1
|
Riabov Bassat D, Visanpattanasin S, Vorländer MK, Fin L, Phillips AW, Plaschka C. Structural basis of human U5 snRNP late biogenesis and recycling. Nat Struct Mol Biol 2024; 31:747-751. [PMID: 38467876 PMCID: PMC7616108 DOI: 10.1038/s41594-024-01243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/06/2024] [Indexed: 03/13/2024]
Abstract
Pre-mRNA splicing by the spliceosome requires the biogenesis and recycling of its small nuclear ribonucleoprotein (snRNP) complexes, which are consumed in each round of splicing. The human U5 snRNP is the ~1 MDa 'heart' of the spliceosome and is recycled through an unknown mechanism involving major architectural rearrangements and the dedicated chaperones CD2BP2 and TSSC4. Late steps in U5 snRNP biogenesis similarly involve these chaperones. Here we report cryo-electron microscopy structures of four human U5 snRNP-CD2BP2-TSSC4 complexes, revealing how a series of molecular events primes the U5 snRNP to generate the ~2 MDa U4/U6.U5 tri-snRNP, the largest building block of the spliceosome.
Collapse
Affiliation(s)
- Daria Riabov Bassat
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | | | | | - Laura Fin
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Alexander W Phillips
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Clemens Plaschka
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
2
|
Le LTM, Drakulic S, Nyengaard JR, Golas MM, Sander B. Structural Organization of Human Full-Length PAR3 and the aPKC-PAR6 Complex. Mol Biotechnol 2022; 64:1319-1327. [PMID: 35610404 PMCID: PMC9573856 DOI: 10.1007/s12033-022-00504-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/29/2022] [Indexed: 11/24/2022]
Abstract
The tripartite partition defect (PAR) polarity complex, which includes the proteins PAR3, atypical protein kinase C (aPKC), and PAR6, is a major regulator of cellular polarity. It is highly conserved and expressed in various tissues. Its largest component, PAR3, controls protein–protein interactions of the PAR complex with a variety of interaction partners, and PAR3 self-association is critical for the formation of filament-like structures. However, little is known about the structure of the PAR complex. Here, we purified non-filamentous PAR3 and the aPKC–PAR6 complex and characterized them by single-particle electron microscopy (EM). We expressed and purified an oligomerization-deficient form of PAR3, PAR3V13D,D70K, and the active aPKC–PAR6 dimer. For PAR3, engineering at two positions is sufficient to form stable single particles with a maximum dimension of 20 nm. aPKC–PAR6 forms a complex with a maximum dimension of 13.5 nm that contains single copies of aPKC. Thus, the data present a basis for further high-resolution studies of PAR proteins and PAR complex formation.
Collapse
Affiliation(s)
- Le T M Le
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Srdja Drakulic
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jens R Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Wilhelm Meyers Allé 3, Building 1233/1234, 8000, Aarhus C, Denmark
| | - Monika M Golas
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Human Genetics, Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany
| | - Bjoern Sander
- Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Wilhelm Meyers Allé 3, Building 1233/1234, 8000, Aarhus C, Denmark.
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
3
|
Smathers CM, Robart AR. The mechanism of splicing as told by group II introns: Ancestors of the spliceosome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194390. [PMID: 31202783 DOI: 10.1016/j.bbagrm.2019.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/10/2019] [Indexed: 12/31/2022]
Abstract
Spliceosomal introns and self-splicing group II introns share a common mechanism of intron splicing where two sequential transesterification reactions remove intron lariats and ligate exons. The recent revolution in cryo-electron microscopy (cryo-EM) has allowed visualization of the spliceosome's ribozyme core. Comparison of these cryo-EM structures to recent group II intron crystal structures presents an opportunity to draw parallels between the RNA active site, substrate positioning, and product formation in these two model systems of intron splicing. In addition to shared RNA architectural features, structural similarity between group II intron encoded proteins (IEPs) and the integral spliceosomal protein Prp8 further support a shared catalytic core. These mechanistic and structural similarities support the long-held assertion that group II introns and the eukaryotic spliceosome have a common evolutionary origin. In this review, we discuss how recent structural insights into group II introns and the spliceosome facilitate the chemistry of splicing, highlight similarities between the two systems, and discuss their likely evolutionary connections. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Claire M Smathers
- Department of Biochemistry, West Virginia University, Morgantown, WV, United States of America
| | - Aaron R Robart
- Department of Biochemistry, West Virginia University, Morgantown, WV, United States of America.
| |
Collapse
|
4
|
Yan C, Wan R, Shi Y. Molecular Mechanisms of pre-mRNA Splicing through Structural Biology of the Spliceosome. Cold Spring Harb Perspect Biol 2019; 11:11/1/a032409. [PMID: 30602541 DOI: 10.1101/cshperspect.a032409] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Precursor messenger RNA (pre-mRNA) splicing is executed by the spliceosome. In the past 3 years, cryoelectron microscopy (cryo-EM) structures have been elucidated for a majority of the yeast spliceosomal complexes and for a few human spliceosomes. During the splicing reaction, the dynamic spliceosome has an immobile core of about 20 protein and RNA components, which are organized around a conserved splicing active site. The divalent metal ions, coordinated by U6 small nuclear RNA (snRNA), catalyze the branching reaction and exon ligation. The spliceosome also contains a mobile but compositionally stable group of about 13 proteins and a portion of U2 snRNA, which facilitate substrate delivery into the splicing active site. The spliceosomal transitions are driven by the RNA-dependent ATPase/helicases, resulting in the recruitment and dissociation of specific splicing factors that enable the reaction. In summary, the spliceosome is a protein-directed metalloribozyme.
Collapse
Affiliation(s)
- Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310064, Zhejiang Province, China
| |
Collapse
|
5
|
Drakulic S, Rai J, Petersen SV, Golas MM, Sander B. Folding and assembly defects of pyruvate dehydrogenase deficiency-related variants in the E1α subunit of the pyruvate dehydrogenase complex. Cell Mol Life Sci 2018; 75:3009-3026. [PMID: 29445841 PMCID: PMC11105750 DOI: 10.1007/s00018-018-2775-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 12/18/2022]
Abstract
The pyruvate dehydrogenase complex (PDC) bridges glycolysis and the citric acid cycle. In human, PDC deficiency leads to severe neurodevelopmental delay and progressive neurodegeneration. The majority of cases are caused by variants in the gene encoding the PDC subunit E1α. The molecular effects of the variants, however, remain poorly understood. Using yeast as a eukaryotic model system, we have studied the substitutions A189V, M230V, and R322C in yeast E1α (corresponding to the pathogenic variants A169V, M210V, and R302C in human E1α) and evaluated how substitutions of single amino acid residues within different functional E1α regions affect PDC structure and activity. The E1α A189V substitution located in the heterodimer interface showed a more compact conformation with significant underrepresentation of E1 in PDC and impaired overall PDC activity. The E1α M230V substitution located in the tetramer and heterodimer interface showed a relatively more open conformation and was particularly affected by low thiamin pyrophosphate concentrations. The E1α R322C substitution located in the phosphorylation loop of E1α resulted in PDC lacking E3 subunits and abolished overall functional activity. Furthermore, we show for the E1α variant A189V that variant E1α accumulates in the Hsp60 chaperonin, but can be released upon ATP supplementation. Our studies suggest that pathogenic E1α variants may be associated with structural changes of PDC and impaired folding of E1α.
