1
|
Zhang W, Wu H, Liao Y, Zhu C, Zou Z. Caspase family in autoimmune diseases. Autoimmun Rev 2025; 24:103714. [PMID: 39638102 DOI: 10.1016/j.autrev.2024.103714] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Programmed cell death (PCD) plays a crucial role in maintaining tissue homeostasis, with its primary forms including apoptosis, pyroptosis, and necroptosis. The caspase family is central to these processes, and its complex functions across different cell death pathways and other non-cell death roles have been closely linked to the pathogenesis of autoimmune diseases. This article provides a comprehensive review of the role of the caspase family in autoimmune diseases such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), type 1 diabetes (T1D), and multiple sclerosis (MS). It particularly emphasizes the intricate functions of caspases within various cell death pathways and their potential as therapeutic targets, thereby offering innovative insights and a thorough discussion in this field. In terms of therapy, strategies targeting caspases hold significant promise. We emphasize the importance of a holistic understanding of caspases in the overall concept of cell death, exploring their unique functions and interrelationships across multiple cell death pathways, including apoptosis, pyroptosis, necroptosis, and PANoptosis. This approach transcends the limitations of previous studies that focused on singular cell death pathways. Additionally, caspases play a key role in non-cell death functions, such as immune cell activation, cytokine processing, inflammation regulation, and tissue repair, thereby opening new avenues for the treatment of autoimmune diseases. Regulating caspase activity holds the potential to restore immune balance in autoimmune diseases. Potential therapeutic approaches include small molecule inhibitors (both reversible and irreversible), biological agents (such as monoclonal antibodies), and gene therapies. However, achieving specific modulation of caspases to avoid interference with normal physiological functions remains a major challenge. Future research must delve deeper into the regulatory mechanisms of caspases and their associated complexes linked to PANoptosis to facilitate precision medicine. In summary, this article offers a comprehensive and in-depth analysis, providing a novel perspective on the complex roles of caspases in autoimmune diseases, with the potential to catalyze breakthroughs in understanding disease mechanisms and developing therapeutic strategies.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Huang Wu
- Basic Medical University, Naval Medical University, Shanghai 200433, China
| | - Yan Liao
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| |
Collapse
|
2
|
Hong M, Wu X, He P, Peng R, Li L, Wu SQ, Zhao J, Han A, Zhang Y, Han J, Yang ZH. Residue Y362 is crucial for FLIP L to impart catalytic activity to pro-caspase-8 to suppress necroptosis. Cell Rep 2024; 43:114966. [PMID: 39520684 DOI: 10.1016/j.celrep.2024.114966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/10/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The pro-form of caspase-8 prevents necroptosis by functioning in a proteolytically active complex with its catalytic-dead homolog, FLICE (FADD [Fas-associated death domain]-like interleukin 1β-converting enzyme)-like inhibitory protein long-form (FLIPL). However, how FLIPL imparts caspase-8 the catalytic activity to suppress necroptosis remains elusive. Here, we show that the protease-like domain of FLIPL is essential for the activity of the caspase-8-FLIPL heterodimer in blocking necroptosis. While substitution of two amino acids whose difference may contribute to the pseudo-caspase property of FLIPL with the corresponding amino acids in caspase-8 does not restore the protease activity of FLIPL, one of the amino acid replacements, tyrosine (Y) 362 to cysteine (C), is sufficient to completely abolish the activity of the caspase-8-FLIPL heterodimer in cleaving receptor-interacting protein 1 (RIP1), thus releasing the necroptosis blockade. Unconstrained necroptosis is observed in embryonic day (E)10.5-E11.5 embryos of FLIPL-Y362C knockin mice. Collectively, these results reveal that the protease-like domain of FLIPL has a special structure that imparts the pro-caspase-8-FLIPL heterodimer a unique catalytic activity toward RIP1 to prevent necroptosis.
Collapse
Affiliation(s)
- Mao Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiurong Wu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, MOE Joint International Research Laboratory of Pancreatic Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310012, China
| | - Peng He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Rangxin Peng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Su-Qin Wu
- Laboratory Animal Center, Xiamen University, Xiamen, Fujian 361102, China
| | - Jianbang Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Aidong Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yingying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Laboratory Animal Center, Xiamen University, Xiamen, Fujian 361102, China.
| | - Zhang-Hua Yang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310012, China.
| |
Collapse
|
3
|
Shen C, Ding X, Ruan J, Ruan F, Hu W, Huang J, He C, Yu Y, Zuo Z. Black phosphorus quantum dots induce myocardial inflammatory responses and metabolic disorders in mice. J Environ Sci (China) 2024; 137:53-64. [PMID: 37980037 DOI: 10.1016/j.jes.2023.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 11/20/2023]
Abstract
As an ultrasmall derivative of black phosphorus (BP) sheets, BP quantum dots (BP-QDs) have been effectively used in many fields. Currently, information on the cardiotoxicity induced by BP-QDs remains limited. We aimed to evaluate BP-QD-induced cardiac toxicity in mice. Histopathological examination of heart tissue sections was performed. Transcriptome sequencing, real-time quantitative PCR (RT‒qPCR), western blotting, and enzyme-linked immunosorbent assay (ELISA) assays were used to detect the mRNA and/or protein expression of proinflammatory cytokines, nuclear factor kappa B (NF-κB), phosphatidylinositol 3 kinase-protein kinase B (PI3K-AKT), peroxisome proliferator-activated receptor gamma (PPARγ), and glucose/lipid metabolism pathway-related genes. We found that heart weight and heart/body weight index (HBI) were significantly reduced in mice after intragastric administration of 0.1 or 1 mg/kg BP-QDs for 28 days. In addition, obvious inflammatory cell infiltration and increased cardiomyocyte diameter were observed in the BP-QD-treated groups. Altered expression of proinflammatory cytokines and genes related to the NF-κB signaling pathway further confirmed that BP-QD exposure induced inflammatory responses. In addition, BP-QD treatment also affected the PI3K-AKT, PPARγ, thermogenesis, oxidative phosphorylation, and cardiac muscle contraction signaling pathways. The expression of genes related to glucose/lipid metabolism signaling pathways was dramatically affected by BP-QD exposure, and the effect was primarily mediated by the PPAR signaling pathway. Our study provides new insights into the toxicity of BP-QDs to human health.
Collapse
Affiliation(s)
- Chao Shen
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xiaoyan Ding
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jinpeng Ruan
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Fengkai Ruan
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Weiping Hu
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jiyi Huang
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Chengyong He
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yi Yu
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China.
| | - Zhenghong Zuo
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
4
|
Meng H, Zhao Y, Li Y, Fan H, Yi X, Meng X, Wang P, Fu F, Wu S, Wang Y. Evidence for developmental vascular-associated necroptosis and its contribution to venous-lymphatic endothelial differentiation. Front Cell Dev Biol 2023; 11:1229788. [PMID: 37576598 PMCID: PMC10416103 DOI: 10.3389/fcell.2023.1229788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
During development, apoptosis removes redundant cells and ensures proper organ morphogenesis. Necrosis is long known as an adult-bound inflammatory and pathologic cell death. Whether there exists physiological necrosis during early development has been speculated but yet clearly demonstrated. Here, we report evidence of necroptosis, a type of programmed necrosis, specifically in perivascular cells of cerebral cortex and skin at the early stage of development. Phosphorylated Mixed Lineage Kinase Domain-Like protein (MLKL), a key molecule in executing necroptosis, co-expressed with blood endothelial marker CD31 and venous-lymphatic progenitor marker Sox18. Depletion of Mlkl did not affect the formation of blood vessel network but increased the differentiation of venous-lymphatic lineage cells in postnatal cerebral cortex and skin. Consistently, significant enhancement of cerebrospinal fluid diffusion and lymphatic drainage was found in brain and skin of Mlkl-deficient mice. Under hypobaric hypoxia induced cerebral edema and inflammation induced skin edema, Mlkl mutation significantly attenuated brain-blood-barrier damage and edema formation. Our data, for the first time, demonstrated the presence of physiological vascular-associated necroptosis and its potential involvement in the development of venous-lymphatic vessels.
Collapse
Affiliation(s)
- Han Meng
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Youyi Zhao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research, Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yuqian Li
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Hong Fan
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Xuyang Yi
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xinyu Meng
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Pengfei Wang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Fanfan Fu
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Shengxi Wu
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yazhou Wang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
5
|
Zhang T, Xu D, Trefts E, Lv M, Inuzuka H, Song G, Liu M, Lu J, Liu J, Chu C, Wang M, Wang H, Meng H, Liu H, Zhuang Y, Xie X, Dang F, Guan D, Men Y, Jiang S, Jiang C, Dai X, Liu J, Wang Z, Yan P, Wang J, Tu Z, Babuta M, Erickson E, Hillis AL, Dibble CC, Asara JM, Szabo G, Sicinski P, Miao J, Lee YR, Pan L, Shaw RJ, Yuan J, Wei W. Metabolic orchestration of cell death by AMPK-mediated phosphorylation of RIPK1. Science 2023; 380:1372-1380. [PMID: 37384704 PMCID: PMC10617018 DOI: 10.1126/science.abn1725] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/04/2023] [Indexed: 07/01/2023]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) activity is stimulated to promote metabolic adaptation upon energy stress. However, sustained metabolic stress may cause cell death. The mechanisms by which AMPK dictates cell death are not fully understood. We report that metabolic stress promoted receptor-interacting protein kinase 1 (RIPK1) activation mediated by TRAIL receptors, whereas AMPK inhibited RIPK1 by phosphorylation at Ser415 to suppress energy stress-induced cell death. Inhibiting pS415-RIPK1 by Ampk deficiency or RIPK1 S415A mutation promoted RIPK1 activation. Furthermore, genetic inactivation of RIPK1 protected against ischemic injury in myeloid Ampkα1-deficient mice. Our studies reveal that AMPK phosphorylation of RIPK1 represents a crucial metabolic checkpoint, which dictates cell fate response to metabolic stress, and highlight a previously unappreciated role for the AMPK-RIPK1 axis in integrating metabolism, cell death, and inflammation.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201203 Shanghai, China
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Elijah Trefts
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mingming Lv
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Guobin Song
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Min Liu
- Transfusion Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jianlin Lu
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jianping Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201203 Shanghai, China
| | - Chen Chu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Huibing Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Huyan Meng
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Hui Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yuan Zhuang
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Xingxing Xie
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201203 Shanghai, China
| | - Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Dongxian Guan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yuqin Men
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shuwen Jiang
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, 510632 Guangzhou, China
| | - Cong Jiang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Xiaoming Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Zhen Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Peiqiang Yan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jingchao Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Zhenbo Tu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Mrigya Babuta
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Emily Erickson
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Alissandra L Hillis
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christian C Dibble
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - John M Asara
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Gyongy Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Ji Miao
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yu-Ru Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Lifeng Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Reuben J Shaw
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201203 Shanghai, China
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
6
|
Necroptosis Induced by Delta-Tocotrienol Overcomes Docetaxel Chemoresistance in Prostate Cancer Cells. Int J Mol Sci 2023; 24:ijms24054923. [PMID: 36902362 PMCID: PMC10003232 DOI: 10.3390/ijms24054923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Prostate cancer (PCa) represents the fifth cause of cancer death in men. Currently, chemotherapeutic agents for the treatment of cancers, including PCa, mainly inhibit tumor growth by apoptosis induction. However, defects in apoptotic cellular responses frequently lead to drug resistance, which is the main cause of chemotherapy failure. For this reason, trigger non-apoptotic cell death might represent an alternative approach to prevent drug resistance in cancer. Several agents, including natural compounds, have been shown to induce necroptosis in human cancer cells. In this study we evaluated the involvement of necroptosis in anticancer activity of delta-tocotrienol (δ-TT) in PCa cells (DU145 and PC3). Combination therapy is one tool used to overcome therapeutic resistance and drug toxicity. Evaluating the combined effect of δ-TT and docetaxel (DTX), we found that δ-TT potentiates DTX cytotoxicity in DU145 cells. Moreover, δ-TT induces cell death in DU145 cells that have developed DTX resistance (DU-DXR) activating necroptosis. Taken together, obtained data indicate the ability of δ-TT to induce necroptosis in both DU145, PC3 and DU-DXR cell lines. Furthermore, the ability of δ-TT to induce necroptotic cell death may represent a promising therapeutical approach to overcome DTX chemoresistance in PCa.
