbohydrate esterases (CE3/CE4/CE15/CE16) of Trichoderma harzianum. Mainly, the pathway of ammonium-sulfate's cellular assimilates inducing up-regulation of the deacetylase gene (Thce3) was revealed. The intracellular metabolite changes were revealed through metabonomic analysis. Whole genome bisulfite sequencing identified a novel differentially methylated region (DMR) that existed in the ThgsfR2 promoter, and the DMR was closely related to lignocellulolytic response. ThGsfR2 was identified as a negative regulatory factor of Thce3, and methylation in ThgsfR2 promoter released the expression of Thce3. The up-regulation of CEs facilitated the substrate deacetylation. CONCLUSION Ammonium sulfate increased the polysaccharide deacetylation capacity by inducing the up-regulation of multiple carbohydrate esterases of T. harzianum, which removed the spatial barrier of the glycosidic bond and improved hydrophilicity, and ultimately increased the accessibility of glycosidic bond to glycoside hydrolases.
Collapse
Affiliation(s)
- Yang Liu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Tuo Li
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Han Zhu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Linhua Cao
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Lebin Liang
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Dongyang Liu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Qirong Shen
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| |
Collapse
|
22
|
Salman Hameed M, Ren Y, Tuda M, Basit A, Urooj N. Role of Argonaute proteins in RNAi pathway in Plutella xylostella: A review. Gene 2024; 903:148195. [PMID: 38295911 DOI: 10.1016/j.gene.2024.148195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Argonaute (Ago) proteins act as key elements in RNA interference (RNAi) pathway, orchestrating the intricate machinery of gene regulation within eukaryotic cells. Within the RNAi pathway, small RNA molecules, including microRNA (miRNA), small interfering RNA (siRNA), and PIWI-interacting RNA (piRNA), collaborate with Ago family member proteins such as Ago1, Ago2, and Ago3 to form the RNA-induced silencing complex (RISC). This RISC complex, in turn, either cleaves the target mRNA or inhibits the process of protein translation. The precise contributions of Ago proteins have been well-established in numerous animals and plants, although they still remain unclear in some insect species. This review aims to shed light on the specific roles played by Ago proteins within the RNAi mechanism in a destructive lepidopteran pest, the diamondback moth (Plutella xylostella). Furthermore, we explore the potential of double-stranded RNA (dsRNA)-mediated RNAi as a robust genetic tool in pest management strategies. Through an in-depth examination of Ago proteins and dsRNA-mediated RNAi, this review seeks to contribute to our understanding of innovative approaches for controlling this pest and potentially other insect species of agricultural significance.
Collapse
Affiliation(s)
- Muhammad Salman Hameed
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China.
| | - Yanliang Ren
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China.
| | - Midori Tuda
- Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Abdul Basit
- Institute of Entomology, Guizhou University Guiyang 550025, Guizhou China
| | - Nida Urooj
- Department of Business Administrative, Bahaudin Zakriya University, Multan, Pakistan
| |
Collapse
|
23
|
Li N, Sun Y, Liu Y, Wei L, Zhang J, Li N, Sun D, Jiao J, Zuo Y, Li R, Cai X, Qiao J, Meng Q. Expression profiles and characterization of microRNAs responding to chitin in Arthrobotrys oligospora. Arch Microbiol 2024; 206:220. [PMID: 38630188 DOI: 10.1007/s00203-024-03949-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024]
Abstract
Extracellular proteases, such as chitinases secreted by Arthrobotrys oligospora (A. oligospora), play a crucial role in the process of nematode infection. However, post-transcriptional regulation of gene expression involving microRNAs (miRNAs) in A. oligospora remains scarcely described. Hereto, transcriptome sequencing was carried out to analyze the expression profiles of chitin-responsive miRNAs in A. oligospora. Based on the RNA-seq data, the differential expression of miRNAs (DEmiRNAs) in response to chitin was screened, identified and characterized in A. oligospora. Meanwhile, the potential target genes were predicted by the online tools miRanda and Targetscan, respectively. Furthermore, the interaction of DEmiRNA with it's target gene was validated by a dual-luciferase reporter assay system. Among 85 novel miRNAs identified, 25 miRNAs displayed significant differences in expression in A. oligospora in response to chitin. Gene Ontology (GO) analysis showed that the potential genes targeted by DEmiRNAs were enriched in the biological processes such as bio-degradation, extracellular components and cell cycle. KEGG analysis revealed that the target genes were mainly involved in Hippo, carbon and riboflavin metabolic pathway. Outstandingly, chitinase AOL_s00004g379, which is involved in the hydrolysis metabolic pathway of chitin, was confirmed to be a target gene of differential miR_70. These findings suggest that chitin-responsive miRNAs are involved in the regulation of cell proliferation, predator hyphae growth and chitinase expression through the mechanisms of post-transcriptional regulation, which provides a new perspective to the molecular mechanisms underlying miRNAs-mediated control of gene expression in A. oligospora.
Collapse
Affiliation(s)
- Ningxing Li
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China
| | - Yansen Sun
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China
| | - Yucheng Liu
- State key laboratory of sheep genetic improvement and healthy breeding, Institute of Animal Science and Veterinary Research, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, Xinjiang, China
| | - Lixiang Wei
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China
| | - Jiahua Zhang
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China
| | - Nengxiu Li
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China
| | - Dianming Sun
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China
| | - Jian Jiao
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China
| | - Yufei Zuo
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China
| | - Ruobing Li
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China
| | - Xuepeng Cai
- State key laboratory of veterinary etiological biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China
| | - Jun Qiao
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China.
| | - Qingling Meng
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China.
| |
Collapse
|
24
|
Fan X, Gao X, Zang H, Liu Z, Jing X, Liu X, Guo S, Jiang H, Wu Y, Huang Z, Chen D, Guo R. Transcriptional dynamics and regulatory function of milRNAs in Ascosphaera apis invading Apis mellifera larvae. Front Microbiol 2024; 15:1355035. [PMID: 38650880 PMCID: PMC11033319 DOI: 10.3389/fmicb.2024.1355035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
In the present study, small RNA (sRNA) data from Ascosphaera apis were filtered from sRNA-seq datasets from the gut tissues of A. apis-infected Apis mellifera ligustica worker larvae, which were combined with the previously gained sRNA-seq data from A. apis spores to screen differentially expressed milRNAs (DEmilRNAs), followed by trend analysis and investigation of the DEmilRNAs in relation to significant trends. Additionally, the interactions between the DEmilRNAs and their target mRNAs were verified using a dual-luciferase reporter assay. In total, 974 A. apis milRNAs were identified. The first base of these milRNAs was biased toward U. The expression of six milRNAs was confirmed by stem-loop RT-PCR, and the sequences of milR-3245-y and milR-10285-y were validated using Sanger sequencing. These miRNAs grouped into four significant trends, with the target mRNAs of DEmilRNAs involving 42 GO terms and 120 KEGG pathways, such as the fungal-type cell wall and biosynthesis of secondary metabolites. Further investigation demonstrated that 299 DEmilRNAs (novel-m0011-3p, milR-10048-y, bantam-y, etc.) potentially targeted nine genes encoding secondary metabolite-associated enzymes, while 258 (milR-25-y, milR-14-y, milR-932-x, etc.) and 419 (milR-4561-y, milR-10125-y, let-7-x, etc.) DEmilRNAs putatively targeted virulence factor-encoded genes and nine genes involved in the MAPK signaling pathway, respectively. Additionally, the interaction between ADM-B and milR-6882-x, as well as between PKIA and milR-7009-x were verified. Together, these results not only offer a basis for clarifying the mechanisms underlying DEmilRNA-regulated pathogenesis of A. apis and a novel insight into the interaction between A. apis and honey bee larvae, but also provide candidate DEmilRNA-gene axis for further investigation.