Collapse
Affiliation(s)
- Srdja Drakulic
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Jay Rai
- Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, 8000, Aarhus C, Denmark
| | | | - Monika M Golas
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark.
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany.
| | - Bjoern Sander
- Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, 8000, Aarhus C, Denmark.
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
6
|
Ray S, Widom JR, Walter NG. Life under the Microscope: Single-Molecule Fluorescence Highlights the RNA World. Chem Rev 2018; 118:4120-4155. [PMID: 29363314 PMCID: PMC5918467 DOI: 10.1021/acs.chemrev.7b00519] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The emergence of single-molecule (SM) fluorescence techniques has opened up a vast new toolbox for exploring the molecular basis of life. The ability to monitor individual biomolecules in real time enables complex, dynamic folding pathways to be interrogated without the averaging effect of ensemble measurements. In parallel, modern biology has been revolutionized by our emerging understanding of the many functions of RNA. In this comprehensive review, we survey SM fluorescence approaches and discuss how the application of these tools to RNA and RNA-containing macromolecular complexes in vitro has yielded significant insights into the underlying biology. Topics covered include the three-dimensional folding landscapes of a plethora of isolated RNA molecules, their assembly and interactions in RNA-protein complexes, and the relation of these properties to their biological functions. In all of these examples, the use of SM fluorescence methods has revealed critical information beyond the reach of ensemble averages.
Collapse
Affiliation(s)
| | | | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Fica SM, Nagai K. Cryo-electron microscopy snapshots of the spliceosome: structural insights into a dynamic ribonucleoprotein machine. Nat Struct Mol Biol 2017; 24:791-799. [PMID: 28981077 DOI: 10.1038/nsmb.3463] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/10/2017] [Indexed: 12/18/2022]
Abstract
The spliceosome excises introns from pre-messenger RNAs using an RNA-based active site that is cradled by a dynamic protein scaffold. A recent revolution in cryo-electron microscopy (cryo-EM) has led to near-atomic-resolution structures of key spliceosome complexes that provide insight into the mechanism of activation, splice site positioning, catalysis, protein rearrangements and ATPase-mediated dynamics of the active site. The cryo-EM structures rationalize decades of observations from genetic and biochemical studies and provide a molecular framework for future functional studies.
Collapse
|
8
|
Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nat Rev Mol Cell Biol 2017; 18:655-670. [DOI: 10.1038/nrm.2017.86] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
León B, Kashyap MK, Chan WC, Krug KA, Castro JE, La Clair JJ, Burkart MD. A Challenging Pie to Splice: Drugging the Spliceosome. Angew Chem Int Ed Engl 2017; 56:12052-12063. [PMID: 28371109 PMCID: PMC6311392 DOI: 10.1002/anie.201701065] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Indexed: 02/05/2023]
Abstract
Since its discovery in 1977, the study of alternative RNA splicing has revealed a plethora of mechanisms that had never before been documented in nature. Understanding these transitions and their outcome at the level of the cell and organism has become one of the great frontiers of modern chemical biology. Until 2007, this field remained in the hands of RNA biologists. However, the recent identification of natural product and synthetic modulators of RNA splicing has opened new access to this field, allowing for the first time a chemical-based interrogation of RNA splicing processes. Simultaneously, we have begun to understand the vital importance of splicing in disease, which offers a new platform for molecular discovery and therapy. As with many natural systems, gaining clear mechanistic detail at the molecular level is key towards understanding the operation of any biological machine. This minireview presents recent lessons learned in this emerging field of RNA splicing chemistry and chemical biology.
Collapse
Affiliation(s)
- Brian León
- Department of Chemistry and Biochemistry, University of California, San Diego 9500, Gilman Drive, La Jolla CA, 92093-0358 (USA) ,
| | - Manoj K. Kashyap
- Moores Cancer Center and Department of Medicine, University of California, San Diego, La Jolla CA, 92093-0820 (USA)
| | - Warren C. Chan
- Department of Chemistry and Biochemistry, University of California, San Diego 9500, Gilman Drive, La Jolla CA, 92093-0358 (USA) ,
| | - Kelsey A. Krug
- Department of Chemistry and Biochemistry, University of California, San Diego 9500, Gilman Drive, La Jolla CA, 92093-0358 (USA) ,
| | - Januario E. Castro
- Moores Cancer Center and Department of Medicine, University of California, San Diego, La Jolla CA, 92093-0820 (USA)
| | - James J. La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego 9500, Gilman Drive, La Jolla CA, 92093-0358 (USA) ,
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego 9500, Gilman Drive, La Jolla CA, 92093-0358 (USA) ,
| |
Collapse
|
10
|
León B, Kashyap MK, Chan WC, Krug KA, Castro JE, La Clair JJ, Burkart MD. Das Spliceosom als Angriffspunkt für Pharmaka. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Brian León
- Department of Chemistry and Biochemistry; University of California, San Diego; 9500 Gilman Drive La Jolla CA 92093-0358 USA
| | - Manoj K. Kashyap
- Moores Cancer Center and Department of Medicine; University of California, San Diego; La Jolla CA 92093-0820 USA
| | - Warren C. Chan
- Department of Chemistry and Biochemistry; University of California, San Diego; 9500 Gilman Drive La Jolla CA 92093-0358 USA
| | - Kelsey A. Krug
- Department of Chemistry and Biochemistry; University of California, San Diego; 9500 Gilman Drive La Jolla CA 92093-0358 USA
| | - Januario E. Castro
- Moores Cancer Center and Department of Medicine; University of California, San Diego; La Jolla CA 92093-0820 USA
| | - James J. La Clair
- Department of Chemistry and Biochemistry; University of California, San Diego; 9500 Gilman Drive La Jolla CA 92093-0358 USA
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry; University of California, San Diego; 9500 Gilman Drive La Jolla CA 92093-0358 USA
| |
Collapse
|
11
|
Abstract
Group II introns are large, autocatalytic ribozymes that catalyze RNA splicing and retrotransposition. Splicing by group II introns plays a major role in the metabolism of plants, fungi, and yeast and contributes to genetic variation in many bacteria. Group II introns have played a major role in genome evolution, as they are likely progenitors of spliceosomal introns, retroelements, and other machinery that controls genetic variation and stability. The structure and catalytic mechanism of group II introns have recently been elucidated through a combination of genetics, chemical biology, solution biochemistry, and crystallography. These studies reveal a dynamic machine that cycles progressively through multiple conformations as it stimulates the various stages of splicing. A central active site, containing a reactive metal ion cluster, catalyzes both steps of self-splicing. These studies provide insights into RNA structure, folding, and catalysis, as they raise new questions about the behavior of RNA machines.