Collapse
|
7
|
Ghanavatian P, Salehi-Sedeh H, Ataei F, Hosseinkhani S. Bioluminescent RIPoptosome Assay for FADD/RIPK1 Interaction Based on Split Luciferase Assay in a Human Neuroblastoma Cell Line SH-SY5Y. BIOSENSORS 2023; 13:297. [PMID: 36832063 PMCID: PMC9954477 DOI: 10.3390/bios13020297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Different programed cell death (PCD) modalities involve protein-protein interactions in large complexes. Tumor necrosis factor α (TNFα) stimulated assembly of receptor-interacting protein kinase 1 (RIPK1)/Fas-associated death domain (FADD) interaction forms Ripoptosome complex that may cause either apoptosis or necroptosis. The present study addresses the interaction of RIPK1 and FADD in TNFα signaling by fusion of C-terminal (CLuc) and N-terminal (NLuc) luciferase fragments to RIPK1-CLuc (R1C) or FADD-NLuc (FN) in a caspase 8 negative neuroblastic SH-SY5Y cell line, respectively. In addition, based on our findings, an RIPK1 mutant (R1C K612R) had less interaction with FN, resulting in increasing cell viability. Moreover, presence of a caspase inhibitor (zVAD.fmk) increases luciferase activity compared to Smac mimetic BV6 (B), TNFα -induced (T) and non-induced cell. Furthermore, etoposide decreased luciferase activity, but dexamethasone was not effective in SH-SY5Y. This reporter assay might be used to evaluate basic aspects of this interaction as well as for screening of necroptosis and apoptosis targeting drugs with potential therapeutic application.
Collapse
|
8
|
RIPK4 Is an Immune Regulating-Associated Biomarker for Ovarian Cancer and Possesses Generalization Value in Pan-Cancer. J Immunol Res 2022; 2022:7599098. [PMID: 35310605 PMCID: PMC8926548 DOI: 10.1155/2022/7599098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/25/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecologic cancer. Many studies have reported that RIPK4 (receptor interacting serine/threonine kinase 4) displayed a dysregulated level in many types of tumors. However, its expressions and functions in OC were rarely reported. The levels of RIPK4 were detected in OC and nontumor specimens using TCGA and GEO datasets. The prognostic values of RIPK4 in patients were determined using Kaplan-Meier methods and Kaplan-Meier assays. GO assays and KEGG pathway assays were carried out for functional enrichments. CIBERSORT was applied for estimating the fractions of immune cell types. Finally, RIPK4 was validated in pan-cancer. In this study, our group found that RIPK4 exhibited a higher level of RIPK4 in OC specimens than nontumor specimens. Survival studies revealed that patients with high RIPK4 expressions showed a shorter overall survival than those with low RIPK4 expression. Multivariate assays further confirmed that RIPK4 expression was an independent prognostic element for OC. KEGG pathway analysis displayed that the dysregulated genes in specimens with high RIPK4 expressions were enriched in focal adhesion, proteoglycans in cancer, central carbon metabolism in cancer, and insulin secretion. Correlation analyses showed that several TICs were positively correlated with RIPK4 expression. The pan-cancer validation results showed that RIPK4 was associated with survival in five tumors. Overall, our findings suggested RIPK4 as a prognostic marker in OC.
Collapse
|
9
|
Memou A, Dimitrakopoulos L, Kedariti M, Kentros M, Lamprou A, Petropoulou-Vathi L, Valkimadi PE, Rideout HJ. Defining (and blocking) neuronal death in Parkinson's disease: Does it matter what we call it? Brain Res 2021; 1771:147639. [PMID: 34492263 DOI: 10.1016/j.brainres.2021.147639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/29/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, comprised of both familial and idiopathic forms, behind only Alzheimer's disease (AD). The disease is characterized, regardless of the pathogenesis, primarily by a loss of DA neurons in the ventral midbrain as well as noradrenergic neurons of the locus coeruleus; however, by the time symptoms manifest, considerable neuronal loss in both areas has occurred. Neuroprotective strategies thus have to be paired with more sensitive and specific biomarker assays that can identify early at-risk patients in order to initiate disease-modifying therapies at an earlier stage in the disease. Complicating this is the fact that multiple forms of cell death mediate the neuronal loss; however, with a common underlying element that the cell death is considered a "regulated" form of cell death, in contrast to an un-controlled necrotic cell death process. In this review we focus our discussion on several categories of regulated cell death in the context of PD: apoptosis, necroptosis, pyroptosis, and autophagic cell death. In clinical studies as well as experimental in vivo models of PD, there is evidence for a role of each of these forms of cell death in the loss of midbrain DA neurons, and specific therapeutic strategies have been proposed and tested. What remains unclear however is the relative contributions of these distinct forms of cell death to the overall loss of DA neurons, whether they occur at different stages of the disease, or whether specific sub-regions within the midbrain are more susceptible to specific death triggers and pathways.
Collapse
Affiliation(s)
- Anna Memou
- Laboratory of Neurodegenerative Diseases, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Lampros Dimitrakopoulos
- Laboratory of Neurodegenerative Diseases, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maria Kedariti
- Laboratory of Neurodegenerative Diseases, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Michalis Kentros
- Laboratory of Neurodegenerative Diseases, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Andriana Lamprou
- Laboratory of Neurodegenerative Diseases, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Lilian Petropoulou-Vathi
- Laboratory of Neurodegenerative Diseases, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Polytimi-Eleni Valkimadi
- Laboratory of Neurodegenerative Diseases, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Hardy J Rideout
- Laboratory of Neurodegenerative Diseases, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
10
|
Siokas I, Zhang D, Poltorak A, Muendlein H, Degterev A. Immunoprecipitation Strategies to Isolate RIPK1/RIPK3 Complexes in Mouse Macrophages. Curr Protoc 2021; 1:e156. [PMID: 34106523 DOI: 10.1002/cpz1.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A large protein complex, containing RIPK1, RIPK3, and caspase-8 and known as Complex II, has emerged as one of the key mediators of cell death downstream from a range of innate immune triggers. This regulatory mechanism plays a prominent role in macrophages, where Complex II has been linked to apoptosis, pyroptosis, and necroptosis as well as the enhancement of inflammatory gene expression. Although core components of this complex are fairly well understood, more subtle proteomic changes that determine the direction of a response once the complex is assembled remain much less clear. In addition, Complex II components undergo a wealth of post-translational changes that modify the functions of the complex components. This necessitates development of robust and efficient methods of isolating Complex II for further interrogation of its composition and the post-translational modifications of its components. This article describes several methods that we have developed for Complex II isolation, which can be used to obtain complementary information about this signaling mechanism. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Isolation of Complex II in necroptotic and pyroptotic macrophages using FADD immunoprecipitation Basic Protocol 2: Isolation of the complexes formed by the conditionally expressed 3XFLAG-RIPK1 protein Alternate Protocol: Alternative methods of immunoprecipitation of RIPK1 and other Complex-II-related factors Support Protocol: Generation of stable macrophage cell lines using lentiviral expression Basic Protocol 3: Use of proximity labeling to identify necrosome components in the detergent-insoluble fraction of the cell lysates.
Collapse
Affiliation(s)
- Ioannis Siokas
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts
| | - Dingqiang Zhang
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts
| | - Alexander Poltorak
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts
| | - Hayley Muendlein
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts
| | - Alexei Degterev
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
11
|
Balaji S, Terrero D, Tiwari AK, Ashby CR, Raman D. Alternative approaches to overcome chemoresistance to apoptosis in cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 126:91-122. [PMID: 34090621 DOI: 10.1016/bs.apcsb.2021.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Apoptosis, or programmed cell death, is a form of regulated cell death (RCD) that is essential for organogenesis and homeostatic maintenance of normal cell populations. Apoptotic stimuli activate the intrinsic and/or extrinsic pathways to induce cell death due to perturbations in the intracellular and extracellular microenvironments, respectively. In patients with cancer, the induction of apoptosis by anticancer drugs and radiation can produce cancer cell death. However, tumor cells can adapt and become refractory to apoptosis-inducing therapies, resulting in the development of clinical resistance to apoptosis. Drug resistance facilitates the development of aggressive primary tumors that eventually metastasize, leading to therapy failure and mortality. To overcome the resistance to apoptosis to neoadjuvant chemotherapy or targeted therapy, alternative targets of RCD can be induced in apoptosis-resistant cancer cells. Alternatively, cell death can be independent of apoptosis and this strategy could be utilized to develop novel anti-cancer therapies. This chapter discusses approaches that could be employed to overcome clinical resistance to apoptosis in cancer cells.
