1
|
Zhang H, Li Y, Shah SB, Li S, Li Q, Oaks J, Lv T, Shi LZ, Wang H, Wang D, Wu X. ATM priming and end resection-coupled phosphorylation of MRE11 is important for fork protection and replication restart. Proc Natl Acad Sci U S A 2025; 122:e2422720122. [PMID: 40249789 PMCID: PMC12037065 DOI: 10.1073/pnas.2422720122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/25/2025] [Indexed: 04/20/2025] Open
Abstract
The MRE11/RAD50/NBS1 (MRN) complex plays multiple roles in the maintenance of genome stability. MRN is associated with replication forks to preserve fork integrity and is also required for end resection at double-strand breaks (DSBs) to facilitate homologous recombination (HR). The critical need for proper control of the MRE11 nuclease activity is highlighted by the extensive nascent strand DNA degradation driven by MRE11 in BRCA-deficient cells, leading to genome instability and increased sensitivity to chemotherapeutics. In this study, we identified a tightly controlled mechanism, elicited by sequential phosphorylation of MRE11 by ATM and ATR to regulate MRE11 nuclease activities through its DNA binding. Specifically, at DSBs, MRE11 phosphorylation by ATM at the C-terminal S676/S678 primes it for subsequent phosphorylation by ATR, whose activation is triggered by end resection which requires the MRE11 nuclease activity. This ATR-mediated phosphorylation in turn induces MRE11 dissociation from DNA, providing a feedback mechanism to regulate the extent of end resection. At stalled replication forks, however, without ATM priming, MRN is stably associated with forks despite ATR activation. Furthermore, the ATR phosphorylation-defective MRE11 mutants are retained at single-ended DSBs formed by fork reversal upon replication stress, leading to extensive degradation of nascent DNA strands. Importantly, this end resection-coupled MRE11 phosphorylation elicits another critical layer of fork protection of nascent DNA in addition to BRCA2, ensuring proper end resection that is sufficient for replication restart at reversed forks while maintaining fork stability.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Youhang Li
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
- College of Life Science, Capital Normal University, Beijing100037, China
| | - Sameer Bikram Shah
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Shibo Li
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Qingrong Li
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA92093
| | - Joshua Oaks
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Tinghong Lv
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Linda Z. Shi
- The Institute of Engineering in Medicine, University of California, San Diego, CA92093
| | - Hailong Wang
- College of Life Science, Capital Normal University, Beijing100037, China
| | - Dong Wang
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA92093
| | - Xiaohua Wu
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| |
Collapse
|
2
|
Amiama-Roig A, Barrientos-Moreno M, Cruz-Zambrano E, López-Ruiz LM, González-Prieto R, Ríos-Orelogio G, Prado F. A Rfa1-MN-based system reveals new factors involved in the rescue of broken replication forks. PLoS Genet 2025; 21:e1011405. [PMID: 40168399 PMCID: PMC11984746 DOI: 10.1371/journal.pgen.1011405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 04/10/2025] [Accepted: 03/10/2025] [Indexed: 04/03/2025] Open
Abstract
The integrity of the replication forks is essential for an accurate and timely completion of genome duplication. However, little is known about how cells deal with broken replication forks. We have generated in yeast a system based on a chimera of the largest subunit of the ssDNA binding complex RPA fused to the micrococcal nuclease (Rfa1-MN) to induce double-strand breaks (DSBs) at replication forks and searched for mutants affected in their repair. Our results show that the core homologous recombination (HR) proteins involved in the formation of the ssDNA/Rad51 filament are essential for the repair of DSBs at forks, whereas non-homologous end joining plays no role. Apart from the endonucleases Mus81 and Yen1, the repair process employs fork-associated HR factors, break-induced replication (BIR)-associated factors and replisome components involved in sister chromatid cohesion and fork stability, pointing to replication fork restart by BIR followed by fork restoration. Notably, we also found factors controlling the length of G1, suggesting that a minimal number of active origins facilitates the repair by converging forks. Our study has also revealed a requirement for checkpoint functions, including the synthesis of Dun1-mediated dNTPs. Finally, our screening revealed minimal impact from the loss of chromatin factors, suggesting that the partially disassembled nucleosome structure at the replication fork facilitates the accessibility of the repair machinery. In conclusion, this study provides an overview of the factors and mechanisms that cooperate to repair broken forks.
Collapse
Affiliation(s)
- Ana Amiama-Roig
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Marta Barrientos-Moreno
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Esther Cruz-Zambrano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Luz M. López-Ruiz
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Román González-Prieto
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Gabriel Ríos-Orelogio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Félix Prado
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
3
|
Liao Q, Brandão HB, Ren Z, Wang X. Replisomes restrict SMC-mediated DNA-loop extrusion in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639750. [PMID: 40027636 PMCID: PMC11870623 DOI: 10.1101/2025.02.23.639750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Structural maintenance of chromosomes (SMC) complexes organize genomes by extruding DNA loops, while replisomes duplicate entire chromosomes. These essential molecular machines must collide frequently in every cell cycle, yet how such collisions are resolved in vivo remains poorly understood. Taking advantage of the ability to load SMC complexes at defined sites in the Bacillus subtilis genome, we engineered head-on and head-to-tail collisions between SMC complexes and the replisome. Replisome progression was monitored by marker frequency analysis, and SMC translocation was monitored by time-resolved ChIP-seq and Hi-C. We found that SMC complexes do not impede replisome progression. By contrast, replisomes restrict SMC translocation regardless of collision orientations. Combining experimental data with simulations, we determined that SMC complexes are blocked by the replisome and then released from the chromosome. Occasionally, SMC complexes can bypass the replisome and continue translocating. Our findings establish that the replisome is a barrier to SMC-mediated DNA-loop extrusion in vivo , with implications for processes such as chromosome segregation, DNA repair, and gene regulation that require dynamic chromosome organization in all organisms.
Collapse
|
4
|
Branzei D, Bene S, Gangwani L, Szakal B. The multifaceted roles of the Ctf4 replisome hub in the maintenance of genome integrity. DNA Repair (Amst) 2024; 142:103742. [PMID: 39137555 PMCID: PMC11425796 DOI: 10.1016/j.dnarep.2024.103742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
At the core of cellular life lies a carefully orchestrated interplay of DNA replication, recombination, chromatin assembly, sister-chromatid cohesion and transcription. These fundamental processes, while seemingly discrete, are inextricably linked during genome replication. A set of replisome factors integrate various DNA transactions and contribute to the transient formation of sister chromatid junctions involving either the cohesin complex or DNA four-way junctions. The latter structures serve DNA damage bypass and may have additional roles in replication fork stabilization or in marking regions of replication fork blockage. Here, we will discuss these concepts based on the ability of one replisome component, Ctf4, to act as a hub and functionally link these processes during DNA replication to ensure genome maintenance.
Collapse
Affiliation(s)
- Dana Branzei
- The AIRC Institute of Molecular Oncology Foundation, IFOM ETS, Via Adamello 16, Milan 20139, Italy; Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia 27100, Italy.
| | - Szabolcs Bene
- The AIRC Institute of Molecular Oncology Foundation, IFOM ETS, Via Adamello 16, Milan 20139, Italy
| | - Laxman Gangwani
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Barnabas Szakal
- The AIRC Institute of Molecular Oncology Foundation, IFOM ETS, Via Adamello 16, Milan 20139, Italy
| |
Collapse
|
5
|
Su XA, Stopsack KH, Schmidt DR, Ma D, Li Z, Scheet PA, Penney KL, Lotan TL, Abida W, DeArment EG, Lu K, Janas T, Hu S, Vander Heiden MG, Loda M, Boselli M, Amon A, Mucci LA. RAD21 promotes oncogenesis and lethal progression of prostate cancer. Proc Natl Acad Sci U S A 2024; 121:e2405543121. [PMID: 39190349 PMCID: PMC11388324 DOI: 10.1073/pnas.2405543121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/12/2024] [Indexed: 08/28/2024] Open
Abstract
Higher levels of aneuploidy, characterized by imbalanced chromosome numbers, are associated with lethal progression in prostate cancer. However, how aneuploidy contributes to prostate cancer aggressiveness remains poorly understood. In this study, we assessed in patients which genes on chromosome 8q, one of the most frequently gained chromosome arms in prostate tumors, were most strongly associated with long-term risk of cancer progression to metastases and death from prostate cancer (lethal disease) in 403 patients and found the strongest candidate was cohesin subunit gene, RAD21, with an odds ratio of 3.7 (95% CI 1.8, 7.6) comparing the highest vs. lowest tertiles of mRNA expression and adjusting for overall aneuploidy burden and Gleason score, both strong prognostic factors in primary prostate cancer. Studying prostate cancer driven by the TMPRSS2-ERG oncogenic fusion, found in about half of all prostate tumors, we found that increased RAD21 alleviated toxic oncogenic stress and DNA damage caused by oncogene expression. Data from both organoids and patients indicate that increased RAD21 thereby enables aggressive tumors to sustain tumor proliferation, and more broadly suggests one path through which tumors benefit from aneuploidy.
Collapse
Affiliation(s)
- Xiaofeng A. Su
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD20817
- Henry M Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
- Genitourinary Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD20817
| | - Konrad H. Stopsack
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA02115
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Daniel R. Schmidt
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA02115
| | - Duanduan Ma
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- The Barbara K. Ostrom (1978) Bioinformatics and Computing Facility in the Swanson Biotechnology Center, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Zhe Li
- Division of Genetics, Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA02115
- Department of Medicine, Harvard Medical School, Boston, MA02115
| | - Paul A. Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, TX77030
| | - Kathryn L. Penney
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA02115
- Division of Genetics, Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Tamara L. Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD21218
| | - Wassim Abida
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY10065
- Weil Cornell Medicine, New York Presbyterian-Weill Cornell Campus, New York, NY10065
| | - Elise G. DeArment
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD20817
- Henry M Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Kate Lu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Thomas Janas
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD20817
- Henry M Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Sofia Hu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Matthew G. Vander Heiden
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- Dana-Farber Cancer Institute, Boston, MA02115
| | - Massimo Loda
- Weil Cornell Medicine, New York Presbyterian-Weill Cornell Campus, New York, NY10065
| | - Monica Boselli
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| | - Lorelei A. Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA02115
- Discovery Science, American Cancer Society, Atlanta, GA30144
| |
Collapse
|
6
|
González-Acosta D, Lopes M. DNA replication and replication stress response in the context of nuclear architecture. Chromosoma 2024; 133:57-75. [PMID: 38055079 PMCID: PMC10904558 DOI: 10.1007/s00412-023-00813-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 12/07/2023]
Abstract
The DNA replication process needs to be coordinated with other DNA metabolism transactions and must eventually extend to the full genome, regardless of chromatin status, gene expression, secondary structures and DNA lesions. Completeness and accuracy of DNA replication are crucial to maintain genome integrity, limiting transformation in normal cells and offering targeting opportunities for proliferating cancer cells. DNA replication is thus tightly coordinated with chromatin dynamics and 3D genome architecture, and we are only beginning to understand the underlying molecular mechanisms. While much has recently been discovered on how DNA replication initiation is organised and modulated in different genomic regions and nuclear territories-the so-called "DNA replication program"-we know much less on how the elongation of ongoing replication forks and particularly the response to replication obstacles is affected by the local nuclear organisation. Also, it is still elusive how specific components of nuclear architecture participate in the replication stress response. Here, we review known mechanisms and factors orchestrating replication initiation, and replication fork progression upon stress, focusing on recent evidence linking genome organisation and nuclear architecture with the cellular responses to replication interference, and highlighting open questions and future challenges to explore this exciting new avenue of research.
