1
|
Peng B, Wang Y, Zhang H. Mitonuclear Communication in Stem Cell Function. Cell Prolif 2025; 58:e13796. [PMID: 39726221 PMCID: PMC12099226 DOI: 10.1111/cpr.13796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/25/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024] Open
Abstract
Mitochondria perform multiple functions within the cell, including the production of ATP and a great deal of metabolic intermediates, while also contributing to the cellular stress response. The majority of mitochondrial proteins are encoded by nuclear genomes, highlighting the importance of mitonuclear communication for sustaining mitochondrial homeostasis and functional. As a crucial part of the intracellular signalling network, mitochondria can impact stem cell fate determinations. Considering the essential function of stem cells in tissue maintenance, regeneration and aging, it is important to understand how mitochondria influence stem cell fate. This review explores the significant roles of mitonuclear communication and mitochondrial proteostasis, highlighting their influence on stem cells. We also examine how mitonuclear interactions contribute to cellular homeostasis, stem cell therapies, and the potential for extending lifespan.
Collapse
Affiliation(s)
- Baozhou Peng
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- The Department of Histology and Embryology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Yaning Wang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- The Department of Histology and Embryology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Hongbo Zhang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- The Department of Histology and Embryology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
2
|
Azbarova AV, Knorre DA. Role of Mitochondrial DNA in Yeast Replicative Aging. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1997-2006. [PMID: 38462446 DOI: 10.1134/s0006297923120040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 03/12/2024]
Abstract
Despite the diverse manifestations of aging across different species, some common aging features and underlying mechanisms are shared. In particular, mitochondria appear to be among the most vulnerable systems in both metazoa and fungi. In this review, we discuss how mitochondrial dysfunction is related to replicative aging in the simplest eukaryotic model, the baker's yeast Saccharomyces cerevisiae. We discuss a chain of events that starts from asymmetric distribution of mitochondria between mother and daughter cells. With age, yeast mother cells start to experience a decrease in mitochondrial transmembrane potential and, consequently, a decrease in mitochondrial protein import efficiency. This induces mitochondrial protein precursors in the cytoplasm, the loss of mitochondrial DNA (mtDNA), and at the later stages - cell death. Interestingly, yeast strains without mtDNA can have either increased or decreased lifespan compared to the parental strains with mtDNA. The direction of the effect depends on their ability to activate compensatory mechanisms preventing or mitigating negative consequences of mitochondrial dysfunction. The central role of mitochondria in yeast aging and death indicates that it is one of the most complex and, therefore, deregulation-prone systems in eukaryotic cells.
Collapse
Affiliation(s)
- Aglaia V Azbarova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Dmitry A Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
3
|
Kramer NJ, Prakash G, Isaac RS, Choquet K, Soto I, Petrova B, Merens HE, Kanarek N, Churchman LS. Regulators of mitonuclear balance link mitochondrial metabolism to mtDNA expression. Nat Cell Biol 2023; 25:1575-1589. [PMID: 37770567 PMCID: PMC11370000 DOI: 10.1038/s41556-023-01244-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023]
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) complexes are assembled from proteins encoded by both nuclear and mitochondrial DNA. These dual-origin enzymes pose a complex gene regulatory challenge for cells requiring coordinated gene expression across organelles. To identify genes involved in dual-origin protein complex synthesis, we performed fluorescence-activated cell-sorting-based genome-wide screens analysing mutant cells with unbalanced levels of mitochondrial- and nuclear-encoded subunits of Complex IV. We identified genes involved in OXPHOS biogenesis, including two uncharacterized genes: PREPL and NME6. We found that PREPL specifically impacts Complex IV biogenesis by acting at the intersection of mitochondrial lipid metabolism and protein synthesis, whereas NME6, an uncharacterized nucleoside diphosphate kinase, controls OXPHOS biogenesis through multiple mechanisms reliant on its NDPK domain. Firstly, NME6 forms a complex with RCC1L, which together perform nucleoside diphosphate kinase activity to maintain local mitochondrial pyrimidine triphosphate levels essential for mitochondrial RNA abundance. Secondly, NME6 modulates the activity of mitoribosome regulatory complexes, altering mitoribosome assembly and mitochondrial RNA pseudouridylation. Taken together, we propose that NME6 acts as a link between compartmentalized mitochondrial metabolites and mitochondrial gene expression.
Collapse
Affiliation(s)
- Nicholas J Kramer
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Gyan Prakash
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - R Stefan Isaac
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Karine Choquet
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Iliana Soto
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Boryana Petrova
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hope E Merens
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Ciccarelli M, Masser AE, Kaimal JM, Planells J, Andréasson C. Genetic inactivation of essential HSF1 reveals an isolated transcriptional stress response selectively induced by protein misfolding. Mol Biol Cell 2023; 34:ar101. [PMID: 37467033 PMCID: PMC10551698 DOI: 10.1091/mbc.e23-05-0153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
Heat Shock Factor 1 (Hsf1) in yeast drives the basal transcription of key proteostasis factors and its activity is induced as part of the core heat shock response. Exploring Hsf1 specific functions has been challenging due to the essential nature of the HSF1 gene and the extensive overlap of target promoters with environmental stress response (ESR) transcription factors Msn2 and Msn4 (Msn2/4). In this study, we constructed a viable hsf1∆ strain by replacing the HSF1 open reading frame with genes that constitutively express Hsp40, Hsp70, and Hsp90 from Hsf1-independent promoters. Phenotypic analysis showed that the hsf1∆ strain grows slowly, is sensitive to heat as well as protein misfolding and accumulates protein aggregates. Transcriptome analysis revealed that the transcriptional response to protein misfolding induced by azetidine-2-carboxylic acid is fully dependent on Hsf1. In contrast, the hsf1∆ strain responded to heat shock through the ESR. Following HS, Hsf1 and Msn2/4 showed functional compensatory induction with stronger activation of the remaining stress pathway when the other branch was inactivated. Thus, we provide a long-overdue genetic test of the function of Hsf1 in yeast using the novel hsf1∆ construct. Our data highlight that the accumulation of misfolded proteins is uniquely sensed by Hsf1-Hsp70 chaperone titration inducing a highly selective transcriptional stress response.
Collapse
Affiliation(s)
- Michela Ciccarelli
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | - Anna E Masser
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | | | - Jordi Planells
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| |
Collapse
|
5
|
Reid K, Daniels EG, Vasam G, Kamble R, Janssens GE, Hu IM, Green AE, Houtkooper RH, Menzies KJ. Reducing mitochondrial ribosomal gene expression does not alter metabolic health or lifespan in mice. Sci Rep 2023; 13:8391. [PMID: 37225705 PMCID: PMC10209074 DOI: 10.1038/s41598-023-35196-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/14/2023] [Indexed: 05/26/2023] Open
Abstract
Maintaining mitochondrial function is critical to an improved healthspan and lifespan. Introducing mild stress by inhibiting mitochondrial translation invokes the mitochondrial unfolded protein response (UPRmt) and increases lifespan in several animal models. Notably, lower mitochondrial ribosomal protein (MRP) expression also correlates with increased lifespan in a reference population of mice. In this study, we tested whether partially reducing the gene expression of a critical MRP, Mrpl54, reduced mitochondrial DNA-encoded protein content, induced the UPRmt, and affected lifespan or metabolic health using germline heterozygous Mrpl54 mice. Despite reduced Mrpl54 expression in multiple organs and a reduction in mitochondrial-encoded protein expression in myoblasts, we identified few significant differences between male or female Mrpl54+/- and wild type mice in initial body composition, respiratory parameters, energy intake and expenditure, or ambulatory motion. We also observed no differences in glucose or insulin tolerance, treadmill endurance, cold tolerance, heart rate, or blood pressure. There were no differences in median life expectancy or maximum lifespan. Overall, we demonstrate that genetic manipulation of Mrpl54 expression reduces mitochondrial-encoded protein content but is not sufficient to improve healthspan in otherwise healthy and unstressed mice.
Collapse
Affiliation(s)
- Kim Reid
- Department of Biology and Ottawa Institute of Systems Biology, University of Ottawa, 30 Marie Curie Private, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology and the Éric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| | - Eileen G Daniels
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, The Netherlands
| | - Goutham Vasam
- Interdisciplinary School of Health Sciences, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Rashmi Kamble
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, The Netherlands
| | - Iman M Hu
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, The Netherlands
| | - Alexander E Green
- Interdisciplinary School of Health Sciences, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology and the Éric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands.
| | - Keir J Menzies
- Interdisciplinary School of Health Sciences, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology and the Éric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
6
|
Kramer NJ, Prakash G, Choquet K, Soto I, Petrova B, Merens HE, Kanarek N, Churchman LS. Genome-wide screens for mitonuclear co-regulators uncover links between compartmentalized metabolism and mitochondrial gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.11.528118. [PMID: 36798306 PMCID: PMC9934615 DOI: 10.1101/2023.02.11.528118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) complexes are assembled from proteins encoded by both nuclear and mitochondrial DNA. These dual-origin enzymes pose a complex gene regulatory challenge for cells, in which gene expression must be coordinated across organelles using distinct pools of ribosomes. How cells produce and maintain the accurate subunit stoichiometries for these OXPHOS complexes remains largely unknown. To identify genes involved in dual-origin protein complex synthesis, we performed FACS-based genome-wide screens analyzing mutant cells with unbalanced levels of mitochondrial- and nuclear-encoded subunits of cytochrome c oxidase (Complex IV). We identified novel genes involved in OXPHOS biogenesis, including two uncharacterized genes: PREPL and NME6 . We found that PREPL specifically regulates Complex IV biogenesis by interacting with mitochondrial protein synthesis machinery, while NME6, an uncharacterized nucleoside diphosphate kinase (NDPK), controls OXPHOS complex biogenesis through multiple mechanisms reliant on its NDPK domain. First, NME6 maintains local mitochondrial pyrimidine triphosphate levels essential for mitochondrial RNA abundance. Second, through stabilizing interactions with RCC1L, NME6 modulates the activity of mitoribosome regulatory complexes, leading to disruptions in mitoribosome assembly and mitochondrial RNA pseudouridylation. Taken together, we propose that NME6 acts as a link between compartmentalized mitochondrial metabolites and mitochondrial gene expression. Finally, we present these screens as a resource, providing a catalog of genes involved in mitonuclear gene regulation and OXPHOS biogenesis.