Collapse
Affiliation(s)
- Swapnaa Balaji
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, United States
| | - David Terrero
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Amit K Tiwari
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy, St. John's University, New York, NY, United States
| | - Dayanidhi Raman
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, Toledo, OH, United States.
| |
Collapse
|
12
|
Cheng P, Li S, Chen H. Macrophages in Lung Injury, Repair, and Fibrosis. Cells 2021; 10:436. [PMID: 33670759 PMCID: PMC7923175 DOI: 10.3390/cells10020436] [Citation(s) in RCA: 254] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrosis progression in the lung commonly results in impaired functional gas exchange, respiratory failure, or even death. In addition to the aberrant activation and differentiation of lung fibroblasts, persistent alveolar injury and incomplete repair are the driving factors of lung fibrotic response. Macrophages are activated and polarized in response to lipopolysaccharide- or bleomycin-induced lung injury. The classically activated macrophage (M1) and alternatively activated macrophage (M2) have been extensively investigated in lung injury, repair, and fibrosis. In the present review, we summarized the current data on monocyte-derived macrophages that are recruited to the lung, as well as alveolar resident macrophages and their polarization, pyroptosis, and phagocytosis in acute lung injury (ALI). Additionally, we described how macrophages interact with lung epithelial cells during lung repair. Finally, we emphasized the role of macrophage polarization in the pulmonary fibrotic response, and elucidated the potential benefits of targeting macrophage in alleviating pulmonary fibrosis.
Collapse
Affiliation(s)
- Peiyong Cheng
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin 300350, China;
| | - Shuangyan Li
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300350, China;
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin 300350, China;
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300350, China;
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin 300350, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin 300350, China
| |
Collapse
|
13
|
Jallow AW, Lee SD, Ho YS. Classic articles in apoptotic research : A bibliometric analysis. COLLNET JOURNAL OF SCIENTOMETRICS AND INFORMATION MANAGEMENT 2021. [DOI: 10.1080/09737766.2021.1934605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Amadou W. Jallow
- Department of Biotechnology, Asia University, No. 500, Lioufeng Road, Wufeng, Taichung 41354 Taiwan, R.O.C
| | - Shin-Da Lee
- Department of Physical Therapy, Asia University, No. 500, Lioufeng Road, Wufeng, Taichung 41354 Taiwan, R.O.C
- Department of Physical Therapy, China Medical University, Taichung, Taiwan, R.O.C
| | - Yuh-Shan Ho
- Trend Research Centre, Asia University, No. 500, Lioufeng Road, Wufeng, Taichung 41354 Taiwan,
| |
Collapse
|
14
|
Yang ZH, Wu XN, He P, Wang X, Wu J, Ai T, Zhong CQ, Wu X, Cong Y, Zhu R, Li H, Cai ZY, Mo W, Han J. A Non-canonical PDK1-RSK Signal Diminishes Pro-caspase-8-Mediated Necroptosis Blockade. Mol Cell 2020; 80:296-310.e6. [PMID: 32979304 DOI: 10.1016/j.molcel.2020.09.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/17/2020] [Accepted: 09/03/2020] [Indexed: 01/14/2023]
Abstract
Necroptosis induction in vitro often requires caspase-8 (Casp8) inhibition by zVAD because pro-Casp8 cleaves RIP1 to disintegrate the necrosome. It has been unclear how the Casp8 blockade of necroptosis is eliminated naturally. Here, we show that pro-Casp8 within the necrosome can be inactivated by phosphorylation at Thr265 (pC8T265). pC8T265 occurs in vitro in various necroptotic cells and in the cecum of TNF-treated mice. p90 RSK is the kinase of pro-Casp8. It is activated by a mechanism that does not need ERK but PDK1, which is recruited to the RIP1-RIP3-MLKL-containing necrosome. Phosphorylation of pro-Casp8 at Thr265 can substitute for zVAD to permit necroptosis in vitro. pC8T265 mimic T265E knockin mice are embryonic lethal due to unconstrained necroptosis, and the pharmaceutical inhibition of RSK-mediated pC8T265 diminishes TNF-induced cecum damage and lethality in mice by halting necroptosis. Thus, phosphorylation of pro-Casp8 at Thr265 by RSK is an intrinsic mechanism for passing the Casp8 checkpoint of necroptosis.
Collapse
Affiliation(s)
- Zhang-Hua Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiao-Nan Wu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Peng He
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xuekun Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Tingting Ai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chuan-Qi Zhong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiurong Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yu Cong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Rongfeng Zhu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Hongda Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhi-Yu Cai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Wei Mo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Research Unit of Cellular Stress of CAMS, Cancer Research Center of Xiamen University, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Research Unit of Cellular Stress of CAMS, Cancer Research Center of Xiamen University, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
15
|
Ruan H, Leibowitz BJ, Zhang L, Yu J. Immunogenic cell death in colon cancer prevention and therapy. Mol Carcinog 2020; 59:783-793. [PMID: 32215970 DOI: 10.1002/mc.23183] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/23/2020] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related death worldwide. The colonic mucosa constitutes a critical barrier and a major site of immune regulation. The immune system plays important roles in cancer development and treatment, and immune activation caused by chronic infection or inflammation is well-known to increase cancer risk. During tumor development, neoplastic cells continuously interact with and shape the tumor microenvironment (TME), which becomes progressively immunosuppressive. The clinical success of immune checkpoint blockade therapies is limited to a small set of CRCs with high tumor mutational load and tumor-infiltrating T cells. Induction of immunogenic cell death (ICD), a type of cell death eliciting an immune response, can therefore help break the immunosuppressive TME, engage the innate components, and prime T cell-mediated adaptive immunity for long-term tumor control. In this review, we discuss the current understanding of ICD induced by antineoplastic agents, the influence of driver mutations, and recent developments to harness ICD in colon cancer. Mechanism-guided combinations of ICD-inducing agents with immunotherapy and actionable biomarkers will likely offer more tailored and durable benefits to patients with colon cancer.
Collapse
Affiliation(s)
- Hang Ruan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Brian J Leibowitz
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Lin Zhang
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.,Chemical Biology and Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jian Yu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
16
|
Su W, Zhao J, Fan TJ. Dose- and Time-Dependent Cytotoxicity of Carteolol in Corneal Endothelial Cells and the Underlying Mechanisms. Front Pharmacol 2020; 11:202. [PMID: 32210806 PMCID: PMC7068677 DOI: 10.3389/fphar.2020.00202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/14/2020] [Indexed: 01/19/2023] Open
Abstract
Carteolol is a non-selective β-adrenoceptor antagonist used for the treatment of glaucoma, and its abuse might be cytotoxic to the cornea. However, its cytotoxicity and underlying mechanisms need to be elucidated. Herein, we used an in vivo model of feline corneas and an in vitro model of human corneal endothelial cells (HCECs), respectively. In vivo results displayed that 2% carteolol (clinical dosage) could induce monolayer density decline and breaking away of feline corneal endothelial (FCE) cells. An in vitro model of HCECs that were treated dose-dependently (0.015625–2%) with carteolol for 2–28 h, resulted in morphological abnormalities, declining in cell viability and elevating plasma membrane (PM) permeability in a dose- and time- dependent manner. High-dose (0.5–2%) carteolol treatment induced necrotic characteristics with uneven distribution of chromatin, marginalization and dispersed DNA degradation, inactivated caspase-2/-8, and increased RIPK1, RIPK3, MLKL, and pMLKL expression. The results suggested that high-dose carteolol could induce necroptosis via the RIPK/MLKL pathway. While low-dose (0.015625–0.25%) carteolol induced apoptotic characteristics with chromatin condensation, typical intranucleosomal DNA laddering patterns, G1 cell-cycle arrest, phosphatidylserine (PS) externalization, and apoptotic body formation in HCECs. Meanwhile, 0.25% carteolol treatment resulted in activated caspase-2, -3, -8, and -9, downregulation of Bcl-2 and Bcl-xL, upregulation of Bax and Bad, ΔΨm disruption, and release of cytoplasmic cytochrome c (Cyt.c) and AIF into the cytoplasm. These observations suggested that low-dose carteolol could induce apoptosis via a caspase activated and mitochondrial-dependent pathway. These results suggested that carteolol should be used carefully, as low as 0.015625% cartelol caused apoptotic cell death in HCECs in vitro.
Collapse
Affiliation(s)
- Wen Su
- Laboratory for Corneal Tissue Engineering, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jun Zhao
- Laboratory for Corneal Tissue Engineering, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ting-Jun Fan
- Laboratory for Corneal Tissue Engineering, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
17
|
Wang L, Chang X, Feng J, Yu J, Chen G. TRADD Mediates RIPK1-Independent Necroptosis Induced by Tumor Necrosis Factor. Front Cell Dev Biol 2020; 7:393. [PMID: 32039207 PMCID: PMC6987388 DOI: 10.3389/fcell.2019.00393] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/24/2019] [Indexed: 01/10/2023] Open
Abstract
As a programmed necrotic cell death, necroptosis has the intrinsic initiators, including receptor-interacting serine/threonine-protein kinase 1 (RIPK1), RIPK3 and mixed-lineage kinase domain-like protein (MLKL), which combine to form necroptotic signaling pathway and mediate necroptosis induced by various necroptotic stimuli, such as tumor necrosis factor (TNF). Although chemical inhibition of RIPK1 blocks TNF-induced necroptosis, genetic elimination of RIPK1 does not suppress but facilitate necroptosis triggered by TNF. Moreover, RIPK3 has been reported to mediate the RIPK1-independent necroptosis, but the involved mechanism is unclear. In this study, we found that TRADD was essential for TNF-induced necroptosis in RIPK1-knockdown L929 and HT-22 cells. Mechanistic study demonstrated that TRADD bound RIPK3 to form new protein complex, which then promoted RIPK3 phosphorylation via facilitating RIPK3 oligomerization, leading to RIPK3-MLKL signaling pathway activation. Therefore, TRADD acted as a partner of RIPK3 to initiate necroptosis in RIPK1-knockdown L929 and HT-22 cells in response to TNF stimulation. In addition, TRADD was critical for the accumulation of reactive oxygen species (ROS), which contributed to RIPK1-independent necroptosis triggered by TNF. Collectively, our data demonstrate that TRADD acts as the new target protein for TNF-induced RIPK3 activation and the subsequent necroptosis in a RIPK1-independent manner.
