1
|
Zhang C, Zhou T, Li C, Wang D, Tao J, Zhu X, Lu J, Ni J, Yao YF. Deciphering novel enzymatic and non-enzymatic lysine lactylation in Salmonella. Emerg Microbes Infect 2025; 14:2475838. [PMID: 40035788 PMCID: PMC11924271 DOI: 10.1080/22221751.2025.2475838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/01/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Lysine lactylation, a novel post-translational modification, is involved in multiple cellular processes. The role of lactylation remains largely unknown, especially in bacteria. Here, we identified 1090 lactylation sites on 469 proteins by mass spectrometry in Salmonella Typhimurium. Many proteins involved in metabolic processes, protein translation, and other biological functions are lactylated, with lactylation levels varying according to the growth phase or lactate supplementation. Lactylation is regulated by glycolysis, and inhibition of L-lactate utilization can enhance lactylation levels. In addition to the known lactylase in E. coli, the acetyltransferase YfiQ can also catalyse lactylation. More importantly, L-lactyl coenzyme A (L-La-CoA) and S,D-lactoylglutathione (LGSH) can directly donate lactyl groups to target proteins for chemical lactylation. Lactylation is involved in Salmonella invasion of eukaryotic cells, suggesting that lactylation is crucial for bacterial virulence. Collectively, we have comprehensively investigated protein lactylome and the regulatory mechanisms of lactylation in Salmonella, providing valuable insights into studying lactylation function across diverse bacterial species.
Collapse
Affiliation(s)
- Chuanzhen Zhang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People’s Republic of China
| | - Tao Zhou
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Chengxi Li
- Anhui Key Laboratory of Infection and Immunity, Department of Microbiology, Bengbu Medical College, Bengbu, People’s Republic of China
| | - Danni Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jing Tao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xiaocen Zhu
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jinjing Ni
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Nonaka D, Kishida M, Hirata Y, Mori A, Kondo A, Mori Y, Noda S, Tanaka T. Modular pathway engineering for enhanced production of para-aminobenzoic acid and 4-amino-phenylalanine in Escherichia coli via glucose/xylose co-utilization. Appl Environ Microbiol 2025; 91:e0246824. [PMID: 40243317 DOI: 10.1128/aem.02468-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/28/2025] [Indexed: 04/18/2025] Open
Abstract
The modularization of biosynthetic pathways is a promising approach for enhancing microbial chemical production. We have developed a co-utilization method with glucose and xylose substrates to divide metabolic pathways into distinct production and energy modules to enhance the biosynthesis of para-aminobenzoic acid (pABA) in Escherichia coli. Optimizing initial glucose/xylose concentrations and eliminating carbon leakage resulted in a pABA titer of 8.22 g/L (yield: 0.23 g/g glucose). This strategy was then applied to the biosynthesis of 4APhe, a compound synthesized from chorismate without pyruvate (PYR) release. Utilizing glucose and xylose as co-substrates resulted in the production of 4.90 g/L 4APhe. Although 4APhe production did not benefit from PYR-driven energy generation as pABA production did, high titer was still achieved. This study highlights the effectiveness of modular metabolic pathway division for enhancing the production of key aromatic compounds and provides valuable insight into microbial production of chemicals that require specific biosynthetic donors such as amino groups. IMPORTANCE Microbial biosynthesis of chemicals from renewable resources offers a sustainable alternative to fossil fuel-based production. However, inefficiencies due to substrate diversion into by-products and biomass hinder optimal yields. In this study, we employed a modular metabolic engineering approach, decoupling pathways for chemical production from cell growth. Using glucose and xylose as co-substrates, we achieved the enhancement of p-aminobenzoic acid production in Escherichia coli. Additionally, we demonstrated the versatility of this approach by applying it to the biosynthesis of 4-amino-phenylalanine production. This study highlights the potential of modular metabolic pathway division for increased production of target compounds and provides valuable insight into microbial production of chemicals that require specific biosynthetic donors such as amino groups.