Collapse
Affiliation(s)
- Xiaoxue Fan
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuze Gao
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - He Zang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhitan Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Jing
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoyu Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sijia Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haibin Jiang
- Jilin Apicultural Research Institute, Jilin, China
| | - Ying Wu
- Jilin Apicultural Research Institute, Jilin, China
| | - Zhijian Huang
- Animal Husbandry Terminus of Sichuan Provincial Department of Agriculture and Rural Affairs, Chengdu, China
| | - Dafu Chen
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| | - Rui Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| |
Collapse
|
25
|
Chen A, Halilovic L, Shay JH, Koch A, Mitter N, Jin H. Improving RNA-based crop protection through nanotechnology and insights from cross-kingdom RNA trafficking. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102441. [PMID: 37696727 PMCID: PMC10777890 DOI: 10.1016/j.pbi.2023.102441] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/21/2023] [Accepted: 08/06/2023] [Indexed: 09/13/2023]
Abstract
Spray-induced gene silencing (SIGS) is a powerful and eco-friendly method for crop protection. Based off the discovery of RNA uptake ability in many fungal pathogens, the application of exogenous RNAs targeting pathogen/pest genes results in gene silencing and infection inhibition. However, SIGS remains hindered by the rapid degradation of RNA in the environment. As extracellular vesicles are used by plants, animals, and microbes in nature to transport RNAs for cross-kingdom/species RNA interference between hosts and microbes/pests, nanovesicles and other nanoparticles have been used to prevent RNA degradation. Efforts examining the effect of nanoparticles on RNA stability and internalization have identified key attributes that can inform better nanocarrier designs for SIGS. Understanding sRNA biogenesis, cross-kingdom/species RNAi, and how plants and pathogens/pests naturally interact are paramount for the design of SIGS strategies. Here, we focus on nanotechnology advancements for the engineering of innovative RNA-based disease control strategies against eukaryotic pathogens and pests.
Collapse
Affiliation(s)
- Angela Chen
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Lida Halilovic
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Jia-Hong Shay
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Aline Koch
- Institute of Plant Sciences Cell Biology and Plant Biochemistry, Plant RNA Transport, University of Regensburg, Regensburg, Germany
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Science, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
26
|
Moonjely S, Ebert M, Paton-Glassbrook D, Noel ZA, Roze L, Shay R, Watkins T, Trail F. Update on the state of research to manage Fusarium head blight. Fungal Genet Biol 2023; 169:103829. [PMID: 37666446 DOI: 10.1016/j.fgb.2023.103829] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Fusarium head blight (FHB) is one of the most devastating diseases of cereal crops, causing severe reduction in yield and quality of grain worldwide. In the United States, the major causal agent of FHB is the mycotoxigenic fungus, Fusarium graminearum. The contamination of grain with mycotoxins, including deoxynivalenol and zearalenone, is a particularly serious concern due to its impact on the health of humans and livestock. For the past few decades, multidisciplinary studies have been conducted on management strategies designed to reduce the losses caused by FHB. However, effective management is still challenging due to the emergence of fungicide-tolerant strains of F. graminearum and the lack of highly resistant wheat and barley cultivars. This review presents multidisciplinary approaches that incorporate advances in genomics, genetic-engineering, new fungicide chemistries, applied biocontrol, and consideration of the disease cycle for management of FHB.
Collapse
Affiliation(s)
- Soumya Moonjely
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Malaika Ebert
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Drew Paton-Glassbrook
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA
| | - Zachary A Noel
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Ludmila Roze
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Rebecca Shay
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Tara Watkins
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA
| | - Frances Trail
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA.
| |
Collapse
|
27
|
Liu Z, Li Y, Hou J, Liu T. Transboundary milRNAs: Indispensable molecules in the process of Trichoderma breve T069 mycoparasitism of Botrytis cinerea. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105599. [PMID: 37945247 DOI: 10.1016/j.pestbp.2023.105599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 11/12/2023]
Abstract
Despite the increasing number of fungal microRNA-like small RNAs (milRNAs) being identified and reported, profiling of milRNAs in biocontrol fungi and their roles in the mycoparasitism of pathogenic fungi remains limited. Therefore, in this study, we constructed a GFP fluorescence strain to evaluate the critical period of mycoparasitism in the interaction system between T. breve T069 and B. cinerea. The results showed that the early stage of Trichoderma mycoparasitism occurred 12 h after hyphal contact and was characterized by hyphal parallelism, whereas the middle stage lasted 36 h was characterized by wrapping. The late stage of mycoparasitism occurred at 72 h was characterized by the degradation of B. cinerea mycelia. We subsequently identified the sRNAs of T. breve T069 and B. cinerea during the critical period of mycoparasitism using high-throughput sequencing. In ltR1, 45 potential milRNA targets were identified for 243 genes, and 73 milRNAs targeted 733 genes in ltR3. Additionally, to identify potential transboundary miRNAs in T. breve T069, we screened for miRNAs that were exclusively expressed and had precursor structures in the T. breve T069 genome but were absent in the B. cinerea genome. Next, we predicted the target genes of B. cinerea. Our findings showed that 14 potential transboundary milRNAs from T. breve T069 targeted 41 genes in B. cinerea. Notably, cme-MIR164a-p5_1ss17CT can target 15 genes, including Rim15 (BCIN_15g00280), Nop53 (BCIN_12g03770), Skn7 (BCIN_02g08650), and Vel3 (BCIN_03g06410), while ppe-MIR477b-p3_1ss11TC targeted polyketide synthase (BCIN_03g04360, PKS3). The target gene of PC-5p-27397_41 was a non-ribosomal peptide synthetase (BCIN_01g03730, Bcnrps6). PC-3p-0029 (Tri-milR29) targeted chitin synthetase 7. These genes play crucial roles in normal mycelial growth and pathogenicity of B. cinerea. In conclusion, this study highlights the significance of milRNAs in Trichoderma mycoparasitism of B. cinerea. This discovery provides a new strategy for the application of miRNAs in the prevention and treatment of fungal pathogens.
Collapse
Affiliation(s)
- Zhen Liu
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Yuejiao Li
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Jumei Hou
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China.
| | - Tong Liu
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China.
| |
Collapse
|
28
|
Lai T, Yu Q, Pan J, Wang J, Tang Z, Bai X, Shi L, Zhou T. The Identification and Comparative Analysis of Non-Coding RNAs in Spores and Mycelia of Penicillium expansum. J Fungi (Basel) 2023; 9:999. [PMID: 37888255 PMCID: PMC10607695 DOI: 10.3390/jof9100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Penicillium expansum is the most popular post-harvest pathogen and causes blue mold disease in pome fruit and leads to significant economic losses worldwide every year. However, the fundamental regulation mechanisms of growth in P. expansum are unclear. Recently, non-coding RNAs (ncRNAs) have attracted more attention due to critical roles in normalizing gene expression and maintaining cellular genotypes in organisms. However, the research related to ncRNAs in P. expansum have not been reported. Therefore, to provide an overview of ncRNAs on composition, distribution, expression changes, and potential targets in the growth process, a comparative transcriptomic analysis was performed on spores and mycelia of P. expansum in the present study. A total of 2595 novel mRNAs, 3362 long non-coding RNAs (lncRNAs), 10 novel microRNAs (miRNAs), 86 novel small interfering RNAs (siRNAs), and 11,238 circular RNAs (circRNAs) were predicted and quantified. Of these, 1482 novel mRNAs, 5987 known mRNAs, 2047 lncRNAs, 40 miRNAs, 38 novel siRNAs, and 9235 circRNAs were differentially expressed (DE) in response to the different development stages. Afterward, the involved functions and pathways of DE RNAs were revealed via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database enrichment analysis. The interaction networks between mRNAs, lncRNAs, and miRNAs were also predicted based on their correlation coefficient of expression profiles. Among them, it was found that miR168 family members may play important roles in fungal growth due to their central location in the network. These findings will contribute to a better understanding on regulation machinery at the RNA level on fungal growth and provide a theoretical basis to develop novel control strategies against P. expansum.