Collapse
Affiliation(s)
- Lili Wang
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Xixi Chang
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Jinli Feng
- Department of Neurology, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiyun Yu
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China.,Beijing Zhendandingtai Biotechnology Co., Ltd, Beijing, China
| | - Guozhu Chen
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
18
|
He J, Deng F, Pan D, Zeng X. Investigation of the relationships between different enzymes and postmortem duck muscle tenderization. Poult Sci 2019; 98:6125-6130. [DOI: 10.3382/ps/pez301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 05/16/2019] [Indexed: 11/20/2022] Open
|
19
|
Thakur B, Kumar Y, Bhatia A. Programmed necrosis and its role in management of breast cancer. Pathol Res Pract 2019; 215:152652. [PMID: 31570277 DOI: 10.1016/j.prp.2019.152652] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
Breast cancer is one of the major causes of cancer related deaths in women worldwide. A major factor responsible for treatment failure in breast cancer is the development of resistance to commonly used chemotherapeutic drugs leading to disease relapse. Several studies have shown dysregulation of molecular machinery of apoptosis, the major programmed cell death pathway in breast malignancies. Thus, there is an unmet need to search for an alternative cell death pathway which can work when apoptosis is compromised. Necroptosis or programmed necrosis is a relatively recently described entity which has attracted attention in this context. Classically, even in physiological conditions necroptosis is found to act if apoptosis is not functional due to some reason. Recently, more and more studies are being conducted in different malignancies to explore the possibility and utility of inducing cell death by necroptosis. The present review describes the key molecular players involved in necroptotic pathway and their status in breast cancer. In addition, the research done to utilize this pathway for treatment of breast cancer has also been highlighted.
Collapse
Affiliation(s)
- Banita Thakur
- Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Yashwant Kumar
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
20
|
Ligustroflavone reduces necroptosis in rat brain after ischemic stroke through targeting RIPK1/RIPK3/MLKL pathway. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1085-1095. [PMID: 31055628 DOI: 10.1007/s00210-019-01656-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/16/2019] [Indexed: 12/11/2022]
Abstract
Receptor-interacting protein kinase 1/3 (RIPK1/3) and mixed lineage kinase domain-like (MLKL)-mediated necroptosis contributes to brain injury after ischemic stroke. Ligustroflavone is an ingredient of common privet with activities of anti-inflammation and complement inhibition. This study aims to explore the effect of ligustroflavone on ischemic brain injury in stroke rat and the underlying mechanisms. A rat model of ischemic stroke was established by middle cerebral artery occlusion (MCAO), which showed ischemic injury (increase in neurological deficit score and infarct volume) and upregulation of necroptosis-associated proteins (RIPK1, RIPK3 and MLKL/p-MLKL). Administration of ligustroflavone (30 mg/kg, i.g.) 15 min before ischemia evidently improved neurological function, reduced infarct volume, and decreased the levels of necroptosis-associated proteins except the RIPK1. Consistently, hypoxia-cultured PC12 cells (O2/N2/CO2, 1:94:5, 8 h) caused cellular injury (LDH release and necroposis) concomitant with up-regulation of necroptosis-associated proteins, and these phenomena were blocked in the presence of ligustroflavone (25 μM) except the elevated RIPK1 levels. Using the Molecular Operating Environment (MOE) program, we identified RIPK1, RIPK3, and MLKL as potential targets of ligustroflavone. Further studies showed that the interaction between RIPK3 and RIPK1 or MLKL was significantly enhanced, which was blocked in the presence of ligustroflavone. Based on these observations, we conclude that ligustroflavone protects rat brain from ischemic injury, and its beneficial effect is related to the prevention of necroptosis through a mechanism involving targeting RIPK1, RIPK3, and/or MLKL.
Collapse
|
21
|
Pefanis A, Ierino FL, Murphy JM, Cowan PJ. Regulated necrosis in kidney ischemia-reperfusion injury. Kidney Int 2019; 96:291-301. [PMID: 31005270 DOI: 10.1016/j.kint.2019.02.009] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/24/2019] [Accepted: 02/15/2019] [Indexed: 01/18/2023]
Abstract
Ischemia-reperfusion injury (IRI) is the outcome of an inflammatory process that is triggered when an organ undergoes a transient reduction or cessation of blood flow, followed by re-establishment of perfusion. In the clinical setting, IRI contributes to significant acute kidney injury, patient morbidity and mortality, and adverse outcomes in transplantation. Tubular cell death by necrosis and apoptosis is a central feature of renal IRI. Recent research has challenged traditional views of cell death by identifying new pathways in which cells die in a regulated manner but with the morphologic features of necrosis. This regulated necrosis (RN) takes several forms, with necroptosis and ferroptosis being the best described. The precise mechanisms and relationships between the RN pathways in renal IRI are currently the subject of active research. The common endpoint of RN is cell membrane rupture, resulting in the release of cytosolic components with subsequent inflammation and activation of the immune system. We review the evidence and mechanisms of RN in the kidney following renal IRI, and discuss the use of small molecule inhibitors and genetically modified mice to better understand this process and guide potentially novel therapeutic interventions.
Collapse
Affiliation(s)
- Aspasia Pefanis
- Immunology Research Centre, St. Vincent's Hospital Melbourne, Fitzroy, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Francesco L Ierino
- Department of Medicine, University of Melbourne, Melbourne, Australia; Department of Nephrology, St. Vincent's Hospital Melbourne, Fitzroy, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Peter J Cowan
- Immunology Research Centre, St. Vincent's Hospital Melbourne, Fitzroy, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
22
|
Medium-chain TAG improve intestinal integrity by suppressing toll-like receptor 4, nucleotide-binding oligomerisation domain proteins and necroptosis signalling in weanling piglets challenged with lipopolysaccharide. Br J Nutr 2018; 119:1019-1028. [DOI: 10.1017/s000711451800003x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractThis study was conducted to evaluate whether medium-chain TAG (MCT) could alleviate Escherichia coli lipopolysaccharide (LPS)-induced intestinal injury by regulating intestinal epithelial inflammatory response, as well as necroptosis. A total of twenty-four weanling piglets were randomly allotted to one of four treatments in a 2×2 factorial arrangement including diet type (5 % maize oil v. 4 % MCT+1 % maize oil) and immune stress (saline v. E. coli LPS). The piglets were fed diets containing maize oil or MCT for 21 d. On 21 d, piglets were injected intraperitoneally with saline or LPS. The blood and intestinal samples were collected at 4 h post injection. Supplementation with MCT improved intestinal morphology, digestive and barrier function, indicated by increased jejunal villus height, increased jejunal and ileal disaccharidases (sucrase and maltase) activities, as well as enhanced protein expression of claudin-1. Furthermore, the protein expression of heat-shock protein 70 in jejunum and the concentration of TNF-α in plasma were reduced in the piglets fed diets supplemented with MCT. In addition, MCT down-regulated the mRNA expression of toll-like receptor 4 (TLR4) and nucleotide-binding oligomerisation domain proteins (NOD) signalling-related genes in jejunum and ileum. Finally, MCT inhibited jejunal and ileal enterocyte necroptosis indicated by suppressed mRNA expression of the receptor-interacting protein 3 and mixed-lineage kinase domain-like protein. These results indicate that MCT supplementation may be closely related to inhibition of TLR4, NOD and necroptosis signalling pathways and concomitant improvement of intestinal integrity under an inflammatory condition.
Collapse
|
23
|
Das S, Tripathi N, Preet R, Siddharth S, Nayak A, Bharatam PV, Kundu CN. Quinacrine induces apoptosis in cancer cells by forming a functional bridge between TRAIL-DR5 complex and modulating the mitochondrial intrinsic cascade. Oncotarget 2018; 8:248-267. [PMID: 27542249 PMCID: PMC5352116 DOI: 10.18632/oncotarget.11335] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/09/2016] [Indexed: 12/28/2022] Open
Abstract
Death Receptor 5 (DR5) is known to be an important anti-cancer drug target. TRAIL is a natural ligand of DR5, but its drug action is limited because of several factors. A few agonistic ligands were identified as TRAIL-DR5 axis modulators, which enhance the cellular apoptosis. Literature suggest that quinacrine (QC) acts as a DR5 agonistic ligand. However, the detailed mechanism explaining how QC interacts with TRAIL-DR5 axis has not been established. Also focused in vitro and in vivo experimental analysis to validate the hypothesis is not yet performed. In this work, extensive studies have been carried out using in silico analysis (molecular dynamics), in vitro analysis (cell based assays) and in vivo analysis (based on mice xenograft model), to delineate the mechanism of QC action in modulating the TRAIL-DR5 signaling. The MD simulations helped in identifying the important residues contributing to the formation of a QC-TRAIL-DR5 complex, which provide extra stability to it, consequently leading to the enhanced cellular apoptosis. QC caused a dose dependent increase of DR5 expression in cancer cells but not in normal breast epithelial cells, MCF-10A. QC showed a synergistic effect with TRAIL in causing cancer cell apoptosis. In DR5-KD MCF-10A-Tr (DR5 knocked down) cells, TRAIL+ QC failed to significantly increase the apoptosis but over expression of full length DR5 in DR5-silence cells induced apoptosis, further supporting DR5 as a drug target for QC. An increase in the release of reactive species (ROS and RNS) and activation of enzymes (FADD, CASPASES 3, 8, 9 and cytochrome-C) indicated the involvement of mitochondrial intrinsic pathway in TRAIL+QC mediated apoptosis. In vivo study pointed out that TRAIL+QC co-administration increases the expression of DR5 and reduce the tumor size in xenograft mice. This combined in silico, in vitro and in vivo analysis revealed that QC enhances the cellular apoptosis via the modulation of TRAIL-DR5 complexation and the mitochondrial intrinsic pathway.
Collapse
Affiliation(s)
- Sarita Das
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Patia, Bhubaneswar, Odisha, 751024, India
| | - Neha Tripathi
- National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Mohali, Punjab, 160062, India
| | - Ranjan Preet
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Patia, Bhubaneswar, Odisha, 751024, India
| | - Sumit Siddharth
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Patia, Bhubaneswar, Odisha, 751024, India
| | - Anmada Nayak
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Patia, Bhubaneswar, Odisha, 751024, India
| | - Prasad V Bharatam
- National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Mohali, Punjab, 160062, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Patia, Bhubaneswar, Odisha, 751024, India
| |
Collapse
|
24
|
McCubbrey AL, Barthel L, Mohning MP, Redente EF, Mould KJ, Thomas SM, Leach SM, Danhorn T, Gibbings SL, Jakubzick CV, Henson PM, Janssen WJ. Deletion of c-FLIP from CD11b hi Macrophages Prevents Development of Bleomycin-induced Lung Fibrosis. Am J Respir Cell Mol Biol 2018; 58:66-78. [PMID: 28850249 DOI: 10.1165/rcmb.2017-0154oc] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive lung disease with complex pathophysiology and fatal prognosis. Macrophages (MΦ) contribute to the development of lung fibrosis; however, the underlying mechanisms and specific MΦ subsets involved remain unclear. During lung injury, two subsets of lung MΦ coexist: Siglec-Fhi resident alveolar MΦ and a mixed population of CD11bhi MΦ that primarily mature from immigrating monocytes. Using a novel inducible transgenic system driven by a fragment of the human CD68 promoter, we targeted deletion of the antiapoptotic protein cellular FADD-like IL-1β-converting enzyme-inhibitory protein (c-FLIP) to CD11bhi MΦ. Upon loss of c-FLIP, CD11bhi MΦ became susceptible to cell death. Using this system, we were able to show that eliminating CD11bhi MΦ present 7-14 days after bleomycin injury was sufficient to protect mice from fibrosis. RNA-seq analysis of lung MΦ present during this time showed that CD11bhi MΦ, but not Siglec-Fhi MΦ, expressed high levels of profibrotic chemokines and growth factors. Human MΦ from patients with idiopathic pulmonary fibrosis expressed many of the same profibrotic chemokines identified in murine CD11bhi MΦ. Elimination of monocyte-derived MΦ may help in the treatment of fibrosis. We identify c-FLIP and the associated extrinsic cell death program as a potential pathway through which these profibrotic MΦ may be pharmacologically targeted.
