1
|
Mao M, He L, Yan Q. An updated overview on the bacterial PhoP/PhoQ two-component signal transduction system. Front Cell Infect Microbiol 2025; 15:1509037. [PMID: 39958932 PMCID: PMC11825808 DOI: 10.3389/fcimb.2025.1509037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/08/2025] [Indexed: 02/18/2025] Open
Abstract
The PhoP response regulator and the cognate sensor kinase PhoQ form one of the two-component signal transduction systems that is highly conserved in bacteria. The PhoP/PhoQ system is a crucial mediator of signal transduction. It regulates the expression of bacterial environmental tolerance genes, virulence factors, adhesion, and invasion-related genes by sensing various environmental signals in the host, including Mg2+, low pH, antimicrobial peptides, and osmotic pressure. In this review, we describe the PhoP/PhoQ system-induced signal composition and its feedback mechanism, and the abundance of PhoP phosphorylation in the activated state directly or indirectly controls the transcription and expression of related genes, regulating bacterial stability. Then, we discuss the relationship between the PhoP/PhoQ system and other components of the TCS system. Under the same induction conditions, their interaction relationship determines whether bacteria can quickly restore their homeostasis and exert virulence effects. Finally, we investigate the coordinated role of the PhoP/PhoQ system in acquiring pathogenic virulence.
Collapse
Affiliation(s)
| | | | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, Fujian, China
| |
Collapse
|
2
|
Islam MM, Jung DE, Shin WS, Oh MH. Colistin Resistance Mechanism and Management Strategies of Colistin-Resistant Acinetobacter baumannii Infections. Pathogens 2024; 13:1049. [PMID: 39770308 PMCID: PMC11728550 DOI: 10.3390/pathogens13121049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
The emergence of antibiotic-resistant Acinetobacter baumannii (A. baumannii) is a pressing threat in clinical settings. Colistin is currently a widely used treatment for multidrug-resistant A. baumannii, serving as the last line of defense. However, reports of colistin-resistant strains of A. baumannii have emerged, underscoring the urgent need to develop alternative medications to combat these serious pathogens. To resist colistin, A. baumannii has developed several mechanisms. These include the loss of outer membrane lipopolysaccharides (LPSs) due to mutation of LPS biosynthetic genes, modification of lipid A (a constituent of LPSs) structure through the addition of phosphoethanolamine (PEtN) moieties to the lipid A component by overexpression of chromosomal pmrCAB operon genes and eptA gene, or acquisition of plasmid-encoded mcr genes through horizontal gene transfer. Other resistance mechanisms involve alterations of outer membrane permeability through porins, the expulsion of colistin by efflux pumps, and heteroresistance. In response to the rising threat of colistin-resistant A. baumannii, researchers have developed various treatment strategies, including antibiotic combination therapy, adjuvants to potentiate antibiotic activity, repurposing existing drugs, antimicrobial peptides, nanotechnology, photodynamic therapy, CRISPR/Cas, and phage therapy. While many of these strategies have shown promise in vitro and in vivo, further clinical trials are necessary to ensure their efficacy and widen their clinical applications. Ongoing research is essential for identifying the most effective therapeutic strategies to manage colistin-resistant A. baumannii. This review explores the genetic mechanisms underlying colistin resistance and assesses potential treatment options for this challenging pathogen.
Collapse
Affiliation(s)
- Md Minarul Islam
- Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea;
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea;
| | - Da Eun Jung
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea;
| | - Woo Shik Shin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Man Hwan Oh
- Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea;
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea;
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
3
|
Burton AT, Zeinert R, Storz G. Large Roles of Small Proteins. Annu Rev Microbiol 2024; 78:1-22. [PMID: 38772630 PMCID: PMC12005717 DOI: 10.1146/annurev-micro-112723-083001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Bacterial proteins of ≤50 amino acids, denoted small proteins or microproteins, have been traditionally understudied and overlooked, as standard computational, biochemical, and genetic approaches often do not detect proteins of this size. However, with the realization that small proteins are stably expressed and have important cellular roles, there has been increased identification of small proteins in bacteria and eukaryotes. Gradually, the functions of a few of these small proteins are being elucidated. Many interact with larger protein products to modulate their subcellular localization, stabilities, or activities. Here, we provide an overview of these diverse functions in bacteria, highlighting generalities among bacterial small proteins and similarly sized proteins in eukaryotic organisms and discussing questions for future research.
Collapse
Affiliation(s)
- Aisha T Burton
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland, USA
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA;
| | - Rilee Zeinert
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland, USA
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA;
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA;
| |
Collapse
|
4
|
Vellappan S, Sun J, Favate J, Jagadeesan P, Cerda D, Shah P, Yadavalli SS. Translation profiling of stress-induced small proteins reveals a novel link among signaling systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612970. [PMID: 39345582 PMCID: PMC11429745 DOI: 10.1101/2024.09.13.612970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Signaling networks allow adaptation to stressful environments by activating genes that counteract stressors. Small proteins (≤ 50 amino acids long) are a rising class of stress response regulators. Escherichia coli encodes over 150 small proteins, most of which lack phenotypes and their biological roles remain elusive. Using magnesium limitation as a stressor, we identify stress-induced small proteins using ribosome profiling, RNA sequencing, and transcriptional reporter assays. We uncover 17 small proteins with increased translation initiation, several of them transcriptionally upregulated by the PhoQ-PhoP two-component signaling system, crucial for magnesium homeostasis. Next, we describe small protein-specific deletion and overexpression phenotypes, underscoring their physiological significance in low magnesium stress. Most remarkably, we elucidate an unusual connection via a small membrane protein YoaI, between major signaling networks - PhoR-PhoB and EnvZ-OmpR in E. coli, advancing our understanding of small protein regulators in cellular signaling.
Collapse
Affiliation(s)
- Sangeevan Vellappan
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ USA
- Department of Genetics, School of Arts and Sciences, Rutgers University, Piscataway, NJ USA
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Junhong Sun
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ USA
| | - John Favate
- Department of Genetics, School of Arts and Sciences, Rutgers University, Piscataway, NJ USA
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Pranavi Jagadeesan
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ USA
| | - Debbie Cerda
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ USA
- Department of Genetics, School of Arts and Sciences, Rutgers University, Piscataway, NJ USA
| | - Premal Shah
- Department of Genetics, School of Arts and Sciences, Rutgers University, Piscataway, NJ USA
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Srujana S. Yadavalli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ USA
- Department of Genetics, School of Arts and Sciences, Rutgers University, Piscataway, NJ USA
| |
Collapse
|
5
|
Fernandez-Ciruelos B, Albanese M, Adhav A, Solomin V, Ritchie-Martinez A, Taverne F, Velikova N, Jirgensons A, Marina A, Finn PW, Wells JM. Repurposing Hsp90 inhibitors as antimicrobials targeting two-component systems identifies compounds leading to loss of bacterial membrane integrity. Microbiol Spectr 2024; 12:e0014624. [PMID: 38917423 PMCID: PMC11302729 DOI: 10.1128/spectrum.00146-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024] Open
Abstract
The discovery of antimicrobials with novel mechanisms of action is crucial to tackle the foreseen global health crisis due to antimicrobial resistance. Bacterial two-component signaling systems (TCSs) are attractive targets for the discovery of novel antibacterial agents. TCS-encoding genes are found in all bacterial genomes and typically consist of a sensor histidine kinase (HK) and a response regulator. Due to the conserved Bergerat fold in the ATP-binding domain of the TCS HK and the human chaperone Hsp90, there has been much interest in repurposing inhibitors of Hsp90 as antibacterial compounds. In this study, we explore the chemical space of the known Hsp90 inhibitor scaffold 3,4-diphenylpyrazole (DPP), building on previous literature to further understand their potential for HK inhibition. Six DPP analogs inhibited HK autophosphorylation in vitro and had good antimicrobial activity against Gram-positive bacteria. However, mechanistic studies showed that their antimicrobial activity was related to damage of bacterial membranes. In addition, DPP analogs were cytotoxic to human embryonic kidney cell lines and induced the cell arrest phenotype shown for other Hsp90 inhibitors. We conclude that these DPP structures can be further optimized as specific disruptors of bacterial membranes providing binding to Hsp90 and cytotoxicity are lowered. Moreover, the X-ray crystal structure of resorcinol, a substructure of the DPP derivatives, bound to the HK CheA represents a promising starting point for the fragment-based design of novel HK inhibitors. IMPORTANCE The discovery of novel antimicrobials is of paramount importance in tackling the imminent global health crisis of antimicrobial resistance. The discovery of novel antimicrobials with novel mechanisms of actions, e.g., targeting bacterial two-component signaling systems, is crucial to bypass existing resistance mechanisms and stimulate pharmaceutical innovations. Here, we explore the possible repurposing of compounds developed in cancer research as inhibitors of two-component systems and investigate their off-target effects such as bacterial membrane disruption and toxicity. These results highlight compounds that are promising for further development of novel bacterial membrane disruptors and two-component system inhibitors.