Collapse
Affiliation(s)
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Heuzé J, Kemiha S, Barthe A, Vilarrubias AT, Aouadi E, Aiello U, Libri D, Lin Y, Lengronne A, Poli J, Pasero P. RNase H2 degrades toxic RNA:DNA hybrids behind stalled forks to promote replication restart. EMBO J 2023; 42:e113104. [PMID: 37855233 PMCID: PMC10690446 DOI: 10.15252/embj.2022113104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
R-loops represent a major source of replication stress, but the mechanism by which these structures impede fork progression remains unclear. To address this question, we monitored fork progression, arrest, and restart in Saccharomyces cerevisiae cells lacking RNase H1 and H2, two enzymes responsible for degrading RNA:DNA hybrids. We found that while RNase H-deficient cells could replicate their chromosomes normally under unchallenged growth conditions, their replication was impaired when exposed to hydroxyurea (HU) or methyl methanesulfonate (MMS). Treated cells exhibited increased levels of RNA:DNA hybrids at stalled forks and were unable to generate RPA-coated single-stranded (ssDNA), an important postreplicative intermediate in resuming replication. Similar impairments in nascent DNA resection and ssDNA formation at HU-arrested forks were observed in human cells lacking RNase H2. However, fork resection was fully restored by addition of triptolide, an inhibitor of transcription that induces RNA polymerase degradation. Taken together, these data indicate that RNA:DNA hybrids not only act as barriers to replication forks, but also interfere with postreplicative fork repair mechanisms if not promptly degraded by RNase H.
Collapse
Affiliation(s)
- Jonathan Heuzé
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
| | - Samira Kemiha
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
| | - Antoine Barthe
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
| | - Alba Torán Vilarrubias
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
| | - Elyès Aouadi
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
| | - Umberto Aiello
- Université Paris Cité, CNRS, Institut Jacques MonodParisFrance
- Department of GeneticsStanford UniversityStanfordCAUSA
| | - Domenico Libri
- Université Paris Cité, CNRS, Institut Jacques MonodParisFrance
- Present address:
Institut de Génétique Moléculaire de MontpellierUniversité de Montpellier, CNRSMontpellierFrance
| | - Yea‐Lih Lin
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
| | - Armelle Lengronne
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
| | - Jérôme Poli
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
- Institut Universitaire de France (IUF)ParisFrance
| | - Philippe Pasero
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
| |
Collapse
|
8
|
Lebdy R, Patouillard J, Larroque M, Urbach S, Abou Merhi R, Larroque C, Ribeyre C. The organizer of chromatin topology RIF1 ensures cellular resilience to DNA replication stress. Life Sci Alliance 2023; 6:e202101186. [PMID: 36746532 PMCID: PMC9906048 DOI: 10.26508/lsa.202101186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Eukaryotic genomes are duplicated from thousands of replication origins that fire sequentially forming a defined spatiotemporal pattern of replication clusters. The temporal order of DNA replication is determined by chromatin architecture and, more specifically, by chromatin contacts that are stabilized by RIF1. Here, we show that RIF1 localizes near newly synthesized DNA. In cells exposed to the DNA replication inhibitor aphidicolin, suppression of RIF1 markedly decreased the efficacy of isolation of proteins on nascent DNA, suggesting that the isolation of proteins on nascent DNA procedure is biased by chromatin topology. RIF1 was required to limit the accumulation of DNA lesions induced by aphidicolin treatment and promoted the recruitment of cohesins in the vicinity of nascent DNA. Collectively, the data suggest that the stabilization of chromatin topology by RIF1 limits replication-associated genomic instability.
Collapse
Affiliation(s)
- Rana Lebdy
- Institut de Génétique Humaine, CNRS UMR9002, Université de Montpellier, Montpellier, France
- Doctoral School of Sciences and Technology-DSST, Rafic Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Julie Patouillard
- Institut de Génétique Humaine, CNRS UMR9002, Université de Montpellier, Montpellier, France
| | | | - Serge Urbach
- Institut de Génomique Fonctionnelle, CNRS UMR5203, INSERM U1191, Université de Montpellier, Montpellier, France
| | - Raghida Abou Merhi
- Doctoral School of Sciences and Technology-DSST, Rafic Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Christian Larroque
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier, France
| | - Cyril Ribeyre
- Institut de Génétique Humaine, CNRS UMR9002, Université de Montpellier, Montpellier, France
| |
Collapse
|
9
|
Minamino M, Bouchoux C, Canal B, Diffley JFX, Uhlmann F. A replication fork determinant for the establishment of sister chromatid cohesion. Cell 2023; 186:837-849.e11. [PMID: 36693376 DOI: 10.1016/j.cell.2022.12.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/08/2022] [Accepted: 12/22/2022] [Indexed: 01/24/2023]
Abstract
Concomitant with DNA replication, the chromosomal cohesin complex establishes cohesion between newly replicated sister chromatids. Cohesion establishment requires acetylation of conserved cohesin lysine residues by Eco1 acetyltransferase. Here, we explore how cohesin acetylation is linked to DNA replication. Biochemical reconstitution of replication-coupled cohesin acetylation reveals that transient DNA structures, which form during DNA replication, control the acetylation reaction. As polymerases complete lagging strand replication, strand displacement synthesis produces DNA flaps that are trimmed to result in nicked double-stranded DNA. Both flaps and nicks stimulate cohesin acetylation, while subsequent nick ligation to complete Okazaki fragment maturation terminates the acetylation reaction. A flapped or nicked DNA substrate constitutes a transient molecular clue that directs cohesin acetylation to a window behind the replication fork, next to where cohesin likely entraps both sister chromatids. Our results provide an explanation for how DNA replication is linked to sister chromatid cohesion establishment.
Collapse
Affiliation(s)
- Masashi Minamino
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Céline Bouchoux
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Berta Canal
- Chromosome Replication Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - John F X Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
10
|
Zhang H, Gao H, Gu Y, John A, Wei L, Huang M, Yu J, Adeosun AA, Weinshilboum RM, Wang L. 3D CRISPR screen in prostate cancer cells reveals PARP inhibitor sensitization through TBL1XR1-SMC3 interaction. Front Oncol 2022; 12:999302. [PMID: 36523978 PMCID: PMC9746894 DOI: 10.3389/fonc.2022.999302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/14/2022] [Indexed: 08/24/2023] Open
Abstract
Poly(ADP-ribose) (PAR) polymerase inhibitors (PARPi) either have been approved or being tested in the clinic for the treatment of a variety of cancers with homologous recombination deficiency (HRD). However, cancer cells can develop resistance to PARPi drugs through various mechanisms, and new biomarkers and combination therapeutic strategies need to be developed to support personalized treatment. In this study, a genome-wide CRISPR screen was performed in a prostate cancer cell line with 3D culture condition which identified novel signals involved in DNA repair pathways. One of these genes, TBL1XR1, regulates sensitivity to PARPi in prostate cancer cells. Mechanistically, we show that TBL1XR1 interacts with and stabilizes SMC3 on chromatin and promotes γH2AX spreading along the chromatin of the cells under DNA replication stress. TBL1XR1-SMC3 double knockdown (knockout) cells have comparable sensitivity to PARPi compared to SMC3 knockdown or TBL1XR1 knockout cells, and more sensitivity than WT cells. Our findings provide new insights into mechanisms underlying response to PARPi or platin compounds in the treatment of malignancies.
Collapse
Affiliation(s)
- Huan Zhang
- School of Medicine, Nantong University, Nantong, China
| | - Huanyao Gao
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Yayun Gu
- School of Medicine, Nantong University, Nantong, China
| | - August John
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Lixuan Wei
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Minhong Huang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Jia Yu
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Adeyemi A. Adeosun
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Richard M. Weinshilboum
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Liewei Wang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
11
|
Wardlaw CP, Petrini JHJ. ISG15 conjugation to proteins on nascent DNA mitigates DNA replication stress. Nat Commun 2022; 13:5971. [PMID: 36216822 PMCID: PMC9550767 DOI: 10.1038/s41467-022-33535-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022] Open
Abstract
The pathways involved in suppressing DNA replication stress and the associated DNA damage are critical to maintaining genome integrity. The Mre11 complex is unique among double strand break (DSB) repair proteins for its association with the DNA replication fork. Here we show that Mre11 complex inactivation causes DNA replication stress and changes in the abundance of proteins associated with nascent DNA. One of the most highly enriched proteins at the DNA replication fork upon Mre11 complex inactivation was the ubiquitin like protein ISG15. Mre11 complex deficiency and drug induced replication stress both led to the accumulation of cytoplasmic DNA and the subsequent activation of innate immune signaling via cGAS-STING-Tbk1. This led to ISG15 induction and protein ISGylation, including constituents of the replication fork. ISG15 plays a direct role in preventing replication stress. Deletion of ISG15 was associated with replication fork stalling, tonic ATR activation, genomic aberrations, and sensitivity to aphidicolin. These data reveal a previously unrecognized role for ISG15 in mitigating DNA replication stress and promoting genomic stability.
Collapse
Affiliation(s)
- Christopher P Wardlaw
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - John H J Petrini
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
12
|
Jeppsson K, Sakata T, Nakato R, Milanova S, Shirahige K, Björkegren C. Cohesin-dependent chromosome loop extrusion is limited by transcription and stalled replication forks. SCIENCE ADVANCES 2022; 8:eabn7063. [PMID: 35687682 PMCID: PMC9187231 DOI: 10.1126/sciadv.abn7063] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 12/15/2021] [Accepted: 04/27/2022] [Indexed: 05/31/2023]
Abstract
Genome function depends on regulated chromosome folding, and loop extrusion by the protein complex cohesin is essential for this multilayered organization. The chromosomal positioning of cohesin is controlled by transcription, and the complex also localizes to stalled replication forks. However, the role of transcription and replication in chromosome looping remains unclear. Here, we show that reduction of chromosome-bound RNA polymerase weakens normal cohesin loop extrusion boundaries, allowing cohesin to form new long-range chromosome cis interactions. Stress response genes induced by transcription inhibition are also shown to act as new loop extrusion boundaries. Furthermore, cohesin loop extrusion during early S phase is jointly controlled by transcription and replication units. Together, the results reveal that replication and transcription machineries are chromosome-folding regulators that block the progression of loop-extruding cohesin, opening for new perspectives on cohesin's roles in genome function and stability.
Collapse
Affiliation(s)
- Kristian Jeppsson
- Karolinska Institutet, Department of Biosciences and Nutrition, Neo, Hälsovägen 7c, 141 83 Huddinge, Sweden
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Tomtebodavägen 16, 171 77 Stockholm, Sweden
- Institute for Quantitative Bioscience, Tokyo University, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Toyonori Sakata
- Institute for Quantitative Bioscience, Tokyo University, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Ryuichiro Nakato
- Institute for Quantitative Bioscience, Tokyo University, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Stefina Milanova
- Karolinska Institutet, Department of Biosciences and Nutrition, Neo, Hälsovägen 7c, 141 83 Huddinge, Sweden
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Tomtebodavägen 16, 171 77 Stockholm, Sweden
| | - Katsuhiko Shirahige
- Institute for Quantitative Bioscience, Tokyo University, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Camilla Björkegren
- Karolinska Institutet, Department of Biosciences and Nutrition, Neo, Hälsovägen 7c, 141 83 Huddinge, Sweden
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Tomtebodavägen 16, 171 77 Stockholm, Sweden
| |
Collapse
|
13
|
Di Nardo M, Pallotta MM, Musio A. The multifaceted roles of cohesin in cancer. J Exp Clin Cancer Res 2022; 41:96. [PMID: 35287703 PMCID: PMC8919599 DOI: 10.1186/s13046-022-02321-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
The cohesin complex controls faithful chromosome segregation by pairing sister chromatids after DNA replication until mitosis. In addition, it is crucial for hierarchal three-dimensional organization of the genome, transcription regulation and maintaining DNA integrity. The core complex subunits SMC1A, SMC3, STAG1/2, and RAD21 as well as its modulators, have been found to be recurrently mutated in human cancers. The mechanisms by which cohesin mutations trigger cancer development and disease progression are still poorly understood. Since cohesin is involved in a range of chromosome-related processes, the outcome of cohesin mutations in cancer is complex. Herein, we discuss recent discoveries regarding cohesin that provide new insight into its role in tumorigenesis.