Collapse
|
7
|
Karbowski M, Oshima Y, Verhoeven N. Mitochondrial proteotoxicity: implications and ubiquitin-dependent quality control mechanisms. Cell Mol Life Sci 2022; 79:574. [PMID: 36308570 PMCID: PMC11803029 DOI: 10.1007/s00018-022-04604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/04/2022] [Accepted: 10/17/2022] [Indexed: 11/27/2022]
Abstract
Through their role in energy generation and regulation of several vital pathways, including apoptosis and inflammation, mitochondria are critical for the life of eukaryotic organisms. Mitochondrial dysfunction is a major problem implicated in the etiology of many pathologies, including neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), diabetes, cardiovascular diseases, and many others. Proteotoxic stress, here defined as a reduction in bioenergetic activity induced by the accumulation of aberrant proteins in the mitochondria, is likely to be implicated in disease-linked mitochondrial and cellular decline. Various quality control pathways, such as mitochondrial unfolded protein response (mtUPR), the ubiquitin (Ub)-dependent degradation of aberrant mitochondrial proteins, and mitochondria-specific autophagy (mitophagy), respond to proteotoxic stress and eliminate defective proteins or dysfunctional mitochondria. This work provides a concise review of mechanisms by which disease-linked aberrant proteins affect mitochondrial function and an overview of mitochondrial quality control pathways that counteract mitochondrial proteotoxicity. We focus on mitochondrial quality control mechanisms relying on the Ub-mediated protein degradation, such as mitochondria-specific autophagy and the mitochondrial arm of the Ub proteasome system (UPS). We highlight the importance of a widening perspective of how these pathways protect mitochondria from proteotoxic stress to better understand mitochondrial proteotoxicity in overlapping pathophysiological pathways. Implications of these mechanisms in disease development are also briefly summarized.
Collapse
Affiliation(s)
- Mariusz Karbowski
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 111 S. Penn St., Suite 104, Baltimore, MD, 21201, USA.
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Yumiko Oshima
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 111 S. Penn St., Suite 104, Baltimore, MD, 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicolas Verhoeven
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 111 S. Penn St., Suite 104, Baltimore, MD, 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Pogoda E, Tutaj H, Pirog A, Tomala K, Korona R. Overexpression of a single ORF can extend chronological lifespan in yeast if retrograde signaling and stress response are stimulated. Biogerontology 2021; 22:415-427. [PMID: 34052951 PMCID: PMC8266792 DOI: 10.1007/s10522-021-09924-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
Systematic collections of single-gene deletions have been invaluable in uncovering determinants of lifespan in yeast. Overexpression of a single gene does not have such a clear outcome as cancellation of its function but it can lead to a variety of imbalances, deregulations and compensations, and some of them could be important for longevity. We report an experiment in which a genome-wide collection of strains overexpressing a single gene was assayed for chronological lifespan (CLS). Only one group of proteins, those locating to the inner membrane and matrix of mitochondria, tended to extend CLS when abundantly overproduced. We selected two such strains—one overexpressing Qcr7 of the respiratory complex III, the other overexpressing Mrps28 of the small mitoribosomal subunit—and analyzed their transcriptomes. The uncovered shifts in RNA abundance in the two strains were nearly identical and highly suggestive. They implied a distortion in the co-translational assembly of respiratory complexes followed by retrograde signaling to the nucleus. The consequent reprogramming of the entire cellular metabolism towards the resistance to stress resulted in an enhanced ability to persist in a non-proliferating state. Our results show that surveillance of the inner mitochondrial membrane integrity is of outstanding importance for the cell. They also demonstrate that overexpression of single genes could be used effectively to elucidate the mitochondrion-nucleus crosstalk.
Collapse
Affiliation(s)
- Elzbieta Pogoda
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Hanna Tutaj
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Adrian Pirog
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Katarzyna Tomala
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Ryszard Korona
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland.
| |
Collapse
|
9
|
Oshima Y, Cartier E, Boyman L, Verhoeven N, Polster BM, Huang W, Kane M, Lederer WJ, Karbowski M. Parkin-independent mitophagy via Drp1-mediated outer membrane severing and inner membrane ubiquitination. J Cell Biol 2021; 220:211984. [PMID: 33851959 PMCID: PMC8050842 DOI: 10.1083/jcb.202006043] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 02/02/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Here, we report that acute reduction in mitochondrial translation fidelity (MTF) causes ubiquitination of the inner mitochondrial membrane (IMM) proteins, including TRAP1 and CPOX, which occurs selectively in mitochondria with a severed outer mitochondrial membrane (OMM). Ubiquitinated IMM recruits the autophagy machinery. Inhibiting autophagy leads to increased accumulation of mitochondria with severed OMM and ubiquitinated IMM. This process occurs downstream of the accumulation of cytochrome c/CPOX in a subset of mitochondria heterogeneously distributed throughout the cell (“mosaic distribution”). Formation of mosaic mitochondria, OMM severing, and IMM ubiquitination require active mitochondrial translation and mitochondrial fission, but not the proapoptotic proteins Bax and Bak. In contrast, in Parkin-overexpressing cells, MTF reduction does not lead to the severing of the OMM or IMM ubiquitination, but it does induce Drp1-independent ubiquitination of the OMM. Furthermore, high–cytochrome c/CPOX mitochondria are preferentially targeted by Parkin, indicating that in the context of reduced MTF, they are mitophagy intermediates regardless of Parkin expression. In sum, Parkin-deficient cells adapt to mitochondrial proteotoxicity through a Drp1-mediated mechanism that involves the severing of the OMM and autophagy targeting ubiquitinated IMM proteins.
Collapse
Affiliation(s)
- Yumiko Oshima
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| | - Etienne Cartier
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| | - Liron Boyman
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Nicolas Verhoeven
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| | - Brian M Polster
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD
| | - Maureen Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD
| | - W Jonathan Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Mariusz Karbowski
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
10
|
Mitochondrial control of cellular protein homeostasis. Biochem J 2021; 477:3033-3054. [PMID: 32845275 DOI: 10.1042/bcj20190654] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/20/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023]
Abstract
Mitochondria are involved in several vital functions of the eukaryotic cell. The majority of mitochondrial proteins are coded by nuclear DNA. Constant import of proteins from the cytosol is a prerequisite for the efficient functioning of the organelle. The protein import into mitochondria is mediated by diverse import pathways and is continuously under watch by quality control systems. However, it is often challenged by both internal and external factors, such as oxidative stress or energy shortage. The impaired protein import and biogenesis leads to the accumulation of mitochondrial precursor proteins in the cytosol and activates several stress response pathways. These defense mechanisms engage a network of processes involving transcription, translation, and protein clearance to restore cellular protein homeostasis. In this review, we provide a comprehensive analysis of various factors and processes contributing to mitochondrial stress caused by protein biogenesis failure and summarize the recovery mechanisms employed by the cell.
Collapse
|
11
|
Frankovsky J, Vozáriková V, Nosek J, Tomáška Ľ. Mitochondrial protein phosphorylation in yeast revisited. Mitochondrion 2021; 57:148-162. [PMID: 33412333 DOI: 10.1016/j.mito.2020.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022]
Abstract
Protein phosphorylation is one of the best-known post-translational modifications occurring in all domains of life. In eukaryotes, protein phosphorylation affects all cellular compartments including mitochondria. High-throughput techniques of mass spectrometry combined with cell fractionation and biochemical methods yielded thousands of phospho-sites on hundreds of mitochondrial proteins. We have compiled the information on mitochondrial protein kinases and phosphatases and their substrates in Saccharomyces cerevisiae and provide the current state-of-the-art overview of mitochondrial protein phosphorylation in this model eukaryote. Using several examples, we describe emerging features of the yeast mitochondrial phosphoproteome and present challenges lying ahead in this exciting field.
Collapse
Affiliation(s)
- Jan Frankovsky
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Veronika Vozáriková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia.
| |
Collapse
|
12
|
Seshadri SR, Banarjee C, Barros MH, Fontanesi F. The translational activator Sov1 coordinates mitochondrial gene expression with mitoribosome biogenesis. Nucleic Acids Res 2020; 48:6759-6774. [PMID: 32449921 PMCID: PMC7337963 DOI: 10.1093/nar/gkaa424] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
Mitoribosome biogenesis is an expensive metabolic process that is essential to maintain cellular respiratory capacity and requires the stoichiometric accumulation of rRNAs and proteins encoded in two distinct genomes. In yeast, the ribosomal protein Var1, alias uS3m, is mitochondrion-encoded. uS3m is a protein universally present in all ribosomes, where it forms part of the small subunit (SSU) mRNA entry channel and plays a pivotal role in ribosome loading onto the mRNA. However, despite its critical functional role, very little is known concerning VAR1 gene expression. Here, we demonstrate that the protein Sov1 is an in bona fide VAR1 mRNA translational activator and additionally interacts with newly synthesized Var1 polypeptide. Moreover, we show that Sov1 assists the late steps of mtSSU biogenesis involving the incorporation of Var1, an event necessary for uS14 and mS46 assembly. Notably, we have uncovered a translational regulatory mechanism by which Sov1 fine-tunes Var1 synthesis with its assembly into the mitoribosome.