Collapse
Affiliation(s)
- Blanca Fernandez-Ciruelos
- Host-Microbe Interactomics Group, Dept. Animal Sciences, Wageningen University & Research (WUR), Wageningen, the Netherlands
| | - Marco Albanese
- Oxford Drug Design (ODD), Oxford Centre for Innovation, Oxford, United Kingdom
- School of Computer Science, University of Buckingham, Buckingham, United Kingdom
| | - Anmol Adhav
- Macromolecular Crystallography Group, Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Cientificas (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Vitalii Solomin
- Organic Synthesis Methodology Group, Latvian Institute of Organic Synthesis (LIOS), Riga, Latvia
| | - Arabela Ritchie-Martinez
- Host-Microbe Interactomics Group, Dept. Animal Sciences, Wageningen University & Research (WUR), Wageningen, the Netherlands
| | - Femke Taverne
- Host-Microbe Interactomics Group, Dept. Animal Sciences, Wageningen University & Research (WUR), Wageningen, the Netherlands
| | - Nadya Velikova
- Host-Microbe Interactomics Group, Dept. Animal Sciences, Wageningen University & Research (WUR), Wageningen, the Netherlands
| | - Aigars Jirgensons
- Organic Synthesis Methodology Group, Latvian Institute of Organic Synthesis (LIOS), Riga, Latvia
| | - Alberto Marina
- Macromolecular Crystallography Group, Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Cientificas (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Paul W. Finn
- Oxford Drug Design (ODD), Oxford Centre for Innovation, Oxford, United Kingdom
- School of Computer Science, University of Buckingham, Buckingham, United Kingdom
| | - Jerry M. Wells
- Host-Microbe Interactomics Group, Dept. Animal Sciences, Wageningen University & Research (WUR), Wageningen, the Netherlands
| |
Collapse
|
6
|
Muner JJ, de Oliveira PAA, Baboghlian J, Moura SC, de Andrade AG, de Oliveira MM, Campos YFD, Mançano ASF, Siqueira NMG, Pacheco T, Ferraz LFC. The transcriptional regulator Fur modulates the expression of uge, a gene essential for the core lipopolysaccharide biosynthesis in Klebsiella pneumoniae. BMC Microbiol 2024; 24:279. [PMID: 39061004 PMCID: PMC11282780 DOI: 10.1186/s12866-024-03418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Klebsiella pneumoniae is a Gram-negative pathogen that has become a threat to public health worldwide due to the emergence of hypervirulent and multidrug-resistant strains. Cell-surface components, such as polysaccharide capsules, fimbriae, and lipopolysaccharides (LPS), are among the major virulence factors for K. pneumoniae. One of the genes involved in LPS biosynthesis is the uge gene, which encodes the uridine diphosphate galacturonate 4-epimerase enzyme. Although essential for the LPS formation in K. pneumoniae, little is known about the mechanisms that regulate the expression of uge. Ferric uptake regulator (Fur) is an iron-responsive transcription factor that modulates the expression of capsular and fimbrial genes, but its role in LPS expression has not yet been identified. This work aimed to investigate the role of the Fur regulator in the expression of the K. pneumoniae uge gene and to determine whether the production of LPS by K. pneumoniae is modulated by the iron levels available to the bacterium. RESULTS Using bioinformatic analyses, a Fur-binding site was identified on the promoter region of the uge gene; this binding site was validated experimentally through Fur Titration Assay (FURTA) and DNA Electrophoretic Mobility Shift Assay (EMSA) techniques. RT-qPCR analyses were used to evaluate the expression of uge according to the iron levels available to the bacterium. The iron-rich condition led to a down-regulation of uge, while the iron-restricted condition resulted in up-regulation. In addition, LPS was extracted and quantified on K. pneumoniae cells subjected to iron-replete and iron-limited conditions. The iron-limited condition increased the amount of LPS produced by K. pneumoniae. Finally, the expression levels of uge and the amount of the LPS were evaluated on a K. pneumoniae strain mutant for the fur gene. Compared to the wild-type, the strain with the fur gene knocked out presented a lower LPS amount and an unchanged expression of uge, regardless of the iron levels. CONCLUSIONS Here, we show that iron deprivation led the K. pneumoniae cells to produce higher amount of LPS and that the Fur regulator modulates the expression of uge, a gene essential for LPS biosynthesis. Thus, our results indicate that iron availability modulates the LPS biosynthesis in K. pneumoniae through a Fur-dependent mechanism.
Collapse
Affiliation(s)
- José Júlio Muner
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, SP, Brazil
| | - Paloma Aparecida Alves de Oliveira
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, SP, Brazil
- Central Multiusuária de Análises Genômica e Transcriptômica (CmAGT), Universidade São Francisco, Bragança Paulista, SP, Brazil
| | - Juliana Baboghlian
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, SP, Brazil
| | - Stefany Casarin Moura
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, SP, Brazil
| | | | | | - Yasmin Ferreira de Campos
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, SP, Brazil
| | | | | | - Thaisy Pacheco
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, SP, Brazil
| | - Lúcio Fábio Caldas Ferraz
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, SP, Brazil.
- Central Multiusuária de Análises Genômica e Transcriptômica (CmAGT), Universidade São Francisco, Bragança Paulista, SP, Brazil.
| |
Collapse
|
7
|
Padhy I, Dwibedy SK, Mohapatra SS. A molecular overview of the polymyxin-LPS interaction in the context of its mode of action and resistance development. Microbiol Res 2024; 283:127679. [PMID: 38508087 DOI: 10.1016/j.micres.2024.127679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
With the rising incidences of antimicrobial resistance (AMR) and the diminishing options of novel antimicrobial agents, it is paramount to decipher the molecular mechanisms of action and the emergence of resistance to the existing drugs. Polymyxin, a cationic antimicrobial lipopeptide, is used to treat infections by Gram-negative bacterial pathogens as a last option. Though polymyxins were identified almost seventy years back, their use has been restricted owing to toxicity issues in humans. However, their clinical use has been increasing in recent times resulting in the rise of polymyxin resistance. Moreover, the detection of "mobile colistin resistance (mcr)" genes in the environment and their spread across the globe have complicated the scenario. The mechanism of polymyxin action and the development of resistance is not thoroughly understood. Specifically, the polymyxin-bacterial lipopolysaccharide (LPS) interaction is a challenging area of investigation. The use of advanced biophysical techniques and improvement in molecular dynamics simulation approaches have furthered our understanding of this interaction, which will help develop polymyxin analogs with better bactericidal effects and lesser toxicity in the future. In this review, we have delved deeper into the mechanisms of polymyxin-LPS interactions, highlighting several models proposed, and the mechanisms of polymyxin resistance development in some of the most critical Gram-negative pathogens.
Collapse
Affiliation(s)
- Indira Padhy
- Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| | - Sambit K Dwibedy
- Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| | - Saswat S Mohapatra
- Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India.
| |
Collapse
|
8
|
Yamada N, Kamoshida G, Shiraishi T, Yamaguchi D, Matsuoka M, Yamauchi R, Kanda N, Kamioka R, Takemoto N, Morita Y, Fujimuro M, Yokota SI, Yahiro K. PmrAB, the two-component system of Acinetobacter baumannii, controls the phosphoethanolamine modification of lipooligosaccharide in response to metal ions. J Bacteriol 2024; 206:e0043523. [PMID: 38661375 PMCID: PMC11112996 DOI: 10.1128/jb.00435-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Acinetobacter baumannii is highly resistant to antimicrobial agents, and XDR strains have become widespread. A. baumannii has developed resistance to colistin, which is considered the last resort against XDR Gram-negative bacteria, mainly caused by lipooligosaccharide (LOS) phosphoethanolamine (pEtN) and/or galactosamine (GalN) modifications induced by mutations that activate the two-component system (TCS) pmrAB. Although PmrAB of A. baumannii has been recognized as a drug resistance factor, its function as TCS, including its regulatory genes and response factors, has not been fully elucidated. In this study, to clarify the function of PmrAB as TCS, we elucidated the regulatory genes (regulon) of PmrAB via transcriptome analysis using pmrAB-activated mutant strains. We discovered that PmrAB responds to low pH, Fe2+, Zn2+, and Al3+. A. baumannii selectively recognizes Fe2+ rather than Fe3+, and a novel region ExxxE, in addition to the ExxE motif sequence, is involved in the environmental response. Furthermore, PmrAB participates in the phosphoethanolamine modification of LOS on the bacterial surface in response to metal ions such as Al3+, contributing to the attenuation of Al3+ toxicity and development of resistance to colistin and polymyxin B in A. baumannii. This study demonstrates that PmrAB in A. baumannii not only regulates genes that play an important role in drug resistance but is also involved in responses to environmental stimuli such as metal ions and pH, and this stimulation induces LOS modification. This study reveals the importance of PmrAB in the environmental adaptation and antibacterial resistance emergence mechanisms of A. baumannii. IMPORTANCE Antimicrobial resistance (AMR) is a pressing global issue in human health. Acinetobacter baumannii is notably high on the World Health Organization's list of bacteria for which new antimicrobial agents are urgently needed. Colistin is one of the last-resort drugs used against extensively drug-resistant (XDR) Gram-negative bacteria. However, A. baumannii has become increasingly resistant to colistin, primarily by modifying its lipooligosaccharide (LOS) via activating mutations in the two-component system (TCS) PmrAB. This study comprehensively elucidates the detailed mechanism of drug resistance of PmrAB in A. baumannii as well as its biological functions. Understanding the molecular biology of these molecules, which serve as drug resistance factors and are involved in environmental recognition mechanisms in bacteria, is crucial for developing fundamental solutions to the AMR problem.
Collapse
Affiliation(s)
- Noriteru Yamada
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
- Laboratory of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Go Kamoshida
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
- Department of Infection Control Science, Meiji Pharmaceutical University, Tokyo, Japan
| | - Tsukasa Shiraishi
- Department of Microbiology, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Daiki Yamaguchi
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Momoko Matsuoka
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Reika Yamauchi
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Nana Kanda
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Roku Kamioka
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Norihiko Takemoto
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yuji Morita
- Department of Infection Control Science, Meiji Pharmaceutical University, Tokyo, Japan
| | - Masahiro Fujimuro
- Laboratory of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Shin-ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Kinnosuke Yahiro
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
9
|
Mondal AH, Khare K, Saxena P, Debnath P, Mukhopadhyay K, Yadav D. A Review on Colistin Resistance: An Antibiotic of Last Resort. Microorganisms 2024; 12:772. [PMID: 38674716 PMCID: PMC11051878 DOI: 10.3390/microorganisms12040772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Antibiotic resistance has emerged as a significant global public health issue, driven by the rapid adaptation of microorganisms to commonly prescribed antibiotics. Colistin, previously regarded as a last-resort antibiotic for treating infections caused by Gram-negative bacteria, is increasingly becoming resistant due to chromosomal mutations and the acquisition of resistance genes carried by plasmids, particularly the mcr genes. The mobile colistin resistance gene (mcr-1) was first discovered in E. coli from China in 2016. Since that time, studies have reported different variants of mcr genes ranging from mcr-1 to mcr-10, mainly in Enterobacteriaceae from various parts of the world, which is a major concern for public health. The co-presence of colistin-resistant genes with other antibiotic resistance determinants further complicates treatment strategies and underscores the urgent need for enhanced surveillance and antimicrobial stewardship efforts. Therefore, understanding the mechanisms driving colistin resistance and monitoring its global prevalence are essential steps in addressing the growing threat of antimicrobial resistance and preserving the efficacy of existing antibiotics. This review underscores the critical role of colistin as a last-choice antibiotic, elucidates the mechanisms of colistin resistance and the dissemination of resistant genes, explores the global prevalence of mcr genes, and evaluates the current detection methods for colistin-resistant bacteria. The objective is to shed light on these key aspects with strategies for combating the growing threat of resistance to antibiotics.
Collapse
Affiliation(s)
- Aftab Hossain Mondal
- Department of Microbiology, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary University, Gurugram 122505, Haryana, India; (A.H.M.); (P.D.)
| | - Kriti Khare
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.K.); (P.S.); (K.M.)
| | - Prachika Saxena
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.K.); (P.S.); (K.M.)
| | - Parbati Debnath
- Department of Microbiology, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary University, Gurugram 122505, Haryana, India; (A.H.M.); (P.D.)
| | - Kasturi Mukhopadhyay
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.K.); (P.S.); (K.M.)