Collapse
Affiliation(s)
- Maddalena Di Nardo
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Via Moruzzi, 1 56124, Pisa, Italy
| | - Maria M. Pallotta
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Via Moruzzi, 1 56124, Pisa, Italy
| | - Antonio Musio
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Via Moruzzi, 1 56124, Pisa, Italy
| |
Collapse
|
14
|
Batté A, van der Horst SC, Tittel-Elmer M, Sun SM, Sharma S, van Leeuwen J, Chabes A, van Attikum H. Chl1 helicase controls replication fork progression by regulating dNTP pools. Life Sci Alliance 2022; 5:5/4/e202101153. [PMID: 35017203 PMCID: PMC8761496 DOI: 10.26508/lsa.202101153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022] Open
Abstract
Chl1 helicase affects RPA-dependent checkpoint activation after replication fork arrest by ensuring proper dNTP levels, thereby controlling replication fork progression under stress conditions. Eukaryotic cells have evolved a replication stress response that helps to overcome stalled/collapsed replication forks and ensure proper DNA replication. The replication checkpoint protein Mrc1 plays important roles in these processes, although its functional interactions are not fully understood. Here, we show that MRC1 negatively interacts with CHL1, which encodes the helicase protein Chl1, suggesting distinct roles for these factors during the replication stress response. Indeed, whereas Mrc1 is known to facilitate the restart of stalled replication forks, we uncovered that Chl1 controls replication fork rate under replication stress conditions. Chl1 loss leads to increased RNR1 gene expression and dNTP levels at the onset of S phase likely without activating the DNA damage response. This in turn impairs the formation of RPA-coated ssDNA and subsequent checkpoint activation. Thus, the Chl1 helicase affects RPA-dependent checkpoint activation in response to replication fork arrest by ensuring proper intracellular dNTP levels, thereby controlling replication fork progression under replication stress conditions.
Collapse
Affiliation(s)
- Amandine Batté
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Mireille Tittel-Elmer
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands.,Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, Netherlands
| | - Su Ming Sun
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Jolanda van Leeuwen
- Center for Integrative Genomics, Université de Lausanne, Lausanne-Dorigny, Switzerland
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
15
|
van Schie JJM, de Lange J. The Interplay of Cohesin and the Replisome at Processive and Stressed DNA Replication Forks. Cells 2021; 10:3455. [PMID: 34943967 PMCID: PMC8700348 DOI: 10.3390/cells10123455] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
The cohesin complex facilitates faithful chromosome segregation by pairing the sister chromatids after DNA replication until mitosis. In addition, cohesin contributes to proficient and error-free DNA replication. Replisome progression and establishment of sister chromatid cohesion are intimately intertwined processes. Here, we review how the key factors in DNA replication and cohesion establishment cooperate in unperturbed conditions and during DNA replication stress. We discuss the detailed molecular mechanisms of cohesin recruitment and the entrapment of replicated sister chromatids at the replisome, the subsequent stabilization of sister chromatid cohesion via SMC3 acetylation, as well as the role and regulation of cohesin in the response to DNA replication stress.
Collapse
Affiliation(s)
- Janne J. M. van Schie
- Cancer Center Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Job de Lange
- Cancer Center Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
16
|
Hurst V, Challa K, Jonas F, Forey R, Sack R, Seebacher J, Schmid CD, Barkai N, Shimada K, Gasser SM, Poli J. A regulatory phosphorylation site on Mec1 controls chromatin occupancy of RNA polymerases during replication stress. EMBO J 2021; 40:e108439. [PMID: 34569643 PMCID: PMC8561635 DOI: 10.15252/embj.2021108439] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/16/2023] Open
Abstract
Upon replication stress, budding yeast checkpoint kinase Mec1ATR triggers the downregulation of transcription, thereby reducing the level of RNA polymerase (RNAP) on chromatin to facilitate replication fork progression. Here, we identify a hydroxyurea-induced phosphorylation site on Mec1, Mec1-S1991, that contributes to the eviction of RNAPII and RNAPIII during replication stress. The expression of the non-phosphorylatable mec1-S1991A mutant reduces replication fork progression genome-wide and compromises survival on hydroxyurea. This defect can be suppressed by destabilizing chromatin-bound RNAPII through a TAP fusion to its Rpb3 subunit, suggesting that lethality in mec1-S1991A mutants arises from replication-transcription conflicts. Coincident with a failure to repress gene expression on hydroxyurea in mec1-S1991A cells, highly transcribed genes such as GAL1 remain bound at nuclear pores. Consistently, we find that nuclear pore proteins and factors controlling RNAPII and RNAPIII are phosphorylated in a Mec1-dependent manner on hydroxyurea. Moreover, we show that Mec1 kinase also contributes to reduced RNAPII occupancy on chromatin during an unperturbed S phase by promoting degradation of the Rpb1 subunit.
Collapse
Affiliation(s)
- Verena Hurst
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Kiran Challa
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Felix Jonas
- Departments of Molecular Genetics and Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Romain Forey
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Ragna Sack
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jan Seebacher
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Christoph D Schmid
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Naama Barkai
- Departments of Molecular Genetics and Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Jérôme Poli
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| |
Collapse
|
17
|
Kawasumi R, Abe T, Psakhye I, Miyata K, Hirota K, Branzei D. Vertebrate CTF18 and DDX11 essential function in cohesion is bypassed by preventing WAPL-mediated cohesin release. Genes Dev 2021; 35:1368-1382. [PMID: 34503989 PMCID: PMC8494208 DOI: 10.1101/gad.348581.121] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/16/2021] [Indexed: 01/26/2023]
Abstract
The alternative PCNA loader containing CTF18-DCC1-CTF8 facilitates sister chromatid cohesion (SCC) by poorly defined mechanisms. Here we found that in DT40 cells, CTF18 acts complementarily with the Warsaw breakage syndrome DDX11 helicase in mediating SCC and proliferation. We uncover that the lethality and cohesion defects of ctf18 ddx11 mutants are associated with reduced levels of chromatin-bound cohesin and rescued by depletion of WAPL, a cohesin-removal factor. On the contrary, high levels of ESCO1/2 acetyltransferases that acetylate cohesin to establish SCC do not rescue ctf18 ddx11 phenotypes. Notably, the tight proximity of sister centromeres and increased anaphase bridges characteristic of WAPL-depleted cells are abrogated by loss of both CTF18 and DDX11 The results reveal that vertebrate CTF18 and DDX11 collaborate to provide sufficient amounts of chromatin-loaded cohesin available for SCC generation in the presence of WAPL-mediated cohesin-unloading activity. This process modulates chromosome structure and is essential for cellular proliferation in vertebrates.
Collapse
Affiliation(s)
- Ryotaro Kawasumi
- International Foundation of Medicine (IFOM), the Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute for Molecular Oncology Foundation, Milan 20139, Italy
| | - Takuya Abe
- International Foundation of Medicine (IFOM), the Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute for Molecular Oncology Foundation, Milan 20139, Italy
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Ivan Psakhye
- International Foundation of Medicine (IFOM), the Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute for Molecular Oncology Foundation, Milan 20139, Italy
| | - Keiji Miyata
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Dana Branzei
- International Foundation of Medicine (IFOM), the Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute for Molecular Oncology Foundation, Milan 20139, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia 27100, Italy
| |
Collapse
|
18
|
Jann JC, Tothova Z. Cohesin mutations in myeloid malignancies. Blood 2021; 138:649-661. [PMID: 34157074 PMCID: PMC8394903 DOI: 10.1182/blood.2019004259] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022] Open
Abstract
Cohesin is a multisubunit protein complex that forms a ring-like structure around DNA. It is essential for sister chromatid cohesion, chromatin organization, transcriptional regulation, and DNA damage repair and plays a major role in dynamically shaping the genome architecture and maintaining DNA integrity. The core complex subunits STAG2, RAD21, SMC1, and SMC3, as well as its modulators PDS5A/B, WAPL, and NIPBL, have been found to be recurrently mutated in hematologic and solid malignancies. These mutations are found across the full spectrum of myeloid neoplasia, including pediatric Down syndrome-associated acute megakaryoblastic leukemia, myelodysplastic syndromes, chronic myelomonocytic leukemia, and de novo and secondary acute myeloid leukemias. The mechanisms by which cohesin mutations act as drivers of clonal expansion and disease progression are still poorly understood. Recent studies have described the impact of cohesin alterations on self-renewal and differentiation of hematopoietic stem and progenitor cells, which are associated with changes in chromatin and epigenetic state directing lineage commitment, as well as genomic integrity. Herein, we review the role of the cohesin complex in healthy and malignant hematopoiesis. We discuss clinical implications of cohesin mutations in myeloid malignancies and discuss opportunities for therapeutic targeting.
Collapse
Affiliation(s)
- Johann-Christoph Jann
- Department of Hematology and Oncology, University of Heidelberg, Mannheim, Germany; and
| | - Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
19
|
Higashi TL, Pobegalov G, Tang M, Molodtsov MI, Uhlmann F. A Brownian ratchet model for DNA loop extrusion by the cohesin complex. eLife 2021; 10:e67530. [PMID: 34309513 PMCID: PMC8313234 DOI: 10.7554/elife.67530] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
The cohesin complex topologically encircles DNA to promote sister chromatid cohesion. Alternatively, cohesin extrudes DNA loops, thought to reflect chromatin domain formation. Here, we propose a structure-based model explaining both activities. ATP and DNA binding promote cohesin conformational changes that guide DNA through a kleisin N-gate into a DNA gripping state. Two HEAT-repeat DNA binding modules, associated with cohesin's heads and hinge, are now juxtaposed. Gripping state disassembly, following ATP hydrolysis, triggers unidirectional hinge module movement, which completes topological DNA entry by directing DNA through the ATPase head gate. If head gate passage fails, hinge module motion creates a Brownian ratchet that, instead, drives loop extrusion. Molecular-mechanical simulations of gripping state formation and resolution cycles recapitulate experimentally observed DNA loop extrusion characteristics. Our model extends to asymmetric and symmetric loop extrusion, as well as z-loop formation. Loop extrusion by biased Brownian motion has important implications for chromosomal cohesin function.
Collapse
Affiliation(s)
- Torahiko L Higashi
- Chromosome Segregation Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Georgii Pobegalov
- Mechanobiology and Biophysics Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Department of Physics and Astronomy, University College LondonLondonUnited Kingdom
| | - Minzhe Tang
- Chromosome Segregation Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Maxim I Molodtsov
- Mechanobiology and Biophysics Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Department of Physics and Astronomy, University College LondonLondonUnited Kingdom
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| |
Collapse
|
20
|
Branzei D, Szakal B. DNA helicases in homologous recombination repair. Curr Opin Genet Dev 2021; 71:27-33. [PMID: 34271541 DOI: 10.1016/j.gde.2021.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022]
Abstract
Helicases are in the spotlight of DNA metabolism and are critical for DNA repair in all domains of life. At their biochemical core, they bind and hydrolyze ATP, converting this energy to translocate unidirectionally, with different strand polarities and substrate binding specificities, along one strand of a nucleic acid. In doing so, DNA and RNA helicases separate duplex strands or remove nucleoprotein complexes, affecting DNA repair and the architecture of replication forks. In this review, we focus on recent advances on the roles and regulations of DNA helicases in homologous recombination repair, a critical pathway for mending damaged chromosomes and for ensuring genome integrity.