Collapse
Affiliation(s)
- Suhas R Seshadri
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Chitra Banarjee
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mario H Barros
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
13
|
Bertgen L, Mühlhaus T, Herrmann JM. Clingy genes: Why were genes for ribosomal proteins retained in many mitochondrial genomes? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148275. [PMID: 32712152 DOI: 10.1016/j.bbabio.2020.148275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/14/2020] [Accepted: 07/19/2020] [Indexed: 11/18/2022]
Abstract
Why mitochondria still retain their own genome is a puzzle given the enormous effort to maintain a mitochondrial translation machinery. Most mitochondrially encoded proteins are membrane-embedded subunits of the respiratory chain. Their hydrophobicity presumably impedes their import into mitochondria. However, many mitochondrial genomes also encode protein subunits of the mitochondrial ribosome. These proteins lack transmembrane domains and hydrophobicity cannot explain why their genes remained in mitochondria. In this review, we provide an overview about mitochondrially encoded subunits of mitochondrial ribosomes of fungi, plants and protists. Moreover, we discuss and evaluate different hypotheses which were put forward to explain why (ribosomal) proteins remained mitochondrially encoded. It seems likely that the synthesis of ribosomal proteins in the mitochondrial matrix is used to regulate the assembly of the mitochondrial ribosome within mitochondria and to avoid problems that mitochondrial proteins might pose for cytosolic proteostasis and for the assembly of cytosolic ribosomes.
Collapse
Affiliation(s)
- Lea Bertgen
- Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, 67663 Kaiserslautern, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße 23, 67663 Kaiserslautern, Germany
| | - Johannes M Herrmann
- Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, 67663 Kaiserslautern, Germany.
| |
Collapse
|
14
|
Roger F, Picazo C, Reiter W, Libiad M, Asami C, Hanzén S, Gao C, Lagniel G, Welkenhuysen N, Labarre J, Nyström T, Grøtli M, Hartl M, Toledano MB, Molin M. Peroxiredoxin promotes longevity and H 2O 2-resistance in yeast through redox-modulation of protein kinase A. eLife 2020; 9:e60346. [PMID: 32662770 PMCID: PMC7392609 DOI: 10.7554/elife.60346] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
Peroxiredoxins are H2O2 scavenging enzymes that also carry out H2O2 signaling and chaperone functions. In yeast, the major cytosolic peroxiredoxin, Tsa1 is required for both promoting resistance to H2O2 and extending lifespan upon caloric restriction. We show here that Tsa1 effects both these functions not by scavenging H2O2, but by repressing the nutrient signaling Ras-cAMP-PKA pathway at the level of the protein kinase A (PKA) enzyme. Tsa1 stimulates sulfenylation of cysteines in the PKA catalytic subunit by H2O2 and a significant proportion of the catalytic subunits are glutathionylated on two cysteine residues. Redox modification of the conserved Cys243 inhibits the phosphorylation of a conserved Thr241 in the kinase activation loop and enzyme activity, and preventing Thr241 phosphorylation can overcome the H2O2 sensitivity of Tsa1-deficient cells. Results support a model of aging where nutrient signaling pathways constitute hubs integrating information from multiple aging-related conduits, including a peroxiredoxin-dependent response to H2O2.
Collapse
Affiliation(s)
- Friederike Roger
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Cecilia Picazo
- Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburgSweden
| | - Wolfgang Reiter
- Mass Spectrometry Facility, Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Vienna BioCenterViennaAustria
| | - Marouane Libiad
- Oxidative Stress and Cancer Laboratory, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)Gif sur YvetteFrance
| | - Chikako Asami
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Sarah Hanzén
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Chunxia Gao
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Gilles Lagniel
- Oxidative Stress and Cancer Laboratory, Integrative Biology and Molecular Genetics Unit (SBIGEM)CEA SaclayFrance
| | - Niek Welkenhuysen
- Department of Mathematical Sciences, Chalmers University of Technology and University of GothenburgGothenburgSweden
| | - Jean Labarre
- Oxidative Stress and Cancer Laboratory, Integrative Biology and Molecular Genetics Unit (SBIGEM)CEA SaclayFrance
| | - Thomas Nyström
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Markus Hartl
- Mass Spectrometry Facility, Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Vienna BioCenterViennaAustria
| | - Michel B Toledano
- Oxidative Stress and Cancer Laboratory, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)Gif sur YvetteFrance
| | - Mikael Molin
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
- Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburgSweden
| |
Collapse
|
15
|
Dahiya R, Mohammad T, Alajmi MF, Rehman MT, Hasan GM, Hussain A, Hassan MI. Insights into the Conserved Regulatory Mechanisms of Human and Yeast Aging. Biomolecules 2020; 10:E882. [PMID: 32526825 PMCID: PMC7355435 DOI: 10.3390/biom10060882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Aging represents a significant biological process having strong associations with cancer, diabetes, and neurodegenerative and cardiovascular disorders, which leads to progressive loss of cellular functions and viability. Astonishingly, age-related disorders share several genetic and molecular mechanisms with the normal aging process. Over the last three decades, budding yeast Saccharomyces cerevisiae has emerged as a powerful yet simple model organism for aging research. Genetic approaches using yeast RLS have led to the identification of hundreds of genes impacting lifespan in higher eukaryotes. Numerous interventions to extend yeast lifespan showed an analogous outcome in multi-cellular eukaryotes like fruit flies, nematodes, rodents, and humans. We collected and analyzed a multitude of observations from published literature and provide the contribution of yeast in the understanding of aging hallmarks most applicable to humans. Here, we discuss key pathways and molecular mechanisms that underpin the evolutionarily conserved aging process and summarize the current understanding and clinical applicability of its trajectories. Gathering critical information on aging biology would pave the way for future investigation targeted at the discovery of aging interventions.
Collapse
Affiliation(s)
- Rashmi Dahiya
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Mohamed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (M.T.R.); (A.H.)
| | - Md. Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (M.T.R.); (A.H.)
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (M.T.R.); (A.H.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| |
Collapse
|
16
|
Andréasson C, Ott M, Büttner S. Mitochondria orchestrate proteostatic and metabolic stress responses. EMBO Rep 2019; 20:e47865. [PMID: 31531937 PMCID: PMC6776902 DOI: 10.15252/embr.201947865] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/13/2019] [Accepted: 08/27/2019] [Indexed: 01/06/2023] Open
Abstract
The eukaryotic cell is morphologically and functionally organized as an interconnected network of organelles that responds to stress and aging. Organelles communicate via dedicated signal transduction pathways and the transfer of information in form of metabolites and energy levels. Recent data suggest that the communication between organellar proteostasis systems is a cornerstone of cellular stress responses in eukaryotic cells. Here, we discuss the integration of proteostasis and energy fluxes in the regulation of cellular stress and aging. We emphasize the molecular architecture of the regulatory transcriptional pathways that both sense and control metabolism and proteostasis. A special focus is placed on mechanistic insights gained from the model organism budding yeast in signaling from mitochondria to the nucleus and how this shapes cellular fitness.
Collapse
Affiliation(s)
- Claes Andréasson
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| | - Martin Ott
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | - Sabrina Büttner
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
| |
Collapse
|
17
|
Masser AE, Kang W, Roy J, Mohanakrishnan Kaimal J, Quintana-Cordero J, Friedländer MR, Andréasson C. Cytoplasmic protein misfolding titrates Hsp70 to activate nuclear Hsf1. eLife 2019; 8:47791. [PMID: 31552827 PMCID: PMC6779467 DOI: 10.7554/elife.47791] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022] Open
Abstract
Hsf1 is an ancient transcription factor that responds to protein folding stress by inducing the heat-shock response (HSR) that restore perturbed proteostasis. Hsp70 chaperones negatively regulate the activity of Hsf1 via stress-responsive mechanisms that are poorly understood. Here, we have reconstituted budding yeast Hsf1-Hsp70 activation complexes and find that surplus Hsp70 inhibits Hsf1 DNA-binding activity. Hsp70 binds Hsf1 via its canonical substrate binding domain and Hsp70 regulates Hsf1 DNA-binding activity. During heat shock, Hsp70 is out-titrated by misfolded proteins derived from ongoing translation in the cytosol. Pushing the boundaries of the regulatory system unveils a genetic hyperstress program that is triggered by proteostasis collapse and involves an enlarged Hsf1 regulon. The findings demonstrate how an apparently simple chaperone-titration mechanism produces diversified transcriptional output in response to distinct stress loads.
Collapse
Affiliation(s)
- Anna E Masser
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Wenjing Kang
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Joydeep Roy
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Jany Quintana-Cordero
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Marc R Friedländer
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
18
|
Cell organelles and yeast longevity: an intertwined regulation. Curr Genet 2019; 66:15-41. [PMID: 31535186 DOI: 10.1007/s00294-019-01035-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022]
Abstract
Organelles are dynamic structures of a eukaryotic cell that compartmentalize various essential functions and regulate optimum functioning. On the other hand, ageing is an inevitable phenomenon that leads to irreversible cellular damage and affects optimum functioning of cells. Recent research shows compelling evidence that connects organelle dysfunction to ageing-related diseases/disorders. Studies in several model systems including yeast have led to seminal contributions to the field of ageing in uncovering novel pathways, proteins and their functions, identification of pro- and anti-ageing factors and so on. In this review, we present a comprehensive overview of findings that highlight the role of organelles in ageing and ageing-associated functions/pathways in yeast.