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| |
Collapse
|
10
|
Fernandez-Ciruelos B, Potmis T, Solomin V, Wells JM. Cross-talk between QseBC and PmrAB two-component systems is crucial for regulation of motility and colistin resistance in Enteropathogenic Escherichia coli. PLoS Pathog 2023; 19:e1011345. [PMID: 38060591 PMCID: PMC10729948 DOI: 10.1371/journal.ppat.1011345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 12/19/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023] Open
Abstract
The quorum sensing two-component system (TCS) QseBC has been linked to virulence, motility and metabolism regulation in multiple Gram-negative pathogens, including Enterohaemorrhagic Escherichia coli (EHEC), Uropathogenic E. coli (UPEC) and Salmonella enterica. In EHEC, the sensor histidine kinase (HK) QseC detects the quorum sensing signalling molecule AI-3 and also acts as an adrenergic sensor binding host epinephrine and norepinephrine. Downstream changes in gene expression are mediated by phosphorylation of its cognate response regulator (RR) QseB, and 'cross-talks' with non-cognate regulators KdpE and QseF to activate motility and virulence. In UPEC, cross-talk between QseBC and TCS PmrAB is crucial in the regulation and phosphorylation of QseB RR that acts as a repressor of multiple pathways, including motility. Here, we investigated QseBC regulation of motility in the atypical Enteropathogenic E. coli (EPEC) strain O125ac:H6, causative agent of persistent diarrhoea in children, and its possible cross-talk with the KdpDE and PmrAB TCS. We showed that in EPEC QseB acts as a repressor of genes involved in motility, virulence and stress response, and in absence of QseC HK, QseB is likely activated by the non-cognate PmrB HK, similarly to UPEC. We show that in absence of QseC, phosphorylated QseB activates its own expression, and is responsible for the low motility phenotypes seen in a QseC deletion mutant. Furthermore, we showed that KdpD HK regulates motility in an independent manner to QseBC and through a third unidentified party different to its own response regulator KdpE. We showed that PmrAB has a role in iron adaptation independent to QseBC. Finally, we showed that QseB is the responsible for activation of colistin and polymyxin B resistance genes while PmrA RR acts by preventing QseB activation of these resistance genes.
Collapse
Affiliation(s)
- Blanca Fernandez-Ciruelos
- Host-Microbe Interactomics Group, Wageningen University & Research (WUR), Wageningen, The Netherlands
| | - Tasneemah Potmis
- Host-Microbe Interactomics Group, Wageningen University & Research (WUR), Wageningen, The Netherlands
| | - Vitalii Solomin
- Organic Synthesis Methodology Group, Latvian Institute of Organic Synthesis (LIOS), Riga, Latvia
| | - Jerry M. Wells
- Host-Microbe Interactomics Group, Wageningen University & Research (WUR), Wageningen, The Netherlands
| |
Collapse
|
11
|
Wang P, Zhang G, Xu Z, Chen Z, Liu X, Wang C, Zheng C, Wang J, Zhang H, Yan A. Whole-cell FRET monitoring of transcription factor activities enables functional annotation of signal transduction systems in living bacteria. J Biol Chem 2022; 298:102258. [PMID: 35839853 PMCID: PMC9396075 DOI: 10.1016/j.jbc.2022.102258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/24/2022] Open
Abstract
Bacteria adapt to their constantly changing environments largely by transcriptional regulation through the activities of various transcription factors (TFs). However, techniques that monitor TF–promoter interactions in situ in living bacteria are lacking. Herein, we developed a whole-cell TF–promoter binding assay based on the intermolecular FRET between an unnatural amino acid, l-(7-hydroxycoumarin-4-yl) ethylglycine, which labels TFs with bright fluorescence through genetic encoding (donor fluorophore) and the live cell nucleic acid stain SYTO 9 (acceptor fluorophore). We show that this new FRET pair monitors the intricate TF–promoter interactions elicited by various types of signal transduction systems, including one-component (CueR) and two-component systems (BasSR and PhoPQ), in bacteria with high specificity and sensitivity. We demonstrate that robust CouA incorporation and FRET occurrence is achieved in all these regulatory systems based on either the crystal structures of TFs or their simulated structures, if 3D structures of the TFs were unavailable. Furthermore, using CueR and PhoPQ systems as models, we demonstrate that the whole-cell FRET assay is applicable for the identification and validation of complex regulatory circuit and novel modulators of regulatory systems of interest. Finally, we show that the FRET system is applicable for single-cell analysis and monitoring TF activities in Escherichia coli colonizing a Caenorhabditis elegans host. In conclusion, we established a tractable and sensitive TF–promoter binding assay, which not only complements currently available approaches for DNA–protein interactions but also provides novel opportunities for functional annotation of bacterial signal transduction systems and studies of the bacteria–host interface.
Collapse
Affiliation(s)
- Pengchao Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Guangming Zhang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Zeling Xu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Zhe Chen
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xiaohong Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Chenyin Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jiangyun Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 15 Datun Road, Chaoyang District, Beijing 100101, China.
| | - Hongmin Zhang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| | - Aixin Yan
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| |
Collapse
|
12
|
Salvail H, Choi J, Groisman EA. Differential synthesis of novel small protein times Salmonella virulence program. PLoS Genet 2022; 18:e1010074. [PMID: 35245279 PMCID: PMC8896665 DOI: 10.1371/journal.pgen.1010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/03/2022] [Indexed: 11/18/2022] Open
Abstract
Gene organization in operons enables concerted transcription of functionally related genes and efficient control of cellular processes. Typically, an operon is transcribed as a polycistronic mRNA that is translated into corresponding proteins. Here, we identify a bicistronic operon transcribed as two mRNAs, yet only one allows translation of both genes. We establish that the novel gene ugtS forms an operon with virulence gene ugtL, an activator of the master virulence regulatory system PhoP/PhoQ in Salmonella enterica serovar Typhimurium. Only the longer ugtSugtL mRNA carries the ugtS ribosome binding site and therefore allows ugtS translation. Inside macrophages, the ugtSugtL mRNA species allowing translation of both genes is produced hours before that allowing translation solely of ugtL. The small protein UgtS controls the kinetics of PhoP phosphorylation by antagonizing UgtL activity, preventing premature activation of a critical virulence program. Moreover, S. enterica serovars that infect cold-blooded animals lack ugtS. Our results establish how foreign gene control of ancestral regulators enables pathogens to time their virulence programs. Pathogens must express their virulence genes at precisely the right time to cause disease. Here, we identify a novel small protein that governs a critical virulence program in the pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). We establish that the novel small protein UgtS prevents the virulence protein UgtL from activating the master virulence regulator PhoP inside macrophages. S. Typhimurium produces two ugtSugtL mRNAs, but only one of them allows ugtS translation. The absence of ugtS from S. enterica serovars that infect cold-blooded animals raises the possibility of UgtS playing a regulatory role during infection of warm-blooded animals. Our findings establish how a horizontally acquired bicistron enables pathogens to time their virulence programs by controlling ancestral regulators.
Collapse
Affiliation(s)
- Hubert Salvail
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
- Yale Microbial Sciences Institute, West Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
13
|
Abstract
In recent years, there has been increased appreciation that a whole category of proteins, small proteins of around 50 amino acids or fewer in length, has been missed by annotation as well as by genetic and biochemical assays. With the increased recognition that small proteins are stable within cells and have regulatory functions, there has been intensified study of these proteins. As a result, important questions about small proteins in bacteria and archaea are coming to the fore. Here, we give an overview of these questions, the initial answers, and the approaches needed to address these questions more fully. More detailed discussions of how small proteins can be identified by ribosome profiling and mass spectrometry approaches are provided by two accompanying reviews (N. Vazquez-Laslop, C. M. Sharma, A. S. Mankin, and A. R. Buskirk, J Bacteriol 204:e00294-21, 2022, https://doi.org/10.1128/JB.00294-21; C. H. Ahrens, J. T. Wade, M. M. Champion, and J. D. Langer, J Bacteriol 204:e00353-21, 2022, https://doi.org/10.1128/JB.00353-21). We are excited by the prospects of new insights and possible therapeutic approaches coming from this emerging field.
Collapse
Affiliation(s)
- Todd Gray
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Kai Papenfort
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
- Microverse Cluster, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
14
|
Yadavalli SS, Yuan J. Bacterial Small Membrane Proteins: the Swiss Army Knife of Regulators at the Lipid Bilayer. J Bacteriol 2022; 204:e0034421. [PMID: 34516282 PMCID: PMC8765417 DOI: 10.1128/jb.00344-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small membrane proteins represent a subset of recently discovered small proteins (≤100 amino acids), which are a ubiquitous class of emerging regulators underlying bacterial adaptation to environmental stressors. Until relatively recently, small open reading frames encoding these proteins were not designated genes in genome annotations. Therefore, our understanding of small protein biology was primarily limited to a few candidates associated with previously characterized larger partner proteins. Following the first systematic analyses of small proteins in Escherichia coli over a decade ago, numerous small proteins across different bacteria have been uncovered. An estimated one-third of these newly discovered proteins in E. coli are localized to the cell membrane, where they may interact with distinct groups of membrane proteins, such as signal receptors, transporters, and enzymes, and affect their activities. Recently, there has been considerable progress in functionally characterizing small membrane protein regulators aided by innovative tools adapted specifically to study small proteins. Our review covers prototypical proteins that modulate a broad range of cellular processes, such as transport, signal transduction, stress response, respiration, cell division, sporulation, and membrane stability. Thus, small membrane proteins represent a versatile group of physiology regulators at the membrane and the whole cell. Additionally, small membrane proteins have the potential for clinical applications, where some of the proteins may act as antibacterial agents themselves while others serve as alternative drug targets for the development of novel antimicrobials.
Collapse
Affiliation(s)
- Srujana S. Yadavalli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey, USA
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
| | - Jing Yuan
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
15
|
Groisman EA, Duprey A, Choi J. How the PhoP/PhoQ System Controls Virulence and Mg 2+ Homeostasis: Lessons in Signal Transduction, Pathogenesis, Physiology, and Evolution. Microbiol Mol Biol Rev 2021; 85:e0017620. [PMID: 34191587 PMCID: PMC8483708 DOI: 10.1128/mmbr.00176-20] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The PhoP/PhoQ two-component system governs virulence, Mg2+ homeostasis, and resistance to a variety of antimicrobial agents, including acidic pH and cationic antimicrobial peptides, in several Gram-negative bacterial species. Best understood in Salmonella enterica serovar Typhimurium, the PhoP/PhoQ system consists o-regulated gene products alter PhoP-P amounts, even under constant inducing conditions. PhoP-P controls the abundance of hundreds of proteins both directly, by having transcriptional effects on the corresponding genes, and indirectly, by modifying the abundance, activity, or stability of other transcription factors, regulatory RNAs, protease regulators, and metabolites. The investigation of PhoP/PhoQ has uncovered novel forms of signal transduction and the physiological consequences of regulon evolution.
Collapse
Affiliation(s)
- Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| | - Alexandre Duprey
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
16
|
Tian X, Manat G, Gasiorowski E, Auger R, Hicham S, Mengin-Lecreulx D, Boneca IG, Touzé T. LpxT-Dependent Phosphorylation of Lipid A in Escherichia coli Increases Resistance to Deoxycholate and Enhances Gut Colonization. Front Microbiol 2021; 12:676596. [PMID: 34017319 PMCID: PMC8129183 DOI: 10.3389/fmicb.2021.676596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
The cell surface of Gram-negative bacteria usually exhibits a net negative charge mostly conferred by lipopolysaccharides (LPS). This property sensitizes bacterial cells to cationic antimicrobial peptides, such as polymyxin B, by favoring their binding to the cell surface. Gram-negative bacteria can modify their surface to counteract these compounds such as the decoration of their LPS by positively charged groups. For example, in Escherichia coli and Salmonella, EptA and ArnT add amine-containing groups to the lipid A moiety. In contrast, LpxT enhances the net negative charge by catalyzing the synthesis of tri-phosphorylated lipid A, whose function is yet unknown. Here, we report that E. coli has the intrinsic ability to resist polymyxin B upon the simultaneous activation of the two component regulatory systems PhoPQ and PmrAB by intricate environmental cues. Among many LPS modifications, only EptA- and ArnT-dependent decorations were required for polymyxin B resistance. Conversely, the acquisition of polymyxin B resistance compromised the innate resistance of E. coli to deoxycholate, a major component of bile. The inhibition of LpxT by PmrR, under PmrAB-inducing conditions, specifically accounted for the acquired susceptibility to deoxycholate. We also report that the kinetics of intestinal colonization by the E. coli lpxT mutant was impaired as compared to wild-type in a mouse model of infection and that lpxT was upregulated at the temperature of the host. Together, these findings highlight an important function of LpxT and suggest that a tight equilibrium between EptA- and LpxT-dependent decorations, which occur at the same position of lipid A, is critical for the life style of E. coli.