Collapse
Affiliation(s)
- Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, Howard Hughes Medical Institute, New Haven, Connecticut 06520.,Department of Chemistry, Yale University, Howard Hughes Medical Institute, New Haven, Connecticut 06520;
| |
Collapse
|
12
|
Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition. Methods 2017; 118-119:119-136. [PMID: 28315749 DOI: 10.1016/j.ymeth.2017.03.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/19/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022] Open
Abstract
Recent advances in RNA sequencing technologies have greatly expanded our knowledge of the RNA landscape in cells, often with spatiotemporal resolution. These techniques identified many new (often non-coding) RNA molecules. Large-scale studies have also discovered novel RNA binding proteins (RBPs), which exhibit single or multiple RNA binding domains (RBDs) for recognition of specific sequence or structured motifs in RNA. Starting from these large-scale approaches it is crucial to unravel the molecular principles of protein-RNA recognition in ribonucleoprotein complexes (RNPs) to understand the underlying mechanisms of gene regulation. Structural biology and biophysical studies at highest possible resolution are key to elucidate molecular mechanisms of RNA recognition by RBPs and how conformational dynamics, weak interactions and cooperative binding contribute to the formation of specific, context-dependent RNPs. While large compact RNPs can be well studied by X-ray crystallography and cryo-EM, analysis of dynamics and weak interaction necessitates the use of solution methods to capture these properties. Here, we illustrate methods to study the structure and conformational dynamics of protein-RNA complexes in solution starting from the identification of interaction partners in a given RNP. Biophysical and biochemical techniques support the characterization of a protein-RNA complex and identify regions relevant in structural analysis. Nuclear magnetic resonance (NMR) is a powerful tool to gain information on folding, stability and dynamics of RNAs and characterize RNPs in solution. It provides crucial information that is complementary to the static pictures derived from other techniques. NMR can be readily combined with other solution techniques, such as small angle X-ray and/or neutron scattering (SAXS/SANS), electron paramagnetic resonance (EPR), and Förster resonance energy transfer (FRET), which provide information about overall shapes, internal domain arrangements and dynamics. Principles of protein-RNA recognition and current approaches are reviewed and illustrated with recent studies.
Collapse
|
13
|
Structure and activation of C1, the complex initiating the classical pathway of the complement cascade. Proc Natl Acad Sci U S A 2017; 114:986-991. [PMID: 28104818 DOI: 10.1073/pnas.1616998114] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The complement system is an important antimicrobial and inflammation-generating component of the innate immune system. The classical pathway of complement is activated upon binding of the 774-kDa C1 complex, consisting of the recognition molecule C1q and the tetrameric protease complex C1r2s2, to a variety of activators presenting specific molecular patterns such as IgG- and IgM-containing immune complexes. A canonical model entails a C1r2s2 with its serine protease domains tightly packed together in the center of C1 and an intricate intramolecular reaction mechanism for activation of C1r and C1s, induced upon C1 binding to the activator. Here, we show that the serine protease domains of C1r and C1s are located at the periphery of the C1r2s2 tetramer both when alone or within the nonactivated C1 complex. Our structural studies indicate that the C1 complex adopts a conformation incompatible with intramolecular activation of C1, suggesting instead that intermolecular proteolytic activation between neighboring C1 complexes bound to a complement activating surface occurs. Our results rationalize how a multitude of structurally unrelated molecular patterns can activate C1 and suggests a conserved mechanism for complement activation through the classical and the related lectin pathway.
Collapse
|
14
|
Bertram K, Agafonov DE, Liu WT, Dybkov O, Will CL, Hartmuth K, Urlaub H, Kastner B, Stark H, Lührmann R. Cryo-EM structure of a human spliceosome activated for step 2 of splicing. Nature 2017; 542:318-323. [DOI: 10.1038/nature21079] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/04/2017] [Indexed: 12/18/2022]
|
15
|
Sun C, Rigo N, Fabrizio P, Kastner B, Lührmann R. A protein map of the yeast activated spliceosome as obtained by electron microscopy. RNA (NEW YORK, N.Y.) 2016; 22:1427-40. [PMID: 27368340 PMCID: PMC4986897 DOI: 10.1261/rna.057778.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 05/31/2016] [Indexed: 05/09/2023]
Abstract
We have elucidated the spatial arrangement of proteins and snRNP subunits within the purified spliceosomal B(act) complex from Saccharomyces cerevisiae, using negative-stain immunoelectron microscopy. The B(act) spliceosome exhibits a mushroom-like shape with a main body connected to a foot and a steep and a shallow slope. The U5 core components, including proteins Snu114 and Prp8, are located in the main body and foot, while Brr2 is on the shallow slope. U2 snRNP components and the RNA helicase Prp2 were predominantly located in the upper regions of both slopes. While several proteins of the "nineteen complex" are located on the steep slope, Prp19, Cef1, and the U6 snRNA-binding protein Cwc2 are on the main body. Our results also indicate that the catalytic core RNP of the spliceosome resides in its main body. We thus assign distinct domains of the B(act) complex to its snRNP and protein components, and we provide first structural insights into the remodeling events at the spliceosome during its transformation from the B to the B(act) complex.
Collapse
Affiliation(s)
- Chengfu Sun
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Norbert Rigo
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Patrizia Fabrizio
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Berthold Kastner
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
16
|
Rakesh R, Joseph AP, Bhaskara RM, Srinivasan N. Structural and mechanistic insights into human splicing factor SF3b complex derived using an integrated approach guided by the cryo-EM density maps. RNA Biol 2016; 13:1025-1040. [PMID: 27618338 DOI: 10.1080/15476286.2016.1218590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Pre-mRNA splicing in eukaryotes is performed by the spliceosome, a highly complex macromolecular machine. SF3b is a multi-protein complex which recognizes the branch point adenosine of pre-mRNA as part of a larger U2 snRNP or U11/U12 di-snRNP in the dynamic spliceosome machinery. Although a cryo-EM map is available for human SF3b complex, the structure and relative spatial arrangement of all components in the complex are not yet known. We have recognized folds of domains in various proteins in the assembly and generated comparative models. Using an integrative approach involving structural and other experimental data, guided by the available cryo-EM density map, we deciphered a pseudo-atomic model of the closed form of SF3b which is found to be a "fuzzy complex" with highly flexible components and multiplicity of folds. Further, the model provides structural information for 5 proteins (SF3b10, SF3b155, SF3b145, SF3b130 and SF3b14b) and localization information for 4 proteins (SF3b10, SF3b145, SF3b130 and SF3b14b) in the assembly for the first time. Integration of this model with the available U11/U12 di-snRNP cryo-EM map enabled elucidation of an open form. This now provides new insights on the mechanistic features involved in the transition between closed and open forms pivoted by a hinge region in the SF3b155 protein that also harbors cancer causing mutations. Moreover, the open form guided model of the 5' end of U12 snRNA, which includes the branch point duplex, shows that the architecture of SF3b acts as a scaffold for U12 snRNA: pre-mRNA branch point duplex formation with potential implications for branch point adenosine recognition fidelity.