Collapse
|
19
|
Muntané G, Farré X, Rodríguez JA, Pegueroles C, Hughes DA, de Magalhães JP, Gabaldón T, Navarro A. Biological Processes Modulating Longevity across Primates: A Phylogenetic Genome-Phenome Analysis. Mol Biol Evol 2019; 35:1990-2004. [PMID: 29788292 PMCID: PMC6063263 DOI: 10.1093/molbev/msy105] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aging is a complex process affecting different species and individuals in different ways. Comparing genetic variation across species with their aging phenotypes will help understanding the molecular basis of aging and longevity. Although most studies on aging have so far focused on short-lived model organisms, recent comparisons of genomic, transcriptomic, and metabolomic data across lineages with different lifespans are unveiling molecular signatures associated with longevity. Here, we examine the relationship between genomic variation and maximum lifespan across primate species. We used two different approaches. First, we searched for parallel amino-acid mutations that co-occur with increases in longevity across the primate linage. Twenty-five such amino-acid variants were identified, several of which have been previously reported by studies with different experimental setups and in different model organisms. The genes harboring these mutations are mainly enriched in functional categories such as wound healing, blood coagulation, and cardiovascular disorders. We demonstrate that these pathways are highly enriched for pleiotropic effects, as predicted by the antagonistic pleiotropy theory of aging. A second approach was focused on changes in rates of protein evolution across the primate phylogeny. Using the phylogenetic generalized least squares, we show that some genes exhibit strong correlations between their evolutionary rates and longevity-associated traits. These include genes in the Sphingosine 1-phosphate pathway, PI3K signaling, and the Thrombin/protease-activated receptor pathway, among other cardiovascular processes. Together, these results shed light into human senescence patterns and underscore the power of comparative genomics to identify pathways related to aging and longevity.
Collapse
Affiliation(s)
- Gerard Muntané
- Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.,Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, Biomedical Network Research Centre on Mental Health (CIBERSAM), Reus, Spain
| | - Xavier Farré
- Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Juan Antonio Rodríguez
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Cinta Pegueroles
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - David A Hughes
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom.,MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Arcadi Navarro
- Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
20
|
Guaragnella N, Coyne LP, Chen XJ, Giannattasio S. Mitochondria-cytosol-nucleus crosstalk: learning from Saccharomyces cerevisiae. FEMS Yeast Res 2019; 18:5066171. [PMID: 30165482 DOI: 10.1093/femsyr/foy088] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are key cell organelles with a prominent role in both energetic metabolism and the maintenance of cellular homeostasis. Since mitochondria harbor their own genome, which encodes a limited number of proteins critical for oxidative phosphorylation and protein translation, their function and biogenesis strictly depend upon nuclear control. The yeast Saccharomyces cerevisiae has been a unique model for understanding mitochondrial DNA organization and inheritance as well as for deciphering the process of assembly of mitochondrial components. In the last three decades, yeast also provided a powerful tool for unveiling the communication network that coordinates the functions of the nucleus, the cytosol and mitochondria. This crosstalk regulates how cells respond to extra- and intracellular changes either to maintain cellular homeostasis or to activate cell death. This review is focused on the key pathways that mediate nucleus-cytosol-mitochondria communications through both transcriptional regulation and proteostatic signaling. We aim to highlight yeast that likely continues to serve as a productive model organism for mitochondrial research in the years to come.
Collapse
Affiliation(s)
- Nicoletta Guaragnella
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Via Amendola 165/A, 70126 Bari, Italy
| | - Liam P Coyne
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Xin Jie Chen
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Sergio Giannattasio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
21
|
Soledad RB, Charles S, Samarjit D. The secret messages between mitochondria and nucleus in muscle cell biology. Arch Biochem Biophys 2019; 666:52-62. [PMID: 30935885 PMCID: PMC6538274 DOI: 10.1016/j.abb.2019.03.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/01/2019] [Accepted: 03/28/2019] [Indexed: 02/06/2023]
Abstract
Over two thousand proteins are found in the mitochondrial compartment but the mitochondrial genome codes for only 13 proteins. The majority of mitochondrial proteins are products of nuclear genes and are synthesized in the cytosol, then translocated into the mitochondria. Most of the subunits of the five respiratory chain complexes in the inner mitochondrial membrane, which generate a proton gradient across the membrane and produce ATP, are encoded by nuclear genes. Therefore, it is quite clear that import of nuclear-encoded proteins into the mitochondria is essential for mitochondrial function. Nuclear to mitochondrial communication is well studied. However, there is another arm to this communication, mitochondria to nucleus retrograde signaling. This plays an important role in the maintenance of cellular homeostasis, and is less well studied. Several transcription factors, including Sp1, SIRT3 and GSP2, are activated by altered mitochondrial function. These activated transcription factors then translocate to the nucleus. Based on the mitochondrially generated molecular signal, nuclear genes are targeted, which alters transcription of nuclear genes that code for mitochondrial proteins. This review article will mainly focus on this interactive and bi-directional communication between mitochondria and nucleus, and how this communication plays a significant role in muscle cell biology.
Collapse
Affiliation(s)
| | - Steenbergen Charles
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Das Samarjit
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
22
|
Muid KA, Kimyon Ö, Reza SH, Karakaya HC, Koc A. Characterization of long living yeast deletion mutants that lack mitochondrial metabolism genes DSS1, PPA2 and AFG3. Gene 2019; 706:172-180. [PMID: 31082499 DOI: 10.1016/j.gene.2019.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 04/15/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
Molecular mechanisms of aging and longevity are still mostly unknown. Mitochondria play central roles in cellular metabolism and aging. In this study, we identified three deletion mutants of mitochondrial metabolism genes (ppa2∆, dss1∆, and afg3∆) that live longer than wild-type cells. These long-lived cells harbored significantly decreased amount of mitochondrial DNA (mtDNA) and reactive oxygen species (ROS). Compared to the serpentine nature of wild-type mitochondria, a different dynamics and distribution pattern of mitochondria were observed in the mutants. Both young and old long-lived cells produced relatively low but adequate levels of ATP for cellular activities. The status of the retrograde signaling was checked by expression of CIT2 gene and found activated in long-lived mutants. The mutant cells were also profiled for their gene expression patterns, and genes that were differentially regulated were determined. All long-lived cells comprised similar pleiotropic phenotype regarding mitochondrial dynamics and functions. Thus, this study suggests that DSS1, PPA2, and AFG3 genes modulate the lifespan by altering the mitochondrial morphology and functions.
Collapse
Affiliation(s)
- K A Muid
- Izmir Institute of Technology, Department of Molecular Biology and Genetics, 35430 Urla, Izmir, Turkey
| | - Önder Kimyon
- Izmir Institute of Technology, Department of Molecular Biology and Genetics, 35430 Urla, Izmir, Turkey
| | - Shahadat Hasan Reza
- Izmir Institute of Technology, Department of Molecular Biology and Genetics, 35430 Urla, Izmir, Turkey
| | - Huseyin Caglar Karakaya
- Izmir Institute of Technology, Department of Molecular Biology and Genetics, 35430 Urla, Izmir, Turkey
| | - Ahmet Koc
- Izmir Institute of Technology, Department of Molecular Biology and Genetics, 35430 Urla, Izmir, Turkey; Inonu University, Medical School, Department of Medical Biology and Genetics, Battalgazi, Malatya, Turkey.
| |
Collapse
|
23
|
Franco LVR, Moda BS, Soares MAKM, Barros MH. Msc6p is required for mitochondrial translation initiation in the absence of formylated Met-tRNA fMet. FEBS J 2019; 286:1407-1419. [PMID: 30767393 DOI: 10.1111/febs.14785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/27/2018] [Accepted: 02/13/2019] [Indexed: 01/04/2023]
Abstract
Mitochondrial translation normally requires formylation of the initiator tRNA-met, a reaction catalyzed by the enzyme formyltransferase, Fmt1p and MTFMT in Saccharomyces cerevisiae and human mitochondria, respectively. Yeast fmt1 mutants devoid of Fmt1p, however, can synthesize all mitochondrial gene products by initiating translation with a non-formylated methionyl-tRNA. Yeast synthetic respiratory-deficient fmt1 mutants have uncovered several factors suggested to play a role in translation initiation with non-formylated methionyl-tRNA. Here, we present evidence that Msc6p, a member of the pentatricopeptide repeat (PPR) motif family, is another essential factor for mitochondrial translation in fmt1 mutants. The PPR motif is characteristic of RNA-binding proteins found in chloroplasts and plant and fungal mitochondria, and is generally involved in RNA stability and transport. Moreover, in the present study, we show that the respiratory deficiency of fmt1msc6 double mutants can be rescued by overexpression of the yeast mitochondrial initiation factor mIF-2, encoded by IFM1. The role of Msc6p in translational initiation is further supported by pull-down assays showing that it transiently interacts with mIF-2. Altogether, our data indicate that Msc6p is an important factor in mitochondrial translation with an auxiliary function related to the mIF-2-dependent formation of the initiation complex.