Collapse
Affiliation(s)
- Daisuke Nonaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Mayumi Kishida
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Yuuki Hirata
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Ayana Mori
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
| | - Yutaro Mori
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Shuhei Noda
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| |
Collapse
|
3
|
Yang Y, He H, Liu B, Li Z, Sun J, Zhao Z, Yang Y. Protein lysine acetylation regulates oral microorganisms. Front Cell Infect Microbiol 2025; 15:1594947. [PMID: 40444154 PMCID: PMC12119520 DOI: 10.3389/fcimb.2025.1594947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/28/2025] [Indexed: 06/02/2025] Open
Abstract
Post-translational modifications (PTMs) are integral to the regulation of protein function, stability, and cellular processes. Lysine acetylation, a widespread PTM, has been extensively characterized for its role in eukaryotic cellular functions, particularly in metabolism, gene expression, and disease progression. However, its involvement in oral microbiota remains inadequately explored. This review examines the emerging significance of lysine acetylation in modulating oral microbial communities. The oral cavity, characterized by its unique anatomical and environmental conditions, serves as a dynamic habitat where microbiota interact with host factors such as diet, immune response, pH, and the level of oxygen. Lysine acetylation enables bacterial adaptation to these fluctuating conditions, influencing microbial metabolism, virulence, and stress responses. For example, acetylation of lactate dehydrogenase in Streptococcus mutans reduces its acidogenicity and aciduricity, which decreases its cariogenic potential. In diverse environmental conditions, including hypoxic or anaerobic environments, acetylation regulates energy utilization pathways and enzyme activities, supporting bacterial survival and adaptation. Additionally, acetylation controls the production of extracellular polysaccharides (EPS), which are essential for biofilm formation and bacterial colonization. The acetylation of virulence factors can modulate the pathogenic potential of oral bacteria, either enhancing or inhibiting their activity depending on the specific context and regulatory mechanisms involved. This review also explores the interactions between acetylation and other PTMs, highlighting their synergistic or antagonistic effects on protein function. A deeper understanding of lysine acetylation mechanisms in oral microbiota could provide valuable insights into microbial adaptation and pathogenesis, revealing potential therapeutic targets for oral diseases.
Collapse
Affiliation(s)
- Yuanchao Yang
- Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha, China
| | - Hailun He
- School of Life Sciences, Central South University, Changsha, China
| | - Bingshi Liu
- Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha, China
| | - Zhuoyue Li
- Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha, China
| | - Jiaman Sun
- Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha, China
| | - Zhili Zhao
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Yang
- Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha, China
| |
Collapse
|
4
|
Zhang L, Shi H, Liu Z, Gu J, Deng J. Intracellular acetyl phosphate modulates Escherichia coli pyruvate metabolism. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40370194 DOI: 10.3724/abbs.2025068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025] Open
Abstract
Lysine acetylation has been shown to be an abundant and vital post-translational modification (PTM) that utilizes acetyl phosphate (AcP) as one of the acetyl group donors in bacteria. The pyruvate dehydrogenase (PDH) complex catalyzes the conversion from pyruvate to acetyl coenzyme A (acetyl-CoA). Thus far, the connection between lysine acetylation and pyruvate metabolism has not been thoroughly investigated. In this study, we show that AcP could acetylate Escherichia coli pyruvate dehydrogenase (AceE) in vitro and in vivo, which could be reversed by protein lysine deacetylase (CobB). In vitro treatment of AceE with AcP also causes increased phosphorylation of the protein, whereas deleting ackA does not affect the phosphorylation of the protein. As a result, in vitro treatment of AceE by AcP leads to decreased enzymatic activity. In contrast, deleting ackA leads to increased acetylation and enzymatic activity of AceE, and deleting pta results in the decreased acetylation and enzymatic activity of AceE. As expected, deleting pta in E. coli causes pyruvate accumulation. Although deleting ackA also causes pyruvate accumulation, decreased expression of the two genes involved in pyruvate metabolism ( ldhA and poxB) is observed in the mutant, indicating that AcP could affect pyruvate metabolism by other routes in addition to modulating the AceE activity. Thus, our results demonstrate that intracellular AcP could modulate pyruvate metabolism in E. coli. For the first time, a linkage between AcP-mediated protein lysine acetylation, pyruvate dehydrogenase activity, and pyruvate metabolism is established.