Collapse
Affiliation(s)
- Xudong Tian
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Guillaume Manat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Elise Gasiorowski
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Rodolphe Auger
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Samia Hicham
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
| | - Dominique Mengin-Lecreulx
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Ivo Gomperts Boneca
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
| | - Thierry Touzé
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
17
|
Sheikh SW, Ali A, Ahsan A, Shakoor S, Shang F, Xue T. Insights into Emergence of Antibiotic Resistance in Acid-Adapted Enterohaemorrhagic Escherichia coli. Antibiotics (Basel) 2021; 10:522. [PMID: 34063307 PMCID: PMC8147483 DOI: 10.3390/antibiotics10050522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
The emergence of multidrug-resistant pathogens presents a global challenge for treating and preventing disease spread through zoonotic transmission. The water and foodborne Enterohaemorrhagic Escherichia coli (EHEC) are capable of causing intestinal and systemic diseases. The root cause of the emergence of these strains is their metabolic adaptation to environmental stressors, especially acidic pH. Acid treatment is desired to kill pathogens, but the protective mechanisms employed by EHECs cross-protect against antimicrobial peptides and thus facilitate opportunities for survival and pathogenesis. In this review, we have discussed the correlation between acid tolerance and antibiotic resistance, highlighting the identification of novel targets for potential production of antimicrobial therapeutics. We have also summarized the molecular mechanisms used by acid-adapted EHECs, such as the two-component response systems mediating structural modifications, competitive inhibition, and efflux activation that facilitate cross-protection against antimicrobial compounds. Moving beyond the descriptive studies, this review highlights low pH stress as an emerging player in the development of cross-protection against antimicrobial agents. We have also described potential gene targets for innovative therapeutic approaches to overcome the risk of multidrug-resistant diseases in healthcare and industry.
Collapse
Affiliation(s)
- Salma Waheed Sheikh
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China;
| | - Ahmad Ali
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China;
| | - Asma Ahsan
- Faculty of Life Sciences, University of Central Punjab, Lahore 54000, Punjab, Pakistan;
| | - Sidra Shakoor
- Station de Neucfchateau, CIRAD, 97130 Sainte-Marie, Capesterre Belle Eau, Guadeloupe, France;
| | - Fei Shang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China;
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China;
| |
Collapse
|
18
|
Gerovac M, Vogel J, Smirnov A. The World of Stable Ribonucleoproteins and Its Mapping With Grad-Seq and Related Approaches. Front Mol Biosci 2021; 8:661448. [PMID: 33898526 PMCID: PMC8058203 DOI: 10.3389/fmolb.2021.661448] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Macromolecular complexes of proteins and RNAs are essential building blocks of cells. These stable supramolecular particles can be viewed as minimal biochemical units whose structural organization, i.e., the way the RNA and the protein interact with each other, is directly linked to their biological function. Whether those are dynamic regulatory ribonucleoproteins (RNPs) or integrated molecular machines involved in gene expression, the comprehensive knowledge of these units is critical to our understanding of key molecular mechanisms and cell physiology phenomena. Such is the goal of diverse complexomic approaches and in particular of the recently developed gradient profiling by sequencing (Grad-seq). By separating cellular protein and RNA complexes on a density gradient and quantifying their distributions genome-wide by mass spectrometry and deep sequencing, Grad-seq charts global landscapes of native macromolecular assemblies. In this review, we propose a function-based ontology of stable RNPs and discuss how Grad-seq and related approaches transformed our perspective of bacterial and eukaryotic ribonucleoproteins by guiding the discovery of new RNA-binding proteins and unusual classes of noncoding RNAs. We highlight some methodological aspects and developments that permit to further boost the power of this technique and to look for exciting new biology in understudied and challenging biological models.
Collapse
Affiliation(s)
- Milan Gerovac
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Alexandre Smirnov
- UMR 7156—Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, CNRS, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| |
Collapse
|
19
|
Steinberg R, Koch HG. The largely unexplored biology of small proteins in pro- and eukaryotes. FEBS J 2021; 288:7002-7024. [PMID: 33780127 DOI: 10.1111/febs.15845] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 12/29/2022]
Abstract
The large abundance of small open reading frames (smORFs) in prokaryotic and eukaryotic genomes and the plethora of smORF-encoded small proteins became only apparent with the constant advancements in bioinformatic, genomic, proteomic, and biochemical tools. Small proteins are typically defined as proteins of < 50 amino acids in prokaryotes and of less than 100 amino acids in eukaryotes, and their importance for cell physiology and cellular adaptation is only beginning to emerge. In contrast to antimicrobial peptides, which are secreted by prokaryotic and eukaryotic cells for combatting pathogens and competitors, small proteins act within the producing cell mainly by stabilizing protein assemblies and by modifying the activity of larger proteins. Production of small proteins is frequently linked to stress conditions or environmental changes, and therefore, cells seem to use small proteins as intracellular modifiers for adjusting cell metabolism to different intra- and extracellular cues. However, the size of small proteins imposes a major challenge for the cellular machinery required for protein folding and intracellular trafficking and recent data indicate that small proteins can engage distinct trafficking pathways. In the current review, we describe the diversity of small proteins in prokaryotes and eukaryotes, highlight distinct and common features, and illustrate how they are handled by the protein trafficking machineries in prokaryotic and eukaryotic cells. Finally, we also discuss future topics of research on this fascinating but largely unexplored group of proteins.
Collapse
Affiliation(s)
- Ruth Steinberg
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Germany
| |
Collapse
|
20
|
Critical Role of 3'-Downstream Region of pmrB in Polymyxin Resistance in Escherichia coli BL21(DE3). Microorganisms 2021; 9:microorganisms9030655. [PMID: 33809968 PMCID: PMC8004244 DOI: 10.3390/microorganisms9030655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/05/2022] Open
Abstract
Polymyxins, such as colistin and polymyxin B, are the drugs used as a last resort to treat multidrug-resistant Gram-negative bacterial infections in humans. Increasing colistin resistance has posed a serious threat to human health, warranting in-depth mechanistic research. In this study, using a functional cloning approach, we examined the molecular basis of colistin resistance in Escherichia coli BL21(DE3). Five transformants with inserts ranging from 3.8 to 10.7 kb displayed significantly increased colistin resistance, three of which containing pmrB locus and two containing pmrD locus. Stepwise subcloning indicated that both the pmrB with a single G361A mutation and at least a 103 bp downstream region of pmrB are essential for conferring colistin resistance. Analysis of the mRNA level and stability showed that the length of the downstream region drastically affected the pmrB mRNA level but not its half-life. Lipid A analysis, by mass spectrometry, revealed that the constructs containing pmrB with a longer downstream region (103 or 126 bp) have charge-altering l-4-aminoarabinose (Ara4N) and phosphoethanolamine (pEtN) modifications in lipid A, which were not observed in both vector control and the construct containing pmrB with an 86 bp downstream region. Together, the findings from this study indicate that the 3′-downstream region of pmrB is critical for the PmrB-mediated lipid A modifications and colistin resistance in E. coli BL21(DE3), suggesting a novel regulatory mechanism of PmrB-mediated colistin resistance in E. coli.
Collapse
|
21
|
Xu Z, Liu Z, Soteyome T, Hua J, Zhang L, Yuan L, Ye Y, Cai Z, Yang L, Chen L, Harro JM, Kjellerup BV, Liu J, Li Y. Impact of pmrA on Cronobacter sakazakii planktonic and biofilm cells: A comprehensive transcriptomic study. Food Microbiol 2021; 98:103785. [PMID: 33875213 DOI: 10.1016/j.fm.2021.103785] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 12/30/2020] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
Cronobacter sakazakii is an emerging opportunistic foodborne pathogen causing rare but severe infections in neonates. Furthermore, the formation of biofilm allows C. sakazakii to persist in different environments. We have demonstrated that the mutator phenotype ascribed to deficiency of the pmrA gene results in more biomass in the first 24 h but less during the post maturation stage (7-14 d) compared with BAA 894. The present study aimed to investigate the regulatory mechanism modulating biofilm formation due to pmrA mutation. The transcriptomic analyses of BAA 894 and s-3 were performed by RNA-sequencing on planktonic and biofilm cells collected at different time points. According to the results, when comparing biofilm to planktonic cells, expression of genes encoding outer membrane proteins, lysozyme, etc. were up-regulated, with LysR family transcriptional regulators, periplasmic proteins, etc. down-regulated. During biofilm formation, cellulose synthase operon genes, flagella-related genes, etc. played essential roles in different stages. Remarkably, pmrA varies the expression of a number of genes related to motility, biofilm formation, and antimicrobial resistance, including srfB, virK, mviM encoding virulence factor, flgF, fliN, etc. encoding flagellar assembly, and marA, ramA, etc. encoding AraC family transcriptional regulators in C. sakazakii. This study provides valuable insights into transcriptional regulation of C. sakazakii pmrA mutant during biofilm formation.
Collapse
Affiliation(s)
- Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China; Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38103, USA; Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand; National Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, 510640, China
| | - Ziqi Liu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Thanapop Soteyome
- National Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka
| | - Jingjing Hua
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Liang Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| | - Lei Yuan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Yanrui Ye
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Zhao Cai
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Janette M Harro
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, 21201, USA
| | - Birthe Veno Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Junyan Liu
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Yanyan Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Xihu District, Hangzhou, 310024, Zhejiang Province, China.
| |
Collapse
|
22
|
Investigating the mechanism of action of aggregation-inducing antimicrobial Pept-ins. Cell Chem Biol 2021; 28:524-536.e4. [PMID: 33434517 DOI: 10.1016/j.chembiol.2020.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/20/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022]
Abstract
Aggregation can be selectively induced by aggregation-prone regions (APRs) contained in the target proteins. Aggregation-inducing antimicrobial peptides (Pept-ins) contain sequences homologous to APRs of target proteins and exert their bactericidal effect by causing aggregation of a large number of proteins. To better understand the mechanism of action of Pept-ins and the resistance mechanisms, we analyzed the phenotypic, lipidomic, and transcriptomic as well as genotypic changes in laboratory-derived Pept-in-resistant E. coli mutator cells. The analysis showed that the Pept-in resistance mechanism is dominated by a decreased Pept-in uptake, in both laboratory-derived mutator cells and clinical isolates. Our data indicate that Pept-in uptake involves an electrostatic attraction between the Pept-in and the bacterial membrane and follows a complex mechanism potentially involving many transporters. Furthermore, it seems more challenging for bacteria to become resistant toward Pept-ins that are less dependent on electrostatic attraction for uptake, suggesting that future Pept-ins should be selected for this property.