Collapse
Affiliation(s)
- Tongfei Lai
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China; (T.L.); (Q.Y.); (J.P.); (J.W.); (X.B.); (L.S.)
| | - Qinru Yu
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China; (T.L.); (Q.Y.); (J.P.); (J.W.); (X.B.); (L.S.)
| | - Jingjing Pan
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China; (T.L.); (Q.Y.); (J.P.); (J.W.); (X.B.); (L.S.)
| | - Jingjing Wang
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China; (T.L.); (Q.Y.); (J.P.); (J.W.); (X.B.); (L.S.)
| | - Zhenxing Tang
- School of Culinary Arts, Tourism College of Zhejiang, Hangzhou 311231, China;
| | - Xuelian Bai
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China; (T.L.); (Q.Y.); (J.P.); (J.W.); (X.B.); (L.S.)
| | - Lue Shi
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China; (T.L.); (Q.Y.); (J.P.); (J.W.); (X.B.); (L.S.)
| | - Ting Zhou
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China; (T.L.); (Q.Y.); (J.P.); (J.W.); (X.B.); (L.S.)
| |
Collapse
|
29
|
Mann CWG, Sawyer A, Gardiner DM, Mitter N, Carroll BJ, Eamens AL. RNA-Based Control of Fungal Pathogens in Plants. Int J Mol Sci 2023; 24:12391. [PMID: 37569766 PMCID: PMC10418863 DOI: 10.3390/ijms241512391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Our duty to conserve global natural ecosystems is increasingly in conflict with our need to feed an expanding population. The use of conventional pesticides not only damages the environment and vulnerable biodiversity but can also still fail to prevent crop losses of 20-40% due to pests and pathogens. There is a growing call for more ecologically sustainable pathogen control measures. RNA-based biopesticides offer an eco-friendly alternative to the use of conventional fungicides for crop protection. The genetic modification (GM) of crops remains controversial in many countries, though expression of transgenes inducing pathogen-specific RNA interference (RNAi) has been proven effective against many agronomically important fungal pathogens. The topical application of pathogen-specific RNAi-inducing sprays is a more responsive, GM-free approach to conventional RNAi transgene-based crop protection. The specific targeting of essential pathogen genes, the development of RNAi-nanoparticle carrier spray formulations, and the possible structural modifications to the RNA molecules themselves are crucial to the success of this novel technology. Here, we outline the current understanding of gene silencing pathways in plants and fungi and summarize the pioneering and recent work exploring RNA-based biopesticides for crop protection against fungal pathogens, with a focus on spray-induced gene silencing (SIGS). Further, we discuss factors that could affect the success of RNA-based control strategies, including RNA uptake, stability, amplification, and movement within and between the plant host and pathogen, as well as the cost and design of RNA pesticides.
Collapse
Affiliation(s)
- Christopher W. G. Mann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.W.G.M.); (A.S.); (B.J.C.)
| | - Anne Sawyer
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.W.G.M.); (A.S.); (B.J.C.)
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.M.G.); (N.M.)
| | - Donald M. Gardiner
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.M.G.); (N.M.)
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.M.G.); (N.M.)
| | - Bernard J. Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.W.G.M.); (A.S.); (B.J.C.)
| | - Andrew L. Eamens
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| |
Collapse
|
30
|
Tyczewska A, Grzywacz K. tRNA-derived fragments as new players in regulatory processes in yeast. Yeast 2023; 40:283-289. [PMID: 36385711 DOI: 10.1002/yea.3829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 08/08/2023] Open
Abstract
For a very long time, RNA molecules were treated as transistory molecules, by which the genetic information flows from DNA to proteins; the model proposed in the 1960s accepted that proteins are both the products and the regulators of gene expression. Since then, thousands of reports proved that RNAs should be thought about as the factors that do control gene expression. The pervasive transcription has been reported in many eukaryotic organisms, illustrating a highly interwoven transcriptome organization that includes hundreds of previously unknown noncoding RNAs. The key roles of noncoding RNAs (microRNAs and small interfering RNAs) in gene expression regulation are no longer surprising, as are new classes of noncoding RNAs constantly being discovered. Transfer RNAs (tRNAs) are the second most abundant type of RNAs in the cell. Advances in high-throughput sequencing technologies exposed the existence of functional, regulatory tRNA-derived RNA fragments (tRFs), generated from precursor and mature tRNAs. These tRF molecules have been found to play central roles during stress and different pathological conditions. Herein, we present the critical assessment of the discoveries made in the field of tRNA-derived fragments in the past 15 years in various pathogenic and nonpathogenic yeast species.
Collapse
Affiliation(s)
- Agata Tyczewska
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | - Kamilla Grzywacz
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
31
|
Hirpara DG, Gajera HP. Intracellular metabolomics and microRNAomics unveil new insight into the regulatory network for potential biocontrol mechanism of stress-tolerant Tricho-fusants interacting with phytopathogen Sclerotium rolfsii Sacc. J Cell Physiol 2023; 238:1288-1307. [PMID: 37021806 DOI: 10.1002/jcp.31009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 04/07/2023]
Abstract
The present study employed microRNA (miRNA) sequencing and metabolome profiling of Trichoderma parental strains and fusants during normal growth and interaction with the phytopathogen Sclerotium rolfsii Sacc. In-vitro antagonism indicated that abiotic stress-tolerant Tricho-fusant FU21 was examined as a potent biocontroller with mycoparasitic action after 10 days. During interaction with the test pathogen, the most abundant uprising intracellular metabolite was recognized as l-proline, which corresponds to held-down l-alanine, associated with arginine and proline metabolism, biosynthesis of secondary metabolites, and nitrogen metabolism linked to predicted genes controlled by miRNAs viz., cel-miR-8210-3p, hsa-miR-3613-5p, and mml-miR-7174-3p. The miRNAs- mml-miR-320c and mmu-miR-6980-5p were found to be associated with phenylpropanoid biosynthesis, transcription factors, and signal transduction pathways, respectively, and were ascertained downregulated in potent FU21_IB compared with FU21_CB. The amino benzoate degradation and T cell receptor signaling pathways were regulated by miRNAs cel-miR-8210 and tca-miR-3824 as stress tolerance mechanisms of FU21. The intracellular metabolites l-proline, maleic acid, d-fructose, Myo-inositol, arabinitol, d-xylose, mannitol, and butane were significantly elevated as potential biocontrol and stress-tolerant constituents associated with miRNA regulatory pathways in potent FU21_IB. A network analysis between regulatory miRNA-predicted genes and intracellular metabolomics acknowledged possible biocontrol pathways/mechanisms in potent FU21_IB to restrain phytopathogen.
Collapse
Affiliation(s)
- Darshna G Hirpara
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Harsukh P Gajera
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, Gujarat, India
| |
Collapse
|
32
|
Kusch S, Singh M, Thieron H, Spanu PD, Panstruga R. Site-specific analysis reveals candidate cross-kingdom small RNAs, tRNA and rRNA fragments, and signs of fungal RNA phasing in the barley-powdery mildew interaction. MOLECULAR PLANT PATHOLOGY 2023; 24:570-587. [PMID: 36917011 DOI: 10.1111/mpp.13324] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 05/18/2023]
Abstract
The establishment of host-microbe interactions requires molecular communication between both partners, which may involve the mutual transfer of noncoding small RNAs. Previous evidence suggests that this is also true for powdery mildew disease in barley, which is caused by the fungal pathogen Blumeria hordei. However, previous studies lacked spatial resolution regarding the accumulation of small RNAs upon host infection by B. hordei. Here, we analysed site-specific small RNA repertoires in the context of the barley-B. hordei interaction. To this end, we dissected infected leaves into separate fractions representing different sites that are key to the pathogenic process: epiphytic fungal mycelium, infected plant epidermis, isolated haustoria, a vesicle-enriched fraction from infected epidermis, and extracellular vesicles. Unexpectedly, we discovered enrichment of specific 31-33-base 5'-terminal fragments of barley 5.8S ribosomal RNA in extracellular vesicles and infected epidermis, as well as particular B. hordei transfer RNA fragments in haustoria. We describe canonical small RNAs from both the plant host and the fungal pathogen that may confer cross-kingdom RNA interference activity. Interestingly, we found first evidence of phased small interfering RNAs in B. hordei, a feature usually attributed to plants, which may be associated with the posttranscriptional control of fungal coding genes, pseudogenes, and transposable elements. Our data suggest a key and possibly site-specific role for cross-kingdom RNA interference and noncoding RNA fragments in the host-pathogen communication between B. hordei and its host barley.