Collapse
Affiliation(s)
- Ling Zhang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongmei Shi
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zixiang Liu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Gu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jiaoyu Deng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
5
|
Li X, Fatema N, Gan Q, Fan C. Functional consequences of lysine acetylation of phosphofructokinase isozymes. FEBS J 2025; 292:2545-2558. [PMID: 39940094 PMCID: PMC12103067 DOI: 10.1111/febs.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/06/2024] [Accepted: 01/31/2025] [Indexed: 02/14/2025]
Abstract
Phosphofructokinase (Pfk) catalyzes the phosphorylation of fructose 6-phosphate and is a key regulatory point in the glycolysis pathway. Multiple lysine residues in both Pfk isozymes, PfkA and PfkB, have been identified to be acetylated in Escherichia coli by proteomic studies, but no studies have been implemented to further characterize these acetylation events. To investigate the role of Pfk acetylation, the genetic code expansion strategy was used to generate homogeneously acetylated Pfk variants at target lysine sites that have been reported to be acetylated in nature. We found that acetylation of K309 of PfkA and K27 of PfkB decreased PfK enzyme activities significantly. We further investigated the deacetylation and acetylation processes of Pfk isozymes biochemically and genetically. Acetyl phosphate-mediated non-enzymatic acetylation could be the major mechanism of Pfk isozyme acetylation in E. coli, whereas NAD-dependent protein deacylase CobB can remove most of the acetylated lysine residues but not K309 of PfkA and K27 of PfkB, which affect enzyme activities. Because of the important role of Pfk in cellular metabolism, the results of the present study are expected to facilitate studies in the fields of metabolic engineering and research.
Collapse
Affiliation(s)
- Xinyu Li
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleARUSA
| | - Nour Fatema
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleARUSA
| | - Qinglei Gan
- Department of Chemistry and BiochemistryUniversity of ArkansasFayettevilleARUSA
| | - Chenguang Fan
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleARUSA
- Department of Chemistry and BiochemistryUniversity of ArkansasFayettevilleARUSA
| |
Collapse
|
6
|
Ricci L, Cen X, Zu Y, Antonicelli G, Chen Z, Fino D, Pirri FC, Stephanopoulos G, Woolston BM, Re A. Metabolic Engineering of E. coli for Enhanced Diols Production from Acetate. ACS Synth Biol 2025; 14:1204-1219. [PMID: 40103233 PMCID: PMC12012870 DOI: 10.1021/acssynbio.4c00839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025]
Abstract
Effective employment of renewable carbon sources is highly demanded to develop sustainable biobased manufacturing. Here, we developed Escherichia coli strains to produce 2,3-butanediol and acetoin (collectively referred to as diols) using acetate as the sole carbon source by stepwise metabolic engineering. When tested in fed-batch experiments, the strain overexpressing the entire acetate utilization pathway was found to consume acetate at a 15% faster rate (0.78 ± 0.05 g/g/h) and to produce a 35% higher diol titer (1.16 ± 0.01 g/L) than the baseline diols-producing strain. Moreover, singularly overexpressing the genes encoding alternative acetate uptake pathways as well as alternative isoforms of genes in the malate-to-pyruvate pathway unveiled that leveraging ackA-pta and maeA is more effective in enhancing acetate consumption and diols production, compared to acs and maeB. Finally, the increased substrate consumption rate and diol production obtained in flask-based experiments were confirmed in bench-scale bioreactors operated in fed-batch mode. Consequently, the highest titer of 1.56 g/L achieved in this configuration increased by over 30% compared to the only other similar effort carried out so far.
Collapse
Affiliation(s)
- Luca Ricci
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02142, United States
- Centre
for Sustainable Future Technologies, Fondazione
Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
- RINA
Consulting S.p.A., Energy Innovation Strategic
Centre, Via Antonio Cecchi,
6, 16129 Genoa, Italy
| | - Xuecong Cen
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02142, United States
- Department
of Chemical Engineering, Key Laboratory of Industrial Biocatalysis
(Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yuexuan Zu
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02142, United States
| | - Giacomo Antonicelli
- Centre
for Sustainable Future Technologies, Fondazione
Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department
of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Zhen Chen
- Department
of Chemical Engineering, Key Laboratory of Industrial Biocatalysis
(Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Debora Fino
- Centre
for Sustainable Future Technologies, Fondazione
Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Fabrizio C. Pirri
- Centre
for Sustainable Future Technologies, Fondazione
Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Gregory Stephanopoulos
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02142, United States
| | - Benjamin M. Woolston
- Department
of Chemical Engineering, Northeastern University, 360 Huntington Avenue, 223 Cullinane, Boston, Massachusetts 02115, United States
| | - Angela Re
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
7
|
Sinha AK, Laursen MF, Licht TR. Regulation of microbial gene expression: the key to understanding our gut microbiome. Trends Microbiol 2025; 33:397-407. [PMID: 39095208 DOI: 10.1016/j.tim.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
During the past two decades, gut microbiome studies have established the significant impact of the gut microbiota and its metabolites on host health. However, the molecular mechanisms governing the production of microbial metabolites in the gut environment remain insufficiently investigated and thus are poorly understood. Here, we propose that an enhanced understanding of gut microbial gene regulation, which is responsive to dietary components and gut environmental conditions, is needed in the research field and essential for our ability to effectively promote host health and prevent diseases through interventions targeting the gut microbiome.