Collapse
|
23
|
Gallardo A, Ugarte-Ruiz M, Hernández M, Miguela-Villoldo P, Rodríguez-Lázaro D, Domínguez L, Quesada A. Involvement of hpap2 and dgkA Genes in Colistin Resistance Mediated by mcr Determinants. Antibiotics (Basel) 2020; 9:E531. [PMID: 32842668 PMCID: PMC7559476 DOI: 10.3390/antibiotics9090531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 11/16/2022] Open
Abstract
Plasmid-mediated colistin resistance (mcr) determinants are challenging the efficacy of polymyxins against Gram-negative pathogens. Among 10 mcr genes described so far, the major determinants mcr-1 and mcr-3 are found closely linked to hpap2 or dgkA genes, encoding a hypothetical phosphatidic acid phosphatase of type 2 (PAP2) and a diacylglycerol kinase, respectively, whose functions are still unknown. In this study, mcr-1, mcr-1-hpap2, mcr-3, and mcr-3-dgkA were expressed in Escherichia coli, and recombinant strains were analyzed to detect antimicrobial susceptibility and changes in the expression of genes involved in phospholipid metabolism. The mcr-1 or mcr-3 single genes were enough to drive growth on colistin selective media, although co-expression of linked genes conferred maximal antibiotic resistance. Expression of mcr determinants downregulated endogenous genes involved in lipopolysaccharide (LPS) modification or phospholipid recycling, although to different extents of repression: strong for arnB, ybjG, and pmrR; medium for eptA, lpxT, and dgkA; small for bacA and pgpB. Four of these genes (bacA, lpxT, pgpB, and ybjG) encode undecaprenyl pyrophosphate (UPP) phosphatases. In these conditions, cells presented resistance against bacitracin, an antibiotic that sequesters UPP from PAP2 enzymes. The hpap2 and dgkA genes might play a role in colistin resistance by compensating for phospholipid metabolism functions altered during LPS modification by colistin resistance determinants.
Collapse
Affiliation(s)
- Alejandro Gallardo
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad de Extremadura, Av. de la Universidad s/n, 10003 Cáceres, Spain;
| | - María Ugarte-Ruiz
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.U.-R.); (P.M.-V.); (L.D.)
| | - Marta Hernández
- Laboratorio de Biología Molecular y Microbiología, Instituto Tecnológico Agrario de Castilla y León, 47071 Valladolid, Spain;
| | - Pedro Miguela-Villoldo
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.U.-R.); (P.M.-V.); (L.D.)
| | - David Rodríguez-Lázaro
- Unidad de Microbiología, Departamento de Biotecnología y Ciencia de los Alimentos, Universidad de Burgos, 09001 Burgos, Spain;
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.U.-R.); (P.M.-V.); (L.D.)
| | - Alberto Quesada
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad de Extremadura, Av. de la Universidad s/n, 10003 Cáceres, Spain;
- INBIO G + C, Universidad de Extremadura, 10003 Cáceres, Spain
| |
Collapse
|
24
|
Small proteins regulate Salmonella survival inside macrophages by controlling degradation of a magnesium transporter. Proc Natl Acad Sci U S A 2020; 117:20235-20243. [PMID: 32753384 DOI: 10.1073/pnas.2006116117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
All cells require Mg2+ to replicate and proliferate. The macrophage protein Slc11a1 is proposed to protect mice from invading microbes by causing Mg2+ starvation in host tissues. However, the Mg2+ transporter MgtB enables the facultative intracellular pathogen Salmonella enterica serovar Typhimurium to cause disease in mice harboring a functional Slc11a1 protein. Here, we report that, unexpectedly, the Salmonella small protein MgtR promotes MgtB degradation by the protease FtsH, which raises the question: How does Salmonella preserve MgtB to promote survival inside macrophages? We establish that the Salmonella small protein MgtU prevents MgtB proteolysis, even when MgtR is absent. Like MgtB, MgtU is necessary for survival in Slc11a1 +/+ macrophages, resistance to oxidative stress, and growth under Mg2+ limitation conditions. The Salmonella Mg2+ transporter MgtA is not protected by MgtU despite sharing 50% amino acid identity with MgtB and being degraded in an MgtR- and FtsH-dependent manner. Surprisingly, the mgtB, mgtR, and mgtU genes are part of the same transcript, providing a singular example of transcript-specifying proteins that promote and hinder degradation of the same target. Our findings demonstrate that small proteins can confer pathogen survival inside macrophages by altering the abundance of related transporters, thereby furthering homeostasis.
Collapse
|
25
|
Garai P, Blanc‐Potard A. Uncovering small membrane proteins in pathogenic bacteria: Regulatory functions and therapeutic potential. Mol Microbiol 2020; 114:710-720. [DOI: 10.1111/mmi.14564] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Preeti Garai
- Laboratory of Pathogen‐Host Interactions Université de MontpellierCNRS‐UMR5235 Montpellier France
| | - Anne Blanc‐Potard
- Laboratory of Pathogen‐Host Interactions Université de MontpellierCNRS‐UMR5235 Montpellier France
| |
Collapse
|
26
|
Falchi FA, Di Lorenzo F, Pizzoccheri R, Casino G, Paroni M, Forti F, Molinaro A, Briani F. Overexpression of lpxT Gene in Escherichia coli Inhibits Cell Division and Causes Envelope Defects without Changing the Overall Phosphorylation Level of Lipid A. Microorganisms 2020; 8:E826. [PMID: 32486329 PMCID: PMC7356881 DOI: 10.3390/microorganisms8060826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
LpxT is an inner membrane protein that transfers a phosphate group from the essential lipid undecaprenyl pyrophosphate (C-55PP) to the lipid A moiety of lipopolysaccharide, generating a lipid A tris-phosphorylated species. The protein is encoded by the non-essential lpxT gene, which is conserved in distantly related Gram-negative bacteria. In this work, we investigated the phenotypic effect of lpxT ectopic expression from a plasmid in Escherichia coli. We found that lpxT induction inhibited cell division and led to the formation of elongated cells, mostly with absent or altered septa. Moreover, the cells became sensitive to detergents and to hypo-osmotic shock, indicating that they had cell envelope defects. These effects were not due to lipid A hyperphosphorylation or C-55PP sequestering, but most likely to defective lipopolysaccharide transport. Indeed, lpxT overexpression in mutants lacking the L,D-transpeptidase LdtD and LdtE, which protect cells with outer membrane defects from osmotic lysis, caused cell envelope defects. Moreover, we found that pyrophosphorylated lipid A was also produced in a lpxT deletion mutant, indicating that LpxT is not the only protein able to perform such lipid A modification in E. coli.
Collapse
Affiliation(s)
- Federica A. Falchi
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy; (F.A.F.); (R.P.); (G.C.); (M.P.); (F.F.)
| | - Flaviana Di Lorenzo
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, 80126 Napoli, Italy; (F.D.L.); (A.M.)
| | - Roberto Pizzoccheri
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy; (F.A.F.); (R.P.); (G.C.); (M.P.); (F.F.)
| | - Gianluca Casino
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy; (F.A.F.); (R.P.); (G.C.); (M.P.); (F.F.)
| | - Moira Paroni
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy; (F.A.F.); (R.P.); (G.C.); (M.P.); (F.F.)
| | - Francesca Forti
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy; (F.A.F.); (R.P.); (G.C.); (M.P.); (F.F.)
| | - Antonio Molinaro
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, 80126 Napoli, Italy; (F.D.L.); (A.M.)
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy; (F.A.F.); (R.P.); (G.C.); (M.P.); (F.F.)
| |
Collapse
|
27
|
Kapach G, Nuri R, Schmidt C, Danin A, Ferrera S, Savidor A, Gerlach RG, Shai Y. Loss of the Periplasmic Chaperone Skp and Mutations in the Efflux Pump AcrAB-TolC Play a Role in Acquired Resistance to Antimicrobial Peptides in Salmonella typhimurium. Front Microbiol 2020; 11:189. [PMID: 32210923 PMCID: PMC7075815 DOI: 10.3389/fmicb.2020.00189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/27/2020] [Indexed: 01/01/2023] Open
Abstract
Bacterial resistance to antibiotics is a major concern worldwide, leading to an extensive search for alternative drugs. Promising candidates are antimicrobial peptides (AMPs), innate immunity molecules, shown to be highly efficient against multidrug resistant bacteria. Therefore, it is essential to study bacterial resistance mechanisms against them. For that purpose, we used experimental evolution, and isolated a Salmonella enterica serovar typhimurium-resistant line to the AMP 4DK5L7. This AMP displayed promising features including widespread activity against Gram-negative bacteria and protection from proteolytic degradation. However, the resistance that evolved in the isolated strain was particularly high. Whole genome sequencing revealed that five spontaneous mutations had evolved. Of these, three are novel in the context of acquired AMP resistance. Two mutations are related to the AcrAB-TolC multidrug efflux pump. One occurred in AcrB, the substrate-binding domain of the system, and the second in RamR, a transcriptional regulator of the system. Together, the mutations increased the minimal inhibitory concentration (MIC) by twofold toward this AMP. Moreover, the mutation in AcrB induced hypersusceptibility toward ampicillin and colistin. The last mutation occurred in Skp, a periplasmic chaperone that participates in the biogenesis of outer membrane proteins (OMPs). This mutation increased the MIC by twofold to 4DK5L7 and by fourfold to another AMP, seg5D. Proteomic analysis revealed that the mutation abolished Skp expression, reduced OMP abundance, and increased DegP levels. DegP, a protease that was reported to have an additional chaperone activity, escorts OMPs through the periplasm along with Skp, but is also associated with AMP resistance. In conclusion, our data demonstrate that both loss of Skp and manipulation of the AcrAB-TolC system are alternative strategies of AMP acquired resistance in Salmonella typhimurium and might represent a common mechanism in other Gram-negative bacteria.
Collapse
Affiliation(s)
- Gal Kapach
- Departmant of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Reut Nuri
- Departmant of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Adi Danin
- Departmant of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shir Ferrera
- Departmant of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Savidor
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Roman G Gerlach
- Project Group 5, Robert Koch Institute, Wernigerode, Germany
| | - Yechiel Shai
- Departmant of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
28
|
Simpson BW, Trent MS. Pushing the envelope: LPS modifications and their consequences. Nat Rev Microbiol 2020; 17:403-416. [PMID: 31142822 DOI: 10.1038/s41579-019-0201-x] [Citation(s) in RCA: 315] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The defining feature of the Gram-negative cell envelope is the presence of two cellular membranes, with the specialized glycolipid lipopolysaccharide (LPS) exclusively found on the surface of the outer membrane. The surface layer of LPS contributes to the stringent permeability properties of the outer membrane, which is particularly resistant to permeation of many toxic compounds, including antibiotics. As a common surface antigen, LPS is recognized by host immune cells, which mount defences to clear pathogenic bacteria. To alter properties of the outer membrane or evade the host immune response, Gram-negative bacteria chemically modify LPS in a wide variety of ways. Here, we review key features and physiological consequences of LPS biogenesis and modifications.