Collapse
Affiliation(s)
| | - Bruno S Moda
- Departamento de Microbiologia - Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| | - Maria A K M Soares
- Departamento de Microbiologia - Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| | - Mario H Barros
- Departamento de Microbiologia - Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| |
Collapse
|
24
|
Solis GM, Kardakaris R, Valentine ER, Bar-Peled L, Chen AL, Blewett MM, McCormick MA, Williamson JR, Kennedy B, Cravatt BF, Petrascheck M. Translation attenuation by minocycline enhances longevity and proteostasis in old post-stress-responsive organisms. eLife 2018; 7:40314. [PMID: 30479271 PMCID: PMC6257811 DOI: 10.7554/elife.40314] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022] Open
Abstract
Aging impairs the activation of stress signaling pathways (SSPs), preventing the induction of longevity mechanisms late in life. Here, we show that the antibiotic minocycline increases lifespan and reduces protein aggregation even in old, SSP-deficient Caenorhabditis elegans by targeting cytoplasmic ribosomes, preferentially attenuating translation of highly translated mRNAs. In contrast to most other longevity paradigms, minocycline inhibits rather than activates all major SSPs and extends lifespan in mutants deficient in the activation of SSPs, lysosomal or autophagic pathways. We propose that minocycline lowers the concentration of newly synthesized aggregation-prone proteins, resulting in a relative increase in protein-folding capacity without the necessity to induce protein-folding pathways. Our study suggests that in old individuals with incapacitated SSPs or autophagic pathways, pharmacological attenuation of cytoplasmic translation is a promising strategy to reduce protein aggregation. Altogether, it provides a geroprotecive mechanism for the many beneficial effects of tetracyclines in models of neurodegenerative disease. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Gregory M Solis
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States.,Department of Neuroscience, The Scripps Research Institute, La Jolla, United States
| | - Rozina Kardakaris
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
| | - Elizabeth R Valentine
- Department of Integrative Structural and Computational Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States.,Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States
| | - Liron Bar-Peled
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States
| | - Alice L Chen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States
| | - Megan M Blewett
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States
| | | | - James R Williamson
- Department of Integrative Structural and Computational Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States.,Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States
| | - Brian Kennedy
- The Buck Institute for Research on Aging, Novato, United States
| | - Benjamin F Cravatt
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States
| | - Michael Petrascheck
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States.,Department of Neuroscience, The Scripps Research Institute, La Jolla, United States
| |
Collapse
|
25
|
TGF-β and BMP signals regulate insect diapause through Smad1-POU-TFAM pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1239-1249. [DOI: 10.1016/j.bbamcr.2018.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 06/02/2018] [Accepted: 06/08/2018] [Indexed: 01/04/2023]
|
26
|
Leonov A, Arlia-Ciommo A, Bourque SD, Koupaki O, Kyryakov P, Dakik P, McAuley M, Medkour Y, Mohammad K, Di Maulo T, Titorenko VI. Specific changes in mitochondrial lipidome alter mitochondrial proteome and increase the geroprotective efficiency of lithocholic acid in chronologically aging yeast. Oncotarget 2018; 8:30672-30691. [PMID: 28410198 PMCID: PMC5458158 DOI: 10.18632/oncotarget.16766] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023] Open
Abstract
We have previously found that exogenously added lithocholic acid delays yeast chronological aging. We demonstrated that lithocholic acid enters the yeast cell, is sorted to mitochondria, resides in both mitochondrial membranes, changes the relative concentrations of different membrane phospholipids, triggers changes in the concentrations of many mitochondrial proteins, and alters some key aspects of mitochondrial functionality. We hypothesized that the lithocholic acid-driven changes in mitochondrial lipidome may have a causal role in the remodeling of mitochondrial proteome, which may in turn alter the functional state of mitochondria to create a mitochondrial pattern that delays yeast chronological aging. Here, we test this hypothesis by investigating how the ups1?, ups2? and psd1? mutations that eliminate enzymes involved in mitochondrial phospholipid metabolism influence the mitochondrial lipidome. We also assessed how these mutations affect the mitochondrial proteome, influence mitochondrial functionality and impinge on the efficiency of aging delay by lithocholic acid. Our findings provide evidence that 1) lithocholic acid initially creates a distinct pro-longevity pattern of mitochondrial lipidome by proportionally decreasing phosphatidylethanolamine and cardiolipin concentrations to maintain equimolar concentrations of these phospholipids, and by increasing phosphatidic acid concentration; 2) this pattern of mitochondrial lipidome allows to establish a specific, aging-delaying pattern of mitochondrial proteome; and 3) this pattern of mitochondrial proteome plays an essential role in creating a distinctive, geroprotective pattern of mitochondrial functionality.
Collapse
Affiliation(s)
- Anna Leonov
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | - Simon D Bourque
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Olivia Koupaki
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Pavlo Kyryakov
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Paméla Dakik
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Mélissa McAuley
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Younes Medkour
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Karamat Mohammad
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Tamara Di Maulo
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
27
|
Derbikova KS, Levitsky SA, Chicherin IV, Vinogradova EN, Kamenski PA. Activation of Yeast Mitochondrial Translation: Who Is in Charge? BIOCHEMISTRY (MOSCOW) 2018; 83:87-97. [DOI: 10.1134/s0006297918020013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
|
29
|
Silva J, Aivio S, Knobel PA, Bailey LJ, Casali A, Vinaixa M, Garcia-Cao I, Coyaud É, Jourdain AA, Pérez-Ferreros P, Rojas AM, Antolin-Fontes A, Samino-Gené S, Raught B, González-Reyes A, Ribas de Pouplana L, Doherty AJ, Yanes O, Stracker TH. EXD2 governs germ stem cell homeostasis and lifespan by promoting mitoribosome integrity and translation. Nat Cell Biol 2018; 20:162-174. [PMID: 29335528 DOI: 10.1038/s41556-017-0016-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 11/27/2017] [Indexed: 02/08/2023]
Abstract
Mitochondria are subcellular organelles that are critical for meeting the bioenergetic and biosynthetic needs of the cell. Mitochondrial function relies on genes and RNA species encoded both in the nucleus and mitochondria, and on their coordinated translation, import and respiratory complex assembly. Here, we characterize EXD2 (exonuclease 3'-5' domain-containing 2), a nuclear-encoded gene, and show that it is targeted to the mitochondria and prevents the aberrant association of messenger RNAs with the mitochondrial ribosome. Loss of EXD2 results in defective mitochondrial translation, impaired respiration, reduced ATP production, increased reactive oxygen species and widespread metabolic abnormalities. Depletion of the Drosophila melanogaster EXD2 orthologue (CG6744) causes developmental delays and premature female germline stem cell attrition, reduced fecundity and a dramatic extension of lifespan that is reversed with an antioxidant diet. Our results define a conserved role for EXD2 in mitochondrial translation that influences development and ageing.
Collapse
Affiliation(s)
- Joana Silva
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Suvi Aivio
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Philip A Knobel
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Department for Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Laura J Bailey
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Andreu Casali
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Maria Vinaixa
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, Tarragona, Spain.,Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Isabel Garcia-Cao
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Étienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Alexis A Jourdain
- Department of Molecular Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA, USA.,Department of Systems Biology, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Pablo Pérez-Ferreros
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,EMBL Australia, University of New South Wales, Lowy Cancer Research Center, Single Molecule Science Node, Sydney and Arc Center of Excellence in Advance Molecular Imaging, Sydney, New South Wales, Australia
| | - Ana M Rojas
- Computational Biology and Bioinformatics Group, Institute of Biomedicine of Seville (IBIS/CSIC/US/JA), Campus Hospital Universitario Virgen del Rocio, Seville, Spain
| | - Albert Antolin-Fontes
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Sara Samino-Gené
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, Tarragona, Spain.,Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Acaimo González-Reyes
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Seville, Spain
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Aidan J Doherty
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Oscar Yanes
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, Tarragona, Spain.,Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| |
Collapse
|
30
|
Jazwinski SM, Jiang JC, Kim S. Adaptation to metabolic dysfunction during aging: Making the best of a bad situation. Exp Gerontol 2017; 107:87-90. [PMID: 28760705 DOI: 10.1016/j.exger.2017.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/17/2017] [Accepted: 07/23/2017] [Indexed: 10/19/2022]
Abstract
Mitochondria play a central role in energy metabolism in the process of oxidative phosphorylation. As importantly, they are key in several anabolic processes, including amino acid biosynthesis, nucleotide biosynthesis, heme biosynthesis, and the formation of iron‑sulfur clusters. Mitochondria are also engaged in waste removal in the urea cycle. Their activity can lead to the formation of reactive oxygen species which have damaging effects in the cell. These organelles are dynamic, undergoing cycles of fission and fusion which can be coupled to their removal by mitophagy. In addition to these widely recognized processes, mitochondria communicate with other subcellular compartments. Various components of mitochondrial complexes are encoded by either the nuclear or the mitochondrial genome necessitating coordination between these two organelles. This article reviews another form of communication between the mitochondria and the nucleus, in which the dysfunction of the former triggers changes in the expression of nuclear genes to compensate for it. The most extensively studied of these signaling pathways is the retrograde response whose effectors and downstream targets have been characterized. This response extends yeast replicative lifespan by adapting the organism to the mitochondrial dysfunction. Similar responses have been found in several other organisms, including mammals. Declining health and function during human aging incurs energetic costs. This compensation plays out differently in males and females, and variation in nuclear genes whose products affect mitochondrial function influences the outcome. Thus, the theme of mitochondria-nucleus communication as an adaptive response during aging appears very widespread.
Collapse
Affiliation(s)
- S Michal Jazwinski
- Tulane Center for Aging, Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA.
| | - James C Jiang
- Tulane Center for Aging, Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Sangkyu Kim
- Tulane Center for Aging, Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
31
|
Gottschling DE, Nyström T. The Upsides and Downsides of Organelle Interconnectivity. Cell 2017; 169:24-34. [PMID: 28340346 DOI: 10.1016/j.cell.2017.02.030] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/13/2017] [Accepted: 02/21/2017] [Indexed: 12/31/2022]
Abstract
Interconnectivity and feedback control are hallmarks of biological systems. This includes communication between organelles, which allows them to function and adapt to changing cellular environments. While the specific mechanisms for all communications remain opaque, unraveling the wiring of organelle networks is critical to understand how biological systems are built and why they might collapse, as occurs in aging. A comprehensive understanding of all the routes involved in inter-organelle communication is still lacking, but important themes are beginning to emerge, primarily in budding yeast. These routes are reviewed here in the context of sub-system proteostasis and complex adaptive systems theory.