Collapse
Affiliation(s)
- Dana Branzei
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy; Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Via Abbiategrasso 207, 27100, Pavia, Italy.
| | - Barnabas Szakal
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| |
Collapse
|
21
|
Antony J, Chin CV, Horsfield JA. Cohesin Mutations in Cancer: Emerging Therapeutic Targets. Int J Mol Sci 2021; 22:6788. [PMID: 34202641 PMCID: PMC8269296 DOI: 10.3390/ijms22136788] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
The cohesin complex is crucial for mediating sister chromatid cohesion and for hierarchal three-dimensional organization of the genome. Mutations in cohesin genes are present in a range of cancers. Extensive research over the last few years has shown that cohesin mutations are key events that contribute to neoplastic transformation. Cohesin is involved in a range of cellular processes; therefore, the impact of cohesin mutations in cancer is complex and can be cell context dependent. Candidate targets with therapeutic potential in cohesin mutant cells are emerging from functional studies. Here, we review emerging targets and pharmacological agents that have therapeutic potential in cohesin mutant cells.
Collapse
Affiliation(s)
- Jisha Antony
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Chue Vin Chin
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
| | - Julia A. Horsfield
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
- Genetics Otago Research Centre, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
22
|
Sakata R, Niwa K, Ugarte La Torre D, Gu C, Tahara E, Takada S, Nishiyama T. Opening of cohesin's SMC ring is essential for timely DNA replication and DNA loop formation. Cell Rep 2021; 35:108999. [PMID: 33909997 DOI: 10.1016/j.celrep.2021.108999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/16/2021] [Accepted: 03/24/2021] [Indexed: 11/15/2022] Open
Abstract
The ring-shaped cohesin complex topologically binds to DNA to establish sister chromatid cohesion. This topological binding creates a structural obstacle to genome-wide chromosomal events, such as replication. Here, we examine how conformational changes in cohesin circumvent being an obstacle in human cells. We show that ATP hydrolysis-driven head disengagement, leading to the structural maintenance of chromosome (SMC) ring opening, is essential for the progression of DNA replication. Closure of the SMC ring stalls replication in a checkpoint-independent manner. The SMC ring opening also facilitates sister chromatid resolution and chromosome segregation in mitosis. Single-molecule analyses reveal that forced closure of the SMC ring suppresses the translocation of cohesin on DNA as well as the formation of stable DNA loops. Our results suggest that the ATP hydrolysis-driven SMC ring opening makes topologically bound cohesin dynamic on DNA to achieve replication-dependent cohesion in the S phase and to resolve cohesion in mitosis. Thus, the SMC ring opening could be a fundamental mechanism to modulate both cohesion and higher-order genome structure.
Collapse
Affiliation(s)
- Ryota Sakata
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kyoma Niwa
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Diego Ugarte La Torre
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo Kyoto 606-8501, Japan
| | - Chenyang Gu
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo Kyoto 606-8501, Japan
| | - Eri Tahara
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo Kyoto 606-8501, Japan
| | - Tomoko Nishiyama
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
23
|
Su XA, Ma D, Parsons JV, Replogle JM, Amatruda JF, Whittaker CA, Stegmaier K, Amon A. RAD21 is a driver of chromosome 8 gain in Ewing sarcoma to mitigate replication stress. Genes Dev 2021; 35:556-572. [PMID: 33766983 PMCID: PMC8015718 DOI: 10.1101/gad.345454.120] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 02/25/2021] [Indexed: 01/08/2023]
Abstract
In this study, Su et al. investigate why ∼50% of Ewing sarcomas, driven by the EWS-FLI1 fusion oncogene, harbor chromosome 8 gains. Using an evolution approach, they show that trisomy 8 mitigates EWS-FLI1-induced replication stress through gain of a copy of RAD21, and deleting one copy of RAD21 in trisomy 8 cells largely neutralizes the fitness benefit of chromosome 8 gain and reduces tumorgenicity of a Ewing sarcoma cancer cell line in soft agar assays. Aneuploidy, defined as whole-chromosome gain or loss, causes cellular stress but, paradoxically, is a frequent occurrence in cancers. Here, we investigate why ∼50% of Ewing sarcomas, driven by the EWS-FLI1 fusion oncogene, harbor chromosome 8 gains. Expression of the EWS-FLI1 fusion in primary cells causes replication stress that can result in cellular senescence. Using an evolution approach, we show that trisomy 8 mitigates EWS-FLI1-induced replication stress through gain of a copy of RAD21. Low-level ectopic expression of RAD21 is sufficient to dampen replication stress and improve proliferation in EWS-FLI1-expressing cells. Conversely, deleting one copy in trisomy 8 cells largely neutralizes the fitness benefit of chromosome 8 gain and reduces tumorgenicity of a Ewing sarcoma cancer cell line in soft agar assays. We propose that RAD21 promotes tumorigenesis through single gene copy gain. Such genes may explain some recurrent aneuploidies in cancer.
Collapse
Affiliation(s)
- Xiaofeng A Su
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Duanduan Ma
- The Barbara K. Ostrom (1978) Bioinformatics and Computing Facility, Swanson Biotechnology Center, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - James V Parsons
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - John M Replogle
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - James F Amatruda
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Charles A Whittaker
- The Barbara K. Ostrom (1978) Bioinformatics and Computing Facility, Swanson Biotechnology Center, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.,The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
24
|
Tothova Z, Valton AL, Gorelov RA, Vallurupalli M, Krill-Burger JM, Holmes A, Landers CC, Haydu JE, Malolepsza E, Hartigan C, Donahue M, Popova KD, Koochaki S, Venev SV, Rivera J, Chen E, Lage K, Schenone M, D’Andrea AD, Carr SA, Morgan EA, Dekker J, Ebert BL. Cohesin mutations alter DNA damage repair and chromatin structure and create therapeutic vulnerabilities in MDS/AML. JCI Insight 2021; 6:142149. [PMID: 33351783 PMCID: PMC7934867 DOI: 10.1172/jci.insight.142149] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022] Open
Abstract
The cohesin complex plays an essential role in chromosome maintenance and transcriptional regulation. Recurrent somatic mutations in the cohesin complex are frequent genetic drivers in cancer, including myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Here, using genetic dependency screens of stromal antigen 2-mutant (STAG2-mutant) AML, we identified DNA damage repair and replication as genetic dependencies in cohesin-mutant cells. We demonstrated increased levels of DNA damage and sensitivity of cohesin-mutant cells to poly(ADP-ribose) polymerase (PARP) inhibition. We developed a mouse model of MDS in which Stag2 mutations arose as clonal secondary lesions in the background of clonal hematopoiesis driven by tet methylcytosine dioxygenase 2 (Tet2) mutations and demonstrated selective depletion of cohesin-mutant cells with PARP inhibition in vivo. Finally, we demonstrated a shift from STAG2- to STAG1-containing cohesin complexes in cohesin-mutant cells, which was associated with longer DNA loop extrusion, more intermixing of chromatin compartments, and increased interaction with PARP and replication protein A complex. Our findings inform the biology and therapeutic opportunities for cohesin-mutant malignancies.
Collapse
MESH Headings
- Animals
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Chromatin/genetics
- Chromatin/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- DNA Damage
- DNA Repair/genetics
- Disease Models, Animal
- Female
- Humans
- K562 Cells
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Mutant Strains
- Mice, SCID
- Mice, Transgenic
- Mutation
- Myelodysplastic Syndromes/drug therapy
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/metabolism
- Nuclear Proteins/genetics
- Phthalazines/pharmacology
- Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
- U937 Cells
- Xenograft Model Antitumor Assays
- Cohesins
Collapse
Affiliation(s)
- Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Anne-Laure Valton
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Mounica Vallurupalli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | | | - Amie Holmes
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - J. Erika Haydu
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | | | | | - Melanie Donahue
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | | | - Sebastian Koochaki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Sergey V. Venev
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jeanne Rivera
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Edwin Chen
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Kasper Lage
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Monica Schenone
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Alan D. D’Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Steven A. Carr
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Elizabeth A. Morgan
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
25
|
Forey R, Barthe A, Tittel-Elmer M, Wery M, Barrault MB, Ducrot C, Seeber A, Krietenstein N, Szachnowski U, Skrzypczak M, Ginalski K, Rowicka M, Cobb JA, Rando OJ, Soutourina J, Werner M, Dubrana K, Gasser SM, Morillon A, Pasero P, Lengronne A, Poli J. A Role for the Mre11-Rad50-Xrs2 Complex in Gene Expression and Chromosome Organization. Mol Cell 2020; 81:183-197.e6. [PMID: 33278361 DOI: 10.1016/j.molcel.2020.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 01/09/2023]
Abstract
Mre11-Rad50-Xrs2 (MRX) is a highly conserved complex with key roles in various aspects of DNA repair. Here, we report a new function for MRX in limiting transcription in budding yeast. We show that MRX interacts physically and colocalizes on chromatin with the transcriptional co-regulator Mediator. MRX restricts transcription of coding and noncoding DNA by a mechanism that does not require the nuclease activity of Mre11. MRX is required to tether transcriptionally active loci to the nuclear pore complex (NPC), and it also promotes large-scale gene-NPC interactions. Moreover, MRX-mediated chromatin anchoring to the NPC contributes to chromosome folding and helps to control gene expression. Together, these findings indicate that MRX has a role in transcription and chromosome organization that is distinct from its known function in DNA repair.
Collapse
Affiliation(s)
- Romain Forey
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labéllisée Ligue contre le Cancer, 34396 Montpellier, France
| | - Antoine Barthe
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labéllisée Ligue contre le Cancer, 34396 Montpellier, France
| | - Mireille Tittel-Elmer
- Departments of Biochemistry and Molecular Biology and Oncology, Robson DNA Science Centre, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Maxime Wery
- Institut Curie, PSL Research University, CNRS UMR 3244, ncRNA, Epigenetic and Genome Fluidity, Université Pierre et Marie Curie, 26 rue d'Ulm, 75248 Paris, France
| | - Marie-Bénédicte Barrault
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Cécile Ducrot
- Institute of Molecular and Cellular Radiobiology, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA)/Direction de la Recherche Fondamentale (DRF), 92260 Fontenay-aux-Roses Cedex, France
| | - Andrew Seeber
- Center for Advanced Imaging, Harvard University, Cambridge, MA 02138, USA; University of Basel and Friedrich Miescher Institute for Biomedical Research, Faculty of Natural Sciences, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Nils Krietenstein
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ugo Szachnowski
- Institut Curie, PSL Research University, CNRS UMR 3244, ncRNA, Epigenetic and Genome Fluidity, Université Pierre et Marie Curie, 26 rue d'Ulm, 75248 Paris, France
| | - Magdalena Skrzypczak
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Maga Rowicka
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Jennifer A Cobb
- Departments of Biochemistry and Molecular Biology and Oncology, Robson DNA Science Centre, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Julie Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Michel Werner
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Karine Dubrana
- Institute of Molecular and Cellular Radiobiology, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA)/Direction de la Recherche Fondamentale (DRF), 92260 Fontenay-aux-Roses Cedex, France
| | - Susan M Gasser
- University of Basel and Friedrich Miescher Institute for Biomedical Research, Faculty of Natural Sciences, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Antonin Morillon
- Institut Curie, PSL Research University, CNRS UMR 3244, ncRNA, Epigenetic and Genome Fluidity, Université Pierre et Marie Curie, 26 rue d'Ulm, 75248 Paris, France
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labéllisée Ligue contre le Cancer, 34396 Montpellier, France
| | - Armelle Lengronne
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labéllisée Ligue contre le Cancer, 34396 Montpellier, France.
| | - Jérôme Poli
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labéllisée Ligue contre le Cancer, 34396 Montpellier, France; University of Basel and Friedrich Miescher Institute for Biomedical Research, Faculty of Natural Sciences, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
26
|
Zuilkoski CM, Skibbens RV. PCNA antagonizes cohesin-dependent roles in genomic stability. PLoS One 2020; 15:e0235103. [PMID: 33075068 PMCID: PMC7571713 DOI: 10.1371/journal.pone.0235103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/04/2020] [Indexed: 12/23/2022] Open
Abstract
PCNA sliding clamp binds factors through which histone deposition, chromatin remodeling, and DNA repair are coupled to DNA replication. PCNA also directly binds Eco1/Ctf7 acetyltransferase, which in turn activates cohesins and establishes cohesion between nascent sister chromatids. While increased recruitment thus explains the mechanism through which elevated levels of chromatin-bound PCNA rescue eco1 mutant cell growth, the mechanism through which PCNA instead worsens cohesin mutant cell growth remains unknown. Possibilities include that elevated levels of long-lived chromatin-bound PCNA reduce either cohesin deposition onto DNA or cohesin acetylation. Instead, our results reveal that PCNA increases the levels of both chromatin-bound cohesin and cohesin acetylation. Beyond sister chromatid cohesion, PCNA also plays a critical role in genomic stability such that high levels of chromatin-bound PCNA elevate genotoxic sensitivities and recombination rates. At a relatively modest increase of chromatin-bound PCNA, however, fork stability and progression appear normal in wildtype cells. Our results reveal that even a moderate increase of PCNA indeed sensitizes cohesin mutant cells to DNA damaging agents and in a process that involves the DNA damage response kinase Mec1(ATR), but not Tel1(ATM). These and other findings suggest that PCNA mis-regulation results in genome instabilities that normally are resolved by cohesin. Elevating levels of chromatin-bound PCNA may thus help target cohesinopathic cells linked that are linked to cancer.