Collapse
Affiliation(s)
- Stefan Kusch
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Mansi Singh
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Hannah Thieron
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Pietro D Spanu
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
33
|
Hirpara DG, Gajera HP, Savaliya DD, Parakhia MV. Exploring conserved and novel MicroRNA-like small RNAs from stress tolerant Trichoderma fusants and parental strains during interaction with fungal phytopathogen Sclerotium rolfsii Sacc. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105368. [PMID: 36963937 DOI: 10.1016/j.pestbp.2023.105368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The study investigated potential microRNA-like small RNAs (milRNAs) from multi-stress-tolerant Tricho-fusants and parental strains (P1- Trichoderma virens NBAIITvs12 and P2- Trichoderma koningii MTCC796) for antagonistic activity during interaction with phytopathogen Sclerotium rolfsii. The Trichoderma was cultured in-vitro, with and without antagonism, against the pathogen and total RNA was extracted followed by small RNA library construction and sequencing. The milRNAs were identified by mapping high-quality unique reads against a reference genome. The milRNAs were recognized higher in antagonist Trichoderma during interaction with test pathogen compared to normal growth. The novel milRNAs candidates were found to vary during interaction with the pathogen and normal growth. The gene ontology and functional analysis illustrated that a total of 5828 potential targeted genes were recognized for 93 milRNAs of potent Fu21_IB and 3053 genes for 62 milRNAs of least fusant Fu28_IL. Functional annotation of milRNA-predicted genes integrating KEGG pathways indicates new insights into regulatory mechanisms, by interfering with milRNAs, associated with signal transduction, amino sugar metabolism, benzoate degradation, amino acid metabolism, and steroid and alkaloid metabolism for potential biocontrol of stress-tolerant Tricho-fusant FU21 during interaction with S. rolfsii. The present investigation is the first report of conserved and novel milRNAs from Tricho-fusants and parental strains interacting with S. rolfsii.
Collapse
Affiliation(s)
- Darshna G Hirpara
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, 362 001, Gujarat, India
| | - H P Gajera
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, 362 001, Gujarat, India.
| | - Disha D Savaliya
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, 362 001, Gujarat, India
| | - M V Parakhia
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, 362 001, Gujarat, India
| |
Collapse
|
34
|
Rutter BD, Innes RW. Extracellular vesicles in phytopathogenic fungi. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:90-106. [PMID: 39698296 PMCID: PMC11648432 DOI: 10.20517/evcna.2023.04] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 12/20/2024]
Abstract
Extracellular vesicles (EVs) are nano-sized lipid compartments that mediate the intercellular transport of lipids, proteins, nucleic acids and metabolites. During infectious diseases, EVs released by host cells promote immune responses, while those released by pathogens attempt to subvert host immunity. There is a growing body of research investigating the role of fungal EVs in plant pathosystems. It is becoming clear that EVs released by fungal phytopathogens play a role during infection through the transport of protein effectors, toxic metabolites and RNA. Here, we discuss recent findings on EVs in fungal phytopathogens, including the methods employed in their isolation, their characterization, contents and functionality, as well as the key questions remaining to be addressed.
Collapse
Affiliation(s)
- Brian D. Rutter
- Department of Biology, Indiana University, Bloomington, Indiana, IN 47405, USA
| | | |
Collapse
|
35
|
Qi Y, Huang C, Zhao M, Wu X, Li G, Zhang Y, Zhang L. milR20 negatively regulates the development of fruit bodies in Pleurotus cornucopiae. Front Microbiol 2023; 14:1177820. [PMID: 37213518 PMCID: PMC10192896 DOI: 10.3389/fmicb.2023.1177820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/10/2023] [Indexed: 05/23/2023] Open
Abstract
The mechanism underlying the development of fruit bodies in edible mushroom is a widely studied topic. In this study, the role of milRNAs in the development of fruit bodies of Pleurotus cornucopiae was studied by comparative analyses of the mRNAs and milRNAs at different stages of development. The genes that play a crucial role in the expression and function of milRNAs were identified and subsequently expressed and silenced at different stages of development. The total number of differentially expressed genes (DEGs) and differentially expressed milRNAs (DEMs) at different stages of development was determined to be 7,934 and 20, respectively. Comparison of the DEGs and DEMs across the different development stages revealed that DEMs and its target DEGs involved in the mitogen-activated protein kinase (MAPK) signaling pathway, protein processing in endoplasmic reticulum, endocytosis, aminoacyl-tRNA biosynthesis, RNA transport, and other metabolism pathways, which may play important roles in the development of the fruit bodies of P. cornucopiae. The function of milR20, which targeted pheromone A receptor g8971 and was involved in the MAPK signaling pathway, was further verified by overexpression and silencing in P. cornucopiae. The results demonstrated that the overexpression of milR20 reduced the growth rate of mycelia and prolonged the development of the fruit bodies, while milR20 silencing had an opposite effect. These findings indicated that milR20 plays a negative role in the development of P. cornucopiae. This study provides novel insights into the molecular mechanism underlying the development of fruit bodies in P. cornucopiae.
Collapse
Affiliation(s)
- Yuhui Qi
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Beijing, China
| | - Chenyang Huang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Beijing, China
| | - Mengran Zhao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Beijing, China
| | - Xiangli Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Beijing, China
| | - Guangyu Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Beijing, China
| | - Yingjie Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Beijing, China
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Lijiao Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Beijing, China
- *Correspondence: Lijiao Zhang,
| |
Collapse
|
36
|
MicroRNA-like RNA Functions Are Required for the Biosynthesis of Active Compounds in the Medicinal Fungus Sanghuangporus vaninii. Microbiol Spectr 2022; 10:e0021922. [PMID: 36301126 PMCID: PMC9769868 DOI: 10.1128/spectrum.00219-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
miRNA-like RNAs (milRNAs) have been recognized as sequence-specific regulators of posttranscriptional regulation of gene expression in eukaryotes. However, the functions of hundreds of fungal milRNAs in the biosynthesis of metabolic components are obscure. Sanghuangporus produces diverse bioactive compounds and is widely used in Asian countries. Here, genes encoding two Dicers, four Argonautes, and four RdRPs were identified and characterized in Sanghuangporus vanini. Due to the lack of an efficient gene manipulation system, the efficacy of spray-induced gene silencing (SIGS) was determined in S. vanini, which showed efficient double-stranded RNA (dsRNA) uptake and gene silencing efficiency. SIGS-mediated gene knockdown showed that SVRDRP-3, SVRDRP-4, SVDICER-1, and SVDICER-2 were critical for mycelial biomass, flavonoid, triterpenoid, and polysaccharide production. Illumina deep sequencing was performed to characterize the milRNAs from S. vanini mycelium and fruiting body. A total of 31 milRNAs were identified, out of which, SvmilR10, SvmilR17, and SvmilR33 were Svrdrp-4- and Svdicer-1-dependent milRNAs. Importantly, SIGS-mediated overexpression of SvmilR10 and SvmilR33 resulted in significant changes in the yields of flavonoids, triterpenoids, and polysaccharides. Further analysis showed that these milRNA target genes encoding the retrotransposon-derived protein PEG1 and histone-lysine N-methyltransferase were potentially downregulated in the milRNA overexpressing strain. Our results revealed that S. vanini has high external dsRNA and small RNA uptake efficiency and that milRNAs may play crucial regulatory roles in the biosynthesis of bioactive compounds. IMPORTANCE Fungi can take up environmental RNA that can silence fungal genes with RNA interference, which prompts the development of SIGS. Efficient dsRNA and milRNA uptake in S. vanini, successful dsRNA-targeted gene block, and the increase in intracellular miRNA abundance showed that SIGS technology is an effective and powerful tool for the functional dissection of fungal genes and millRNAs. We found that the RdRP, Dicer, and Argonaute genes are critical for mycelial biomass and bioactive compound production. Our study also demonstrated that overexpressed SVRDRP-4- and SVDICER-1-dependent milRNAs (SvmilR10 and SvmilR33) led to significant changes in the yields of the three active compounds. This study not only provides the first report on SIGS-based gene and milRNA function exploration, but also provides a theoretical platform for exploration of the functions of milRNAs involved in biosynthesis of metabolic compounds in fungi.