Collapse
Affiliation(s)
- Ramachandran Rakesh
- a Molecular Biophysics Unit, Indian Institute of Science , Bangalore , India
| | - Agnel Praveen Joseph
- b National Center for Biological Sciences, TIFR, GKVK Campus , Bangalore , India
| | - Ramachandra M Bhaskara
- a Molecular Biophysics Unit, Indian Institute of Science , Bangalore , India.,b National Center for Biological Sciences, TIFR, GKVK Campus , Bangalore , India
| | | |
Collapse
|
17
|
Yan C, Wan R, Bai R, Huang G, Shi Y. Structure of a yeast activated spliceosome at 3.5 Å resolution. Science 2016; 353:904-11. [PMID: 27445306 DOI: 10.1126/science.aag0291] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/13/2016] [Indexed: 12/18/2022]
Abstract
Pre-messenger RNA (pre-mRNA) splicing is carried out by the spliceosome, which undergoes an intricate assembly and activation process. Here, we report an atomic structure of an activated spliceosome (known as the B(act) complex) from Saccharomyces cerevisiae, determined by cryo-electron microscopy at an average resolution of 3.52 angstroms. The final refined model contains U2 and U5 small nuclear ribonucleoprotein particles (snRNPs), U6 small nuclear RNA (snRNA), nineteen complex (NTC), NTC-related (NTR) protein, and a 71-nucleotide pre-mRNA molecule, which amount to 13,505 amino acids from 38 proteins and a combined molecular mass of about 1.6 megadaltons. The 5' exon is anchored by loop I of U5 snRNA, whereas the 5' splice site (5'SS) and the branch-point sequence (BPS) of the intron are specifically recognized by U6 and U2 snRNA, respectively. Except for coordination of the catalytic metal ions, the RNA elements at the catalytic cavity of Prp8 are mostly primed for catalysis. The catalytic latency is maintained by the SF3b complex, which encircles the BPS, and the splicing factors Cwc24 and Prp11, which shield the 5' exon-5'SS junction. This structure, together with those determined earlier, outlines a molecular framework for the pre-mRNA splicing reaction.
Collapse
Affiliation(s)
- Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rui Bai
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gaoxingyu Huang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
18
|
Wan R, Yan C, Bai R, Huang G, Shi Y. Structure of a yeast catalytic step I spliceosome at 3.4 Å resolution. Science 2016; 353:895-904. [PMID: 27445308 DOI: 10.1126/science.aag2235] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/14/2016] [Indexed: 12/30/2022]
Abstract
Each cycle of pre-messenger RNA splicing, carried out by the spliceosome, comprises two sequential transesterification reactions, which result in the removal of an intron and the joining of two exons. Here we report an atomic structure of a catalytic step I spliceosome (known as the C complex) from Saccharomyces cerevisiae, as determined by cryo-electron microscopy at an average resolution of 3.4 angstroms. In the structure, the 2'-OH of the invariant adenine nucleotide in the branch point sequence (BPS) is covalently joined to the phosphate at the 5' end of the 5' splice site (5'SS), forming an intron lariat. The freed 5' exon remains anchored to loop I of U5 small nuclear RNA (snRNA), and the 5'SS and BPS of the intron form duplexes with conserved U6 and U2 snRNA sequences, respectively. Specific placement of these RNA elements at the catalytic cavity of Prp8 is stabilized by 15 protein components, including Snu114 and the splicing factors Cwc21, Cwc22, Cwc25, and Yju2. These features, representing the conformation of the spliceosome after the first-step reaction, predict structural changes that are needed for the execution of the second-step transesterification reaction.
Collapse
Affiliation(s)
- Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rui Bai
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gaoxingyu Huang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
19
|
Qu G, Kaushal PS, Wang J, Shigematsu H, Piazza CL, Agrawal RK, Belfort M, Wang HW. Structure of a group II intron in complex with its reverse transcriptase. Nat Struct Mol Biol 2016; 23:549-57. [PMID: 27136327 PMCID: PMC4899178 DOI: 10.1038/nsmb.3220] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/04/2016] [Indexed: 01/08/2023]
Abstract
Bacterial group II introns are large catalytic RNAs related to nuclear spliceosomal introns and eukaryotic retrotransposons. They self-splice, yielding mature RNA, and integrate into DNA as retroelements. A fully active group II intron forms a ribonucleoprotein complex comprising the intron ribozyme and an intron-encoded protein that performs multiple activities including reverse transcription, in which intron RNA is copied into the DNA target. Here we report cryo-EM structures of an endogenously spliced Lactococcus lactis group IIA intron in its ribonucleoprotein complex form at 3.8-Å resolution and in its protein-depleted form at 4.5-Å resolution, revealing functional coordination of the intron RNA with the protein. Remarkably, the protein structure reveals a close relationship between the reverse transcriptase catalytic domain and telomerase, whereas the active splicing center resembles the spliceosomal Prp8 protein. These extraordinary similarities hint at intricate ancestral relationships and provide new insights into splicing and retromobility.
Collapse
Affiliation(s)
- Guosheng Qu
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York, USA
| | - Prem Singh Kaushal
- Laboratory of Cellular and Molecular Basis of Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Jia Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hideki Shigematsu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Carol Lyn Piazza
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York, USA
| | - Rajendra Kumar Agrawal
- Laboratory of Cellular and Molecular Basis of Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
20
|
CryoEM structures of two spliceosomal complexes: starter and dessert at the spliceosome feast. Curr Opin Struct Biol 2016; 36:48-57. [PMID: 26803803 PMCID: PMC4830896 DOI: 10.1016/j.sbi.2015.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/21/2015] [Indexed: 12/31/2022]
Abstract
Recent advances in cryoEM are revolutionizing our understanding of how molecular machines function. The structure of Saccharomyces cerevisiae U4/U6.U5 tri-snRNP has been revealed. The structure of Schizosaccharomyces pombe U2.U6.U5 spliceosomal complex has been revealed. These structures greatly advanced our understanding of the mechanism of pre-mRNA splicing.