Collapse
Affiliation(s)
- Caitlin M. Zuilkoski
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|
27
|
Ming Sun S, Batté A, Elmer M, van der Horst SC, van Welsem T, Bean G, Ideker T, van Leeuwen F, van Attikum H. A genetic interaction map centered on cohesin reveals auxiliary factors involved in sister chromatid cohesion in S. cerevisiae. J Cell Sci 2020; 133:jcs237628. [PMID: 32299836 PMCID: PMC7325435 DOI: 10.1242/jcs.237628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/26/2020] [Indexed: 12/15/2022] Open
Abstract
Eukaryotic chromosomes are replicated in interphase and the two newly duplicated sister chromatids are held together by the cohesin complex and several cohesin auxiliary factors. Sister chromatid cohesion is essential for accurate chromosome segregation during mitosis, yet has also been implicated in other processes, including DNA damage repair, transcription and DNA replication. To assess how cohesin and associated factors functionally interconnect and coordinate with other cellular processes, we systematically mapped the genetic interactions of 17 cohesin genes centered on quantitative growth measurements of >52,000 gene pairs in the budding yeast Saccharomyces cerevisiae Integration of synthetic genetic interactions unveiled a cohesin functional map that constitutes 373 genetic interactions, revealing novel functional connections with post-replication repair, microtubule organization and protein folding. Accordingly, we show that the microtubule-associated protein Irc15 and the prefoldin complex members Gim3, Gim4 and Yke2 are new factors involved in sister chromatid cohesion. Our genetic interaction map thus provides a unique resource for further identification and functional interrogation of cohesin proteins. Since mutations in cohesin proteins have been associated with cohesinopathies and cancer, it may also help in identifying cohesin interactions relevant in disease etiology.
Collapse
Affiliation(s)
- Su Ming Sun
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, Netherlands
| | - Amandine Batté
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, Netherlands
| | - Mireille Elmer
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, Netherlands
- Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, 2600 AA, Delft, Netherlands
| | - Sophie C van der Horst
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, Netherlands
| | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands
| | - Gordon Bean
- Bioinformatics and Systems Biology Program, University of California, San Diego; La Jolla, CA, 92093, USA
| | - Trey Ideker
- Bioinformatics and Systems Biology Program, University of California, San Diego; La Jolla, CA, 92093, USA
- Department of Medicine, Division of Genetics, University of California, San Diego; La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California, San Diego; La Jolla, CA, 92093, USA
- Cancer Cell Map Initiative (CCMI), Moores UCSD Cancer Center, La Jolla, CA, 92093, USA
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, Netherlands
| |
Collapse
|
28
|
Benedict B, van Schie JJM, Oostra AB, Balk JA, Wolthuis RMF, Riele HT, de Lange J. WAPL-Dependent Repair of Damaged DNA Replication Forks Underlies Oncogene-Induced Loss of Sister Chromatid Cohesion. Dev Cell 2020; 52:683-698.e7. [PMID: 32084359 DOI: 10.1016/j.devcel.2020.01.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/19/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022]
Abstract
Premature loss of sister chromatid cohesion at metaphase is a diagnostic marker for different cohesinopathies. Here, we report that metaphase spreads of many cancer cell lines also show premature loss of sister chromatid cohesion. Cohesion loss occurs independently of mutations in cohesion factors including SA2, a cohesin subunit frequently inactivated in cancer. In untransformed cells, induction of DNA replication stress by activation of oncogenes or inhibition of DNA replication is sufficient to trigger sister chromatid cohesion loss. Importantly, cell growth under conditions of replication stress requires the cohesin remover WAPL. WAPL promotes rapid RAD51-dependent repair and restart of broken replication forks. We propose that active removal of cohesin allows cancer cells to overcome DNA replication stress. This leads to oncogene-induced cohesion loss from newly synthesized sister chromatids that may contribute to genomic instability and likely represents a targetable cancer cell vulnerability.
Collapse
Affiliation(s)
- Bente Benedict
- Netherlands Cancer Institute, Division of Tumor Biology and Immunology, Amsterdam, the Netherlands
| | - Janne J M van Schie
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Anneke B Oostra
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Jesper A Balk
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Rob M F Wolthuis
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands.
| | - Hein Te Riele
- Netherlands Cancer Institute, Division of Tumor Biology and Immunology, Amsterdam, the Netherlands.
| | - Job de Lange
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands.
| |
Collapse
|
29
|
Cai MY, Dunn CE, Chen W, Kochupurakkal BS, Nguyen H, Moreau LA, Shapiro GI, Parmar K, Kozono D, D'Andrea AD. Cooperation of the ATM and Fanconi Anemia/BRCA Pathways in Double-Strand Break End Resection. Cell Rep 2020; 30:2402-2415.e5. [PMID: 32075772 PMCID: PMC8713357 DOI: 10.1016/j.celrep.2020.01.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/11/2019] [Accepted: 01/15/2020] [Indexed: 12/26/2022] Open
Abstract
Cells deficient in ataxia telangiectasia mutated (ATM) are hypersensitive to ionizing radiation and other anti-cancer agents that induce double-strand DNA breaks. ATM inhibitors may therefore sensitize cancer cells to these agents. Some cancers may also have underlying genetic defects predisposing them to an ATM inhibitor monotherapy response. We have conducted a genome-wide CRISPR screen to identify genetic vulnerabilities that sensitize lung cancer cells to ATM inhibitors. Knockout of genes in the Fanconi anemia (FA)/BRCA pathway results in hypersensitivity to the ATM inhibitor M3541. Knockdown of either an FA gene or of ATM results in reduced double-strand break end resection, enhanced non-homologous end joining (NHEJ) repair, and decreased homologous recombination repair. Knockout of both the FA/BRCA pathway and ATM strongly inhibits end resection and generates toxic levels of NHEJ, thereby elucidating a mechanism of cellular death by synthetic lethality. ATM inhibitors may therefore be useful for the treatment of tumors with a defective FA/BRCA pathway.
Collapse
Affiliation(s)
- Mu-Yan Cai
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Connor E Dunn
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Wenxu Chen
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Bose S Kochupurakkal
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Huy Nguyen
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Lisa A Moreau
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Geoffrey I Shapiro
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Early Drug Development Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kalindi Parmar
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David Kozono
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
30
|
Delamarre A, Barthe A, de la Roche Saint-André C, Luciano P, Forey R, Padioleau I, Skrzypczak M, Ginalski K, Géli V, Pasero P, Lengronne A. MRX Increases Chromatin Accessibility at Stalled Replication Forks to Promote Nascent DNA Resection and Cohesin Loading. Mol Cell 2020; 77:395-410.e3. [PMID: 31759824 DOI: 10.1016/j.molcel.2019.10.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/09/2019] [Accepted: 10/17/2019] [Indexed: 01/04/2023]
Abstract
The recovery of stalled replication forks depends on the controlled resection of nascent DNA and on the loading of cohesin. These processes operate in the context of nascent chromatin, but the impact of nucleosome structure on a fork restart remains poorly understood. Here, we show that the Mre11-Rad50-Xrs2 (MRX) complex acts together with the chromatin modifiers Gcn5 and Set1 and the histone remodelers RSC, Chd1, and Isw1 to promote chromatin remodeling at stalled forks. Increased chromatin accessibility facilitates the resection of nascent DNA by the Exo1 nuclease and the Sgs1 and Chl1 DNA helicases. Importantly, increased ssDNA promotes the recruitment of cohesin to arrested forks in a Scc2-Scc4-dependent manner. Altogether, these results indicate that MRX cooperates with chromatin modifiers to orchestrate the action of remodelers, nucleases, and DNA helicases, promoting the resection of nascent DNA and the loading of cohesin, two key processes involved in the recovery of arrested forks.
Collapse
Affiliation(s)
- Axel Delamarre
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
| | - Antoine Barthe
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
| | - Christophe de la Roche Saint-André
- Marseille Cancer Research Center (CRCM), CNRS, INSERM, Aix Marseille University, Institut Paoli-Calmettes, Equipe Labélisée Ligue contre le Cancer, 13273 Marseille, France
| | - Pierre Luciano
- Marseille Cancer Research Center (CRCM), CNRS, INSERM, Aix Marseille University, Institut Paoli-Calmettes, Equipe Labélisée Ligue contre le Cancer, 13273 Marseille, France
| | - Romain Forey
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
| | - Ismaël Padioleau
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
| | - Magdalena Skrzypczak
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Vincent Géli
- Marseille Cancer Research Center (CRCM), CNRS, INSERM, Aix Marseille University, Institut Paoli-Calmettes, Equipe Labélisée Ligue contre le Cancer, 13273 Marseille, France.
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue contre le Cancer, Montpellier, France.
| | - Armelle Lengronne
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue contre le Cancer, Montpellier, France.
| |
Collapse
|
31
|
Morales C, Ruiz-Torres M, Rodríguez-Acebes S, Lafarga V, Rodríguez-Corsino M, Megías D, Cisneros DA, Peters JM, Méndez J, Losada A. PDS5 proteins are required for proper cohesin dynamics and participate in replication fork protection. J Biol Chem 2020; 295:146-157. [PMID: 31757807 PMCID: PMC6952610 DOI: 10.1074/jbc.ra119.011099] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
Cohesin is a chromatin-bound complex that mediates sister chromatid cohesion and facilitates long-range interactions through DNA looping. How the transcription and replication machineries deal with the presence of cohesin on chromatin remains unclear. The dynamic association of cohesin with chromatin depends on WAPL cohesin release factor (WAPL) and on PDS5 cohesin-associated factor (PDS5), which exists in two versions in vertebrate cells, PDS5A and PDS5B. Using genetic deletion in mouse embryo fibroblasts and a combination of CRISPR-mediated gene editing and RNAi-mediated gene silencing in human cells, here we analyzed the consequences of PDS5 depletion for DNA replication. We found that either PDS5A or PDS5B is sufficient for proper cohesin dynamics and that their simultaneous removal increases cohesin's residence time on chromatin and slows down DNA replication. A similar phenotype was observed in WAPL-depleted cells. Cohesin down-regulation restored normal replication fork rates in PDS5-deficient cells, suggesting that chromatin-bound cohesin hinders the advance of the replisome. We further show that PDS5 proteins are required to recruit WRN helicase-interacting protein 1 (WRNIP1), RAD51 recombinase (RAD51), and BRCA2 DNA repair associated (BRCA2) to stalled forks and that in their absence, nascent DNA strands at unprotected forks are degraded by MRE11 homolog double-strand break repair nuclease (MRE11). These findings indicate that PDS5 proteins participate in replication fork protection and also provide insights into how cohesin and its regulators contribute to the response to replication stress, a common feature of cancer cells.