Collapse
|
37
|
Johnson NR, Larrondo LF, Álvarez JM, Vidal EA. Comprehensive re-analysis of hairpin small RNAs in fungi reveals loci with conserved links. eLife 2022; 11:e83691. [PMID: 36484778 PMCID: PMC9757828 DOI: 10.7554/elife.83691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
RNA interference is an ancient mechanism with many regulatory roles in eukaryotic genomes, with small RNAs acting as their functional element. While there is a wide array of classes of small-RNA-producing loci, those resulting from stem-loop structures (hairpins) have received profuse attention. Such is the case of microRNAs (miRNAs), which have distinct roles in plants and animals. Fungi also produce small RNAs, and several publications have identified miRNAs and miRNA-like (mi/milRNA) hairpin RNAs in diverse fungal species using deep sequencing technologies. Despite this relevant source of information, relatively little is known about mi/milRNA features in fungi, mostly due to a lack of established criteria for their annotation. To systematically assess mi/milRNA characteristics and annotation confidence, we searched for publications describing mi/milRNA loci and re-assessed the annotations for 41 fungal species. We extracted and normalized the annotation data for 1727 reported mi/milRNA loci and determined their abundance profiles, concluding that less than half of the reported loci passed basic standards used for hairpin RNA discovery. We found that fungal mi/milRNA are generally more similar in size to animal miRNAs and were frequently associated with protein-coding genes. The compiled genomic analyses identified 25 mi/milRNA loci conserved in multiple species. Our pipeline allowed us to build a general hierarchy of locus quality, identifying more than 150 loci with high-quality annotations. We provide a centralized annotation of identified mi/milRNA hairpin RNAs in fungi which will serve as a resource for future research and advance in understanding the characteristics and functions of mi/milRNAs in fungal organisms.
Collapse
Affiliation(s)
- Nathan R Johnson
- Millennium Science Initiative - Millennium Institute for Integrative Biology (iBio)SantiagoChile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad MayorSantiagoChile
| | - Luis F Larrondo
- Millennium Science Initiative - Millennium Institute for Integrative Biology (iBio)SantiagoChile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiagoChile
| | - José M Álvarez
- Millennium Science Initiative - Millennium Institute for Integrative Biology (iBio)SantiagoChile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad MayorSantiagoChile
- Centro de Biotecnología Vegetal, Facultad de Ciencias, Universidad Andrés BelloSantiagoChile
| | - Elena A Vidal
- Millennium Science Initiative - Millennium Institute for Integrative Biology (iBio)SantiagoChile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad MayorSantiagoChile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad MayorSantiagoChile
| |
Collapse
|
38
|
Similar Characteristics of siRNAs of Plant Viruses Which Replicate in Plant and Fungal Hosts. BIOLOGY 2022; 11:biology11111672. [PMID: 36421386 PMCID: PMC9687825 DOI: 10.3390/biology11111672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
Simple Summary RNA silencing in fungi was shown to confer antiviral defense against plant viruses. In this study, using high-throughput sequencing and bioinformatic analyses, we showed that small interfering RNAs (siRNAs) of cucumber mosaic virus and tobacco mosaic virus (TMV) which replicated in phytopathogenic fungi Rhizoctonia solani and Fusarium graminearum had similarities with viral siRNAs produced in plant hosts in regard to the size distributions, proportion of plus and minus senses, and nucleotide preference for the 5′ termini. Additionally, our results also determined that both F. graminearum DCL1 and DCL2 were involved in the production of TMV siRNAs. Thus, the fungal RNA silencing machineries have adaptive capabilities to recognize and process the genome of invading plant viruses. Abstract RNA silencing is a host innate antiviral mechanism which acts via the synthesis of viral-derived small interfering RNAs (vsiRNAs). We have previously reported the infection of phytopathogenic fungi by plant viruses such as cucumber mosaic virus (CMV) and tobacco mosaic virus (TMV). Furthermore, fungal RNA silencing was shown to suppress plant virus accumulation, but the characteristics of plant vsiRNAs associated with the antiviral response in this nonconventional host remain unknown. Using high-throughput sequencing, we characterized vsiRNA profiles in two plant RNA virus–fungal host pathosystems: CMV infection in phytopathogenic fungus Rhizoctonia solani and TMV infection in phytopathogenic fungus Fusarium graminearum. The relative abundances of CMV and TMV siRNAs in the respective fungal hosts were much lower than those in the respective experimental plant hosts, Nicotiana benthamiana and Nicotiana tabacum. However, CMV and TMV siRNAs in fungi had similar characteristics to those in plants, particularly in their size distributions, proportion of plus and minus senses, and nucleotide preference for the 5′ termini of vsiRNAs. The abundance of TMV siRNAs largely decreased in F. graminearum mutants with a deletion in either dicer-like 1 (dcl1) or dcl2 genes which encode key proteins for the production of siRNAs and antiviral responses. However, deletion of both dcl1 and dcl2 restored TMV siRNA accumulation in F. graminearum, indicating the production of dcl-independent siRNAs with no antiviral function in the absence of the dcl1 and dcl2 genes. Our results suggest that fungal RNA silencing recognizes and processes the invading plant RNA virus genome in a similar way as in plants.
Collapse
|
39
|
Small RNA Analyses of a Ceratobasidium Isolate Infected with Three Endornaviruses. Viruses 2022; 14:v14102276. [PMID: 36298830 PMCID: PMC9610886 DOI: 10.3390/v14102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Isolates of three endornavirus species were identified co-infecting an unidentified species of Ceratobasidium, itself identified as a symbiont from within the roots of a wild plant of the terrestrial orchid Pterostylis vittata in Western Australia. Isogenic lines of the fungal isolate lacking all three mycoviruses were derived from the virus-infected isolate. To observe how presence of endornaviruses influenced gene expression in the fungal host, we sequenced fungus-derived small RNA species from the virus-infected and virus-free isogenic lines and compared them. The presence of mycoviruses influenced expression of small RNAs. Of the 3272 fungus-derived small RNA species identified, the expression of 9.1% (300 of 3272) of them were up-regulated, and 0.6% (18 of 3272) were down-regulated in the presence of the viruses. Fourteen novel micro-RNA-like RNAs (Cer-milRNAs) were predicted. Gene target prediction of the differentially expressed Cer-milRNAs was quite ambiguous; however, fungal genes involved in transcriptional regulation, catalysis, molecular binding, and metabolic activities such as gene expression, DNA metabolic processes and regulation activities were differentially expressed in the presence of the mycoviruses.