Collapse
Affiliation(s)
- Alexandra L McCubbrey
- 1 Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of Colorado Denver School of Medicine, Aurora, Colorado.,2 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and
| | - Lea Barthel
- 2 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and
| | - Michael P Mohning
- 1 Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of Colorado Denver School of Medicine, Aurora, Colorado.,2 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and
| | - Elizabeth F Redente
- 1 Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of Colorado Denver School of Medicine, Aurora, Colorado.,3 Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado.,4 Department of Research, Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado
| | - Kara J Mould
- 1 Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of Colorado Denver School of Medicine, Aurora, Colorado
| | - Stacey M Thomas
- 2 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and
| | - Sonia M Leach
- 5 Center for Genes, Environment, and Health, and.,6 Department of Biomedical Research, National Jewish Health, Denver, Colorado; and
| | - Thomas Danhorn
- 5 Center for Genes, Environment, and Health, and.,6 Department of Biomedical Research, National Jewish Health, Denver, Colorado; and
| | - Sophie L Gibbings
- 3 Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Claudia V Jakubzick
- 3 Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado.,7 Integrated Department of Immunology, National Jewish Health and University of Colorado Denver Anshutz Campus, Denver, Colorado
| | - Peter M Henson
- 3 Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - William J Janssen
- 1 Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of Colorado Denver School of Medicine, Aurora, Colorado.,2 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and
| |
Collapse
|
25
|
Caspase-8 function, and phosphorylation, in cell migration. Semin Cell Dev Biol 2018; 82:105-117. [PMID: 29410361 DOI: 10.1016/j.semcdb.2018.01.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 11/22/2022]
Abstract
Caspase-8 is involved in a number of cellular functions, with the most well established being the control of cell death. Yet caspase-8 is unique among the caspases in that it acts as an environmental sensor, transducing a range of signals to cells, modulating responses that extend far beyond simple survival. Ranging from the control of apoptosis and necroptosis and gene regulation to cell adhesion and migration, caspase-8 uses proteolytic and non-proteolytic functions to alter cell behavior. Novel interacting partners provide mechanisms for caspase-8 to position itself at signaling nodes that affect a variety of signaling pathways. Here, we examine the catalytic and noncatalytic modes of action by which caspase-8 influences cell adhesion and migration. The mechanisms vary from post-cleavage remodeling of the cytoskeleton to signaling elements that control focal adhesion turnover. This is facilitated by caspase-8 interaction with a host of cell proteins ranging from the proteases caspase-3 and calpain-2 to adaptor proteins such as p85 and Crk, to the Src family of tyrosine kinases.
Collapse
|
26
|
Abstract
Necroptosis, a form of regulated necrosis, is triggered by a variety of signals that converge to activate receptor interacting protein kinase-3 (RIPK3), consequently promoting the direct phosphorylation and activation of the mixed lineage kinase like (MLKL) protein. Active MLKL executes necroptosis by disrupting the integrity of the plasma membrane. Stimuli that can induce necroptosis include ligation of death receptors (a subset of the TNFR family), toll-like receptors (in particular, TLR3 and TLR4), interferons, and the intracellular viral sensor, DAI/ZBP1, among others. To study the process in more detail, it is useful to have a means to directly activate RIPK3. Here we provide protocols and procedures to artificially induce necroptotic cell death by drug-induced forced dimerization of RIPK3. We also provide information on specific kinase inhibitors, procedures to monitor RIPK3 and MLKL activation, and real-time quantification of cell death.
Collapse
Affiliation(s)
- Diego A Rodriguez
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
27
|
Guégan JP, Legembre P. Nonapoptotic functions of Fas/CD95 in the immune response. FEBS J 2017; 285:809-827. [PMID: 29032605 DOI: 10.1111/febs.14292] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/26/2017] [Accepted: 10/11/2017] [Indexed: 12/26/2022]
Abstract
CD95 (also known as Fas) is a member of the tumor necrosis factor receptor (TNFR) superfamily. Its cognate ligand, CD95L, is implicated in immune homeostasis and immune surveillance. Mutations in this receptor are associated with a loss of apoptotic signaling and have been detected in an autoimmune disorder called autoimmune lymphoproliferative syndrome (ALPS) type Ia, which shares some clinical features with systemic lupus erythematosus (SLE). In addition, deletions and mutations of CD95 have been described in many cancers, which led researchers to initially classify this receptor as a tumor suppressor. More recent data demonstrate that CD95 engagement evokes nonapoptotic signals that promote inflammation and carcinogenesis. Transmembrane CD95L (m-CD95L) can be cleaved by metalloproteases, releasing a soluble ligand (s-CD95L). Soluble and membrane-bound CD95L show different stoichiometry (homotrimer versus multimer of homotrimers, respectively), which differentially affects CD95-mediated signaling through molecular mechanisms that remain to be elucidated. This review discusses the biological roles of CD95 in light of recent experiments addressing how a death receptor can trigger both apoptotic and nonapoptotic signaling pathways.
Collapse
Affiliation(s)
- Jean-Philippe Guégan
- Centre Eugène Marquis, INSERM U1242-COSS, Equipe Labellisée Ligue Contre Le Cancer, Rennes, France.,Université de Rennes-1, Rennes, France
| | - Patrick Legembre
- Centre Eugène Marquis, INSERM U1242-COSS, Equipe Labellisée Ligue Contre Le Cancer, Rennes, France.,Université de Rennes-1, Rennes, France
| |
Collapse
|
28
|
Cheng Z, Shang Y, Gao S, Zhang T. Overexpression of U1 snRNA induces decrease of U1 spliceosome function associated with Alzheimer's disease. J Neurogenet 2017; 31:337-343. [PMID: 29098922 DOI: 10.1080/01677063.2017.1395425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We recently reported that presenilin-1 (PS1) induced an increase of U1 snRNA expression accompanied with the change of amyloid precursor protein expression, β-amyloid level and cell death. In the present study, our data showed that both overexpression and knockdown of U1 snRNA could cause the loss in the function of U1 snRNA and resulted in PCPA as well as the same downstream phenomena including the expression changes of genes specific to AD, tau hyperphosphorylation on the site of Thr212, the decrease of acetylated α-tubulin, the reduction of cell viability and upregulation of RIPK1, RIPK3 and caspase8. These findings not only helped researchers better understand the functions of U1 snRNA, but also paved the way to reveal the mechanisms of AD from a different point of view and may find a new therapeutic target for the disease.
Collapse
Affiliation(s)
- Zhi Cheng
- a College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education , Nankai University , Tianjin , PR China
| | - Yingchun Shang
- a College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education , Nankai University , Tianjin , PR China
| | - Shan Gao
- a College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education , Nankai University , Tianjin , PR China
| | - Tao Zhang
- a College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education , Nankai University , Tianjin , PR China
| |
Collapse
|
29
|
Abstract
In a recent issue of Cell Chemical Biology, Taabazuing et al. (2017) reveal a bidirectional interplay between pathways leading to apoptosis and pyroptosis, two forms of regulated cell death with opposing inflammatory outcomes. The outcome is sealed by differential cleavage of the key pyroptosis execution substrate gasdermin D such that inflammatory caspases activate it but apoptotic caspases prevent its activation.
Collapse
|
30
|
Lee P, Jiang S, Li Y, Yue J, Gou X, Chen SY, Zhao Y, Schober M, Tan M, Wu X. Phosphorylation of Pkp1 by RIPK4 regulates epidermal differentiation and skin tumorigenesis. EMBO J 2017; 36:1963-1980. [PMID: 28507225 DOI: 10.15252/embj.201695679] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 04/03/2017] [Accepted: 04/07/2017] [Indexed: 02/06/2023] Open
Abstract
Tissue homeostasis of skin is sustained by epidermal progenitor cells localized within the basal layer of the skin epithelium. Post-translational modification of the proteome, such as protein phosphorylation, plays a fundamental role in the regulation of stemness and differentiation of somatic stem cells. However, it remains unclear how phosphoproteomic changes occur and contribute to epidermal differentiation. In this study, we survey the epidermal cell differentiation in a systematic manner by combining quantitative phosphoproteomics with mammalian kinome cDNA library screen. This approach identified a key signaling event, phosphorylation of a desmosome component, PKP1 (plakophilin-1) by RIPK4 (receptor-interacting serine-threonine kinase 4) during epidermal differentiation. With genome-editing and mouse genetics approach, we show that loss of function of either Pkp1 or Ripk4 impairs skin differentiation and enhances epidermal carcinogenesis in vivo Phosphorylation of PKP1's N-terminal domain by RIPK4 is essential for their role in epidermal differentiation. Taken together, our study presents a global view of phosphoproteomic changes that occur during epidermal differentiation, and identifies RIPK-PKP1 signaling as novel axis involved in skin stratification and tumorigenesis.
Collapse
Affiliation(s)
- Philbert Lee
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Shangwen Jiang
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuanyuan Li
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Jiping Yue
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Xuewen Gou
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Science Center, Louisville, KY, USA
| | - Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Markus Schober
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, USA
| | - Minjia Tan
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
31
|
Arora D, Sharma PK, Siddiqui MH, Shukla Y. Necroptosis: Modules and molecular switches with therapeutic implications. Biochimie 2017; 137:35-45. [PMID: 28263777 DOI: 10.1016/j.biochi.2017.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 02/07/2017] [Accepted: 02/27/2017] [Indexed: 12/24/2022]
Abstract
Among the various programmed cell death (PCD) pathways, "Necroptosis" has gained much importance as a novel paradigm of cell death. This pathway has emerged as a backup mechanism when physiologically conserved PCD (apoptosis) is non-functional either genetically or pathogenically. The expanding spectrum of necroptosis from physiological development to diverse patho-physiological disorders, including xenobiotics-mediated toxicity has now grabbed the attention worldwide. The efficient role of necroptosis regulators in disease development and management are under constant examination. In fact, few regulators (e.g. MLKL) have already paved their way towards clinical trials and others are in queue. In this review, emphasis has been paid to the various contributing factors and molecular switches that can regulate necroptosis. Here we linked the overview of current knowledge of this enigmatic signaling with magnitude of therapeutics that may underpin the opportunities for novel therapeutic approaches to suppress the pathogenesis of necroptosis-driven disorders.