Collapse
Affiliation(s)
| | - Thomas Nyström
- Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden.
| |
Collapse
|
32
|
Longhi R, Almeida RF, Pettenuzzo LF, Souza DG, Machado L, Quincozes-Santos A, Souza DO. Effect of a trans fatty acid-enriched diet on mitochondrial, inflammatory, and oxidative stress parameters in the cortex and hippocampus of Wistar rats. Eur J Nutr 2017; 57:1913-1924. [PMID: 28567576 DOI: 10.1007/s00394-017-1474-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 05/19/2017] [Indexed: 01/22/2023]
Abstract
PURPOSE Previously showed that dietary trans fatty acids (TFAs) may cause systemic inflammation and affect the central nervous system (CNS) in Wistar rats by increased levels of cytokines in the cerebrospinal fluid (CSF) and serum (Longhi et al. Eur J Nutr 56(3):1003-1016, 1). Here, we aimed to clarifying the impact of diets with different TFA concentrations on cerebral tissue, focusing on hippocampus and cortex and behavioral performance. METHODS Wistar rats were fed either a normolipidic or a hyperlipidic diet for 90 days; diets had the same ingredients except for fat compositions, concentrations, and calories. We used lard in the cis fatty acid (CFA) group and PHSO in the TFA group. The intervention groups were as follows: (1) low lard (LL), (2) high lard (HL), (3) low partially hydrogenated soybean oil (LPHSO), and (4) high partially hydrogenated soybean oil (HPHSO). Mitochondrial parameters, tumor necrosis factor alpha (TNF-α), 2'7'-dichlorofluorescein (DCFH) levels in brain tissue, and open field task were analyzed. RESULTS A worse brain tissue response was associated with oxidative stress in cortex and hippocampus as well as impaired inflammatory and mitochondrial parameters at both PHSO concentrations and there were alterations in the behavioral performance. In many analyses, there were no significant differences between the LPHSO and HPHSO diets. CONCLUSIONS Partially hydrogenated soybean oil impaired cortical mitochondrial parameters and altered inflammatory and oxidative stress responses, and the hyperlipidic treatment caused locomotor and exploratory effects, but no differences on weight gain in all treatments. These findings suggest that quality is more important than the quantity of fat consumed in terms of CFA and TFA diets.
Collapse
Affiliation(s)
- Rafael Longhi
- Department of Biochemistry, Postgraduate Program in Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - Roberto Farina Almeida
- Department of Biochemistry, Postgraduate Program in Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Leticia Ferreira Pettenuzzo
- Department of Biochemistry, Postgraduate Program in Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Débora Guerini Souza
- Department of Biochemistry, Postgraduate Program in Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Letiane Machado
- Department of Biochemistry, Postgraduate Program in Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - André Quincozes-Santos
- Department of Biochemistry, Postgraduate Program in Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Diogo Onofre Souza
- Department of Biochemistry, Postgraduate Program in Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
33
|
Zolotukhin PV, Belanova AA, Prazdnova EV, Mazanko MS, Batiushin MM, Chmyhalo VK, Chistyakov VA. Mitochondria as a Signaling Hub and Target for Phenoptosis Shutdown. BIOCHEMISTRY (MOSCOW) 2017; 81:329-37. [PMID: 27293090 DOI: 10.1134/s0006297916040039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mitochondria have long been studied as the main energy source and one of the most important generators of reactive oxygen species in the eukaryotic cell. Yet, new data suggest mitochondria serve as a powerful cellular regulator, pathway trigger, and signal hub. Some of these crucial mitochondrial functions appear to be associated with RNP-granules. Deep and versatile involvement of mitochondria in general cellular regulation may be the legacy of parasitic behavior of the ancestors of mitochondria in the host cells. In this regard, we also discuss here the perspectives of using mitochondria-targeted compounds for systemic correction of phenoptotic shifts.
Collapse
Affiliation(s)
- P V Zolotukhin
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, 344090, Russia.
| | | | | | | | | | | | | |
Collapse
|
34
|
Mitochondrial translation and cellular stress response. Cell Tissue Res 2016; 367:21-31. [DOI: 10.1007/s00441-016-2460-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/20/2016] [Indexed: 01/08/2023]
|
35
|
Eisenberg-Bord M, Schuldiner M. Ground control to major TOM: mitochondria-nucleus communication. FEBS J 2016; 284:196-210. [PMID: 27283924 DOI: 10.1111/febs.13778] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/23/2016] [Accepted: 06/08/2016] [Indexed: 01/13/2023]
Abstract
Mitochondria have crucial functions in the cell, including ATP generation, iron-sulfur cluster biogenesis, nucleotide biosynthesis, and amino acid metabolism. All of these functions require tight regulation on mitochondrial activity and homeostasis. As mitochondria biogenesis is controlled by the nucleus and almost all mitochondrial proteins are encoded by nuclear genes, a tight communication network between mitochondria and the nucleus has evolved, which includes signaling cascades, proteins which are dual-localized to the two compartments, and sensing of mitochondrial products by nuclear proteins. All of these enable a crosstalk between mitochondria and the nucleus that allows the 'ground control' to get information on mitochondria's status. Such information facilitates the creation of a cellular balance of mitochondrial status with energetic needs. This communication also allows a transcriptional response in case mitochondrial function is impaired aimed to restore mitochondrial homeostasis. As mitochondrial dysfunction is related to a growing number of genetic diseases as well as neurodegenerative conditions and aging, elucidating the mechanisms governing the mitochondrial/nuclear communication should progress a better understanding of mitochondrial dysfunctions.
Collapse
Affiliation(s)
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
36
|
Quirós PM, Mottis A, Auwerx J. Mitonuclear communication in homeostasis and stress. Nat Rev Mol Cell Biol 2016; 17:213-26. [PMID: 26956194 DOI: 10.1038/nrm.2016.23] [Citation(s) in RCA: 533] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria participate in crucial cellular processes such as energy harvesting and intermediate metabolism. Although mitochondria possess their own genome--a vestige of their bacterial origins and endosymbiotic evolution--most mitochondrial proteins are encoded in the nucleus. The expression of the mitochondrial proteome hence requires tight coordination between the two genomes to adapt mitochondrial function to the ever-changing cellular milieu. In this Review, we focus on the pathways that coordinate the communication between mitochondria and the nucleus during homeostasis and mitochondrial stress. These pathways include nucleus-to-mitochondria (anterograde) and mitochondria-to-nucleus (retrograde) communication, mitonuclear feedback signalling and proteostasis regulation, the integrated stress response and non-cell-autonomous communication. We discuss how mitonuclear communication safeguards cellular and organismal fitness and regulates lifespan.
Collapse
Affiliation(s)
- Pedro M Quirós
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Adrienne Mottis
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
37
|
Germain D. Sirtuins and the Estrogen Receptor as Regulators of the Mammalian Mitochondrial UPR in Cancer and Aging. Adv Cancer Res 2016; 130:211-56. [PMID: 27037754 DOI: 10.1016/bs.acr.2016.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
By being both the source of ATP and the mediator of apoptosis, the mitochondria are key regulators of cellular life and death. Not surprisingly alterations in the biology of the mitochondria have implications in a wide array of diseases including cancer and age-related diseases such as neurodegeneration. To protect the mitochondria against damage the mitochondrial unfolded protein response (UPR(mt)) orchestrates several pathways, including the protein quality controls, the antioxidant machinery, oxidative phosphorylation, mitophagy, and mitochondrial biogenesis. While several reports have implicated an array of transcription factors in the UPR(mt), most of the focus has been on studies of Caenorhabditis elegans, which led to the identification of ATFS-1, for which the mammalian homolog remains unknown. Meanwhile, there are studies which link the UPR(mt) to sirtuins and transcription factors of the Foxo family in both C. elegans and mammalian cells but those have been largely overlooked. This review aims at emphasizing the potential importance of these studies by building on the large body of literature supporting the key role of the sirtuins in the maintenance of the integrity of the mitochondria in both cancer and aging. Further, the estrogen receptor alpha (ERα) and beta (ERβ) are known to confer protection against mitochondrial stress, and at least ERα has been linked to the UPR(mt). Considering the difference in gender longevity, this chapter also includes a discussion of the link between the ERα and ERβ and the mitochondria in cancer and aging.
Collapse
Affiliation(s)
- D Germain
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
38
|
McCormick MA, Delaney JR, Tsuchiya M, Tsuchiyama S, Shemorry A, Sim S, Chou ACZ, Ahmed U, Carr D, Murakami CJ, Schleit J, Sutphin GL, Wasko BM, Bennett CF, Wang AM, Olsen B, Beyer RP, Bammler TK, Prunkard D, Johnson SC, Pennypacker JK, An E, Anies A, Castanza AS, Choi E, Dang N, Enerio S, Fletcher M, Fox L, Goswami S, Higgins SA, Holmberg MA, Hu D, Hui J, Jelic M, Jeong KS, Johnston E, Kerr EO, Kim J, Kim D, Kirkland K, Klum S, Kotireddy S, Liao E, Lim M, Lin MS, Lo WC, Lockshon D, Miller HA, Moller RM, Muller B, Oakes J, Pak DN, Peng ZJ, Pham KM, Pollard TG, Pradeep P, Pruett D, Rai D, Robison B, Rodriguez AA, Ros B, Sage M, Singh MK, Smith ED, Snead K, Solanky A, Spector BL, Steffen KK, Tchao BN, Ting MK, Vander Wende H, Wang D, Welton KL, Westman EA, Brem RB, Liu XG, Suh Y, Zhou Z, Kaeberlein M, Kennedy BK. A Comprehensive Analysis of Replicative Lifespan in 4,698 Single-Gene Deletion Strains Uncovers Conserved Mechanisms of Aging. Cell Metab 2015; 22:895-906. [PMID: 26456335 PMCID: PMC4862740 DOI: 10.1016/j.cmet.2015.09.008] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/31/2015] [Accepted: 09/08/2015] [Indexed: 02/05/2023]
Abstract
Many genes that affect replicative lifespan (RLS) in the budding yeast Saccharomyces cerevisiae also affect aging in other organisms such as C. elegans and M. musculus. We performed a systematic analysis of yeast RLS in a set of 4,698 viable single-gene deletion strains. Multiple functional gene clusters were identified, and full genome-to-genome comparison demonstrated a significant conservation in longevity pathways between yeast and C. elegans. Among the mechanisms of aging identified, deletion of tRNA exporter LOS1 robustly extended lifespan. Dietary restriction (DR) and inhibition of mechanistic Target of Rapamycin (mTOR) exclude Los1 from the nucleus in a Rad53-dependent manner. Moreover, lifespan extension from deletion of LOS1 is nonadditive with DR or mTOR inhibition, and results in Gcn4 transcription factor activation. Thus, the DNA damage response and mTOR converge on Los1-mediated nuclear tRNA export to regulate Gcn4 activity and aging.