Collapse
|
40
|
Villalobos-Escobedo JM, Martínez-Hernández JP, Pelagio-Flores R, González-De la Rosa PM, Carreras-Villaseñor N, Abreu-Goodger C, Herrera-Estrella AH. Trichoderma atroviride hyphal regeneration and conidiation depend on cell-signaling processes regulated by a microRNA-like RNA. Microb Genom 2022; 8. [PMID: 36239595 DOI: 10.1099/mgen.0.000869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability to respond to injury is essential for the survival of an organism and involves analogous mechanisms in animals and plants. Such mechanisms integrate coordinated genetic and metabolic reprogramming events requiring regulation by small RNAs for adequate healing of the wounded area. We have previously reported that the response to injury of the filamentous fungus Trichoderma atroviride involves molecular mechanisms closely resembling those of plants and animals that lead to the formation of new hyphae (regeneration) and the development of asexual reproduction structures (conidiophores). However, the involvement of microRNAs in this process has not been investigated in fungi. In this work, we explore the participation of microRNA-like RNAs (milRNAs) molecules by sequencing messenger and small RNAs during the injury response of the WT strain and RNAi mutants. We found that Dcr2 appears to play an important role in hyphal regeneration and is required to produce the majority of sRNAs in T. atroviride. We also determined that the three main milRNAs produced via Dcr2 are induced during the damage-triggered developmental process. Importantly, elimination of a single milRNA phenocopied the main defects observed in the dcr2 mutant. Our results demonstrate the essential role of milRNAs in hyphal regeneration and asexual development by post-transcriptionally regulating cellular signalling processes involving phosphorylation events. These observations allow us to conclude that fungi, like plants and animals, in response to damage activate fine-tuning regulatory mechanisms.
Collapse
Affiliation(s)
- José M Villalobos-Escobedo
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav. Km 9.6 Libramiento Norte Carretera Irapuato-León, 36824, Irapuato, Gto, Mexico
| | - J Pedro Martínez-Hernández
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav. Km 9.6 Libramiento Norte Carretera Irapuato-León, 36824, Irapuato, Gto, Mexico
| | - Ramón Pelagio-Flores
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav. Km 9.6 Libramiento Norte Carretera Irapuato-León, 36824, Irapuato, Gto, Mexico.,Present address: Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, C.P. 58030 Morelia, Michoacán, Mexico
| | - Pablo M González-De la Rosa
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav. Km 9.6 Libramiento Norte Carretera Irapuato-León, 36824, Irapuato, Gto, Mexico.,Present address: Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Nohemí Carreras-Villaseñor
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav. Km 9.6 Libramiento Norte Carretera Irapuato-León, 36824, Irapuato, Gto, Mexico.,Present address: Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C. C.P. 91070 Xalapa, Veracruz, Mexico
| | - Cei Abreu-Goodger
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav. Km 9.6 Libramiento Norte Carretera Irapuato-León, 36824, Irapuato, Gto, Mexico.,Present address: Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | - Alfredo H Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav. Km 9.6 Libramiento Norte Carretera Irapuato-León, 36824, Irapuato, Gto, Mexico
| |
Collapse
|
41
|
Lee H, Choi G, Lim YJ, Lee YH. Comparative profiling of canonical and non-canonical small RNAs in the rice blast fungus, Magnaporthe oryzae. Front Microbiol 2022; 13:995334. [PMID: 36225371 PMCID: PMC9549407 DOI: 10.3389/fmicb.2022.995334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
RNA interference (RNAi) is divided into canonical, Dicer-dependent and non-canonical, Dicer-independent pathways according to Dicer protein dependency. However, sRNAs processed in a Dicer-independent manner have not been reported in plant pathogenic fungi, including Magnaporthe oryzae. We comparatively profiled the Dicer-dependent and -independent sRNAs of M. oryzae. Dicer-dependent sRNAs were 19–24-nt in length, had low strand-specificity, and showed a preference for uracil at the 5′-end. By contrast, Dicer-independent sRNAs presented irregular patterns in length distribution, high strand-specificity, and a preference for cytosine at the penultimate position. Dicer-dependent sRNA loci were mainly associated with LTR-transposons, while Dicer-independent sRNAs were associated with protein-coding genes and transposons. We identified MoERI-1, a non-canonical RNAi component, and profiled the sRNA and mRNA transcriptomes of ΔMoeri-1 at the mycelia and conidiation stages, as the mutant showed increased conidiation. We found that genes involved in conidiation and cell cycle were upregulated by MoERI-1 deletion. Furthermore, a comparison between sRNA and mRNA transcriptome revealed that MoERI-1-dependent sRNAs mediate the regulation of gene expression. Overall, these results showed that M. oryzae has non-canonical RNAi pathways distinct to the Dicer-dependent manner and exploits MoERI-1-dependent sRNAs to regulate the conidiation process.
Collapse
Affiliation(s)
- Hyunjun Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Gobong Choi
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - You-Jin Lim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Center for Fungal Genetic Resources, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Center for Plant Microbiome Research, Seoul National University, Seoul, South Korea
- *Correspondence: Yong-Hwan Lee,
| |
Collapse
|
42
|
Zhang E, Zhang J, Zhao R, Lu Y, Yin X, Lan X, Luo Z. Role of MicroRNA-Like RNAs in the Regulation of Spore Morphological Differences in the Entomopathogenic Fungus Metarhizium acridum. Pol J Microbiol 2022; 71:309-324. [PMID: 36185022 PMCID: PMC9608168 DOI: 10.33073/pjm-2022-028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/01/2022] [Indexed: 11/24/2022] Open
Abstract
Metarhizium acridum is an important microbial pesticide. Conidia (CO) and blastospores (BS) are two types of spores that occur in different patterns in the M. acridum life cycle and exhibit significant differences in cell morphology, structure, and activity. It may suggest that the fungus has a complex gene regulation mechanism. While previous studies on the differences between CO and BS have mainly focused on cell structure and application, little is known regarding the differences between CO and BS in fungi on the transcriptome levels. MicroRNAs (miRNAs) are small noncoding RNAs crucial to gene regulation and cell function. Understanding the miRNA-like RNAs (milRNA) and mRNA expression profiles related to cell growth and cellular morphological changes would elucidate the roles of miRNAs in spore morphological differences. In this study, 4,646 differentially expressed genes (DEGs) were identified and mainly classified in the GO terms cell, cell part, biological process, and catalytic activity. The KEGG annotation suggested that they were enriched in amino acid biosynthesis, carbohydrate metabolism, ribosome, and oxidative phosphorylation and might be involved in cell activity and structure. There were 113 differentially expressed milRNAs (DEMs), targeting 493 DEGs. Target gene functional analysis revealed that the target genes were mainly enriched in RNA transport, purine metabolism, and the cell cycle. In addition, we identified essential genes from milRNA-mRNA pairs that might participate in cell budding growth and cell membrane and wall integrity, including adenosine deaminase, glycosyl hydrolase, and G-patch domain protein (dno-miR-328-3p), WD repeat-containing protein pop1 (age-miR-127), and GPI-anchored wall transfer protein (cgr-miR-598). MilRNAs might therefore play a crucial role in cell growth and cellular morphological changes as transcriptional and post-transcriptional regulators.
Collapse
Affiliation(s)
- Erhao Zhang
- Food Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, China
| | - Jie Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Rundong Zhao
- Food Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, China
| | - Yazhou Lu
- Food Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, China
| | - Xiu Yin
- Food Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, China
| | - Xiaozhong Lan
- Food Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, China, E-mail:
| | - Zhang Luo
- Food Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, China, E-mail:
| |
Collapse
|
43
|
Ciofini A, Negrini F, Baroncelli R, Baraldi E. Management of Post-Harvest Anthracnose: Current Approaches and Future Perspectives. PLANTS 2022; 11:plants11141856. [PMID: 35890490 PMCID: PMC9319655 DOI: 10.3390/plants11141856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022]
Abstract
Anthracnose is a severe disease caused by Colletotrichum spp. on several crop species. Fungal infections can occur both in the field and at the post-harvest stage causing severe lesions on fruits and economic losses. Physical treatments and synthetic fungicides have traditionally been the preferred means to control anthracnose adverse effects; however, the urgent need to decrease the use of toxic chemicals led to the investigation of innovative and sustainable protection techniques. Evidence for the efficacy of biological agents and vegetal derivates has been reported; however, their introduction into actual crop protection strategies requires the solutions of several critical issues. Biotechnology-based approaches have also been explored, revealing the opportunity to develop innovative and safe methods for anthracnose management through genome editing and RNA interference technologies. Nevertheless, besides the number of advantages related to their use, e.g., the putative absence of adverse effects due to their high specificity, a number of aspects remain to be clarified to enable their introduction into Integrated Pest Management (IPM) protocols against Colletotrichum spp. disease.