Collapse
Affiliation(s)
- Brent W Simpson
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - M Stephen Trent
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA. .,Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA. .,Department of Microbiology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA.
| |
Collapse
|
29
|
The role of bacterial cell envelope structures in acid stress resistance in E. coli. Appl Microbiol Biotechnol 2020; 104:2911-2921. [PMID: 32067056 DOI: 10.1007/s00253-020-10453-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022]
Abstract
Acid resistance (AR) is an indispensable mechanism for the survival of neutralophilic bacteria, such as Escherichia coli (E. coli) strains that survive in the gastrointestinal tract. E. coli acid tolerance has been extensively studied during past decades, with most studies focused on gene regulation and mechanisms. However, the role of cell membrane structure in the context of acid stress resistance has not been discussed in depth. Here, we provide a comprehensive review of the roles and mechanisms of the E. coli cell envelope from different membrane components, such as membrane proteins, fatty acids, chaperones, and proton-consuming systems, and particularly focus on the innovative effects revealed by recent studies. We hope that the information guides us to understand the bacterial survival strategies under acid stress and to further explore the AR regulatory mechanisms to prevent or treat E. coli and other related Gram-negative bacteria infection, or to enhance the AR of engineering E. coli.
Collapse
|
30
|
Synthetic hydrophobic peptides derived from MgtR weaken Salmonella pathogenicity and work with a different mode of action than endogenously produced peptides. Sci Rep 2019; 9:15253. [PMID: 31649255 PMCID: PMC6813294 DOI: 10.1038/s41598-019-51760-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/24/2019] [Indexed: 12/03/2022] Open
Abstract
Due to the antibiotic resistance crisis, novel therapeutic strategies need to be developed against bacterial pathogens. Hydrophobic bacterial peptides (small proteins under 50 amino acids) have emerged as regulatory molecules that can interact with bacterial membrane proteins to modulate their activity and/or stability. Among them, the Salmonella MgtR peptide promotes the degradation of MgtC, a virulence factor involved in Salmonella intramacrophage replication, thus providing the basis for an antivirulence strategy. We demonstrate here that endogenous overproduction of MgtR reduced Salmonella replication inside macrophages and lowered MgtC protein level, whereas a peptide variant of MgtR (MgtR-S17I), which does not interact with MgtC, had no effect. We then used synthetic peptides to evaluate their action upon exogenous addition. Unexpectedly, upon addition of synthetic peptides, both MgtR and its variant MgtR-S17I reduced Salmonella intramacrophage replication and lowered MgtC and MgtB protein levels, suggesting a different mechanism of action of exogenously added peptides versus endogenously produced peptides. The synthetic peptides did not act by reducing bacterial viability. We next tested their effect on various recombinant proteins produced in Escherichia coli and showed that the level of several inner membrane proteins was strongly reduced upon addition of both peptides, whereas cytoplasmic or outer membrane proteins remained unaffected. Moreover, the α-helical structure of synthetic MgtR is important for its biological activity, whereas helix-helix interacting motif is dispensable. Cumulatively, these results provide perspectives for new antivirulence strategies with the use of peptides that act by reducing the level of inner membrane proteins, including virulence factors.
Collapse
|
31
|
Su M, Liu F, Luo Z, Wu H, Zhang X, Wang D, Zhu Y, Sun Z, Xu W, Miao Y. The Antibacterial Activity and Mechanism of Chlorogenic Acid Against Foodborne Pathogen Pseudomonas aeruginosa. Foodborne Pathog Dis 2019; 16:823-830. [PMID: 31483172 DOI: 10.1089/fpd.2019.2678] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Chlorogenic acid (CA), an ester of caffeic acid, is a major phenolic compound in herbs. The antimicrobial activity of CA against Pseudomonas aeruginosa P1, a foodborne pathogen, was investigated in this study. To understand how CA injured target cells, the influence of CA on cell morphology was assessed. A sunken cell surface and detachment of outer membrane components in P. aeruginosa P1 were observed after being treated by CA. Following this, the intracellular membrane permeability and the content of lipopolysaccharide (LPS), a main component of outer membrane, were determined. The release of intracellular protein and ATP from P. aeruginosa P1 indicated that CA increased intracellular membrane permeability and resulted in the leakage of intracellular materials. The uptake of propidium iodide, a compromised cell membrane nucleic acid stain, further demonstrated that CA acted on the intracellular membrane. CA resulted in the decrease of LPS contents of P. aeruginosa P1, which supported the detachment of outer membrane. CA also downregulated the expression of major genes in LPS biosynthesis, suggesting that CA may inhibit intracellular metabolism of P. aeruginosa P1 cells. Thus, CA increased the intracellular membrane permeability, induced the exfoliation of outer membrane, and disturbed the intracellular metabolism. Damage of intracellular and outer membranes as well as disruption of cell metabolism resulted in cell death eventually. The finding suggested that CA has the potential to be developed as a preservative to control P. aeruginosa-associated foodborne diseases.
Collapse
Affiliation(s)
- Mengmeng Su
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Agriculture and Animal Husbandry, Tibet University, Linzhi, China
| | - Fang Liu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Zhang Luo
- College of Agriculture and Animal Husbandry, Tibet University, Linzhi, China
| | - Haihong Wu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xinxiao Zhang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Daoying Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yongzhi Zhu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhilan Sun
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Weimin Xu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ying Miao
- Jiangsu PICE Service Co., Ltd, Nanjing, China
| |
Collapse
|
32
|
Sberro H, Fremin BJ, Zlitni S, Edfors F, Greenfield N, Snyder MP, Pavlopoulos GA, Kyrpides NC, Bhatt AS. Large-Scale Analyses of Human Microbiomes Reveal Thousands of Small, Novel Genes. Cell 2019; 178:1245-1259.e14. [PMID: 31402174 PMCID: PMC6764417 DOI: 10.1016/j.cell.2019.07.016] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/06/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022]
Abstract
Small proteins are traditionally overlooked due to computational and experimental difficulties in detecting them. To systematically identify small proteins, we carried out a comparative genomics study on 1,773 human-associated metagenomes from four different body sites. We describe >4,000 conserved protein families, the majority of which are novel; ∼30% of these protein families are predicted to be secreted or transmembrane. Over 90% of the small protein families have no known domain and almost half are not represented in reference genomes. We identify putative housekeeping, mammalian-specific, defense-related, and protein families that are likely to be horizontally transferred. We provide evidence of transcription and translation for a subset of these families. Our study suggests that small proteins are highly abundant and those of the human microbiome, in particular, may perform diverse functions that have not been previously reported.
Collapse
Affiliation(s)
- Hila Sberro
- Department of Medicine (Hematology; Blood and Marrow Transplantation) and Genetics, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Brayon J Fremin
- Department of Medicine (Hematology; Blood and Marrow Transplantation) and Genetics, Stanford University, Stanford, CA, USA
| | - Soumaya Zlitni
- Department of Medicine (Hematology; Blood and Marrow Transplantation) and Genetics, Stanford University, Stanford, CA, USA
| | - Fredrik Edfors
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | | | - Georgios A Pavlopoulos
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA; Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Vari, Greece
| | - Nikos C Kyrpides
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ami S Bhatt
- Department of Medicine (Hematology; Blood and Marrow Transplantation) and Genetics, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
33
|
Temperature-dependent regulation of the Escherichia coli lpxT gene. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:786-795. [DOI: 10.1016/j.bbagrm.2019.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/28/2019] [Accepted: 06/30/2019] [Indexed: 01/11/2023]
|
34
|
Klein G, Raina S. Regulated Assembly of LPS, Its Structural Alterations and Cellular Response to LPS Defects. Int J Mol Sci 2019; 20:ijms20020356. [PMID: 30654491 PMCID: PMC6358824 DOI: 10.3390/ijms20020356] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 12/21/2022] Open
Abstract
Distinguishing feature of the outer membrane (OM) of Gram-negative bacteria is its asymmetry due to the presence of lipopolysaccharide (LPS) in the outer leaflet of the OM and phospholipids in the inner leaflet. Recent studies have revealed the existence of regulatory controls that ensure a balanced biosynthesis of LPS and phospholipids, both of which are essential for bacterial viability. LPS provides the essential permeability barrier function and act as a major virulence determinant. In Escherichia coli, more than 100 genes are required for LPS synthesis, its assembly at inner leaflet of the inner membrane (IM), extraction from the IM, translocation to the OM, and in its structural alterations in response to various environmental and stress signals. Although LPS are highly heterogeneous, they share common structural elements defining their most conserved hydrophobic lipid A part to which a core polysaccharide is attached, which is further extended in smooth bacteria by O-antigen. Defects or any imbalance in LPS biosynthesis cause major cellular defects, which elicit envelope responsive signal transduction controlled by RpoE sigma factor and two-component systems (TCS). RpoE regulon members and specific TCSs, including their non-coding arm, regulate incorporation of non-stoichiometric modifications of LPS, contributing to LPS heterogeneity and impacting antibiotic resistance.
Collapse
Affiliation(s)
- Gracjana Klein
- Unit of Bacterial Genetics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Satish Raina
- Unit of Bacterial Genetics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
35
|
Moffatt JH, Harper M, Boyce JD. Mechanisms of Polymyxin Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1145:55-71. [PMID: 31364071 DOI: 10.1007/978-3-030-16373-0_5] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polymyxin antibiotics are increasingly being used as last-line therapeutic options against a number of multidrug resistant bacteria. These antibiotics show strong bactericidal activity against a range of Gram-negative bacteria, but with the increased use of these antibiotics resistant strains are emerging at an alarming rate. Furthermore, some Gram-negative species, such as Neisseria meningitidis, Proteus mirabilis and Burkholderia spp., are intrinsically resistant to the action of polymyxins. Most identified polymyxin resistance mechanisms in Gram-negative bacteria involve changes to the lipopolysaccharide (LPS) structure, as polymyxins initially interact with the negatively charged lipid A component of LPS. The controlled addition of positively charged residues such as 4-amino-L-arabinose, phosphoethanolamine and/or galactosamine to LPS results in a reduced negative charge on the bacterial surface and therefore reduced interaction between the polymyxin and the LPS. Polymyxin resistant species produce LPS that intrinsically contains one or more of these additions. While the genes necessary for most of these additions are chromosomally encoded, plasmid-borne phosphoethanolamine transferases (mcr-1 to mcr-8) have recently been identified and these plasmids threaten to increase the rate of dissemination of clinically relevant colistin resistance. Uniquely, Acinetobacter baumannii can also become highly resistant to polymyxins via spontaneous mutations in the lipid A biosynthesis genes lpxA, lpxC or lpxD such that they produce no LPS or lipid A. A range of other non-LPS-dependent polymyxin resistance mechanisms has also been identified in bacteria, but these generally result in only low levels of resistance. These include increased anionic capsular polysaccharide production in Klebsiella pneumoniae, expression of efflux systems such as MtrCDE in N. meningitidis, and altered expression of outer membrane proteins in a small number of species.