Collapse
Affiliation(s)
- Anurag Kumar Sinha
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| | | | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
8
|
Roussou S, Pan M, Krömer JO, Lindblad P. Exploring and increased acetate biosynthesis in Synechocystis PCC 6803 through insertion of a heterologous phosphoketolase and overexpressing phosphotransacetylase. Metab Eng 2025; 88:250-260. [PMID: 39863056 DOI: 10.1016/j.ymben.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Acetate is a biological anion with many applications in the chemical and food industries. In addition to being a common microbial fermentative end-product, acetate can be produced by photosynthetic cyanobacteria from CO2 using solar energy. Using wild-type cells of the unicellular model cyanobacterium Synechocystis PCC 6803 only low levels of acetate are observed outside the cells. By inserting a heterologous phosphoketolase (PKPa) in the acs locus, encoding acetyl-CoA synthetase responsible for the irreversible conversion of acetate to acetyl-CoA, an increased level of 40 times was observed. Metabolite analyses indicate an enhanced Calvin-Benson-Bassham cycle, based on increased levels of glyceraldehyde 3-phosphate and fructose-1,6-biphosphate, while the decreased levels of 3-phosphoglycerate and pyruvate suggest a quick consumption of the fixed carbon. Acetyl-P and erythrose-4-phosphate showed significantly increased levels, as products of phosphoketolase, while acetyl-CoA remained stable through the experiment. The results of intra- and extra-cellular acetate levels clearly demonstrate an efficient excretion of produced acetate from the cells in the engineered strain. Knock-out of ach and pta showed a reduction in acetate production however, it was not as low as in cells with a single knock-out of ach. Overexpressing acetyl-CoA hydrolase (Ach) and acetate kinase (AckA) did not significantly increase production. In contrast, overexpressing phosphotransacetylase (Pta) in cells containing an inserted PKPa resulted in 80 times more acetate reaching 2.3 g/L after 14 days of cultivation.
Collapse
Affiliation(s)
- Stamatina Roussou
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Minmin Pan
- Systems Biotechnology, Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Jens O Krömer
- Systems Biotechnology, Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
9
|
Wang Y, Wang G, Zhang L, Cai Q, Lin M, Huang D, Xie Y, Lin W, Lin X. Aeromonas hydrophila CobQ is a new type of NAD +- and Zn 2+-independent protein lysine deacetylase. eLife 2025; 13:RP97511. [PMID: 39998869 PMCID: PMC11856932 DOI: 10.7554/elife.97511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
Protein NƐ-lysine acetylation (Kac) modifications play crucial roles in diverse physiological and pathological functions in cells. In prokaryotic cells, there are only two types of lysine deacetylases (KDACs) that are Zn2+- or NAD+-dependent. In this study, we reported a protein, AhCobQ, in Aeromonas hydrophila ATCC 7966 that presents NAD+- and Zn2+-independent KDAC activity. Furthermore, its KDAC activity is located in an unidentified domain (from 195 to 245 aa). Interestingly, AhCobQ has no homology with current known KDACs, and no homologous protein was found in eukaryotic cells. A protein substrate analysis showed that AhCobQ has specific protein substrates in common with other known KDACs, indicating that these KDACs can dynamically co-regulate the states of Kac proteins. Microbiological methods employed in this study affirmed AhCobQ's positive regulation of isocitrate dehydrogenase (ICD) enzymatic activity at the K388 site, implicating AhCobQ in the modulation of bacterial enzymatic activities. In summary, our findings present compelling evidence that AhCobQ represents a distinctive type of KDAC with significant roles in bacterial biological functions.