Collapse
Affiliation(s)
- Mark A McCormick
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Joe R Delaney
- Department of Pathology, University of Washington, Seattle, WA 98195, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Mitsuhiro Tsuchiya
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Scott Tsuchiyama
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Anna Shemorry
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Sylvia Sim
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Umema Ahmed
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Daniel Carr
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Jennifer Schleit
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - George L Sutphin
- Department of Pathology, University of Washington, Seattle, WA 98195, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Brian M Wasko
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Christopher F Bennett
- Department of Pathology, University of Washington, Seattle, WA 98195, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Adrienne M Wang
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Brady Olsen
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Richard P Beyer
- Department of Occupational and Environmental Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Theodor K Bammler
- Department of Occupational and Environmental Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Donna Prunkard
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Simon C Johnson
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Elroy An
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Arieanna Anies
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Anthony S Castanza
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Eunice Choi
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Nick Dang
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Shiena Enerio
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Marissa Fletcher
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Lindsay Fox
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Sarani Goswami
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Sean A Higgins
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Molly A Holmberg
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Di Hu
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Jessica Hui
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Monika Jelic
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Ki-Soo Jeong
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Elijah Johnston
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Emily O Kerr
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jin Kim
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Diana Kim
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Katie Kirkland
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Shannon Klum
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Soumya Kotireddy
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Eric Liao
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Michael Lim
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Michael S Lin
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Winston C Lo
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Dan Lockshon
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Hillary A Miller
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Richard M Moller
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Brian Muller
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Jonathan Oakes
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Diana N Pak
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Zhao Jun Peng
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Kim M Pham
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Tom G Pollard
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Prarthana Pradeep
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Dillon Pruett
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Dilreet Rai
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Brett Robison
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Ariana A Rodriguez
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Bopharoth Ros
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Michael Sage
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Manpreet K Singh
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Erica D Smith
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Katie Snead
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Amrita Solanky
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Benjamin L Spector
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Kristan K Steffen
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Bie Nga Tchao
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Marc K Ting
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Helen Vander Wende
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Dennis Wang
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - K Linnea Welton
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Eric A Westman
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Rachel B Brem
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Xin-Guang Liu
- Aging Research Institute, Guangdong Medical College, Dongguan 523808, Guangdong, P.R. China
| | - Yousin Suh
- Aging Research Institute, Guangdong Medical College, Dongguan 523808, Guangdong, P.R. China; Department of Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Zhongjun Zhou
- Department of Biochemistry, University of Hong Kong, Hong Kong
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| | - Brian K Kennedy
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
39
|
Mitochondrial Retrograde Signaling: Triggers, Pathways, and Outcomes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:482582. [PMID: 26583058 PMCID: PMC4637108 DOI: 10.1155/2015/482582] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/08/2015] [Accepted: 05/13/2015] [Indexed: 12/22/2022]
Abstract
Mitochondria are essential organelles for eukaryotic homeostasis. Although these organelles possess their own DNA, the vast majority (>99%) of mitochondrial proteins are encoded in the nucleus. This situation makes systems that allow the communication between mitochondria and the nucleus a requirement not only to coordinate mitochondrial protein synthesis during biogenesis but also to communicate eventual mitochondrial malfunctions, triggering compensatory responses in the nucleus. Mitochondria-to-nucleus retrograde signaling has been described in various organisms, albeit with differences in effector pathways, molecules, and outcomes, as discussed in this review.
Collapse
|
40
|
Arlia-Ciommo A, Piano A, Leonov A, Svistkova V, Titorenko VI. Quasi-programmed aging of budding yeast: a trade-off between programmed processes of cell proliferation, differentiation, stress response, survival and death defines yeast lifespan. Cell Cycle 2015; 13:3336-49. [PMID: 25485579 PMCID: PMC4614525 DOI: 10.4161/15384101.2014.965063] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent findings suggest that evolutionarily distant organisms share the key features of the aging process and exhibit similar mechanisms of its modulation by certain genetic, dietary and pharmacological interventions. The scope of this review is to analyze mechanisms that in the yeast Saccharomyces cerevisiae underlie: (1) the replicative and chronological modes of aging; (2) the convergence of these 2 modes of aging into a single aging process; (3) a programmed differentiation of aging cell communities in liquid media and on solid surfaces; and (4) longevity-defining responses of cells to some chemical compounds released to an ecosystem by other organisms populating it. Based on such analysis, we conclude that all these mechanisms are programs for upholding the long-term survival of the entire yeast population inhabiting an ecological niche; however, none of these mechanisms is a ʺprogram of agingʺ - i.e., a program for progressing through consecutive steps of the aging process.
Collapse
Key Words
- D, diauxic growth phase
- ERCs, extrachromosomal rDNA circles
- IPOD, insoluble protein deposit
- JUNQ, juxtanuclear quality control compartment
- L, logarithmic growth phase
- MBS, the mitochondrial back-signaling pathway
- MTC, the mitochondrial translation control signaling pathway
- NPCs, nuclear pore complexes
- NQ, non-quiescent cells
- PD, post-diauxic growth phase
- Q, quiescent cells
- ROS, reactive oxygen species
- RTG, the mitochondrial retrograde signaling pathway
- Ras/cAMP/PKA, the Ras family GTPase/cAMP/protein kinase A signaling pathway
- ST, stationary growth phase
- TOR/Sch9, the target of rapamycin/serine-threonine protein kinase Sch9 signaling pathway
- UPRER, the unfolded protein response pathway in the endoplasmic reticulum
- UPRmt, the unfolded protein response pathway in mitochondria
- cell growth and proliferation
- cell survival
- cellular aging
- ecosystems
- evolution
- longevity
- programmed cell death
- yeast
- yeast colony
- yeast replicative and chronological aging
Collapse
|
41
|
Ruetenik A, Barrientos A. Dietary restriction, mitochondrial function and aging: from yeast to humans. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1434-47. [PMID: 25979234 DOI: 10.1016/j.bbabio.2015.05.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 12/20/2022]
Abstract
Dietary restriction (DR) attenuates many detrimental effects of aging and consequently promotes health and increases longevity across organisms. While over the last 15 years extensive research has been devoted towards understanding the biology of aging, the precise mechanistic aspects of DR are yet to be settled. Abundant experimental evidence indicates that the DR effect on stimulating health impinges several metabolic and stress-resistance pathways. Downstream effects of these pathways include a reduction in cellular damage induced by oxidative stress, enhanced efficiency of mitochondrial functions and maintenance of mitochondrial dynamics and quality control, thereby attenuating age-related declines in mitochondrial function. However, the literature also accumulates conflicting evidence regarding how DR ameliorates mitochondrial performance and whether that is enough to slow age-dependent cellular and organismal deterioration. Here, we will summarize the current knowledge about how and to which extent the influence of different DR regimes on mitochondrial biogenesis and function contribute to postpone the detrimental effects of aging on health-span and lifespan. This article is part of a Special Issue entitled: Mitochondrial Dysfunction in Aging.
Collapse
Affiliation(s)
| | - Antoni Barrientos
- Neuroscience Graduate Program; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
42
|
Mechanisms by which different functional states of mitochondria define yeast longevity. Int J Mol Sci 2015; 16:5528-54. [PMID: 25768339 PMCID: PMC4394491 DOI: 10.3390/ijms16035528] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial functionality is vital to organismal physiology. A body of evidence supports the notion that an age-related progressive decline in mitochondrial function is a hallmark of cellular and organismal aging in evolutionarily distant eukaryotes. Studies of the baker’s yeast Saccharomyces cerevisiae, a unicellular eukaryote, have led to discoveries of genes, signaling pathways and chemical compounds that modulate longevity-defining cellular processes in eukaryotic organisms across phyla. These studies have provided deep insights into mechanistic links that exist between different traits of mitochondrial functionality and cellular aging. The molecular mechanisms underlying the essential role of mitochondria as signaling organelles in yeast aging have begun to emerge. In this review, we discuss recent progress in understanding mechanisms by which different functional states of mitochondria define yeast longevity, outline the most important unanswered questions and suggest directions for future research.
Collapse
|
43
|
Wei YN, Hu HY, Xie GC, Fu N, Ning ZB, Zeng R, Khaitovich P. Transcript and protein expression decoupling reveals RNA binding proteins and miRNAs as potential modulators of human aging. Genome Biol 2015; 16:41. [PMID: 25853883 PMCID: PMC4375924 DOI: 10.1186/s13059-015-0608-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 02/09/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In studies of development and aging, the expression of many genes has been shown to undergo drastic changes at mRNA and protein levels. The connection between mRNA and protein expression level changes, as well as the role of posttranscriptional regulation in controlling expression level changes in postnatal development and aging, remains largely unexplored. RESULTS Here, we survey mRNA and protein expression changes in the prefrontal cortex of humans and rhesus macaques over developmental and aging intervals of both species' lifespans. We find substantial decoupling of mRNA and protein expression levels in aging, but not in development. Genes showing increased mRNA/protein disparity in primate brain aging form expression patterns conserved between humans and macaques and are enriched in specific functions involving mammalian target of rapamycin (mTOR) signaling, mitochondrial function and neurodegeneration. Mechanistically, aging-dependent mRNA/protein expression decoupling could be linked to a specific set of RNA binding proteins and, to a lesser extent, to specific microRNAs. CONCLUSIONS Increased decoupling of mRNA and protein expression profiles observed in human and macaque brain aging results in specific co-expression profiles composed of genes with shared functions and shared regulatory signals linked to specific posttranscriptional regulators. Genes targeted and predicted to be targeted by the aging-dependent posttranscriptional regulation are associated with biological processes known to play important roles in aging and lifespan extension. These results indicate the potential importance of posttranscriptional regulation in modulating aging-dependent changes in humans and other species.