Collapse
Affiliation(s)
- Deepika Arora
- Environmental Carcinogenesis & Proteomics Laboratory, Food, Drug & Chemical Toxicology Group, VishvigyanBhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Pradeep Kumar Sharma
- Environmental Carcinogenesis & Proteomics Laboratory, Food, Drug & Chemical Toxicology Group, VishvigyanBhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Mohammed Haris Siddiqui
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Yogeshwer Shukla
- Environmental Carcinogenesis & Proteomics Laboratory, Food, Drug & Chemical Toxicology Group, VishvigyanBhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
32
|
Ahn D, Prince A. Participation of Necroptosis in the Host Response to Acute Bacterial Pneumonia. J Innate Immun 2017; 9:262-270. [PMID: 28125817 PMCID: PMC5413418 DOI: 10.1159/000455100] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022] Open
Abstract
Common pulmonary pathogens, such as Streptococcus pneumoniae and Staphylococcus aureus, as well as the host-adapted pathogens responsible for health care-associated pneumonias, such as the carbapenem-resistant Klebsiella pneumoniae and Serratia marcecsens, are able to activate cell death through the RIPK1/RIPK3/MLKL cascade that causes necroptosis. Necroptosis can influence the pathogenesis of pneumonia through several mechanisms. Activation of this pathway can result in the loss of specific types of immune cells, especially macrophages, and, in so doing, contribute to host pathology through the loss of their critical immunoregulatory functions. However, in other settings of infection, necroptosis promotes pathogen removal and the eradication of infected cells to control excessive proinflammatory signaling. Bacterial production of pore-forming toxins provides a common mechanism to activate necroptosis by diverse bacterial species, with variable consequences depending upon the specific pathogen. Included in this brief review are data demonstrating the ability of the carbapenem-resistant ST258 K. pneumoniae to activate necroptosis in the setting of pneumonia, which is counterbalanced by their suppression of CYLD expression. Exactly how necroptosis and other mechanisms of cell death are coregulated in the response to specific pulmonary pathogens remains a topic of active investigation, and it may provide potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Danielle Ahn
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Alice Prince
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
- Department of Pharmacology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
33
|
Cancer's Achilles' Heel: Apoptosis and Necroptosis to the Rescue. Int J Mol Sci 2016; 18:ijms18010023. [PMID: 28025559 PMCID: PMC5297658 DOI: 10.3390/ijms18010023] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/05/2016] [Accepted: 12/19/2016] [Indexed: 12/24/2022] Open
Abstract
Apoptosis, and the more recently discovered necroptosis, are two avenues of programmed cell death. Cancer cells survive by evading these two programs, driven by oncogenes and tumor suppressor genes. While traditional therapy using small molecular inhibitors and chemotherapy are continuously being utilized, a new and exciting approach is actively underway by identifying and using synergistic relationship between driver and rescue genes in a cancer cell. Through these synthetic lethal relationships, we are gaining tremendous insights into tumor vulnerabilities and specific molecular avenues for induction of programmed cell death. In this review, we briefly discuss the two cell death processes and cite examples of such synergistic manipulations for therapeutic purposes.
Collapse
|
34
|
Lin JJ, Wang RYL, Chen JC, Chiu CC, Liao MH, Wu YJ. Cytotoxicity of 11-epi-Sinulariolide Acetate Isolated from Cultured Soft Corals on HA22T Cells through the Endoplasmic Reticulum Stress Pathway and Mitochondrial Dysfunction. Int J Mol Sci 2016; 17:ijms17111787. [PMID: 27801783 PMCID: PMC5133788 DOI: 10.3390/ijms17111787] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/29/2016] [Accepted: 10/12/2016] [Indexed: 12/17/2022] Open
Abstract
Natural compounds from soft corals have been increasingly used for their antitumor therapeutic properties. This study examined 11-epi-sinulariolide acetate (11-epi-SA), an active compound isolated from the cultured soft coral Sinularia flexibilis, to determine its potential antitumor effect on four hepatocellular carcinoma cell lines. Cell viability was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and the results demonstrated that 11-epi-SA treatment showed more cytotoxic effect toward HA22T cells. Protein profiling of the 11-epi-SA-treated HA22T cells revealed substantial protein alterations associated with stress response and protein synthesis and folding, suggesting that the mitochondria and endoplasmic reticulum (ER) play roles in 11-epi-SA-initiated apoptosis. Moreover, 11-epi-SA activated caspase-dependent apoptotic cell death, suggesting that mitochondria-related apoptosis genes were involved in programmed cell death. The unfolded protein response signaling pathway-related proteins were also activated on 11-epi-SA treatment, and these changes were accompanied by the upregulated expression of growth arrest and DNA damage-inducible protein (GADD153) and CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP), the genes encoding transcription factors associated with growth arrest and apoptosis under prolonged ER stress. Two inhibitors, namely salubrinal (Sal) and SP600125, partially abrogated 11-epi-SA-related cell death, implying that the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK)–activating transcription factor (ATF) 6–CHOP or the inositol-requiring enzyme 1 alpha (IRE1α)–c-Jun N-terminal kinase (JNK)–cJun signal pathway was activated after 11-epi-SA treatment. In general, these results suggest that 11-epi-SA exerts cytotoxic effects on HA22T cells through mitochondrial dysfunction and ER stress cell death pathways.
Collapse
Affiliation(s)
- Jen-Jie Lin
- Graduate Institute of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| | - Robert Y L Wang
- Department of Biomedical Sciences and Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Division of Pediatric Infectious Disease, Department of Pediatrics, Chang Gung Memorial Hospital, Linkuo 33305, Taiwan.
| | - Jiing-Chuan Chen
- Department of Food Science and Nutrition, Meiho University, Pingtung 91202, Taiwan.
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Ming-Hui Liao
- Graduate Institute of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| | - Yu-Jen Wu
- Department of Food Science and Nutrition, Meiho University, Pingtung 91202, Taiwan.
- Department of Beauty Science, Meiho University, Pingtung 91202, Taiwan.
| |
Collapse
|
35
|
Chien HT, Cheng SD, Chuang WY, Liao CT, Wang HM, Huang SF. Clinical Implications of FADD Gene Amplification and Protein Overexpression in Taiwanese Oral Cavity Squamous Cell Carcinomas. PLoS One 2016; 11:e0164870. [PMID: 27764170 PMCID: PMC5072707 DOI: 10.1371/journal.pone.0164870] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/03/2016] [Indexed: 12/27/2022] Open
Abstract
Amplification of 11q13.3 is a frequent event in human cancers, including head and neck squamous cell carcinoma. This chromosome region contains several genes that are potentially cancer drivers, including FADD (Fas associated via death domain), an apoptotic effector that was previously identified as a novel oncogene in laryngeal/pharyngeal cancer. This study was designed to explore the role of FADD in oral squamous cell carcinomas (OSCCs) samples from Taiwanese patients, by assessing copy number variations (CNVs) and protein expression and the clinical implications of these factors in 339 male OSCCs. The intensity of FADD protein expression, as determined by immunohistochemistry, was strongly correlated with gene copy number amplification, as analyzed using a TaqMan CNV assay. Both FADD gene copy number amplification and high protein expression were significantly associated with lymph node metastasis (P < 0.001). Patients with both FADD copy number amplification and high protein expression had the shortest disease-free survival (DFS; P = 0.074 and P = 0.002) and overall survival (OS; P = 0.011 and P = 0.027). After adjusting for primary tumor status, tumor differentiation, lymph node metastasis and age at diagnosis, DFS was still significantly lower in patients with either copy number amplification or high protein expression (hazard ratio [H.R.] = 1.483; 95% confidence interval [C.I.], 1.044–2.106). In conclusion, our data reveal that FADD gene copy number and protein expression can be considered potential prognostic markers and are closely associated with lymph node metastasis in patients with OSCC in Taiwan.
Collapse
Affiliation(s)
- Huei-Tzu Chien
- Department of Public Health, Chang Gung University, Tao-Yuan, Taiwan, R.O.C
| | - Sou-De Cheng
- Department of Anatomy, Chang Gung University, Tao-Yuan, Taiwan, R.O.C
| | - Wen-Yu Chuang
- Department of Pathology, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan, R.O.C
| | - Chun-Ta Liao
- Department of Otolaryngology, Head and Neck Surgery, Chang Gung Memorial, Tao-Yuan, Taiwan, R.O.C
- Taipei CGMH Head and Neck Oncology Group, Tao-Yuan, Taiwan, R.O.C
| | - Hung-Ming Wang
- Division of Hematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan, R.O.C
- Taipei CGMH Head and Neck Oncology Group, Tao-Yuan, Taiwan, R.O.C
| | - Shiang-Fu Huang
- Department of Public Health, Chang Gung University, Tao-Yuan, Taiwan, R.O.C
- Department of Otolaryngology, Head and Neck Surgery, Chang Gung Memorial, Tao-Yuan, Taiwan, R.O.C
- Taipei CGMH Head and Neck Oncology Group, Tao-Yuan, Taiwan, R.O.C
- * E-mail:
| |
Collapse
|
36
|
Svandova EB, Vesela B, Lesot H, Poliard A, Matalova E. Expression of Fas, FasL, caspase-8 and other factors of the extrinsic apoptotic pathway during the onset of interdigital tissue elimination. Histochem Cell Biol 2016; 147:497-510. [DOI: 10.1007/s00418-016-1508-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2016] [Indexed: 01/24/2023]
|
37
|
Ma YM, Peng YM, Zhu QH, Gao AH, Chao B, He QJ, Li J, Hu YH, Zhou YB. Novel CHOP activator LGH00168 induces necroptosis in A549 human lung cancer cells via ROS-mediated ER stress and NF-κB inhibition. Acta Pharmacol Sin 2016; 37:1381-1390. [PMID: 27264312 DOI: 10.1038/aps.2016.61] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/06/2016] [Indexed: 12/14/2022]
Abstract
AIM C/EBP homologous protein (CHOP) is a transcription factor that is activated at multiple levels during ER stress and plays an important role in ER stress-induced apoptosis. In this study we identified a novel CHOP activator, and further investigated its potential to be a therapeutic agent for human lung cancer. METHODS HEK293-CHOP-luc reporter cells were used in high-throughput screening (HTS) to identify CHOP activators. The cytotoxicity against cancer cells in vitro was measured with MTT assay. The anticancer effects were further examined in A549 human non-small cell lung cancer xenograft mice. The mechanisms underlying CHOP activation were analyzed using luciferase assays, and the anticancer mechanisms were elucidated in A549 cells. RESULTS From chemical libraries of 50 000 compounds, LGH00168 was identified as a CHOP activator, which showed cytotoxic activities against a panel of 9 cancer cell lines with an average IC50 value of 3.26 μmol/L. Moreover, administration of LGH00168 significantly suppressed tumor growth in A549 xenograft bearing mice. LGH00168 activated CHOP promoter via AARE1 and AP1 elements, increased DR5 expression, decreased Bcl-2 expression, and inhibited the NF-κB pathway. Treatment of A549 cells with LGH00168 (10 μmol/L) did not induce apoptosis, but lead to RIP1-dependent necroptosis, accompanied by cell swelling, plasma membrane rupture, lysosomal membrane permeabilization, MMP collapse and caspase 8 inhibition. Furthermore, LGH00168 (10 and 20 μmol/L) dose-dependently induced mito-ROS production in A549 cells, which was reversed by the ROS scavenger N-acetyl-L-cysteine (NAC, 10 mmol/L). Moreover, NAC significantly diminished LGH00168-induced CHOP activation, NF-κB inhibition and necroptosis in A549 cells. CONCLUSION LGH00168 is a CHOP activator that inhibits A549 cell growth in vitro and lung tumor growth in vivo.