Collapse
Affiliation(s)
- Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- Agricultural College, Anhui Science and Technology UniversityChuzhouChina
| | - Guibin Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijingChina
| | - Lishan Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province UniversityFuzhouChina
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Qilan Cai
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province UniversityFuzhouChina
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Meizhen Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province UniversityFuzhouChina
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Dongping Huang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province UniversityFuzhouChina
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Yuyue Xie
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province UniversityFuzhouChina
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province UniversityFuzhouChina
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province UniversityFuzhouChina
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
10
|
Li Y, Liu Y, Wang C. Quantitative profiling of PTM stoichiometry by DNA mass tags. Bioorg Med Chem 2025; 118:118050. [PMID: 39724823 DOI: 10.1016/j.bmc.2024.118050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Protein post-translational modification (PTM) serves as an important mechanism for regulating protein function. Accurate assay of PTM stoichiometry, or PTM occupancy, which refers to the proportion of proteins that contain specific modifications, is important for understanding the function of PTMs. We previously developed a novel chemoproteomic strategy "STO-MS" to quantify the PTM stoichiometry in complex biological samples, which employs a resolvable polymer mass tag to differentiate modified proteins and utilizes liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) techniques to measure PTM stoichiometry. However, the resolution of STO-MS is constrained by the relatively low molecular weight of the mass tag, and the incorporation of isotopic labels not only complicates the sample preparation but also restricts the measurement throughput. To address these challenges, we herein developed "STO-MS+", an enhanced workflow, that incorporates an optimized DNA mass tag and employs a label-free quantitative data analysis approach. We applied STO-MS+ to measure stoichiometry of three distinct PTMs, including endogenous carbonylation induced by arachidonic acid (AA), itaconation, and endogenous O-GlcNAcylation. Our work marks a notable improvement in chemoproteomic methodologies for quantifying post-translational modifications and provides a powerful analytical tool for PTM research.
Collapse
Affiliation(s)
- Yuanpei Li
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuan Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
11
|
Lin TH, Wang CY, Wu CC, Lin CT. Impacts of Pta-AckA pathway on CPS biosynthesis and type 3 fimbriae expression in Klebsiella pneumoniae. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025; 58:48-55. [PMID: 39472242 DOI: 10.1016/j.jmii.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/18/2024] [Accepted: 10/20/2024] [Indexed: 02/08/2025]
Abstract
BACKGROUND Klebsiella pneumoniae is a Gram-negative bacterium that can cause infections, especially in individuals with diabetes. Recently, more hypervirulent strains have emerged, posing a threat even to healthy individuals. Understanding how K. pneumoniae regulates its virulence factors is crucial. Acetyl-phosphate (AcP) is essential for bacterial metabolism and can affect virulence factor expression. However, the role of the Pta-AckA pathway, which regulates AcP levels, in K. pneumoniae pathogenesis remains unclear. METHODS Deletion mutants lacking the pta and ackA, involved in AcP production and hydrolysis, were generated in K. pneumoniae CG43S3. Their effects on AcP levels, the patterns of global acetylated protein, capsular polysaccharide (CPS) amount, serum resistance, type 3 fimbriae expression, biofilm formation, and virulence in G. mellonella larva were assessed. RESULTS Deletion of ackA in K. pneumoniae CG43S3 led to AcP accumulation, while pta deletion abolished AcP synthesis when grown in TB7+1 % glucose. This pathway influenced global protein acetylation, with pta deletion decreasing acetylation and ackA deletion increasing it. Additionally, pta deletion decreased the CPS amount, serum resistance, and type 3 fimbriae expression, while ackA deletion increased these factors. Furthermore, deleting pta and ackA attenuated the infected larva's virulence and death rate. CONCLUSION Our findings highlight the critical role of the Pta-AckA pathway in K. pneumoniae pathogenesis. This pathway regulates AcP levels, global protein acetylation, CPS production, serum resistance, and type 3 fimbriae expression, ultimately impacting virulence. The information provides insights into potential therapeutic targets for combating K. pneumoniae infection.