The spliceosome is formed on pre-mRNA substrates from five small nuclear ribonucleoprotein particles (U1, U2, U4/U6 and U5 snRNPs), and numerous non-snRNP factors. Saccharomyces cerevisiae U4/U6.U5 tri-snRNP comprises U5 snRNA, U4/U6 snRNA duplex and approximately 30 proteins and represents a substantial part of the spliceosome before activation. Schizosaccharomyces pombe U2.U6.U5 spliceosomal complex is a post-catalytic intron lariat spliceosome containing U2 and U5 snRNPs, NTC (nineteen complex), NTC-related proteins (NTR), U6 snRNA, and an RNA intron lariat. Two recent papers describe near-complete atomic structures of these complexes based on cryoEM single-particle analysis. The U4/U6.U5 tri-snRNP structure provides crucial insight into the activation mechanism of the spliceosome. The U2.U6.U5 complex reveals the striking architecture of NTC and NTR and important features of the group II intron-like catalytic RNA core remaining after spliced mRNA is released. These two structures greatly advance our understanding of the mechanism of pre-mRNA splicing.
Collapse
|
21
|
Wan R, Yan C, Bai R, Wang L, Huang M, Wong CCL, Shi Y. The 3.8 Å structure of the U4/U6.U5 tri-snRNP: Insights into spliceosome assembly and catalysis. Science 2016; 351:466-75. [PMID: 26743623 DOI: 10.1126/science.aad6466] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/24/2015] [Indexed: 01/08/2023]
Abstract
Splicing of precursor messenger RNA is accomplished by a dynamic megacomplex known as the spliceosome. Assembly of a functional spliceosome requires a preassembled U4/U6.U5 tri-snRNP complex, which comprises the U5 small nuclear ribonucleoprotein (snRNP), the U4 and U6 small nuclear RNA (snRNA) duplex, and a number of protein factors. Here we report the three-dimensional structure of a Saccharomyces cerevisiae U4/U6.U5 tri-snRNP at an overall resolution of 3.8 angstroms by single-particle electron cryomicroscopy. The local resolution for the core regions of the tri-snRNP reaches 3.0 to 3.5 angstroms, allowing construction of a refined atomic model. Our structure contains U5 snRNA, the extensively base-paired U4/U6 snRNA, and 30 proteins including Prp8 and Snu114, which amount to 8495 amino acids and 263 nucleotides with a combined molecular mass of ~1 megadalton. The catalytic nucleotide U80 from U6 snRNA exists in an inactive conformation, stabilized by its base-pairing interactions with U4 snRNA and protected by Prp3. Pre-messenger RNA is bound in the tri-snRNP through base-pairing interactions with U6 snRNA and loop I of U5 snRNA. This structure, together with that of the spliceosome, reveals the molecular choreography of the snRNAs in the activation process of the spliceosomal ribozyme.
Collapse
Affiliation(s)
- Ruixue Wan
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chuangye Yan
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rui Bai
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lin Wang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Min Huang
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Catherine C L Wong
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yigong Shi
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Yan C, Hang J, Wan R, Huang M, Wong CCL, Shi Y. Structure of a yeast spliceosome at 3.6-angstrom resolution. Science 2015; 349:1182-91. [DOI: 10.1126/science.aac7629] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/10/2015] [Indexed: 12/20/2022]
|
23
|
Rai J, Pemmasani JK, Voronovsky A, Jensen IS, Manavalan A, Nyengaard JR, Golas MM, Sander B. Strep-tag II and Twin-Strep based cassettes for protein tagging by homologous recombination and characterization of endogenous macromolecular assemblies in Saccharomyces cerevisiae. Mol Biotechnol 2015; 56:992-1003. [PMID: 24969434 DOI: 10.1007/s12033-014-9778-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peptide sequences fused to a gene of interest facilitate the isolation of proteins or protein complexes from cell extracts. In the case of fluorescent protein tags, the tagged protein can be visually localized in living cells. To tag endogenous genes, PCR-based homologous recombination is a powerful approach used in the yeast Saccharomyces cerevisiae. This approach uses short, homologous DNA sequences that flank the tagging cassette to direct recombination. Here, we constructed a set of plasmids, whose sequences were optimized for codon usage in yeast, for Strep-tag II and Twin-Strep tagging in S. cerevisiae. Some plasmids also contain sequences encoding for a fluorescent protein followed by the purification tag. We demonstrate using the yeast pyruvate dehydrogenase (PDH) complex that these plasmids can be used to purify large protein complexes efficiently. We furthermore demonstrate that purification from the endogenous pool using the Strep-tag system results in functionally active complexes. Finally, using the fluorescent tags, we show that a kinase and a phosphatase involved in regulating the activity of the PDH complex localize in the cells' mitochondria. In conclusion, our cassettes can be used as tools for biochemical, functional, and structural analyses of endogenous multi-protein assemblies in yeast.
Collapse
Affiliation(s)
- Jay Rai
- Stereology and EM Laboratory, Department of Clinical Medicine, Institute of Clinical Medicine, Aarhus University, c/o Wilhelm Meyers Allé 3, Building 1233/1234, 8000, Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Hennig J, Warner LR, Simon B, Geerlof A, Mackereth CD, Sattler M. Structural Analysis of Protein-RNA Complexes in Solution Using NMR Paramagnetic Relaxation Enhancements. Methods Enzymol 2015; 558:333-362. [PMID: 26068746 DOI: 10.1016/bs.mie.2015.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biological activity in the cell is predominantly mediated by large multiprotein and protein-nucleic acid complexes that act together to ensure functional fidelity. Nuclear magnetic resonance (NMR) spectroscopy is the only method that can provide information for high-resolution three-dimensional structures and the conformational dynamics of these complexes in solution. Mapping of binding interfaces and molecular interactions along with the characterization of conformational dynamics is possible for very large protein complexes. In contrast, de novo structure determination by NMR becomes very time consuming and difficult for protein complexes larger than 30 kDa as data are noisy and sparse. Fortunately, high-resolution structures are often available for individual domains or subunits of a protein complex and thus sparse data can be used to define their arrangement and dynamics within the assembled complex. In these cases, NMR can therefore be efficiently combined with complementary solution techniques, such as small-angle X-ray or neutron scattering, to provide a comprehensive description of the structure and dynamics of protein complexes in solution. Particularly useful are NMR-derived paramagnetic relaxation enhancements (PREs), which provide long-range distance restraints (ca. 20Å) for structural analysis of large complexes and also report on conformational dynamics in solution. Here, we describe the use of PREs from sample production to structure calculation, focusing on protein-RNA complexes. On the basis of recent examples from our own research, we demonstrate the utility, present protocols, and discuss potential pitfalls when using PREs for studying the structure and dynamic features of protein-RNA complexes.