Collapse
|
38
|
A challenge to the striking genotypic heterogeneity of retinitis pigmentosa: a better understanding of the pathophysiology using the newest genetic strategies. Eye (Lond) 2016; 30:1542-1548. [PMID: 27564722 DOI: 10.1038/eye.2016.197] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 07/13/2016] [Indexed: 11/08/2022] Open
Abstract
Retinitis pigmentosa (RP) is a group of inherited retinal disorders characterized by a complex association between tremendous genotypic multiplicity and great phenotypic heterogeneity. The severity of the clinical manifestation depends on penetrance and expressivity of the disease-gene. Also, various interactions between gene expression and environmental factors have been hypothesized. More than 250 genes with ~4500 causative mutations have been reported to be involved in different RP-related mechanisms. Nowadays, not more than the 50% of RPs are attributable to identified genes, whereas the rest of molecular defects are still undetectable, especially in populations where few genetic screenings have been performed. Therefore, new genetic strategies can be a remarkably useful tool to aid clinical diagnosis, potentially modifying treatment options, and family counseling. Genome-wide analytical techniques (array comparative genomic hybridization and single-nucleotide polymorphism genotyping) and DNA sequencing strategies (arrayed primer extension, Sanger sequencing, and ultra high-throughput sequencing) are successfully used to early make molecular diagnosis detecting single or multiple mutations in the huge heterogeneity of RPs. To date, further research needs to be carried out to better investigate the genotype/phenotype correlation, putting together genetic and clinical findings to provide detailed information concerning the risk of RP development and novel effective treatments.
Collapse
|
39
|
Dillon CP, Tummers B, Baran K, Green DR. Developmental checkpoints guarded by regulated necrosis. Cell Mol Life Sci 2016; 73:2125-36. [PMID: 27056574 PMCID: PMC11108279 DOI: 10.1007/s00018-016-2188-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 10/22/2022]
Abstract
The process of embryonic development is highly regulated through the symbiotic control of differentiation and programmed cell death pathways, which together sculpt tissues and organs. The importance of programmed necrotic (RIPK-dependent necroptosis) cell death during development has recently been recognized as important and has largely been characterized using genetically engineered animals. Suppression of necroptosis appears to be essential for murine development and occurs at three distinct checkpoints, E10.5, E16.5, and P1. These distinct time points have helped delineate the molecular pathways and regulation of necroptosis. The embryonic lethality at E10.5 seen in knockouts of caspase-8, FADD, or FLIP (cflar), components of the extrinsic apoptosis pathway, resulted in pallid embryos that did not exhibit the expected cellular expansions. This was the first suggestion that these factors play an important role in the inhibition of necroptotic cell death. The embryonic lethality at E16.5 highlighted the importance of TNF engaging necroptosis in vivo, since elimination of TNFR1 from casp8 (-/-), fadd (-/-), or cflar (-/-), ripk3 (-/-) embryos delayed embryonic lethality from E10.5 until E16.5. The P1 checkpoint demonstrates the dual role of RIPK1 in both the induction and inhibition of necroptosis, depending on the upstream signal. This review summarizes the role of necroptosis in development and the genetic evidence that helped detail the molecular mechanisms of this novel pathway of programmed cell death.
Collapse
Affiliation(s)
- Christopher P Dillon
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Bart Tummers
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Katherine Baran
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
40
|
The unconventional myosin CRINKLED and its mammalian orthologue MYO7A regulate caspases in their signalling roles. Nat Commun 2016; 7:10972. [PMID: 26960254 PMCID: PMC4792956 DOI: 10.1038/ncomms10972] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 02/05/2016] [Indexed: 12/25/2022] Open
Abstract
Caspases provide vital links in non-apoptotic regulatory networks controlling inflammation, compensatory proliferation, morphology and cell migration. How caspases are activated under non-apoptotic conditions and process a selective set of substrates without killing the cell remain enigmatic. Here we find that the Drosophila unconventional myosin CRINKLED (CK) selectively interacts with the initiator caspase DRONC and regulates some of its non-apoptotic functions. Loss of CK in the arista, border cells or proneural clusters of the wing imaginal discs affects DRONC-dependent patterning. Our data indicate that CK acts as substrate adaptor, recruiting SHAGGY46/GSK3-β to DRONC, thereby facilitating caspase-mediated cleavage and localized modulation of kinase activity. Similarly, the mammalian CK counterpart, MYO7A, binds to and impinges on CASPASE-8, revealing a new regulatory axis affecting receptor interacting protein kinase-1 (RIPK1)>CASPASE-8 signalling. Together, our results expose a conserved role for unconventional myosins in transducing caspase-dependent regulation of kinases, allowing them to take part in specific signalling events.
Collapse
|
41
|
Green DR. The cell's dilemma, or the story of cell death: an entertainment in three acts. FEBS J 2016; 283:2568-76. [PMID: 26787595 DOI: 10.1111/febs.13658] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/13/2016] [Indexed: 12/28/2022]
Abstract
Cells. They assemble, thrive, and cooperate to compose an organism, simple or complex. And like any living thing, they die. They die by catastrophe, they become sabotaged by condition, or they remove themselves on command from within or without. Each small life is followed by a death, to the benefit or the harm of the whole. Our story, here, is not of how each quietus occurs, but instead, of our ongoing effort to understand these tiny demises, to manipulate them, and to some day control them.
Collapse
|
42
|
Evaluation of RIP1K and RIP3K expressions in the malignant and benign breast tumors. Tumour Biol 2016; 37:8849-56. [PMID: 26749282 DOI: 10.1007/s13277-015-4762-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/29/2015] [Indexed: 12/26/2022] Open
Abstract
Receptor-interacting protein kinase 1 (RIP1K) and RIP3K belong to RIPK family, which regulate cell survival and cell death. In the present investigation, the expression levels of RIP1K and RIP3K were evaluated in the 30 malignant, 15 benign, and 20 normal breast tissues, and their correlation with clinicopathological characteristics was also studied. The expression levels of RIP1K and RIP3K were determined, by western blot analysis. The relative RIP1K expression was significantly higher in the malignant and benign tumors when compared to those of normal tissues (P < 0.0001 and P < 0.001, respectively). However, the expression level of RIP3K was significantly lower in the malignant tumors than those of normal and benign values (P < 0.001 and P < 0.01, respectively). Positive significant correlation was found for RIP1K expression with tumor size (P < 0.001), grades (P < 0.0001), and c-erbB2 (P < 0.001), but negative significant correlation was detected with patient's age (P < 0.001), estrogen receptor (ER) (P < 0.001), progesterone receptor (PR) (P < 0.01), and P53 (P<0.01) status. RIP3K expression was significantly lower in the pre-menopauses (P < 0.01), grade III (P < 0.05), ER-negative (P < 0.05), and c-erbB2-negative malignant tumors, but no correlation was detected with tumor size, PR, and P53 status. No significant correlation was observed for RIP1K and RIP3K expressions with Ki67 and Her2. Based on the present results, it is concluded that reduction of RIP3K expression in the malignant breast tumor might be an important evidence to support the antitumor activity of this enzyme in vivo. However, RIP1K expression was shown to be higher in the malignant breast tumors than those of normal and benign breast tissues, which probably designates as a poor prognostic factor.
Collapse
|
43
|
Dillon CP, Green DR. Molecular Cell Biology of Apoptosis and Necroptosis in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 930:1-23. [PMID: 27558815 DOI: 10.1007/978-3-319-39406-0_1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell death is a major mechanism to eliminate cells in which DNA is damaged, organelles are stressed, or oncogenes are overexpressed, all events that would otherwise predispose cells to oncogenic transformation. The pathways that initiate and execute cell death are complex, genetically encoded, and subject to significant regulation. Consequently, while these pathways are often mutated in malignancy, there is considerable interest in inducing cell death in tumor cells as therapy. This chapter addresses our current understanding of molecular mechanisms contributing to two cell death pathways, apoptotic cell death and necroptosis, a regulated form of necrotic cell death. Apoptosis can be induced by a wide variety of signals, leading to protease activation that dismantles the cell. We discuss the physiological importance of each apoptosis pathway and summarize their known roles in cancer suppression and the current efforts at targeting each pathway therapeutically. The intricate mechanistic link between death receptor-mediated apoptosis and necroptosis is described, as well as the potential opportunities for utilizing necroptosis in the treatment of malignancy.