Collapse
Affiliation(s)
- Tien-Huang Lin
- Department of Urology, Taichung Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan; School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Chen-Yu Wang
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Chinese Medicine, China Medical University Hsinchu Hospital, Hsinchu, Taiwan.
| | - Chien-Chen Wu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Ching-Ting Lin
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, China Medical University, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
12
|
Mao M, He L, Yan Q. An updated overview on the bacterial PhoP/PhoQ two-component signal transduction system. Front Cell Infect Microbiol 2025; 15:1509037. [PMID: 39958932 PMCID: PMC11825808 DOI: 10.3389/fcimb.2025.1509037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/08/2025] [Indexed: 02/18/2025] Open
Abstract
The PhoP response regulator and the cognate sensor kinase PhoQ form one of the two-component signal transduction systems that is highly conserved in bacteria. The PhoP/PhoQ system is a crucial mediator of signal transduction. It regulates the expression of bacterial environmental tolerance genes, virulence factors, adhesion, and invasion-related genes by sensing various environmental signals in the host, including Mg2+, low pH, antimicrobial peptides, and osmotic pressure. In this review, we describe the PhoP/PhoQ system-induced signal composition and its feedback mechanism, and the abundance of PhoP phosphorylation in the activated state directly or indirectly controls the transcription and expression of related genes, regulating bacterial stability. Then, we discuss the relationship between the PhoP/PhoQ system and other components of the TCS system. Under the same induction conditions, their interaction relationship determines whether bacteria can quickly restore their homeostasis and exert virulence effects. Finally, we investigate the coordinated role of the PhoP/PhoQ system in acquiring pathogenic virulence.
Collapse
Affiliation(s)
| | | | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, Fujian, China
| |
Collapse
|
13
|
Goel R, Tomar A, Bawari S. Insights to the role of phytoconstituents in aiding multi drug resistance - Tuberculosis treatment strategies. Microb Pathog 2025; 198:107116. [PMID: 39536840 DOI: 10.1016/j.micpath.2024.107116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/10/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Multidrug resistant tuberculosis (MDR-TB) have emerged as a global challenge. There are several underlying mechanisms which are involved in causing mycobacterial resistance towards antitubercular agents including post translational modifications, efflux pumps and gene mutations. This resistance necessitates the investigation of complementary therapeutic options including the use of bioactive compounds from plants. Recent studies have focused on recognising and isolating the characteristics of these compounds to assess their potential against MDR-TB. Phytoconstituents such as alkaloids, flavonoids, terpenoids, glycosides, and essential oils have shown promising antimicrobial activity against Mycobacterium tuberculosis. These compounds can either directly kill or inhibit the growth of M. tuberculosis or enhance the immune system's ability to fight against the infection. Some studies suggest that combining phytoconstituents with standard antitubercular medications works synergistically by enhancing the efficacy of drug, potentially lowering the associated risk of side effects and eventually combating resistance development. This review attempts to elucidate the potential of phytoconstituents in combating resistance in MDR-TB which hold a promise to change the course of treatment strategies in tuberculosis.
Collapse
Affiliation(s)
- Richi Goel
- Amity Institute of Pharmacy, Amity University Campus, Sector-125, Noida, 201301, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Anush Tomar
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, Lake Nona, College of Pharmacy, University of Florida, 6550 Sanger Road, Orlando, FL, 32827, USA
| | - Sweta Bawari
- Amity Institute of Pharmacy, Amity University Campus, Sector-125, Noida, 201301, Gautam Buddha Nagar, Uttar Pradesh, India.
| |
Collapse
|
14
|
Fei P, Zhang W, Shang Y, Hu P, Gu Y, Luo Y, Wu H. Carbon-negative bio-production of short-chain carboxylic acids (SCCAs) from syngas via the sequential two-stage bioprocess by Moorella thermoacetica and metabolically engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2025; 416:131714. [PMID: 39490540 DOI: 10.1016/j.biortech.2024.131714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Syngas can be efficiently converted to acetate by Moorella thermoacetica under anaerobic conditions, which is environmentally friendly. Coupled with acetate production from syngas, using acetate to synthesize value-added compounds such as short-chain carboxylic acids (SCCAs) becomes a negative-carbon process. Escherichia coli is engineered to utilize acetate as the sole carbon source to produce SCCAs. By knocking out some acetyltransferase genes, introducing exogenous pathway and additional cofactor engineering, the strains can synthesize 3.79 g/L of 3-hydroxypropionic acid (3-HP), 1.83 g/L of (R)-3-hydroxybutyric acid (R-3HB), and 2.31 g/L of butyrate. We used M. thermoacetica to produce acetate from syngas. Subsequently, all engineered E. coli strains were able to produce SCCAs from syngas-derived acetate. The titers of 3-HP, R-3HB, and butyrate are 3.75, 1.68, and 2.04 g/L, with carbon sequestration rates of 51.1, 26.3, and 38.1 %. This coupled bioprocess has great potential for producing a range of other value-added chemicals from syngas.