Collapse
Affiliation(s)
- Janosch Hennig
- Institute of Structural Biology, Helmholtz Zentrum München, Oberschleißheim, Germany; Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany
| | - Lisa R Warner
- Institute of Structural Biology, Helmholtz Zentrum München, Oberschleißheim, Germany; Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany
| | - Bernd Simon
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Arie Geerlof
- Institute of Structural Biology, Helmholtz Zentrum München, Oberschleißheim, Germany; Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany
| | - Cameron D Mackereth
- Institut Européen de Chimie et Biologie, IECB, Univ. Bordeaux, Pessac, France; Inserm, U869, ARNA Laboratory, Bordeaux, France
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Oberschleißheim, Germany; Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany.
| |
Collapse
|
25
|
Abstract
Precursor messenger RNA (pre-mRNA) splicing is a critical step in the posttranscriptional regulation of gene expression, providing significant expansion of the functional proteome of eukaryotic organisms with limited gene numbers. Split eukaryotic genes contain intervening sequences or introns disrupting protein-coding exons, and intron removal occurs by repeated assembly of a large and highly dynamic ribonucleoprotein complex termed the spliceosome, which is composed of five small nuclear ribonucleoprotein particles, U1, U2, U4/U6, and U5. Biochemical studies over the past 10 years have allowed the isolation as well as compositional, functional, and structural analysis of splicing complexes at distinct stages along the spliceosome cycle. The average human gene contains eight exons and seven introns, producing an average of three or more alternatively spliced mRNA isoforms. Recent high-throughput sequencing studies indicate that 100% of human genes produce at least two alternative mRNA isoforms. Mechanisms of alternative splicing include RNA-protein interactions of splicing factors with regulatory sites termed silencers or enhancers, RNA-RNA base-pairing interactions, or chromatin-based effects that can change or determine splicing patterns. Disease-causing mutations can often occur in splice sites near intron borders or in exonic or intronic RNA regulatory silencer or enhancer elements, as well as in genes that encode splicing factors. Together, these studies provide mechanistic insights into how spliceosome assembly, dynamics, and catalysis occur; how alternative splicing is regulated and evolves; and how splicing can be disrupted by cis- and trans-acting mutations leading to disease states. These findings make the spliceosome an attractive new target for small-molecule, antisense, and genome-editing therapeutic interventions.
Collapse
Affiliation(s)
- Yeon Lee
- Center for RNA Systems Biology; Division of Biochemistry, Biophysics, and Structural Biology; Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204;
| | | |
Collapse
|
26
|
Kjaer TR, Le LTM, Pedersen JS, Sander B, Golas MM, Jensenius JC, Andersen GR, Thiel S. Structural insights into the initiating complex of the lectin pathway of complement activation. Structure 2015; 23:342-51. [PMID: 25579818 DOI: 10.1016/j.str.2014.10.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/18/2014] [Accepted: 10/21/2014] [Indexed: 10/24/2022]
Abstract
The proteolytic cascade of the complement system is initiated when pattern-recognition molecules (PRMs) bind to ligands, resulting in the activation of associated proteases. In the lectin pathway of complement, the complex of mannan-binding lectin (MBL) and MBL-associated serine protease-1 (MASP-1) initiates the pathway by activating a second protease, MASP-2. Here we present a structural study of a PRM/MASP complex and derive the overall architecture of the 450 kDa MBL/MASP-1 complex using small-angle X-ray scattering and electron microscopy. The serine protease (SP) domains from the zymogen MASP-1 dimer protrude from the cone-like MBL tetramer and are separated by at least 20 nm. This suggests that intracomplex activation within a single MASP-1 dimer is unlikely and instead supports intercomplex activation, whereby the MASP SP domains are accessible to nearby PRM-bound MASPs. This activation mechanism differs fundamentally from the intracomplex initiation models previously proposed for both the lectin and the classical pathway.
Collapse
Affiliation(s)
- Troels R Kjaer
- Department of Biomedicine, Aarhus University, Bartholins Allé 6 and Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark
| | - Le T M Le
- Department of Clinical Medicine, Aarhus University, Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Bjoern Sander
- Department of Clinical Medicine, Aarhus University, Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark; Center for Stochastic Geometry and Advanced Bioimaging (CSGB), Aarhus University, Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark
| | - Monika M Golas
- Department of Biomedicine, Aarhus University, Bartholins Allé 6 and Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark; Center for Stochastic Geometry and Advanced Bioimaging (CSGB), Aarhus University, Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark
| | - Jens Christian Jensenius
- Department of Biomedicine, Aarhus University, Bartholins Allé 6 and Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark
| | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Bartholins Allé 6 and Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark.
| |
Collapse
|
27
|
Dual tagging as an approach to isolate endogenous chromatin remodeling complexes from Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:198-208. [PMID: 25486077 DOI: 10.1016/j.bbapap.2014.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 11/11/2014] [Accepted: 11/25/2014] [Indexed: 11/23/2022]
Abstract
Affinity isolation has been an essential technique for molecular studies of cellular assemblies, such as the switch/sucrose non-fermentable (SWI/SNF) family of ATP-dependent chromatin remodeling complexes. However, even biochemically pure isolates can contain heterogeneous mixtures of complexes and their components. In particular, purification strategies that rely on affinity tags fused to only one component of a complex may be susceptible to this phenomenon. This study demonstrates that fusing purification tags to two different proteins enables the isolation of intact complexes of remodels the structure of chromatin (RSC). A Protein A tag was fused to one of the RSC proteins and a Twin-Strep tag to another protein of the complex. By mass spectrometry, we demonstrate the enrichment of the RSC complexes. The complexes had an apparent Svedberg value of about 20S, as shown by glycerol gradient ultracentrifugation. Additionally, purified complexes were demonstrated to be functional. Electron microscopy and single-particle analyses revealed a conformational rearrangement of RSC upon interaction with acetylated histone H3 peptides. This purification method is useful to purify functionally active, structurally well-defined macromolecular assemblies.
Collapse
|
28
|
Hennig J, Sattler M. The dynamic duo: combining NMR and small angle scattering in structural biology. Protein Sci 2014; 23:669-82. [PMID: 24687405 DOI: 10.1002/pro.2467] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 12/12/2022]
Abstract
Structural biology provides essential information for elucidating molecular mechanisms that underlie biological function. Advances in hardware, sample preparation, experimental methods, and computational approaches now enable structural analysis of protein complexes with increasing complexity that more closely represent biologically entities in the cellular environment. Integrated multidisciplinary approaches are required to overcome limitations of individual methods and take advantage of complementary aspects provided by different structural biology techniques. Although X-ray crystallography remains the method of choice for structural analysis of large complexes, crystallization of flexible systems is often difficult and does typically not provide insights into conformational dynamics present in solution. Nuclear magnetic resonance spectroscopy (NMR) is well-suited to study dynamics at picosecond to second time scales, and to map binding interfaces even of large systems at residue resolution but suffers from poor sensitivity with increasing molecular weight. Small angle scattering (SAS) methods provide low resolution information in solution and can characterize dynamics and conformational equilibria complementary to crystallography and NMR. The combination of NMR, crystallography, and SAS is, thus, very useful for analysis of the structure and conformational dynamics of (large) protein complexes in solution. In high molecular weight systems, where NMR data are often sparse, SAS provides additional structural information and can differentiate between NMR-derived models. Scattering data can also validate the solution conformation of a crystal structure and indicate the presence of conformational equilibria. Here, we review current state-of-the-art approaches for combining NMR, crystallography, and SAS data to characterize protein complexes in solution.