Collapse
|
44
|
Torri A, Jaeger J, Pradeu T, Saleh MC. The origin of RNA interference: Adaptive or neutral evolution? PLoS Biol 2022; 20:e3001715. [PMID: 35767561 PMCID: PMC9275709 DOI: 10.1371/journal.pbio.3001715] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
The origin of RNA interference (RNAi) is usually explained by a defense-based hypothesis, in which RNAi evolved as a defense against transposable elements (TEs) and RNA viruses and was already present in the last eukaryotic common ancestor (LECA). However, since RNA antisense regulation and double-stranded RNAs (dsRNAs) are ancient and widespread phenomena, the origin of defensive RNAi should have occurred in parallel with its regulative functions to avoid imbalances in gene regulation. Thus, we propose a neutral evolutionary hypothesis for the origin of RNAi in which qualitative system drift from a prokaryotic antisense RNA gene regulation mechanism leads to the formation of RNAi through constructive neutral evolution (CNE). We argue that RNAi was already present in the ancestor of LECA before the need for a new defense system arose and that its presence helped to shape eukaryotic genomic architecture and stability. Where does RNA interference come from? This Essay describes a new step-by-step evolutionary model of how RNA interference might have originated in early eukaryotes through neutral events from the molecular machinery present in prokaryotes.
Collapse
Affiliation(s)
- Alessandro Torri
- Virus & RNA interference Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Université Paris Cité, Paris, France
- * E-mail: (AT); (M-CS)
| | | | - Thomas Pradeu
- ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
- Institut d’histoire et de philosophie des sciences et des techniques, CNRS UMR 8590, Pantheon-Sorbonne University, Paris, France
| | - Maria-Carla Saleh
- Virus & RNA interference Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Université Paris Cité, Paris, France
- * E-mail: (AT); (M-CS)
| |
Collapse
|
45
|
Li M, Xie L, Wang M, Lin Y, Zhong J, Zhang Y, Zeng J, Kong G, Xi P, Li H, Ma LJ, Jiang Z. FoQDE2-dependent milRNA promotes Fusarium oxysporum f. sp. cubense virulence by silencing a glycosyl hydrolase coding gene expression. PLoS Pathog 2022; 18:e1010157. [PMID: 35512028 PMCID: PMC9113603 DOI: 10.1371/journal.ppat.1010157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/17/2022] [Accepted: 04/07/2022] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate protein-coding gene expression primarily found in plants and animals. Fungi produce microRNA-like RNAs (milRNAs) that are structurally similar to miRNAs and functionally important in various biological processes. The fungus Fusarium oxysporum f. sp. cubense (Foc) is the causal agent of Banana Fusarium vascular wilt that threatens global banana production. It remains uncharacterized about the biosynthesis and functions of milRNAs in Foc. In this study, we investigated the biological function of milRNAs contributing to Foc pathogenesis. Within 24 hours post infecting the host, the Argonaute coding gene FoQDE2, and two Dicer coding genes FoDCL1 and FoDCL2, all of which are involved in milRNA biosynthesis, were significantly induced. FoQDE2 deletion mutant exhibited decreased virulence, suggesting the involvement of milRNA biosynthesis in the Foc pathogenesis. By small RNA sequencing, we identified 364 small RNA-producing loci in the Foc genome, 25 of which were significantly down-regulated in the FoQDE2 deletion mutant, from which milR-87 was verified as a FoQDE2-depedent milRNA based on qRT-PCR and Northern blot analysis. Compared to the wild-type, the deletion mutant of milR-87 was significantly reduced in virulence, while overexpression of milR-87 enhanced disease severity, confirming that milR-87 is crucial for Foc virulence in the infection process. We furthermore identified FOIG_15013 (a glycosyl hydrolase-coding gene) as the direct target of milR-87 based on the expression of FOIG_15013-GFP fusion protein. The FOIG_15013 deletion mutant displayed similar phenotypes as the overexpression of milR-87, with a dramatic increase in the growth, conidiation and virulence. Transient expression of FOIG_15013 in Nicotiana benthamiana leaves activates the host defense responses. Collectively, this study documents the involvement of milRNAs in the manifestation of the devastating fungal disease in banana, and demonstrates the importance of milRNAs in the pathogenesis and other biological processes. Further analyses of the biosynthesis and expression regulation of fungal milRNAs may offer a novel strategy to combat devastating fungal diseases. The fungus Fusarium oxysporum f. sp. cubense (Foc) is the causal agent of Banana Fusarium vascular wilt that threatens global banana production. However, knowledge about pathogenesis of Foc is limited. In particular, pathogenic regulatory mechanism of the microRNA like small RNAs (milRNAs) found in Foc is unknown. Here, we found that FoQDE2, an Argonaute coding gene, and two Dicer coding genes FoDCL1 and FoDCL2, which are involved in milRNA biosynthesis, are significantly induced during the early infection stage of Foc. The results suggested that the milRNAs biosynthesis mediated by these genes may play an active role in the infection process of Foc. Based on this assumption, we subsequently found a FoQDE2-dependent milRNA (milR-87) and identified its target gene. Functional analysis showed that FoQDE2, milR-87 and its target gene were involved in the pathogenicity of Foc in different degree. The studies help us gain insight into the pathogenesis with FoQDE2, milR-87, and its target gene as central axis in Foc. The identified pathogenicity-involved milRNA provides an active target for developing novel and efficient biocontrol agents against Banana Fusarium wilt.
Collapse
Affiliation(s)
- Minhui Li
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
- * E-mail: (ML); (LJM); (ZJ)
| | - Lifei Xie
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
| | - Meng Wang
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
| | - Yilian Lin
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
| | - Jiaqi Zhong
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
| | - Yong Zhang
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
- Bioinformatics section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, United States of America
| | - Jing Zeng
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
| | - Guanghui Kong
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
| | - Pinggen Xi
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
| | - Huaping Li
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
| | - Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
- * E-mail: (ML); (LJM); (ZJ)
| | - Zide Jiang
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
- * E-mail: (ML); (LJM); (ZJ)
| |
Collapse
|
46
|
Bruch A, Kelani AA, Blango MG. RNA-based therapeutics to treat human fungal infections. Trends Microbiol 2022; 30:411-420. [PMID: 34635448 PMCID: PMC8498853 DOI: 10.1016/j.tim.2021.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 01/09/2023]
Abstract
In recent decades, RNA-based therapeutics have transitioned from a near impossibility to a compelling treatment alternative for genetic disorders and infectious diseases. The mRNA vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are truly groundbreaking, and new adaptations are already being proposed to fight other microbes. Unfortunately, the potential of RNA-based therapeutics to treat human fungal infections has remained mostly absent from the conversation, despite the fact that invasive fungal infections kill as many per year as tuberculosis and even more than malaria. Here, we argue that RNA-based therapeutics should be investigated for the treatment of human fungal infections and discuss several major roadblocks and potential circumventions that may allow for the realization of RNA-based therapies against human fungal pathogens.