Collapse
Affiliation(s)
- Peng Fei
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wenrui Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yanzhe Shang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Peng Hu
- Shanghai GTLB Biotech Co., Ltd, 1688 North Guoguan Road, Shanghai 200438, China
| | - Yang Gu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuanchan Luo
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
15
|
Sieber A, Parr M, von Ehr J, Dhamotharan K, Kielkowski P, Brewer T, Schäpers A, Krafczyk R, Qi F, Schlundt A, Frishman D, Lassak J. EF-P and its paralog EfpL (YeiP) differentially control translation of proline-containing sequences. Nat Commun 2024; 15:10465. [PMID: 39622818 PMCID: PMC11611912 DOI: 10.1038/s41467-024-54556-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/13/2024] [Indexed: 12/06/2024] Open
Abstract
Polyproline sequences are deleterious to cells because they stall ribosomes. In bacteria, EF-P plays an important role in overcoming such polyproline sequence-induced ribosome stalling. Additionally, numerous bacteria possess an EF-P paralog called EfpL (also known as YeiP) of unknown function. Here, we functionally and structurally characterize EfpL from Escherichia coli and demonstrate its role in the translational stress response. Through ribosome profiling, we analyze the EfpL arrest motif spectrum and find additional sequences beyond the canonical polyproline motifs that both EF-P and EfpL can resolve. Notably, the two factors can also induce pauses. We further report that EfpL can sense the metabolic state of the cell via lysine acylation. Overall, our work characterizes the role of EfpL in ribosome rescue at proline-containing sequences, and provides evidence that co-occurrence of EF-P and EfpL is an evolutionary driver for higher bacterial growth rates.
Collapse
Affiliation(s)
- Alina Sieber
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Marina Parr
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Julian von Ehr
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany
- IMPRS on Cellular Biophysics, Frankfurt, Germany
| | - Karthikeyan Dhamotharan
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany
| | - Pavel Kielkowski
- Department of Chemistry, Institut für Chemische Epigenetik (ICEM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tess Brewer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Anna Schäpers
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ralph Krafczyk
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Fei Qi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Jürgen Lassak
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
16
|
Graf LG, Moreno-Yruela C, Qin C, Schulze S, Palm GJ, Schmöker O, Wang N, Hocking DM, Jebeli L, Girbardt B, Berndt L, Dörre B, Weis DM, Janetzky M, Albrecht D, Zühlke D, Sievers S, Strugnell RA, Olsen CA, Hofmann K, Lammers M. Distribution and diversity of classical deacylases in bacteria. Nat Commun 2024; 15:9496. [PMID: 39489725 PMCID: PMC11532494 DOI: 10.1038/s41467-024-53903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
Classical Zn2+-dependent deac(et)ylases play fundamental regulatory roles in life and are well characterized in eukaryotes regarding their structures, substrates and physiological roles. In bacteria, however, classical deacylases are less well understood. We construct a Generalized Profile (GP) and identify thousands of uncharacterized classical deacylases in bacteria, which are grouped into five clusters. Systematic structural and functional characterization of representative enzymes from each cluster reveal high functional diversity, including polyamine deacylases and protein deacylases with various acyl-chain type preferences. These data are supported by multiple crystal structures of enzymes from different clusters. Through this extensive analysis, we define the structural requirements of substrate selectivity, and discovered bacterial de-D-/L-lactylases and long-chain deacylases. Importantly, bacterial deacylases are inhibited by archetypal HDAC inhibitors, as supported by co-crystal structures with the inhibitors SAHA and TSA, and setting the ground for drug repurposing strategies to fight bacterial infections. Thus, we provide a systematic structure-function analysis of classical deacylases in bacteria and reveal the basis of substrate specificity, acyl-chain preference and inhibition.