Collapse
|
44
|
Abstract
During yeast cytokinesis an aged mother cell gives rise to an immaculate daughter cell. A new study now demonstrates that this rejuvenation encompasses a novel Sir2- and actin-cable-dependent filtering process that prevents feeble mitochondria from entering the daughter cell.
Collapse
Affiliation(s)
- Thomas Nyström
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, S-413 90 Göteborg, Sweden.
| |
Collapse
|
45
|
Hill S, Van Remmen H. Mitochondrial stress signaling in longevity: a new role for mitochondrial function in aging. Redox Biol 2014; 2:936-44. [PMID: 25180170 PMCID: PMC4143811 DOI: 10.1016/j.redox.2014.07.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 07/18/2014] [Indexed: 11/29/2022] Open
Abstract
Mitochondria are principal regulators of cellular function and metabolism through production of ATP for energy homeostasis, maintenance of calcium homeostasis, regulation of apoptosis and fatty acid oxidation to provide acetyl CoA for fueling the electron transport chain. In addition, mitochondria play a key role in cell signaling through production of reactive oxygen species that modulate redox signaling. Recent findings support an additional mechanism for control of cellular and tissue function by mitochondria through complex mitochondrial-nuclear communication mechanisms and potentially through extracellular release of mitochondrial components that can act as signaling molecules. The activation of stress responses including mitophagy, mitochondrial number, fission and fusion events, and the mitochondrial unfolded protein response (UPR(MT)) requires mitochondrial-nuclear communication for the transcriptional activation of nuclear genes involved in mitochondrial quality control and metabolism. The induction of these signaling pathways is a shared feature in long-lived organisms spanning from yeast to mice. As a result, the role of mitochondrial stress signaling in longevity has been expansively studied. Current and exciting studies provide evidence that mitochondria can also signal among tissues to up-regulate cytoprotective activities to promote healthy aging. Alternatively, mitochondria release signals to modulate innate immunity and systemic inflammatory responses and could consequently promote inflammation during aging. In this review, established and emerging models of mitochondrial stress response pathways and their potential role in modulating longevity are discussed.
Collapse
Affiliation(s)
- Shauna Hill
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK 73104, USA ; Oklahoma City VA Medical Center, Oklahoma City, OK, USA ; Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA ; Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Holly Van Remmen
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK 73104, USA ; Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
46
|
Nyström T, Liu B. The mystery of aging and rejuvenation - a budding topic. Curr Opin Microbiol 2014; 18:61-7. [PMID: 24631930 DOI: 10.1016/j.mib.2014.02.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 11/30/2022]
Abstract
In the process of yeast budding, an aged and deteriorated mother cell gives rise to a youthful and pristine daughter cell. This remarkable event offers a tractable model system for identifying factors affecting life expectancy and it has been established that multiple aging factors operate in parallel. Herein, we will highlight the identity of such aging factors, how they are asymmetrically segregated, and whether the knowledge of their deteriorating effects might be utilized to approach cellular and tissue rejuvenation in metazoans, including humans.
Collapse
Affiliation(s)
- Thomas Nyström
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, S-413 90 Göteborg, Sweden.
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, S-413 90 Göteborg, Sweden
| |
Collapse
|
47
|
Dillin A, Gottschling DE, Nyström T. The good and the bad of being connected: the integrons of aging. Curr Opin Cell Biol 2014; 26:107-12. [PMID: 24529252 PMCID: PMC3927154 DOI: 10.1016/j.ceb.2013.12.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/02/2013] [Accepted: 12/05/2013] [Indexed: 12/15/2022]
Abstract
Over 40 years ago, Francois Jacob proposed that levels of 'integrons' explain how biological systems are constructed. Today, these networks of interactions between tissues, cells, organelles, metabolic pathways, genes, and individual molecules provide key insights into biology. We suggest that the wiring and interdependency between subsystems within a network are useful to understand the aging process. The breakdown of one subsystem (e.g. an organelle) can have ramifications for other interconnected subsystems, leading to the sequential collapse of subsystem functions. But yet, the interconnected nature of homeostatic wiring can provide organisms with the means of compensating for the decline of one subsystem. This occurs at multiple levels in an organism-for example, between organelles or between tissues. We review recent data that highlight the importance of such interconnectivity/communication in the aging process, in both progressive decline and longevity assurance.
Collapse
Affiliation(s)
- Andrew Dillin
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | - Daniel E Gottschling
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Thomas Nyström
- Department of Chemistry and Molecular Biology (CMB), University of Gothenburg, 40530 Gothenburg, Sweden.
| |
Collapse
|
48
|
Wierman MB, Smith JS. Yeast sirtuins and the regulation of aging. FEMS Yeast Res 2014; 14:73-88. [PMID: 24164855 PMCID: PMC4365911 DOI: 10.1111/1567-1364.12115] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 10/09/2013] [Accepted: 10/13/2013] [Indexed: 11/29/2022] Open
Abstract
The sirtuins are a phylogenetically conserved family of NAD(+) -dependent protein deacetylases that consume one molecule of NAD(+) for every deacetylated lysine side chain. Their requirement for NAD(+) potentially makes them prone to regulation by fluctuations in NAD(+) or biosynthesis intermediates, thus linking them to cellular metabolism. The Sir2 protein from Saccharomyces cerevisiae is the founding sirtuin family member and has been well characterized as a histone deacetylase that functions in transcriptional silencing of heterochromatin domains and as a pro-longevity factor for replicative life span (RLS), defined as the number of times a mother cell divides (buds) before senescing. Deleting SIR2 shortens RLS, while increased gene dosage causes extension. Furthermore, Sir2 has been implicated in mediating the beneficial effects of caloric restriction (CR) on life span, not only in yeast, but also in higher eukaryotes. While this paradigm has had its share of disagreements and debate, it has also helped rapidly drive the aging research field forward. S. cerevisiae has four additional sirtuins, Hst1, Hst2, Hst3, and Hst4. This review discusses the function of Sir2 and the Hst homologs in replicative aging and chronological aging, and also addresses how the sirtuins are regulated in response to environmental stresses such as CR.
Collapse
Affiliation(s)
- Margaret B Wierman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | |
Collapse
|
49
|
Jazwinski SM. The retrograde response: a conserved compensatory reaction to damage from within and from without. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 127:133-54. [PMID: 25149216 DOI: 10.1016/b978-0-12-394625-6.00005-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The retrograde response was discovered in Saccharomyces cerevisiae as a signaling pathway from the mitochondrion to the nucleus that triggers an array of gene regulatory changes in the latter. The activation of the retrograde response compensates for the deficits associated with aging, and thus it extends yeast replicative life span. The retrograde response is activated by the progressive decline in mitochondrial membrane potential during aging that is the result of increasing mitochondrial dysfunction. The ensuing metabolic adaptations and stress resistance can only delay the inevitable demise of the yeast cell. The retrograde response is embedded in a network of signal transduction pathways that impinge upon virtually every aspect of cell physiology. Thus, its manifestations are complicated. Many of these pathways have been implicated in life span regulation quite independently of the retrograde response. Together, they operate in a delicate balance in promoting longevity. The retrograde response is closely aligned with cell quality control, often performing when quality control is not sufficient to assure longevity. Among the key pathways related to this aspect of retrograde signaling are target of rapamycin and ceramide signaling. The retrograde response can also be found in other organisms, including Caenorhabditis elegans, Drosophila melanogaster, mouse, and human, where it exhibits an ever-increasing complexity that may be corralled by the transcription factor NFκB. The retrograde response may have evolved as a cytoprotective mechanism that senses and defends the organism from pathogens and environmental toxins.
Collapse
Affiliation(s)
- S Michal Jazwinski
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
50
|
Abstract
SIGNIFICANCE The mitochondrial genetic system is responsible for the production of a few core-subunits of the respiratory chain and ATP synthase, the membrane protein complexes driving oxidative phosphorylation (OXPHOS). Efficiency and accuracy of mitochondrial protein synthesis determines how efficiently new OXPHOS complexes can be made. RECENT ADVANCES The system responsible for expression of the mitochondrial-encoded subunits developed from that of the bacterial ancestor of mitochondria. Importantly, many aspects of genome organization, transcription, and translation have diverged during evolution. Recent research has provided new insights into the architecture, regulation, and organelle-specific features of mitochondrial translation. Mitochondrial ribosomes contain a number of proteins absent from prokaryotic ribosomes, implying that in mitochondria, ribosomes were tailored to fit the requirements of the organelle. In addition, mitochondrial gene expression is regulated post-transcriptionally by a number of mRNA-specific translational activators. At least in yeast, these factors can regulate translation in respect to OXPHOS complex assembly to adjust the level of newly synthesized proteins to amounts that can be successfully assembled into respiratory chain complexes. CRITICAL ISSUES Mitochondrial gene expression is determining aging in eukaryotes, and a number of recent reports indicate that efficiency of translation directly influences this process. FUTURE DIRECTIONS Here we will summarize recent advances in our understanding of mitochondrial protein synthesis by comparing the knowledge acquired in the systems most commonly used to study mitochondrial biogenesis. However, many steps have not been understood mechanistically. Innovative biochemical and genetic approaches have to be elaborated to shed light on these important processes.
Collapse
Affiliation(s)
- Kirsten Kehrein
- 1 Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University , Stockholm, Sweden
| | | | | |
Collapse
|