Collapse
Affiliation(s)
- Carmen Morales
- Chromosome Dynamics Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Miguel Ruiz-Torres
- Chromosome Dynamics Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Sara Rodríguez-Acebes
- DNA Replication Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Vanesa Lafarga
- Genome Instability Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Miriam Rodríguez-Corsino
- Chromosome Dynamics Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Diego Megías
- Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - David A Cisneros
- Research Institute for Molecular Pathology (IMP), Campus Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Jan-Michael Peters
- Research Institute for Molecular Pathology (IMP), Campus Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Juan Méndez
- DNA Replication Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| |
Collapse
|
32
|
Ortega P, Gómez-González B, Aguilera A. Rpd3L and Hda1 histone deacetylases facilitate repair of broken forks by promoting sister chromatid cohesion. Nat Commun 2019; 10:5178. [PMID: 31729385 PMCID: PMC6858524 DOI: 10.1038/s41467-019-13210-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Genome stability involves accurate replication and DNA repair. Broken replication forks, such as those encountering a nick, lead to double strand breaks (DSBs), which are preferentially repaired by sister-chromatid recombination (SCR). To decipher the role of chromatin in eukaryotic DSB repair, here we analyze a collection of yeast chromatin-modifying mutants using a previously developed system for the molecular analysis of repair of replication-born DSBs by SCR based on a mini-HO site. We confirm the candidates through FLP-based systems based on a mutated version of the FLP flipase that causes nicks on either the leading or lagging DNA strands. We demonstrate that Rpd3L and Hda1 histone deacetylase (HDAC) complexes contribute to the repair of replication-born DSBs by facilitating cohesin loading, with no effect on other types of homology-dependent repair, thus preventing genome instability. We conclude that histone deacetylation favors general sister chromatid cohesion as a necessary step in SCR.
Collapse
Affiliation(s)
- Pedro Ortega
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain.
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain.
| |
Collapse
|
33
|
Morillo-Huesca M, Murillo-Pineda M, Barrientos-Moreno M, Gómez-Marín E, Clemente-Ruiz M, Prado F. Actin and Nuclear Envelope Components Influence Ectopic Recombination in the Absence of Swr1. Genetics 2019; 213:819-834. [PMID: 31533921 PMCID: PMC6827384 DOI: 10.1534/genetics.119.302580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022] Open
Abstract
The accuracy of most DNA processes depends on chromatin integrity and dynamics. Our analyses in the yeast Saccharomyces cerevisiae show that an absence of Swr1 (the catalytic and scaffold subunit of the chromatin-remodeling complex SWR) leads to the formation of long-duration Rad52, but not RPA, foci and to an increase in intramolecular recombination. These phenotypes are further increased by MMS, zeocin, and ionizing radiation, but not by double-strand breaks, HU, or transcription/replication collisions, suggesting that they are associated with specific DNA lesions. Importantly, these phenotypes can be specifically suppressed by mutations in: (1) chromatin-anchorage internal nuclear membrane components (mps3∆75-150 and src1∆); (2) actin and actin regulators (act1-157, act1-159, crn1∆, and cdc42-6); or (3) the SWR subunit Swc5 and the SWR substrate Htz1 However, they are not suppressed by global disruption of actin filaments or by the absence of Csm4 (a component of the external nuclear membrane that forms a bridging complex with Mps3, thus connecting the actin cytoskeleton with chromatin). Moreover, swr1∆-induced Rad52 foci and intramolecular recombination are not associated with tethering recombinogenic DNA lesions to the nuclear periphery. In conclusion, the absence of Swr1 impairs efficient recombinational repair of specific DNA lesions by mechanisms that are influenced by SWR subunits, including actin, and nuclear envelope components. We suggest that these recombinational phenotypes might be associated with a pathological effect on homologous recombination of actin-containing complexes.
Collapse
Affiliation(s)
- Macarena Morillo-Huesca
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), Consejo Superior de Investigaciones Científicas-University of Seville-University Pablo de Olavide, Spain
| | - Marina Murillo-Pineda
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), Consejo Superior de Investigaciones Científicas-University of Seville-University Pablo de Olavide, Spain
| | - Marta Barrientos-Moreno
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), Consejo Superior de Investigaciones Científicas-University of Seville-University Pablo de Olavide, Spain
| | - Elena Gómez-Marín
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), Consejo Superior de Investigaciones Científicas-University of Seville-University Pablo de Olavide, Spain
| | - Marta Clemente-Ruiz
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), Consejo Superior de Investigaciones Científicas-University of Seville-University Pablo de Olavide, Spain
| | - Félix Prado
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), Consejo Superior de Investigaciones Científicas-University of Seville-University Pablo de Olavide, Spain
| |
Collapse
|
34
|
Winczura A, Appanah R, Tatham MH, Hay RT, De Piccoli G. The S phase checkpoint promotes the Smc5/6 complex dependent SUMOylation of Pol2, the catalytic subunit of DNA polymerase ε. PLoS Genet 2019; 15:e1008427. [PMID: 31765407 PMCID: PMC6876773 DOI: 10.1371/journal.pgen.1008427] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/16/2019] [Indexed: 12/31/2022] Open
Abstract
Replication fork stalling and accumulation of single-stranded DNA trigger the S phase checkpoint, a signalling cascade that, in budding yeast, leads to the activation of the Rad53 kinase. Rad53 is essential in maintaining cell viability, but its targets of regulation are still partially unknown. Here we show that Rad53 drives the hyper-SUMOylation of Pol2, the catalytic subunit of DNA polymerase ε, principally following replication forks stalling induced by nucleotide depletion. Pol2 is the main target of SUMOylation within the replisome and its modification requires the SUMO-ligase Mms21, a subunit of the Smc5/6 complex. Moreover, the Smc5/6 complex co-purifies with Pol ε, independently of other replisome components. Finally, we map Pol2 SUMOylation to a single site within the N-terminal catalytic domain and identify a SUMO-interacting motif at the C-terminus of Pol2. These data suggest that the S phase checkpoint regulate Pol ε during replication stress through Pol2 SUMOylation and SUMO-binding ability.
Collapse
Affiliation(s)
- Alicja Winczura
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Rowin Appanah
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Michael H. Tatham
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, United Kingdom
| | - Ronald T. Hay
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, United Kingdom
| | | |
Collapse
|
35
|
Chang EYC, Tsai S, Aristizabal MJ, Wells JP, Coulombe Y, Busatto FF, Chan YA, Kumar A, Dan Zhu Y, Wang AYH, Fournier LA, Hieter P, Kobor MS, Masson JY, Stirling PC. MRE11-RAD50-NBS1 promotes Fanconi Anemia R-loop suppression at transcription-replication conflicts. Nat Commun 2019; 10:4265. [PMID: 31537797 PMCID: PMC6753070 DOI: 10.1038/s41467-019-12271-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 08/30/2019] [Indexed: 12/25/2022] Open
Abstract
Ectopic R-loop accumulation causes DNA replication stress and genome instability. To avoid these outcomes, cells possess a range of anti-R-loop mechanisms, including RNaseH that degrades the RNA moiety in R-loops. To comprehensively identify anti-R-loop mechanisms, we performed a genome-wide trigenic interaction screen in yeast lacking RNH1 and RNH201. We identified >100 genes critical for fitness in the absence of RNaseH, which were enriched for DNA replication fork maintenance factors including the MRE11-RAD50-NBS1 (MRN) complex. While MRN has been shown to promote R-loops at DNA double-strand breaks, we show that it suppresses R-loops and associated DNA damage at transcription-replication conflicts. This occurs through a non-nucleolytic function of MRE11 that is important for R-loop suppression by the Fanconi Anemia pathway. This work establishes a novel role for MRE11-RAD50-NBS1 in directing tolerance mechanisms at transcription-replication conflicts.
Collapse
Affiliation(s)
| | - Shuhe Tsai
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Maria J Aristizabal
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Vancouver, V5Z 4H4, Canada
| | - James P Wells
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Yan Coulombe
- Centre Hospitalier Universitaire de Québec-Universite Laval, Oncology Axis, Quebec City, G1R 2J6, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, G1V 0A6, Canada
| | - Franciele F Busatto
- Centre Hospitalier Universitaire de Québec-Universite Laval, Oncology Axis, Quebec City, G1R 2J6, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, G1V 0A6, Canada
| | - Yujia A Chan
- The Broad Institute of MIT and Harvard University, Cambridge, MA, 02142, USA
| | - Arun Kumar
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Yi Dan Zhu
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | | | | | - Philip Hieter
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, V5Z 4H4, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Vancouver, V5Z 4H4, Canada
| | - Jean-Yves Masson
- Centre Hospitalier Universitaire de Québec-Universite Laval, Oncology Axis, Quebec City, G1R 2J6, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, G1V 0A6, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, V5Z 4H4, Canada.
| |
Collapse
|
36
|
Replication stress induces mitotic death through parallel pathways regulated by WAPL and telomere deprotection. Nat Commun 2019; 10:4224. [PMID: 31530811 PMCID: PMC6748914 DOI: 10.1038/s41467-019-12255-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 08/29/2019] [Indexed: 02/07/2023] Open
Abstract
Mitotic catastrophe is a broad descriptor encompassing unclear mechanisms of cell death. Here we investigate replication stress-driven mitotic catastrophe in human cells and identify that replication stress principally induces mitotic death signalled through two independent pathways. In p53-compromised cells we find that lethal replication stress confers WAPL-dependent centromere cohesion defects that maintain spindle assembly checkpoint-dependent mitotic arrest in the same cell cycle. Mitotic arrest then drives cohesion fatigue and triggers mitotic death through a primary pathway of BAX/BAK-dependent apoptosis. Simultaneously, a secondary mitotic death pathway is engaged through non-canonical telomere deprotection, regulated by TRF2, Aurora B and ATM. Additionally, we find that suppressing mitotic death in replication stressed cells results in distinct cellular outcomes depending upon how cell death is averted. These data demonstrate how replication stress-induced mitotic catastrophe signals cell death with implications for cancer treatment and cancer genome evolution. Mitotic catastrophe is a regulated mechanism that responds to aberrant mitoses leading to removal of damaged cells. Here the authors reveal how replication stress induces mitotic death through pathways regulated by WAPL and telomere deprotection.
Collapse
|
37
|
Lukášová E, Řezáčová M, Bačíková A, Šebejová L, Vávrová J, Kozubek S. Distinct cellular responses to replication stress leading to apoptosis or senescence. FEBS Open Bio 2019; 9:870-890. [PMID: 30982228 PMCID: PMC6487726 DOI: 10.1002/2211-5463.12632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 01/09/2019] [Accepted: 01/25/2019] [Indexed: 12/12/2022] Open
Abstract
Replication stress (RS) is a major driver of genomic instability and tumorigenesis. Here, we investigated whether RS induced by the nucleotide analog fludarabine and specific kinase inhibitors [e.g. targeting checkpoint kinase 1 (Chk1) or ataxia telangiectasia and Rad3‐related (ATR)] led to apoptosis or senescence in four cancer cell lines differing in TP53 mutation status and expression of lamin A/C (LA/C). RS resulted in uneven chromatin condensation in all cell types, as evidenced by the presence of metaphasic chromosomes with unrepaired DNA damage, as well as detection of less condensed chromatin in the same nucleus, frequent ultrafine anaphase bridges, and micronuclei. We observed that responses to these chromatin changes may be distinct in individual cell types, suggesting that expression of lamin A/C and lamin B1 (LB1) may play an important role in the transition of damaged cells to senescence. MCF7 mammary carcinoma cells harboring wild‐type p53 (WT‐p53) and LA/C responded to RS by transition to senescence with a significant reduction of lamin B receptor and LB1 proteins. In contrast, a lymphoid cancer cell line WSU‐NHL (WT‐p53) lacking LA/C and expressing low levels of LB1 died after several hours, while lines MEC‐1 and SU‐DHL‐4, both with mutated p53, and SU‐DHL‐4 with mutations in LA/C, died at different rates by apoptosis. Our results show that, in addition to being influenced by p53 mutation status, the response to RS (apoptosis or senescence) may also be influenced by lamin A/C and LB1 status.