Collapse
Affiliation(s)
- Janosch Hennig
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr.1, D-85764, Neuherberg, Germany; Center for Integrated Protein Science Munich at Chair Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747, Garching, Germany
| | | |
Collapse
|
29
|
Affiliation(s)
- Scott A Strobel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
30
|
Anokhina M, Bessonov S, Miao Z, Westhof E, Hartmuth K, Lührmann R. RNA structure analysis of human spliceosomes reveals a compact 3D arrangement of snRNAs at the catalytic core. EMBO J 2013; 32:2804-18. [PMID: 24002212 DOI: 10.1038/emboj.2013.198] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 07/24/2013] [Indexed: 11/09/2022] Open
Abstract
Although U snRNAs play essential roles in splicing, little is known about the 3D arrangement of U2, U6, and U5 snRNAs and the pre-mRNA in active spliceosomes. To elucidate their relative spatial organization and dynamic rearrangement, we examined the RNA structure of affinity-purified, human spliceosomes before and after catalytic step 1 by chemical RNA structure probing. We found a stable 3-way junction of the U2/U6 snRNA duplex in active spliceosomes that persists minimally through step 1. Moreover, the formation of alternating, mutually exclusive, U2 snRNA conformations, as observed in yeast, was not detected in different assembly stages of human spliceosomal complexes (that is, B, B(act), or C complexes). Psoralen crosslinking revealed an interaction during/after step 1 between internal loop 1 of the U5 snRNA, and intron nucleotides immediately downstream of the branchpoint. Using the experimentally derived structural constraints, we generated a model of the RNA network of the step 1 spliceosome, based on the crystal structure of a group II intron through homology modelling. The model is topologically consistent with current genetic, biochemical, and structural data.
Collapse
Affiliation(s)
- Maria Anokhina
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Zhang L, Li X, Zhao R. Structural analyses of the pre-mRNA splicing machinery. Protein Sci 2013; 22:677-92. [PMID: 23592432 DOI: 10.1002/pro.2266] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 01/03/2023]
Abstract
Pre-mRNA splicing is a critical event in the gene expression pathway of all eukaryotes. The splicing reaction is catalyzed by the spliceosome, a huge protein-RNA complex that contains five snRNAs and hundreds of different protein factors. Understanding the structure of this large molecular machinery is critical for understanding its function. Although the highly dynamic nature of the spliceosome, in both composition and conformation, posed daunting challenges to structural studies, there has been significant recent progress on structural analyses of the splicing machinery, using electron microscopy, crystallography, and nuclear magnetic resonance. This review discusses key recent findings in the structural analyses of the spliceosome and its components and how these findings advance our understanding of the function of the splicing machinery.
Collapse
Affiliation(s)
- Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
32
|
Ilagan JO, Chalkley RJ, Burlingame A, Jurica MS. Rearrangements within human spliceosomes captured after exon ligation. RNA (NEW YORK, N.Y.) 2013; 19:400-12. [PMID: 23345524 PMCID: PMC3677250 DOI: 10.1261/rna.034223.112] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 12/11/2012] [Indexed: 05/20/2023]
Abstract
In spliceosomes, dynamic RNA/RNA and RNA/protein interactions position the pre-mRNA substrate for the two chemical steps of splicing. Not all of these interactions have been characterized, in part because it has not been possible to arrest the complex at clearly defined states relative to chemistry. Previously, it was shown in yeast that the DEAD/H-box protein Prp22 requires an extended 3' exon to promote mRNA release from the spliceosome following second-step chemistry. In line with that observation, we find that shortening the 3' exon blocks cleaved lariat intron and mRNA release in human splicing extracts, which allowed us to stall human spliceosomes in a new post-catalytic complex (P complex). In comparison to C complex, which is blocked at a point following first-step chemistry, we detect specific differences in RNA substrate interactions near the splice sites. These differences include extended protection across the exon junction and changes in protein crosslinks to specific sites in the 5' and 3' exons. Using selective reaction monitoring (SRM) mass spectrometry, we quantitatively compared P and C complex proteins and observed enrichment of SF3b components and loss of the putative RNA-dependent ATPase DHX35. Electron microscopy revealed similar structural features for both complexes. Notably, additional density is present when complexes are chemically fixed, which reconciles our results with previously reported C complex structures. Our ability to compare human spliceosomes before and after second-step chemistry has opened a new window to rearrangements near the active site of spliceosomes, which may play roles in exon ligation and mRNA release.
Collapse
Affiliation(s)
- Janine O. Ilagan
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Robert J. Chalkley
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94122, USA
| | - A.L. Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94122, USA
| | - Melissa S. Jurica
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Corresponding authorE-mail
| |
Collapse
|
33
|
Wolf E, Kastner B, Lührmann R. Antisense-targeted immuno-EM localization of the pre-mRNA path in the spliceosomal C complex. RNA (NEW YORK, N.Y.) 2012; 18:1347-1357. [PMID: 22627774 PMCID: PMC3383966 DOI: 10.1261/rna.033910.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 04/23/2012] [Indexed: 06/01/2023]
Abstract
A first step in understanding the architecture of the spliceosome is elucidating the positions of individual spliceosomal components and functional centers. Catalysis of the first step of pre-mRNA splicing leads to the formation of the spliceosomal C complex, which contains the pre-mRNA intermediates--the cleaved 5' exon and the intron-3' exon lariat. To topographically locate the catalytic center of the human C complex, we first determined, by DNA oligonucleotide-directed RNAse H digestions, accessible pre-mRNA regions closest to nucleotides of the cleaved 5' splice site (i.e., the 3' end of exon 1 and the 5' end of the intron) and the intron lariat branch point, which are expected to be at/near the catalytic center in complex C. For electron microscopy (EM) localization studies, C complexes were allowed to form, and biotinylated 2'-OMe RNA oligonucleotides were annealed to these accessible regions. To allow localization by EM of the bound oligonucleotide, first antibiotin antibodies and then protein A-coated colloidal gold were additionally bound. EM analyses allowed us to map the position of exon and intron nucleotides near the cleaved 5' splice site, as well as close to the anchoring site just upstream of the branch adenosine. The identified positions in the C complex EM map give first hints as to the path of the pre-mRNA splicing intermediates in an active spliceosomal C complex and further define a possible location for its catalytic center.