Collapse
Affiliation(s)
- Alexander Bruch
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Abdulrahman A. Kelani
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Matthew G. Blango
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), Jena, Germany,Correspondence:
| |
Collapse
|
47
|
Marin FR, Dávalos A, Kiltschewskij D, Crespo MC, Cairns M, Andrés-León E, Soler-Rivas C. RNA-Seq, Bioinformatic Identification of Potential MicroRNA-like Small RNAs in the Edible Mushroom Agaricus bisporus and Experimental Approach for Their Validation. Int J Mol Sci 2022; 23:4923. [PMID: 35563314 PMCID: PMC9100230 DOI: 10.3390/ijms23094923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/22/2022] Open
Abstract
Although genomes from many edible mushrooms are sequenced, studies on fungal micro RNAs (miRNAs) are scarce. Most of the bioinformatic tools are designed for plants or animals, but the processing and expression of fungal miRNAs share similarities and differences with both kingdoms. Moreover, since mushroom species such as Agaricus bisporus (A. bisporus, white button mushroom) are frequently consumed as food, controversial discussions are still evaluating whether their miRNAs might or might not be assimilated, perhaps within extracellular vesicles (i.e., exosomes). Therefore, the A. bisporus RNA-seq was studied in order to identify potential de novo miRNA-like small RNAs (milRNAs) that might allow their later detection in diet. Results pointed to 1 already known and 37 de novo milRNAs. Three milRNAs were selected for RT-qPCR experiments. Precursors and mature milRNAs were found in the edible parts (caps and stipes), validating the predictions carried out in silico. When their potential gene targets were investigated, results pointed that most were involved in primary and secondary metabolic regulation. However, when the human transcriptome is used as the target, the results suggest that they might interfere with important biological processes related with cancer, infection and neurodegenerative diseases.
Collapse
Affiliation(s)
- Francisco R. Marin
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research—CIAL (UAM + CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)—Food, CEI UAM + CSIC, Pabellón Central del Antiguo Hospital de Cantoblanco, 28049 Madrid, Spain; (A.D.); (M.C.C.)
| | - Dylan Kiltschewskij
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia; (D.K.); (M.C.)
| | - Maria C. Crespo
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)—Food, CEI UAM + CSIC, Pabellón Central del Antiguo Hospital de Cantoblanco, 28049 Madrid, Spain; (A.D.); (M.C.C.)
| | - Murray Cairns
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia; (D.K.); (M.C.)
| | - Eduardo Andrés-León
- Bioinformatics Unit, Institute of Parasitology and Biomedicine “López Neyra”, Spanish National Research Council (CSIC), 18016 Granada, Spain;
| | - Cristina Soler-Rivas
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research—CIAL (UAM + CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
48
|
Xu J, Li Y, Jia J, Xiong W, Zhong C, Huang G, Gou X, Meng Y, Shan W. Mutations in PpAGO3 Lead to Enhanced Virulence of Phytophthora parasitica by Activation of 25-26 nt sRNA-Associated Effector Genes. Front Microbiol 2022; 13:856106. [PMID: 35401482 PMCID: PMC8989244 DOI: 10.3389/fmicb.2022.856106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Oomycetes represent a unique group of plant pathogens that are destructive to a wide range of crops and natural ecosystems. Phytophthora species possess active small RNA (sRNA) silencing pathways, but little is known about the biological roles of sRNAs and associated factors in pathogenicity. Here we show that an AGO gene, PpAGO3, plays a major role in the regulation of effector genes hence the pathogenicity of Phytophthora parasitica. PpAGO3 was unique among five predicted AGO genes in P. parasitica, showing strong mycelium stage-specific expression. Using the CRISPR-Cas9 technology, we generated PpAGO3ΔRGG1-3 mutants that carried a deletion of 1, 2, or 3 copies of the N-terminal RGG motif (QRGGYD) but failed to obtain complete knockout mutants, which suggests its vital role in P. parasitica. These mutants showed increased pathogenicity on both Nicotiana benthamiana and Arabidopsis thaliana plants. Transcriptome and sRNA sequencing of PpAGO3ΔRGG1 and PpAGO3ΔRGG3 showed that these mutants were differentially accumulated with 25–26 nt sRNAs associated with 70 predicted cytoplasmic effector genes compared to the wild-type, of which 13 exhibited inverse correlation between gene expression and 25–26 nt sRNA accumulation. Transient overexpression of the upregulated RXLR effector genes, PPTG_01869 and PPTG_15425 identified in the mutants PpAGO3ΔRGG1 and PpAGO3ΔRGG3, strongly enhanced N. benthamiana susceptibility to P. parasitica. Our results suggest that PpAGO3 functions together with 25–26 nt sRNAs to confer dynamic expression regulation of effector genes in P. parasitica, thereby contributing to infection and pathogenicity of the pathogen.
Collapse
Affiliation(s)
- Junjie Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yilin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Jinbu Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wenjing Xiong
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Chengcheng Zhong
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Guiyan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xiuhong Gou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
49
|
Exploring the Effectiveness and Durability of Trans-Kingdom Silencing of Fungal Genes in the Vascular Pathogen Verticillium dahliae. Int J Mol Sci 2022; 23:ijms23052742. [PMID: 35269884 PMCID: PMC8910871 DOI: 10.3390/ijms23052742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
Host-induced gene silencing (HIGS) based on trans-kingdom RNA interference (RNAi) has been successfully exploited to engineer host resistance to pests and pathogens, including fungi and oomycetes. However, revealing the mechanisms underlying trans-kingdom RNAi between hosts and pathogens lags behind applications. The effectiveness and durability of trans-kingdom silencing of pathogenic genes are uncharacterized. In this study, using our transgenic 35S-VdH1i cotton plants in which dsVdH1-derived small RNAs (siVdH1) accumulated, small RNA sequencing analysis revealed that siVdH1s exclusively occur within the double-stranded (ds)VdH1 region, and no transitive siRNAs were produced beyond this region in recovered hyphae of Verticillium dahliae (V. dahliae). Accordingly, we found that VdH1 silencing was reduced over time in recovered hyphae cultured in vitro, inferring that once the fungus got rid of the 35S-VdH1i cotton plants would gradually regain their pathogenicity. To explore whether continually exporting dsRNAs/siRNAs from transgenic plants into recipient fungal cells guaranteed the effectiveness and stability of HIGS, we created GFP/RFP double-labeled V. dahliae and transgenic Arabidopsis expressing dsGFP (35S-GFPi plants). Confocal images visually demonstrate the efficient silencing of GFP in V. dahliae that colonized host vascular tissues. Taken together, our results demonstrate that HIGS effectively triggers long-lasting trans-kingdom RNAi during plant vasculature V. dahliae interactions, despite no amplification or transitivity of RNAi being noted in this soil-borne fungal pathogen.
Collapse
|
50
|
Xu M, Li G, Guo Y, Gao Y, Zhu L, Liu Z, Tian R, Gao C, Han P, Wang N, Guo F, Bao J, Jia C, Feng H, Huang L. A fungal microRNA-like RNA subverts host immunity and facilitates pathogen infection by silencing two host receptor-like kinase genes. THE NEW PHYTOLOGIST 2022; 233:2503-2519. [PMID: 34981514 DOI: 10.1111/nph.17945] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Small RNAs (sRNAs) play important roles in various biological processes by silencing their corresponding target genes in most eukaryotes. However, cross-kingdom regulation mediated by fungal microRNA-like RNAs (milRNAs) in plant-pathogen interactions is still largely unknown. Using molecular, genetic, histological, and biochemical approaches, we found that the apple tree Valsa canker pathogen Valsa mali milRNA Vm-milR1 could suppress the host immunity by silencing two host receptor-like kinase genes, MdRLKT1 and MdRLKT2. Vm-milR1 was highly induced during V. mali infection. Deletion of Vm-milR1 precursor abolished the generation of Vm-milR1 and reduced the virulence of V. mali. Inoculation of Vm-milR1 deletion mutants induced the host defence responses, including reactive oxygen species (ROS) accumulation, callose deposition, and high expression of defence-related genes. Furthermore, Vm-milR1 was confirmed to be able to suppress the expression of MdRLKT1 and MdRLKT2 in a sequence-specific manner. Moreover, overexpression of either MdRLKT1 or MdRLKT2 enhanced apple resistance to V. mali by activating the host defence responses. Furthermore, knockdown of MdRLKT1 or MdRLKT2 compromised the host resistance to V. mali. Our study revealed that V. mali was equipped with Vm-milR1 as an sRNA effector to silence host receptor-like kinase genes, suppress the host defence responses, and facilitate pathogen infection.
Collapse
Affiliation(s)
- Ming Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guangyao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuqi Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lihua Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhaoyang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Runze Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chen Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Pengliang Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ning Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Feiran Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiyuan Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Conghui Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|