Collapse
Affiliation(s)
- Emilie Lukášová
- Department of Cell Biology and Radiobiology, Institute of Biophysics, The Czech Academy of Sciences, Brno, Czech Republic
| | - Martina Řezáčová
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Alena Bačíková
- Department of Cell Biology and Radiobiology, Institute of Biophysics, The Czech Academy of Sciences, Brno, Czech Republic
| | - Ludmila Šebejová
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiřina Vávrová
- Department of Radiobiology, Faculty of Military Health Sciences Hradec Králové, University of Defence Brno, Hradec Králové, Czech Republic
| | - Stanislav Kozubek
- Department of Cell Biology and Radiobiology, Institute of Biophysics, The Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
38
|
Mondal G, Stevers M, Goode B, Ashworth A, Solomon DA. A requirement for STAG2 in replication fork progression creates a targetable synthetic lethality in cohesin-mutant cancers. Nat Commun 2019; 10:1686. [PMID: 30975996 PMCID: PMC6459917 DOI: 10.1038/s41467-019-09659-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/25/2019] [Indexed: 12/22/2022] Open
Abstract
Cohesin is a multiprotein ring that is responsible for cohesion of sister chromatids and formation of DNA loops to regulate gene expression. Genomic analyses have identified that the cohesin subunit STAG2 is frequently inactivated by mutations in cancer. However, the reason STAG2 mutations are selected during tumorigenesis and strategies for therapeutically targeting mutant cancer cells are largely unknown. Here we show that STAG2 is essential for DNA replication fork progression, whereby STAG2 inactivation in non-transformed cells leads to replication fork stalling and collapse with disruption of interaction between the cohesin ring and the replication machinery as well as failure to establish SMC3 acetylation. As a consequence, STAG2 mutation confers synthetic lethality with DNA double-strand break repair genes and increased sensitivity to select cytotoxic chemotherapeutic agents and PARP or ATR inhibitors. These studies identify a critical role for STAG2 in replication fork procession and elucidate a potential therapeutic strategy for cohesin-mutant cancers.
Collapse
Affiliation(s)
- Gourish Mondal
- Department of Pathology, University of California, San Francisco, CA, 94143, USA
| | - Meredith Stevers
- Department of Pathology, University of California, San Francisco, CA, 94143, USA
| | - Benjamin Goode
- Department of Pathology, University of California, San Francisco, CA, 94143, USA
| | - Alan Ashworth
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, 94158, USA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, CA, 94158, USA
| | - David A Solomon
- Department of Pathology, University of California, San Francisco, CA, 94143, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, 94158, USA.
| |
Collapse
|
39
|
Oh J, Symington LS. Role of the Mre11 Complex in Preserving Genome Integrity. Genes (Basel) 2018; 9:E589. [PMID: 30501098 PMCID: PMC6315862 DOI: 10.3390/genes9120589] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
DNA double-strand breaks (DSBs) are hazardous lesions that threaten genome integrity and cell survival. The DNA damage response (DDR) safeguards the genome by sensing DSBs, halting cell cycle progression and promoting repair through either non-homologous end joining (NHEJ) or homologous recombination (HR). The Mre11-Rad50-Xrs2/Nbs1 (MRX/N) complex is central to the DDR through its structural, enzymatic, and signaling roles. The complex tethers DNA ends, activates the Tel1/ATM kinase, resolves protein-bound or hairpin-capped DNA ends, and maintains telomere homeostasis. In addition to its role at DSBs, MRX/N associates with unperturbed replication forks, as well as stalled replication forks, to ensure complete DNA synthesis and to prevent chromosome rearrangements. Here, we summarize the significant progress made in characterizing the MRX/N complex and its various activities in chromosome metabolism.
Collapse
Affiliation(s)
- Julyun Oh
- Biological Sciences Program, Columbia University, New York, NY 10027, USA.
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
40
|
Litwin I, Pilarczyk E, Wysocki R. The Emerging Role of Cohesin in the DNA Damage Response. Genes (Basel) 2018; 9:genes9120581. [PMID: 30487431 PMCID: PMC6316000 DOI: 10.3390/genes9120581] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/23/2022] Open
Abstract
Faithful transmission of genetic material is crucial for all organisms since changes in genetic information may result in genomic instability that causes developmental disorders and cancers. Thus, understanding the mechanisms that preserve genome integrity is of fundamental importance. Cohesin is a multiprotein complex whose canonical function is to hold sister chromatids together from S-phase until the onset of anaphase to ensure the equal division of chromosomes. However, recent research points to a crucial function of cohesin in the DNA damage response (DDR). In this review, we summarize recent advances in the understanding of cohesin function in DNA damage signaling and repair. First, we focus on cohesin architecture and molecular mechanisms that govern sister chromatid cohesion. Next, we briefly characterize the main DDR pathways. Finally, we describe mechanisms that determine cohesin accumulation at DNA damage sites and discuss possible roles of cohesin in DDR.
Collapse
Affiliation(s)
- Ireneusz Litwin
- Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland.
| | - Ewa Pilarczyk
- Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland.
| | - Robert Wysocki
- Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland.
| |
Collapse
|
41
|
Oh J, Lee SJ, Rothstein R, Symington LS. Xrs2 and Tel1 Independently Contribute to MR-Mediated DNA Tethering and Replisome Stability. Cell Rep 2018; 25:1681-1692.e4. [PMID: 30428339 PMCID: PMC6317890 DOI: 10.1016/j.celrep.2018.10.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/08/2018] [Accepted: 10/05/2018] [Indexed: 02/04/2023] Open
Abstract
The yeast Mre11-Rad50-Xrs2 (MRX) complex has structural, signaling, and catalytic functions in the response to DNA damage. Xrs2, the eukaryotic-specific component of the complex, is required for nuclear import of Mre11 and Rad50 and to recruit the Tel1 kinase to damage sites. We show that nuclear-localized MR complex (Mre11-NLS) catalyzes homology-dependent repair without Xrs2, but MR cannot activate Tel1, and it fails to tether DSBs, resulting in sensitivity to genotoxins, replisome instability, and increased gross chromosome rearrangements (GCRs). Fusing the Tel1 interaction domain from Xrs2 to Mre11-NLS is sufficient to restore telomere elongation and Tel1 signaling to Xrs2-deficient cells. Furthermore, Tel1 stabilizes Mre11-DNA association, and this stabilization function becomes important for DNA damage resistance in the absence of Xrs2. Enforcing Tel1 recruitment to the nuclear MR complex fully rescues end tethering and stalled replication fork stability, and suppresses GCRs, highlighting important roles for Xrs2 and Tel1 to ensure optimal MR activity.
Collapse
Affiliation(s)
- Julyun Oh
- Biological Sciences Program, Columbia University, New York, NY 10027, USA; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - So Jung Lee
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rodney Rothstein
- Biological Sciences Program, Columbia University, New York, NY 10027, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lorraine S Symington
- Biological Sciences Program, Columbia University, New York, NY 10027, USA; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
42
|
Villa-Hernández S, Bermejo R. Cohesin dynamic association to chromatin and interfacing with replication forks in genome integrity maintenance. Curr Genet 2018; 64:1005-1013. [PMID: 29549581 DOI: 10.1007/s00294-018-0824-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 01/09/2023]
Abstract
Proliferating cells need to accurately duplicate and pass their genetic material on to daughter cells. Problems during replication and partition challenge the structural and numerical integrity of chromosomes. Diverse mechanisms, as the DNA replication checkpoint, survey the correct progression of replication and couple it with other cell cycle events to preserve genome integrity. The structural maintenance of chromosomes (SMC) cohesin complex primarily contributes to chromosome duplication by mediating the tethering of newly replicated sister chromatids, thus assisting their equal segregation in mitosis. In addition, cohesin exerts important functions in genome organization, gene expression and DNA repair. These are determined by cohesin's ability to bring together different DNA segments and, hence, by the fashion and dynamics of its interaction with chromatin. It recently emerged that cohesin contributes to the protection of stalled replication forks through a mechanism requiring its timely mobilization from unreplicated DNA and relocation to nascent strands. This mechanism relies on DNA replication checkpoint-dependent cohesin ubiquitylation and promotes nascent sister chromatid entrapment, likely contributing to preserve stalled replisome-fork architectural integrity. Here we review how cohesin dynamic association to chromatin is controlled through post-translational modifications to dictate its functions during chromosome duplication. We also discuss recent insights on the mechanism that mediates interfacing of replisome components with chromatin-bound cohesin and its contribution to the establishment of sister chromatid cohesion and the protection of stalled replication forks.
Collapse
Affiliation(s)
- Sara Villa-Hernández
- Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 9, 28040, Madrid, Spain
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, UK
| | - Rodrigo Bermejo
- Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
43
|
Litwin I, Bakowski T, Szakal B, Pilarczyk E, Maciaszczyk-Dziubinska E, Branzei D, Wysocki R. Error-free DNA damage tolerance pathway is facilitated by the Irc5 translocase through cohesin. EMBO J 2018; 37:e98732. [PMID: 30111537 PMCID: PMC6138436 DOI: 10.15252/embj.201798732] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
DNA damage tolerance (DDT) mechanisms facilitate replication resumption and completion when DNA replication is blocked by bulky DNA lesions. In budding yeast, template switching (TS) via the Rad18/Rad5 pathway is a favored DDT pathway that involves usage of the sister chromatid as a template to bypass DNA lesions in an error-free recombination-like process. Here, we establish that the Snf2 family translocase Irc5 is a novel factor that promotes TS and averts single-stranded DNA persistence during replication. We demonstrate that, during replication stress, Irc5 enables replication progression by assisting enrichment of cohesin complexes, recruited in an Scc2/Scc4-dependent fashion, near blocked replication forks. This allows efficient formation of sister chromatid junctions that are crucial for error-free DNA lesion bypass. Our results support the notion of a key role of cohesin in the completion of DNA synthesis under replication stress and reveal that the Rad18/Rad5-mediated DDT pathway is linked to cohesin enrichment at sites of perturbed replication via the Snf2 family translocase Irc5.
Collapse
Affiliation(s)
- Ireneusz Litwin
- Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | - Tomasz Bakowski
- Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | - Barnabas Szakal
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
| | - Ewa Pilarczyk
- Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | | | - Dana Branzei
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia, Italy
| | - Robert Wysocki
- Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
44
|
Sanyal S, Molnarova L, Richterova J, Huraiova B, Benko Z, Polakova S, Cipakova I, Sevcovicova A, Gaplovska-Kysela K, Mechtler K, Cipak L, Gregan J. Mutations that prevent methylation of cohesin render sensitivity to DNA damage in S. pombe. J Cell Sci 2018; 131:jcs214924. [PMID: 29898918 PMCID: PMC6051343 DOI: 10.1242/jcs.214924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/04/2018] [Indexed: 01/18/2023] Open
Abstract
The canonical role of cohesin is to mediate sister chromatid cohesion. In addition, cohesin plays important roles in processes such as DNA repair and regulation of gene expression. Mounting evidence suggests that various post-translational modifications, including phosphorylation, acetylation and sumoylation regulate cohesin functions. Our mass spectrometry analysis of cohesin purified from Schizosaccharomyces pombe cells revealed that the cohesin subunit Psm1 is methylated on two evolutionarily conserved lysine residues, K536 and K1200. We found that mutations that prevent methylation of Psm1 K536 and K1200 render sensitivity to DNA-damaging agents and show positive genetic interactions with mutations in genes encoding the Mus81-Eme1 endonuclease. Yeast two-hybrid and co-immunoprecipitation assays showed that there were interactions between subunits of the cohesin and Mus81-Eme1 complexes. We conclude that cohesin is methylated and that mutations that prevent methylation of Psm1 K536 and K1200 show synthetic phenotypes with mutants defective in the homologous recombination DNA repair pathway.