Collapse
Affiliation(s)
- Elmar Wolf
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Berthold Kastner
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
34
|
van der Feltz C, Anthony K, Brilot A, Pomeranz Krummel DA. Architecture of the Spliceosome. Biochemistry 2012; 51:3321-33. [DOI: 10.1021/bi201215r] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Clarisse van der Feltz
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, Massachusetts
02454, United States
| | - Kelsey Anthony
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, Massachusetts
02454, United States
| | - Axel Brilot
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, Massachusetts
02454, United States
| | - Daniel A. Pomeranz Krummel
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, Massachusetts
02454, United States
| |
Collapse
|
35
|
Cordin O, Hahn D, Beggs JD. Structure, function and regulation of spliceosomal RNA helicases. Curr Opin Cell Biol 2012; 24:431-8. [PMID: 22464735 DOI: 10.1016/j.ceb.2012.03.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/12/2012] [Accepted: 03/08/2012] [Indexed: 01/24/2023]
Abstract
Pre-mRNA splicing requires the activities of several ATPases from the DEAH-box, DEAD-box and Ski2-like helicase families to control conformational rearrangements within the spliceosome. Recent findings indicate that several spliceosomal helicases can act at multiple stages of the splicing reaction, and information on how those multiple actions are controlled are emerging. The recently solved crystal structure of the DEAH-box helicase Prp43 provides novel insights into the similarities and differences between the three helicase families. Here we discuss the potential family-specific mechanisms of spliceosomal RNA helicases and their regulation.
Collapse
Affiliation(s)
- Olivier Cordin
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | | | | |
Collapse
|
36
|
Roca X, Karginov FV. RNA biology in a test tube--an overview of in vitro systems/assays. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:509-27. [PMID: 22447682 DOI: 10.1002/wrna.1115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In vitro systems have provided a wealth of information in the field of RNA biology, as they constitute a superior and sometimes the unique approach to address many important questions. Such cell-free methods can be sorted by the degree of complexity of the preparation of enzymatic and/or regulatory activity. Progress in the study of pre-mRNA processing has largely relied on traditional in vitro methods, as these reactions have been recapitulated in cell-free systems. The pre-mRNA capping, editing, and cleavage/polyadenylation reactions have even been reconstituted using purified components, and the enzymes responsible for catalysis have been characterized by such techniques. In vitro splicing using nuclear or cytoplasmic extracts has yielded clues on spliceosome assembly, kinetics, and mechanisms of splicing and has been essential to elucidate the function of splicing factors. Coupled systems have been important to functionally connect distinct processes, like transcription and splicing. Extract preparation has also been adapted to cells from a variety of tissues and species, revealing general versus species-specific mechanisms. Cell-free assays have also been applied to newly discovered pathways such as those involving small RNAs, including microRNAs (miRNAs), small interfering RNAs (siRNAs), and Piwi-interacting RNAs (piRNAs). The first two pathways have been well characterized largely by in vitro methods, which need to be developed for piRNAs. Finally, new techniques, such as single-molecule studies, are continuously being established, providing new and important insights into the field. Thus, in vitro approaches have been, are, and will continue being at the forefront of RNA research.
Collapse
Affiliation(s)
- Xavier Roca
- Division of Molecular Genetics & Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | | |
Collapse
|
37
|
Semiquantitative proteomic analysis of the human spliceosome via a novel two-dimensional gel electrophoresis method. Mol Cell Biol 2011; 31:2667-82. [PMID: 21536652 DOI: 10.1128/mcb.05266-11] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
More than 200 proteins associate with human spliceosomes, but little is known about their relative abundances in a given spliceosomal complex. Here we describe a novel two-dimensional (2D) electrophoresis method that allows separation of high-molecular-mass proteins without in-gel precipitation and thus without loss of protein. Using this system coupled with mass spectrometry, we identified 171 proteins altogether on 2D maps of stage-specific spliceosomal complexes. By staining with a fluorescent dye with a wide linear intensity range, we could quantitate and categorize proteins as present in high, moderate, or low abundance. Affinity-purified human B, B(act), and C complexes contained 69, 63, and 72 highly/moderately abundant proteins, respectively. The recruitment and release of spliceosomal proteins were followed based on their abundances in A, B, B(act), and C spliceosomal complexes. Staining with a phospho-specific dye revealed that approximately one-third of the proteins detected in human spliceosomal complexes by 2D gel analyses are phosphorylated. The 2D gel electrophoresis system described here allows for the first time an objective view of the relative abundances of proteins present in a particular spliceosomal complex and also sheds additional light on the spliceosome's compositional dynamics and the phosphorylation status of spliceosomal proteins at specific stages of splicing.
Collapse
|
38
|
Bessonov S, Anokhina M, Krasauskas A, Golas MM, Sander B, Will CL, Urlaub H, Stark H, Lührmann R. Characterization of purified human Bact spliceosomal complexes reveals compositional and morphological changes during spliceosome activation and first step catalysis. RNA (NEW YORK, N.Y.) 2010; 16:2384-403. [PMID: 20980672 PMCID: PMC2995400 DOI: 10.1261/rna.2456210] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
To better understand the compositional and structural dynamics of the human spliceosome during its activation, we set out to isolate spliceosomal complexes formed after precatalytic B but prior to catalytically active C complexes. By shortening the polypyrimidine tract of the PM5 pre-mRNA, which lacks a 3' splice site and 3' exon, we stalled spliceosome assembly at the activation stage. We subsequently affinity purified human B(act) complexes under the same conditions previously used to isolate B and C complexes, and analyzed their protein composition by mass spectrometry. A comparison of the protein composition of these complexes allowed a fine dissection of compositional changes during the B to B(act) and B(act) to C transitions, and comparisons with the Saccharomyces cerevisiae B(act) complex revealed that the compositional dynamics of the spliceosome during activation are largely conserved between lower and higher eukaryotes. Human SF3b155 and CDC5L were shown to be phosphorylated specifically during the B to B(act) and B(act) to C transition, respectively, suggesting these modifications function at these stages of splicing. The two-dimensional structure of the human B(act) complex was determined by electron microscopy, and a comparison with the B complex revealed that the morphology of the human spliceosome changes significantly during its activation. The overall architecture of the human and S. cerevisiae B(act) complex is similar, suggesting that many of the higher order interactions among spliceosomal components, as well as their dynamics, are also largely conserved.
Collapse
Affiliation(s)
- Sergey Bessonov
- Department of Cellular Biochemistry, MPI of Biophysical Chemistry, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|