Collapse
Affiliation(s)
- Jennifer H Moffatt
- Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Australia
| | - Marina Harper
- Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Australia.,Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Australia
| | - John D Boyce
- Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Australia. .,Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Australia.
| |
Collapse
|
36
|
|
37
|
A Family of Small Intrinsically Disordered Proteins Involved in Flagellum-Dependent Motility in Salmonella enterica. J Bacteriol 2018; 201:JB.00415-18. [PMID: 30373755 DOI: 10.1128/jb.00415-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/21/2018] [Indexed: 02/08/2023] Open
Abstract
By screening a collection of Salmonella mutants deleted for genes encoding small proteins of ≤60 amino acids, we identified three paralogous small genes (ymdF, STM14_1829, and yciG) required for wild-type flagellum-dependent swimming and swarming motility. The ymdF, STM14_1829, and yciG genes encode small proteins of 55, 60, and 60 amino acid residues, respectively. A bioinformatics analysis predicted that these small proteins are intrinsically disordered proteins, and circular dichroism analysis of purified recombinant proteins confirmed that all three proteins are unstructured in solution. A mutant deleted for STM14_1829 showed the most severe motility defect, indicating that among the three paralogs, STM14_1829 is a key protein required for wild-type motility. We determined that relative to the wild type, the expression of the flagellin protein FliC is lower in the ΔSTM14_1829 mutant due to the downregulation of the flhDC operon encoding the FlhDC master regulator. By comparing the gene expression profiles between the wild-type and ΔSTM14_1829 strains via RNA sequencing, we found that the gene encoding the response regulator PhoP is upregulated in the ΔSTM14_1829 mutant, suggesting the indirect repression of the flhDC operon by the activated PhoP. Homologs of STM14_1829 are conserved in a wide range of bacteria, including Escherichia coli and Pseudomonas aeruginosa We showed that the inactivation of STM14_1829 homologs in E. coli and P. aeruginosa also alters motility, suggesting that this family of small intrinsically disordered proteins may play a role in the cellular pathway(s) that affects motility.IMPORTANCE This study reports the identification of a novel family of small intrinsically disordered proteins that are conserved in a wide range of flagellated and nonflagellated bacteria. Although this study identifies the role of these small proteins in the scope of flagellum-dependent motility in Salmonella, they likely play larger roles in a more conserved cellular pathway(s) that indirectly affects flagellum expression in the case of motile bacteria. Small intrinsically disordered proteins have not been well characterized in prokaryotes, and the results of our study provide a basis for their detailed functional characterization.
Collapse
|
38
|
Hong X, Chen HD, Groisman EA. Gene expression kinetics governs stimulus-specific decoration of the Salmonella outer membrane. Sci Signal 2018; 11:11/529/eaar7921. [PMID: 29739882 DOI: 10.1126/scisignal.aar7921] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lipid A is the innermost component of the lipopolysaccharide (LPS) molecules that occupy the outer leaflet of the outer membrane in Gram-negative bacteria. Lipid A is recognized by the host immune system and targeted by cationic antimicrobial compounds. In Salmonella enterica serovar Typhimurium, the phosphates of lipid A are chemically modified by enzymes encoded by targets of the transcriptional regulator PmrA. These modifications increase resistance to the cationic peptide antibiotic polymyxin B by reducing the negative charge of the LPS. We report the mechanism by which Salmonella produces different lipid A profiles when PmrA is activated by low Mg2+ versus a mildly acidic pH. Low Mg2+ favored modification of the lipid A phosphates with 4-amino-4-deoxy-l-aminoarabinose (l-Ara4N) by activating the regulatory protein PhoP, which initially increased the LPS negative charge by promoting transcription of lpxT, encoding an enzyme that adds an additional phosphate group to lipid A. Later, PhoP activated PmrA posttranslationally, resulting in expression of PmrA-activated genes, including those encoding the LpxT inhibitor PmrR and enzymes responsible for the incorporation of l-Ara4N. By contrast, a mildly acidic pH favored modification of the lipid A phosphates with a mixture of l-Ara4N and phosphoethanolamine (pEtN) by simultaneously inducing the PhoP-activated lpxT and PmrA-activated pmrR genes. Although l-Ara4N reduces the LPS negative charge more than does pEtN, modification of lipid A phosphates solely with l-Ara4N required a prior transient increase in lipid A negative charge. Our findings demonstrate how bacteria tailor their cell surface to different stresses, such as those faced inside phagocytes.
Collapse
Affiliation(s)
- Xinyu Hong
- Department of Cell Biology, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.,Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.,Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT 06516, USA.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06536, USA
| | - H Deborah Chen
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA. .,Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT 06516, USA
| |
Collapse
|
39
|
Bakthavatchalam YD, Pragasam AK, Biswas I, Veeraraghavan B. Polymyxin susceptibility testing, interpretative breakpoints and resistance mechanisms: An update. J Glob Antimicrob Resist 2018; 12:124-136. [DOI: 10.1016/j.jgar.2017.09.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/25/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022] Open
|
40
|
Park DM, Brewer A, Reed DW, Lammers LN, Jiao Y. Recovery of Rare Earth Elements from Low-Grade Feedstock Leachates Using Engineered Bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13471-13480. [PMID: 28944666 DOI: 10.1021/acs.est.7b02414] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The use of biomass for adsorption of rare earth elements (REEs) has been the subject of many recent investigations. However, REE adsorption by bioengineered systems has been scarcely documented, and rarely tested with complex natural feedstocks. Herein, we engineered E. coli cells for enhanced cell surface-mediated extraction of REEs by functionalizing the OmpA protein with 16 copies of a lanthanide binding tag (LBT). Through biosorption experiments conducted with leachates from metal-mine tailings and rare earth deposits, we show that functionalization of the cell surface with LBT yielded several notable advantages over the nonengineered control. First, the efficiency of REE adsorption from all leachates was enhanced as indicated by a 2-10-fold increase in distribution coefficients for individual REEs. Second, the relative affinity of the cell surface for REEs was increased over all non-REEs except Cu. Third, LBT-display systematically enhanced the affinity of the cell surface for REEs as a function of decreasing atomic radius, providing a means to separate high value heavy REEs from more common light REEs. Together, our results demonstrate that REE biosorption of high efficiency and selectivity from low-grade feedstocks can be achieved by engineering the native bacterial surface.
Collapse
Affiliation(s)
- Dan M Park
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
| | - Aaron Brewer
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
- Univiersty of Washington , Earth and Space Sciences, Seattle, Washington 98195, United States
| | - David W Reed
- Department of Biological and Chemical Processing, Idaho National Laboratory , Idaho Falls, Idaho 83415, United States
| | - Laura N Lammers
- Department of Environmental Science, Policy, and Management, University of California , Berkeley, California 94720, United States
| | - Yongqin Jiao
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
| |
Collapse
|
41
|
Duval M, Cossart P. Small bacterial and phagic proteins: an updated view on a rapidly moving field. Curr Opin Microbiol 2017; 39:81-88. [PMID: 29111488 DOI: 10.1016/j.mib.2017.09.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/17/2017] [Indexed: 01/21/2023]
Abstract
Small proteins, that is, polypeptides of 50 amino acids (aa) or less, are increasingly recognized as important regulators in bacteria. Secreted or not, their small size make them versatile proteins, involved in a wide range of processes. They may allow bacteria to sense and to respond to stresses, to send signals and communicate, and to modulate infections. Bacteriophages also produce small proteins to influence lysogeny/lysis decisions. In this review, we update the present view on small proteins functions, and discuss their possible applications.
Collapse
Affiliation(s)
- Mélodie Duval
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris F-75015, France; Institut National de la Santé et de la Recherche Médicale, U604, Paris F-75015, France; Institut National de la Recherche Agronomique, Unité Sous Contrat 2020, Paris F-75015, France.
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris F-75015, France; Institut National de la Santé et de la Recherche Médicale, U604, Paris F-75015, France; Institut National de la Recherche Agronomique, Unité Sous Contrat 2020, Paris F-75015, France.
| |
Collapse
|
42
|
Herrera CM, Henderson JC, Crofts AA, Trent MS. Novel coordination of lipopolysaccharide modifications in Vibrio cholerae promotes CAMP resistance. Mol Microbiol 2017; 106:582-596. [PMID: 28906060 DOI: 10.1111/mmi.13835] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2017] [Indexed: 01/02/2023]
Abstract
In the environment and during infection, the human intestinal pathogen Vibrio cholerae must overcome noxious compounds that damage the bacterial outer membrane. The El Tor and classical biotypes of O1 V. cholerae show striking differences in their resistance to membrane disrupting cationic antimicrobial peptides (CAMPs), such as polymyxins. The classical biotype is susceptible to CAMPs, but current pandemic El Tor biotype isolates gain CAMP resistance by altering the net charge of their cell surface through glycine modification of lipid A. Here we report a second lipid A modification mechanism that only functions in the V. cholerae El Tor biotype. We identify a functional EptA ortholog responsible for the transfer of the amino-residue phosphoethanolamine (pEtN) to the lipid A of V. cholerae El Tor that is not functional in the classical biotype. We previously reported that mildly acidic growth conditions (pH 5.8) downregulate expression of genes encoding the glycine modification machinery. In this report, growth at pH 5.8 increases expression of eptA with concomitant pEtN modification suggesting coordinated regulation of these LPS modification systems. Similarly, efficient pEtN lipid A substitution is seen in the absence of lipid A glycinylation. We further demonstrate EptA orthologs from non-cholerae Vibrio species are functional.
Collapse
Affiliation(s)
- Carmen M Herrera
- Department of Infectious Diseases, Center for Vaccines and Immunology, University of Georgia, College of Veterinary Medicine, Athens, GA 30602, USA
| | - Jeremy C Henderson
- Department of Infectious Diseases, Center for Vaccines and Immunology, University of Georgia, College of Veterinary Medicine, Athens, GA 30602, USA
| | - Alexander A Crofts
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, TX 78712, USA
| | - M Stephen Trent
- Department of Infectious Diseases, Center for Vaccines and Immunology, University of Georgia, College of Veterinary Medicine, Athens, GA 30602, USA
| |
Collapse
|
43
|
Virulent and pathogenic features on the Cronobacter sakazakii polymyxin resistant pmr mutant strain s-3. Microb Pathog 2017; 110:359-364. [DOI: 10.1016/j.micpath.2017.07.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 11/18/2022]
|
44
|
Abstract
Two-component systems are a dominant form of bacterial signal transduction. The prototypical two-component system consists of a sensor that responds to a specific input(s) by modifying the output of a cognate regulator. Because the output of a two-component system is the amount of phosphorylated regulator, feedback mechanisms may alter the amount of regulator, and/or modify the ability of a sensor or other proteins to alter the phosphorylation state of the regulator. Two-component systems may display intrinsic feedback whereby the amount of phosphorylated regulator changes under constant inducing conditions and without the participation of additional proteins. Feedback control allows a two-component system to achieve particular steady-state levels, to reach a given steady state with distinct dynamics, to express coregulated genes in a given order, and to activate a regulator to different extents, depending on the signal acting on the sensor.