Collapse
Affiliation(s)
- Swastika Sanyal
- Department of Chromosome Biology, MFPL, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Lucia Molnarova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Judita Richterova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Barbora Huraiova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Zsigmond Benko
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Silvia Polakova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Ingrid Cipakova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Andrea Sevcovicova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Katarina Gaplovska-Kysela
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Karl Mechtler
- Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Lubos Cipak
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Juraj Gregan
- Department of Chromosome Biology, MFPL, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Advanced Microscopy Facility, Vienna Biocenter Core Facilities, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
45
|
Syed A, Tainer JA. The MRE11-RAD50-NBS1 Complex Conducts the Orchestration of Damage Signaling and Outcomes to Stress in DNA Replication and Repair. Annu Rev Biochem 2018; 87:263-294. [PMID: 29709199 PMCID: PMC6076887 DOI: 10.1146/annurev-biochem-062917-012415] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genomic instability in disease and its fidelity in health depend on the DNA damage response (DDR), regulated in part from the complex of meiotic recombination 11 homolog 1 (MRE11), ATP-binding cassette-ATPase (RAD50), and phosphopeptide-binding Nijmegen breakage syndrome protein 1 (NBS1). The MRE11-RAD50-NBS1 (MRN) complex forms a multifunctional DDR machine. Within its network assemblies, MRN is the core conductor for the initial and sustained responses to DNA double-strand breaks, stalled replication forks, dysfunctional telomeres, and viral DNA infection. MRN can interfere with cancer therapy and is an attractive target for precision medicine. Its conformations change the paradigm whereby kinases initiate damage sensing. Delineated results reveal kinase activation, posttranslational targeting, functional scaffolding, conformations storing binding energy and enabling access, interactions with hub proteins such as replication protein A (RPA), and distinct networks at DNA breaks and forks. MRN biochemistry provides prototypic insights into how it initiates, implements, and regulates multifunctional responses to genomic stress.
Collapse
Affiliation(s)
- Aleem Syed
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; ,
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; ,
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
46
|
Zheng G, Kanchwala M, Xing C, Yu H. MCM2-7-dependent cohesin loading during S phase promotes sister-chromatid cohesion. eLife 2018; 7:e33920. [PMID: 29611806 PMCID: PMC5897099 DOI: 10.7554/elife.33920] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/31/2018] [Indexed: 01/13/2023] Open
Abstract
DNA replication transforms cohesin rings dynamically associated with chromatin into the cohesive form to establish sister-chromatid cohesion. Here, we show that, in human cells, cohesin loading onto chromosomes during early S phase requires the replicative helicase MCM2-7 and the kinase DDK. Cohesin and its loader SCC2/4 (NIPBL/MAU2 in humans) associate with DDK and phosphorylated MCM2-7. This binding does not require MCM2-7 activation by CDC45 and GINS, but its persistence on activated MCM2-7 requires fork-stabilizing replisome components. Inactivation of these replisome components impairs cohesin loading and causes interphase cohesion defects. Interfering with Okazaki fragment processing or nucleosome assembly does not impact cohesion. Therefore, MCM2-7-coupled cohesin loading promotes cohesion establishment, which occurs without Okazaki fragment maturation. We propose that the cohesin-loader complex bound to MCM2-7 is mobilized upon helicase activation, transiently held by the replisome, and deposited behind the replication fork to encircle sister chromatids and establish cohesion.
Collapse
Affiliation(s)
- Ge Zheng
- Howard Hughes Medical Institute, Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Mohammed Kanchwala
- Bioinformatics Lab, Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Chao Xing
- Bioinformatics Lab, Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasUnited States
- Department of Clinical SciencesUniversity of Texas Southwestern Medical CenterDallasUnited States
- Department of BioinformaticsUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Hongtao Yu
- Howard Hughes Medical Institute, Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
47
|
Litwin I, Wysocki R. New insights into cohesin loading. Curr Genet 2018; 64:53-61. [PMID: 28631016 DOI: 10.1007/s00294-017-0723-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 01/13/2023]
Abstract
Cohesin is a conserved, ring-shaped protein complex that encircles sister chromatids and ensures correct chromosome segregation during mitosis and meiosis. It also plays a crucial role in the regulation of gene expression, DNA condensation, and DNA repair through both non-homologous end joining and homologous recombination. Cohesins are spatiotemporally regulated by the Scc2-Scc4 complex which facilitates cohesin loading onto chromatin at specific chromosomal sites. Over the last few years, much attention has been paid to cohesin and cohesin loader as it became clear that even minor disruptions of these complexes may lead to developmental disorders and cancers. Here we summarize recent developments in the structure of Scc2-Scc4 complex, cohesin loading process, and mediators that determine the Scc2-Scc4 binding patterns to chromatin.
Collapse
Affiliation(s)
- Ireneusz Litwin
- Institute of Experimental Biology, University of Wroclaw, 50-328, Wroclaw, Poland.
| | - Robert Wysocki
- Institute of Experimental Biology, University of Wroclaw, 50-328, Wroclaw, Poland
| |
Collapse
|
48
|
Misulovin Z, Pherson M, Gause M, Dorsett D. Brca2, Pds5 and Wapl differentially control cohesin chromosome association and function. PLoS Genet 2018; 14:e1007225. [PMID: 29447171 PMCID: PMC5831647 DOI: 10.1371/journal.pgen.1007225] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/28/2018] [Accepted: 01/26/2018] [Indexed: 12/11/2022] Open
Abstract
The cohesin complex topologically encircles chromosomes and mediates sister chromatid cohesion to ensure accurate chromosome segregation upon cell division. Cohesin also participates in DNA repair and gene transcription. The Nipped-B-Mau2 protein complex loads cohesin onto chromosomes and the Pds5-Wapl complex removes cohesin. Pds5 is also essential for sister chromatid cohesion, indicating that it has functions beyond cohesin removal. The Brca2 DNA repair protein interacts with Pds5, but the roles of this complex beyond DNA repair are unknown. Here we show that Brca2 opposes Pds5 function in sister chromatid cohesion by assaying precocious sister chromatid separation in metaphase spreads of cultured cells depleted for these proteins. By genome-wide chromatin immunoprecipitation we find that Pds5 facilitates SA cohesin subunit association with DNA replication origins and that Brca2 inhibits SA binding, mirroring their effects on sister chromatid cohesion. Cohesin binding is maximal at replication origins and extends outward to occupy active genes and regulatory sequences. Pds5 and Wapl, but not Brca2, limit the distance that cohesin extends from origins, thereby determining which active genes, enhancers and silencers bind cohesin. Using RNA-seq we find that Brca2, Pds5 and Wapl influence the expression of most genes sensitive to Nipped-B and cohesin, largely in the same direction. These findings demonstrate that Brca2 regulates sister chromatid cohesion and gene expression in addition to its canonical role in DNA repair and expand the known functions of accessory proteins in cohesin's diverse functions.
Collapse
Affiliation(s)
- Ziva Misulovin
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Michelle Pherson
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Maria Gause
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Dale Dorsett
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| |
Collapse
|
49
|
Murayama Y, Samora CP, Kurokawa Y, Iwasaki H, Uhlmann F. Establishment of DNA-DNA Interactions by the Cohesin Ring. Cell 2018; 172:465-477.e15. [PMID: 29358048 PMCID: PMC5786502 DOI: 10.1016/j.cell.2017.12.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/12/2017] [Accepted: 12/16/2017] [Indexed: 01/14/2023]
Abstract
The ring-shaped structural maintenance of chromosome (SMC) complexes are multi-subunit ATPases that topologically encircle DNA. SMC rings make vital contributions to numerous chromosomal functions, including mitotic chromosome condensation, sister chromatid cohesion, DNA repair, and transcriptional regulation. They are thought to do so by establishing interactions between more than one DNA. Here, we demonstrate DNA-DNA tethering by the purified fission yeast cohesin complex. DNA-bound cohesin efficiently and topologically captures a second DNA, but only if that is single-stranded DNA (ssDNA). Like initial double-stranded DNA (dsDNA) embrace, second ssDNA capture is ATP-dependent, and it strictly requires the cohesin loader complex. Second-ssDNA capture is relatively labile but is converted into stable dsDNA-dsDNA cohesion through DNA synthesis. Our study illustrates second-DNA capture by an SMC complex and provides a molecular model for the establishment of sister chromatid cohesion.
Collapse
Affiliation(s)
- Yasuto Murayama
- Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Catarina P Samora
- Chromosome Segregation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Yumiko Kurokawa
- Education Academy of Computational Life Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hiroshi Iwasaki
- Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Frank Uhlmann
- Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan; Chromosome Segregation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
50
|
Countryman P, Fan Y, Gorthi A, Pan H, Strickland E, Kaur P, Wang X, Lin J, Lei X, White C, You C, Wirth N, Tessmer I, Piehler J, Riehn R, Bishop AJR, Tao YJ, Wang H. Cohesin SA2 is a sequence-independent DNA-binding protein that recognizes DNA replication and repair intermediates. J Biol Chem 2018; 293:1054-1069. [PMID: 29175904 PMCID: PMC5777247 DOI: 10.1074/jbc.m117.806406] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/22/2017] [Indexed: 11/06/2022] Open
Abstract
Proper chromosome alignment and segregation during mitosis depend on cohesion between sister chromatids, mediated by the cohesin protein complex, which also plays crucial roles in diverse genome maintenance pathways. Current models attribute DNA binding by cohesin to entrapment of dsDNA by the cohesin ring subunits (SMC1, SMC3, and RAD21 in humans). However, the biophysical properties and activities of the fourth core cohesin subunit SA2 (STAG2) are largely unknown. Here, using single-molecule atomic force and fluorescence microscopy imaging as well as fluorescence anisotropy measurements, we established that SA2 binds to both dsDNA and ssDNA, albeit with a higher binding affinity for ssDNA. We observed that SA2 can switch between the 1D diffusing (search) mode on dsDNA and stable binding (recognition) mode at ssDNA gaps. Although SA2 does not specifically bind to centromeric or telomeric sequences, it does recognize DNA structures often associated with DNA replication and double-strand break repair, such as a double-stranded end, single-stranded overhang, flap, fork, and ssDNA gap. SA2 loss leads to a defect in homologous recombination-mediated DNA double-strand break repair. These results suggest that SA2 functions at intermediate DNA structures during DNA transactions in genome maintenance pathways. These findings have important implications for understanding the function of cohesin in these pathways.
Collapse
Affiliation(s)
| | - Yanlin Fan
- the Department of BioSciences, Rice University, Houston, Texas 77251
| | - Aparna Gorthi
- the Greehey Children's Cancer Research Institute and
- Department of Cell Systems and Anatomy, University of Texas Health, San Antonio, Texas 78229
| | | | | | | | | | - Jiangguo Lin
- From the Physics Department
- the Institute of Biomechanics, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiaoying Lei
- the Department of BioSciences, Rice University, Houston, Texas 77251
- the School of Public Health, Shandong University, Jinan 250012, China
| | | | - Changjiang You
- the Division of Biophysics, Universität Osnabrück, Barbarstrasse 11, 49076 Osnabrück, Germany, and
| | - Nicolas Wirth
- the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Ingrid Tessmer
- the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Jacob Piehler
- the Division of Biophysics, Universität Osnabrück, Barbarstrasse 11, 49076 Osnabrück, Germany, and
| | | | - Alexander J R Bishop
- the Greehey Children's Cancer Research Institute and
- Department of Cell Systems and Anatomy, University of Texas Health, San Antonio, Texas 78229
| | - Yizhi Jane Tao
- the Department of BioSciences, Rice University, Houston, Texas 77251
| | - Hong Wang
- From the Physics Department,
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|