Collapse
Affiliation(s)
- Christopher P Dillon
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
44
|
Pore-Forming Toxins Induce Macrophage Necroptosis during Acute Bacterial Pneumonia. PLoS Pathog 2015; 11:e1005337. [PMID: 26659062 PMCID: PMC4676650 DOI: 10.1371/journal.ppat.1005337] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 11/20/2015] [Indexed: 12/25/2022] Open
Abstract
Necroptosis is a highly pro-inflammatory mode of cell death regulated by RIP (or RIPK)1 and RIP3 kinases and mediated by the effector MLKL. We report that diverse bacterial pathogens that produce a pore-forming toxin (PFT) induce necroptosis of macrophages and this can be blocked for protection against Serratia marcescens hemorrhagic pneumonia. Following challenge with S. marcescens, Staphylococcus aureus, Streptococcus pneumoniae, Listeria monocytogenes, uropathogenic Escherichia coli (UPEC), and purified recombinant pneumolysin, macrophages pretreated with inhibitors of RIP1, RIP3, and MLKL were protected against death. Alveolar macrophages in MLKL KO mice were also protected during S. marcescens pneumonia. Inhibition of caspases had no impact on macrophage death and caspase-1 and -3/7 were determined to be inactive following challenge despite the detection of IL-1β in supernatants. Bone marrow-derived macrophages from RIP3 KO, but not caspase-1/11 KO or caspase-3 KO mice, were resistant to PFT-induced death. We explored the mechanisms for PFT-induced necroptosis and determined that loss of ion homeostasis at the plasma membrane, mitochondrial damage, ATP depletion, and the generation of reactive oxygen species were together responsible. Treatment of mice with necrostatin-5, an inhibitor of RIP1; GW806742X, an inhibitor of MLKL; and necrostatin-5 along with co-enzyme Q10 (N5/C10), which enhances ATP production; reduced the severity of S. marcescens pneumonia in a mouse intratracheal challenge model. N5/C10 protected alveolar macrophages, reduced bacterial burden, and lessened hemorrhage in the lungs. We conclude that necroptosis is the major cell death pathway evoked by PFTs in macrophages and the necroptosis pathway can be targeted for disease intervention. Necroptosis is a pro-inflammatory mode of programmed cell death that is marked by the intentional disruption of host membranes and the release of pro-inflammatory cytosolic components into the milieu. Until just recently necroptosis was not appreciated to play a role during infectious disease. Herein, we demonstrate that alveolar macrophages exposed to the nosocomial pathogen Serratia marcescens undergo necroptosis and this leads to enhanced disease severity. We subsequently demonstrate that necroptosis is the principle mode of cell death experienced by macrophages following their exposure to bacteria that produce pore-forming toxins (PFTs). We dissect the molecular mechanisms by which PFTs induce necroptosis and demonstrate that loss of ion homeostasis at the cell membrane and mitochondrial damage result in ATP depletion and ROS generation that together are responsible. Finally, we demonstrate that inhibition of necroptosis by various means is protective against hemorrhagic pneumonia caused by S. marcescens.
Collapse
|
45
|
Boutaffala L, Bertrand MJM, Remouchamps C, Seleznik G, Reisinger F, Janas M, Bénézech C, Fernandes MT, Marchetti S, Mair F, Ganeff C, Hupalowska A, Ricci JE, Becher B, Piette J, Knolle P, Caamano J, Vandenabeele P, Heikenwalder M, Dejardin E. NIK promotes tissue destruction independently of the alternative NF-κB pathway through TNFR1/RIP1-induced apoptosis. Cell Death Differ 2015; 22:2020-33. [PMID: 26045047 PMCID: PMC4816116 DOI: 10.1038/cdd.2015.69] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 12/21/2022] Open
Abstract
NF-κB-inducing kinase (NIK) is well-known for its role in promoting p100/NF-κB2 processing into p52, a process defined as the alternative, or non-canonical, NF-κB pathway. Here we reveal an unexpected new role of NIK in TNFR1-mediated RIP1-dependent apoptosis, a consequence of TNFR1 activation observed in c-IAP1/2-depleted conditions. We show that NIK stabilization, obtained by activation of the non-death TNFRs Fn14 or LTβR, is required for TNFα-mediated apoptosis. These apoptotic stimuli trigger the depletion of c-IAP1/2, the phosphorylation of RIP1 and the RIP1 kinase-dependent assembly of the RIP1/FADD/caspase-8 complex. In the absence of NIK, the phosphorylation of RIP1 and the formation of RIP1/FADD/caspase-8 complex are compromised while c-IAP1/2 depletion is unaffected. In vitro kinase assays revealed that recombinant RIP1 is a bona fide substrate of NIK. In vivo, we demonstrated the requirement of NIK pro-death function, but not the processing of its substrate p100 into p52, in a mouse model of TNFR1/LTβR-induced thymus involution. In addition, we also highlight a role for NIK in hepatocyte apoptosis in a mouse model of virus-induced TNFR1/RIP1-dependent liver damage. We conclude that NIK not only contributes to lymphoid organogenesis, inflammation and cell survival but also to TNFR1/RIP1-dependent cell death independently of the alternative NF-κB pathway.
Collapse
Affiliation(s)
- L Boutaffala
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Research, University of Liège, Liège, Belgium
| | - M J M Bertrand
- The Inflammation Research Center IRC, VIB, DMBR, Ghent University, Ghent, Belgium
| | - C Remouchamps
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Research, University of Liège, Liège, Belgium
| | - G Seleznik
- Institute of Neuropathology, University Hospital Zürich, Zürich, Switzerland
| | | | - M Janas
- Institute of Molecular Immunology and Technische Universität München (TUM)/Helmholtz Zentrum München (HMGU), Munich, Germany
| | - C Bénézech
- School of Immunity and Infection, IBR-MRC, Centre for Immune Regulation, University of Birmingham, Birmingham, UK
| | - M T Fernandes
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Research, University of Liège, Liège, Belgium
| | - S Marchetti
- INSERM U1065, Centre Méditéranéen de Médecine Moléculaire, Nice, France
| | - F Mair
- Institute of Experimental Immunology, University of Zurich, Zürich, Switzerland
| | - C Ganeff
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Research, University of Liège, Liège, Belgium
| | - A Hupalowska
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Research, University of Liège, Liège, Belgium
| | - J-E Ricci
- INSERM U1065, Centre Méditéranéen de Médecine Moléculaire, Nice, France
| | - B Becher
- Institute of Experimental Immunology, University of Zurich, Zürich, Switzerland
| | - J Piette
- Laboratory of Virology, GIGA-Research, University of Liège, Liège, Belgium
| | - P Knolle
- Institute of Molecular Immunology and Technische Universität München (TUM)/Helmholtz Zentrum München (HMGU), Munich, Germany
| | - J Caamano
- School of Immunity and Infection, IBR-MRC, Centre for Immune Regulation, University of Birmingham, Birmingham, UK
| | - P Vandenabeele
- The Inflammation Research Center IRC, VIB, DMBR, Ghent University, Ghent, Belgium
| | - M Heikenwalder
- Institute of Virology, Munich, Germany
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - E Dejardin
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Research, University of Liège, Liège, Belgium
| |
Collapse
|
46
|
Delgado ME, Grabinger T, Brunner T. Cell death at the intestinal epithelial front line. FEBS J 2015; 283:2701-19. [PMID: 26499289 DOI: 10.1111/febs.13575] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/23/2015] [Accepted: 10/21/2015] [Indexed: 12/25/2022]
Abstract
The intestinal epithelium represents the largest epithelial surface in our body. This single-cell-layer epithelium mediates important functions in the absorption of nutrients and in the maintenance of barrier function, preventing luminal microorganisms from invading the body. Due to its constant regeneration the intestinal epithelium is a tissue not only with very high proliferation rates but also with very prominent physiological and pathophysiological cell death induction. The normal physiological differentiation and maturation of intestinal epithelial cells leads to their shedding and apoptotic cell death within a few days, without disturbing the epithelial barrier integrity. In contrast excessive intestinal epithelial cell death induced by irradiation, drugs and inflammation severely impairs the vital functions of this tissue. In this review we discuss cell death processes in the intestinal epithelium in health and disease, with special emphasis on cell death triggered by the tumour necrosis factor receptor family.
Collapse
Affiliation(s)
- Maria Eugenia Delgado
- Chair of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Thomas Grabinger
- Chair of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Thomas Brunner
- Chair of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| |
Collapse
|
47
|
CNOT3 suppression promotes necroptosis by stabilizing mRNAs for cell death-inducing proteins. Sci Rep 2015. [DOI: 10.1038/srep14779 205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
48
|
CNOT3 suppression promotes necroptosis by stabilizing mRNAs for cell death-inducing proteins. Sci Rep 2015; 5:14779. [PMID: 26437789 PMCID: PMC4594005 DOI: 10.1038/srep14779] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/08/2015] [Indexed: 12/02/2022] Open
Abstract
The CCR4-NOT complex is conserved in eukaryotes and is involved in mRNA metabolism, though its molecular physiological roles remain to be established. We show here that CNOT3-depleted mouse embryonic fibroblasts (MEFs) undergo cell death. Levels of other complex subunits are decreased in CNOT3-depleted MEFs. The death phenotype is rescued by introduction of wild-type (WT), but not mutated CNOT3, and is not suppressed by the pan-caspase inhibitor, zVAD-fluoromethylketone. Gene expression profiling reveals that mRNAs encoding cell death-related proteins, including receptor-interacting protein kinase 1 (RIPK1) and RIPK3, are stabilized in CNOT3-depleted MEFs. Some of these mRNAs bind to CNOT3, and in the absence of CNOT3 their poly(A) tails are elongated. Inhibition of RIPK1-RIPK3 signaling by a short-hairpin RNA or a necroptosis inhibitor, necrostatin-1, confers viability upon CNOT3-depleted MEFs. Therefore, we conclude that CNOT3 targets specific mRNAs to prevent cells from being disposed to necroptotic death.
Collapse
|
49
|
Abstract
Cell death and inflammation are ancient processes of fundamental biological importance in both normal physiology and human disease pathologies. The recent observation that apoptosis regulatory components have dual roles in cell death and inflammation suggests that these proteins function, not primarily to kill, but to coordinate tissue repair and remodeling. This perspective unifies cell death components as positive regulators of tissue repair that replaces malfunctioning or damaged tissues and enhances the resilience of epithelia to insult. It is now recognized that cells that die by apoptosis do not do so silently, but release a variety of paracrine signals to communicate with their cellular environment to ensure tissue regeneration, and wound healing. Moreover, inflammatory signaling pathways, such as those emanating from the TNF receptor or Toll-related receptors, take part in cell competition to eliminate developmentally aberrant clones. Ubiquitylation has emerged as crucial mediator of signal transduction in cell death and inflammation. Here, we focus on recent advances on ubiquitin-mediated regulation of cell death and inflammation, and how this is used to regulate the defense of homeostasis.
Collapse
|
50
|
Hébert MJ, Jevnikar AM. The Impact of Regulated Cell Death Pathways on Alloimmune Responses and Graft Injury. CURRENT TRANSPLANTATION REPORTS 2015. [DOI: 10.1007/s40472-015-0067-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|