Collapse
Affiliation(s)
- Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536; .,Yale Microbial Sciences Institute, West Haven, Connecticut 06516
| |
Collapse
|
45
|
Kato A, Higashino N, Utsumi R. Fe 3+-dependent epistasis between the CpxR-activated loci and the PmrA-activated LPS modification loci in Salmonella enterica. J GEN APPL MICROBIOL 2017; 62:286-296. [PMID: 27829584 DOI: 10.2323/jgam.2016.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bacteria utilize varying combinations of two-component regulatory systems, many of which respond and adapt closely to stress conditions, thus expanding their niche steadily. While mechanisms of recognition and avoidance of the specific Fe3+ signal by the PmrA/PmrB system is well understood, those of the CpxR/CpxA system are more complex because they can be induced by various stress conditions, which, in turn, expresses a variety of phenotypes. Here, we highlight another aspect of the CpxR/CpxA system; mutations in degP and yqjA genes, which are under the control of the system, exhibit an iron sensitive phenotype in the mutant background defective in the PmrA-dependent gene products that alter the pyrophosphate status of the lipid A moiety of lipopolysaccharide in Salmonella enterica. Therefore, after the PmrA/PmrB-mediated Fe3+-dependent control of the pyrophosphate status on the cell surface, the CpxR/CpxA system is one of the second layers of envelope stress response that allows adaptation to high Fe3+ conditions in this bacterium.
Collapse
Affiliation(s)
- Akinori Kato
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University
| | | | | |
Collapse
|
46
|
Guckes KR, Breland EJ, Zhang EW, Hanks SC, Gill NK, Algood HMS, Schmitz JE, Stratton CW, Hadjifrangiskou M. Signaling by two-component system noncognate partners promotes intrinsic tolerance to polymyxin B in uropathogenic Escherichia coli. Sci Signal 2017; 10:10/461/eaag1775. [PMID: 28074004 PMCID: PMC5677524 DOI: 10.1126/scisignal.aag1775] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacteria use two-component systems (TCSs) to react appropriately to environmental stimuli. Typical TCSs comprise a sensor histidine kinase that acts as a receptor coupled to a partner response regulator that coordinates changes in bacterial behavior, often through its activity as a transcriptional regulator. TCS interactions are typically confined to cognate pairs of histidine kinases and response regulators. We describe two distinct TCSs in uropathogenic Escherichia coli (UPEC) that interact to mediate a response to ferric iron. The PmrAB and QseBC TCSs were both required for proper transcriptional response to ferric iron. Ferric iron induced the histidine kinase PmrB to phosphotransfer to both its cognate response regulator PmrA and the noncognate response regulator QseB, leading to transcriptional responses coordinated by both regulators. Pretreatment of the UPEC strain UTI89 with ferric iron led to increased resistance to polymyxin B that required both PmrA and QseB. Similarly, pretreatment of several UPEC isolates with ferric iron increased tolerance to polymyxin B. This study defines physiologically relevant cross talk between TCSs in a bacterial pathogen and provides a potential mechanism for antibiotic resistance of some strains of UPEC.
Collapse
Affiliation(s)
- Kirsten R Guckes
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Erin J Breland
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ellisa W Zhang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | - Holly M S Algood
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Veterans Affairs Tennessee Valley Healthcare Services, Nashville, TN 37212, USA
| | - Jonathan E Schmitz
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Charles W Stratton
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA. .,Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
47
|
Yang X, Jensen SI, Wulff T, Harrison SJ, Long KS. Identification and validation of novel small proteins in Pseudomonas putida. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:966-974. [PMID: 27717237 DOI: 10.1111/1758-2229.12473] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/06/2016] [Accepted: 09/10/2016] [Indexed: 06/06/2023]
Abstract
Small proteins of 50 amino acids or less have been understudied due to difficulties that impede their annotation and detection. In order to obtain information on small open reading frames (sORFs) in Pseudomonas putida, bioinformatic and proteomic approaches were used to identify putative sORFs in the well-characterized strain KT2440. A plasmid-based system was established for sORF validation, enabling expression of C-terminal sequential peptide affinity tagged variants and their detection via protein immunoblotting. Out of 22 tested putative sORFs, the expression of 14 sORFs was confirmed, where all except one are novel. All of the validated sORFs except one are located adjacent to annotated genes on the same strand and three are in close proximity to genes with known functions. These include an ABC transporter operon and the two transcriptional regulators Fis and CysB involved in biofilm formation and cysteine biosynthesis respectively. The work sheds light on the P. putida small proteome and small protein identification, a necessary first step towards gaining insights into their functions and possible evolutionary implications.
Collapse
Affiliation(s)
- Xiaochen Yang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Sheila I Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Tune Wulff
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Scott J Harrison
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Katherine S Long
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
48
|
Kato A. In vivo cloning of large chromosomal segments into a BAC derivative by generalized transduction and recombineering in Salmonella enterica. J GEN APPL MICROBIOL 2016; 62:225-232. [PMID: 27666751 DOI: 10.2323/jgam.2016.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Recombineering has been used to facilitate the development of in vivo cloning methods. However, the method relies heavily on PCR, which still generates a much higher error rate than DNA replication in vivo, even when amplifying large DNA inserts. Here, a precise technique is reported in Salmonella enterica that enables the cloning of up to at least 19 kb target chromosomal DNA segments that had been marked by FRTs, which were derived from two consecutive lambda Red-mediated recombination events. P22 phage was utilized to transduce the target DNA segments from donor strains to recipient strains harboring a derivative of bacterial artificial chromosome (BAC) containing a FRT and a plasmid expressing Flp recombinase. This method was successful in cloning a gene cluster responsible for lipopolysaccharide (LPS) modifications that confer polymyxin B resistance and in complementing its mutant. Further optimized procedures should be widely applicable because large insert fragments are precise clones of the wild-type genome.
Collapse
Affiliation(s)
- Akinori Kato
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University
| |
Collapse
|
49
|
Rhouma M, Beaudry F, Thériault W, Letellier A. Colistin in Pig Production: Chemistry, Mechanism of Antibacterial Action, Microbial Resistance Emergence, and One Health Perspectives. Front Microbiol 2016; 7:1789. [PMID: 27891118 PMCID: PMC5104958 DOI: 10.3389/fmicb.2016.01789] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/25/2016] [Indexed: 01/08/2023] Open
Abstract
Colistin (Polymyxin E) is one of the few cationic antimicrobial peptides commercialized in both human and veterinary medicine. For several years now, colistin has been considered the last line of defense against infections caused by multidrug-resistant Gram-negative such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Colistin has been extensively used orally since the 1960s in food animals and particularly in swine for the control of Enterobacteriaceae infections. However, with the recent discovery of plasmid-mediated colistin resistance encoded by the mcr-1 gene and the higher prevalence of samples harboring this gene in animal isolates compared to other origins, livestock has been singled out as the principal reservoir for colistin resistance amplification and spread. Co-localization of the mcr-1 gene and Extended-Spectrum-β-Lactamase genes on a unique plasmid has been also identified in many isolates from animal origin. The use of colistin in pigs as a growth promoter and for prophylaxis purposes should be banned, and the implantation of sustainable measures in pig farms for microbial infection prevention should be actively encouraged and financed. The scientific research should be encouraged in swine medicine to generate data helping to reduce the exacerbation of colistin resistance in pigs and in manure. The establishment of guidelines ensuring a judicious therapeutic use of colistin in pigs, in countries where this drug is approved, is of crucial importance. The implementation of a microbiological withdrawal period that could reduce the potential contamination of consumers with colistin resistant bacteria of porcine origin should be encouraged. Moreover, the management of colistin resistance at the human-pig-environment interface requires the urgent use of the One Health approach for effective control and prevention. This approach needs the collaborative effort of multiple disciplines and close cooperation between physicians, veterinarians, and other scientific health and environmental professionals. This review is an update on the chemistry of colistin, its applications and antibacterial mechanism of action, and on Enterobacteriaceae resistance to colistin in pigs. We also detail and discuss the One Health approach and propose guidelines for colistin resistance management.
Collapse
Affiliation(s)
- Mohamed Rhouma
- Chaire de Recherche Industrielle du CRSNG en Salubrité des Viandes, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
| | - Francis Beaudry
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
- Groupe de Recherche en Pharmacologie Animale du Québec, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
| | - William Thériault
- Chaire de Recherche Industrielle du CRSNG en Salubrité des Viandes, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
| | - Ann Letellier
- Chaire de Recherche Industrielle du CRSNG en Salubrité des Viandes, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
- Groupe de Recherche en Pharmacologie Animale du Québec, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
| |
Collapse
|
50
|
Moreau PL, Loiseau L. Characterization of acetic acid-detoxifying Escherichia coli evolved under phosphate starvation conditions. Microb Cell Fact 2016; 15:42. [PMID: 26895825 PMCID: PMC4759930 DOI: 10.1186/s12934-016-0441-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/07/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND During prolonged incubation of Escherichia coli K-12 in batch culture under aerobic, phosphate (Pi) starvation conditions, excess glucose is converted into acetic acid, which may trigger cell death. Following serial cultures, we isolated five evolved strains in two populations that survived prolonged incubation. METHODS We sequenced the genomes of the ancestral and evolved strains, and determined the effects of the genetic changes, tested alone and in combination, on characteristic phenotypes in pure and in mixed cultures. RESULTS Evolved strains used two main strategies: (1) the constitutive expression of the Trk- and Kdp-dependent K(+) transport systems, and (2) the inactivation of the ArcA global regulator. Both processes helped to maintain a residual activity of the tricarboxylic acid cycle, which decreased the production of acetic acid and eventually allowed its re-consumption. Evolved strains acquired a few additional genetic changes besides the trkH, kdpD and arcA mutations, which might increase the scavenging of organophosphates (phnE (+), lapB, and rseP) and the resistance to oxidative (rsxC) and acetic acid stresses (e14(-)/icd (+)). CONCLUSIONS Evolved strains rapidly acquired mutations (phnE (+) lapB rpoS trkH and phnE (+) rseP kdpD) that were globally beneficial to growth on glucose and organophosphates, but detrimental to long-term viability. The spread of these mutant strains might give the ancestral strain time to accumulate up to five genetic changes (phnE (+) arcA rsxC crfC e14(-)/icd (+)), which allowed growth on glucose and organophosphates, and provided a long-term survival. The latter strain, which expressed several mechanisms of protection against endogenous and exogenous stresses, might provide a platform for producing toxic recombinant proteins and chemicals during prolonged incubation under aerobic, Pi starvation conditions.
Collapse
Affiliation(s)
- Patrice L Moreau
- Laboratoire de Chimie Bactérienne, UMR 7283, Aix-Marseille Université, Marseille, France.
- Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, Marseille, France.
| | - Laurent Loiseau
- Laboratoire de Chimie Bactérienne, UMR 7283, Aix-Marseille Université, Marseille, France.
- Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, Marseille, France.
| |
Collapse
|