Collapse
Affiliation(s)
- Leonie G Graf
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Carlos Moreno-Yruela
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Chemical Sciences and Engineering (ISIC), School of Basic Sciences (SB), EPFL, Lausanne, Switzerland
| | - Chuan Qin
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Sabrina Schulze
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Gottfried J Palm
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Ole Schmöker
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Nancy Wang
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Dianna M Hocking
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Leila Jebeli
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Britta Girbardt
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Leona Berndt
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Babett Dörre
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Daniel M Weis
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Markus Janetzky
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Dirk Albrecht
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Daniela Zühlke
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Susanne Sievers
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Richard A Strugnell
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Michael Lammers
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
17
|
Birhanu AG, Riaz T, Støen M, Tønjum T. Differential Abundance of Protein Acylation in Mycobacterium tuberculosis Under Exposure to Nitrosative Stress. Proteomics Clin Appl 2024; 18:e202300212. [PMID: 39082596 DOI: 10.1002/prca.202300212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Human macrophages generate antimicrobial reactive nitrogen species in response to infection by Mycobacterium tuberculosis (Mtb). Exposure to these redox-reactive compounds induces stress response in Mtb, which can affect posttranslational modifications (PTM). METHODS Here, we present the global analysis of the PTM acylation of Mtb proteins in response to a sublethal dose of nitrosative stress in the form of nitric oxide (NO) using label free quantification. RESULTS A total of 6437 acylation events were identified on 1496 Mtb proteins, and O-acylation accounted for 92.2% of the events identified, while 7.8% were N-acylation events. About 22% of the sites identified were found to be acylated by more than one acyl-group. Furthermore, the abundance of each acyl-group decreased as their molecular weight increased. Quantitative PTM analysis revealed differential abundance of acylation in proteins involved in stress response, iron ion homeostasis, growth, energy metabolism, and antimicrobial resistance (AMR) induced by nitrosative stress over time. CONCLUSIONS The results reveal a potential role of Mtb protein acylation in the bacterial stress responses and AMR. To our knowledge, this is the first report on global O-acylation profile of Mtb in response to NO. This will significantly improve our understanding of the changes in Mtb acylation under nitrosative stress, highly relevant for global health.
Collapse
Affiliation(s)
- Alemayehu Godana Birhanu
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Microbiology, University of Oslo, Nydalen, Oslo, Norway
| | - Tahira Riaz
- Department of Microbiology, University of Oslo, Nydalen, Oslo, Norway
| | - Mari Støen
- Department of Microbiology, Oslo University Hospital, Nydalen, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, University of Oslo, Nydalen, Oslo, Norway
- Department of Microbiology, Oslo University Hospital, Nydalen, Oslo, Norway
| |
Collapse
|
18
|
Duchovni L, Shmunis G, Lobel L. Posttranslational modifications: an emerging functional layer of diet-host-microbe interactions. mBio 2024; 15:e0238724. [PMID: 39254316 PMCID: PMC11481575 DOI: 10.1128/mbio.02387-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
The microbiome plays a vital role in human health, with changes in its composition impacting various aspects of the body. Posttranslational modification (PTM) regulates protein activity by attaching chemical groups to amino acids in an enzymatic or non-enzymatic manner. PTMs offer fast and dynamic regulation of protein expression and can be influenced by specific dietary components that induce PTM events in gut microbiomes and their hosts. PTMs on microbiome proteins have been found to contribute to host-microbe interactions. For example, in Escherichia coli, S-sulfhydration of tryptophanase regulates uremic toxin production and chronic kidney disease in mice. On a broader microbial scale, the microbiomes of patients with inflammatory bowel disease exhibit distinct PTM patterns in their metaproteomes. Moreover, pathogens and commensals can alter host PTM profiles through protein secretion and diet-regulated metabolic shifts. The emerging field of metaPTMomics focuses on understanding PTM profiles in the microbiota, their association with lifestyle factors like diet, and their functional effects on host-microbe interactions.
Collapse
Affiliation(s)
- Lirit Duchovni
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Genrieta Shmunis
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Lior Lobel
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
19
|
Ma Q, Li J, Yu S, Zhou J, Liu Y, Wang X, Ye D, Wu Y, Gong T, Zhang Q, Wang L, Zou J, Li Y. YkuR functions as a protein deacetylase in Streptococcus mutans. Proc Natl Acad Sci U S A 2024; 121:e2407820121. [PMID: 39356671 PMCID: PMC11474102 DOI: 10.1073/pnas.2407820121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/13/2024] [Indexed: 10/04/2024] Open
Abstract
Protein acetylation is a common and reversible posttranslational modification tightly governed by protein acetyltransferases and deacetylases crucial for various biological processes in both eukaryotes and prokaryotes. Although recent studies have characterized many acetyltransferases in diverse bacterial species, only a few protein deacetylases have been identified in prokaryotes, perhaps in part due to their limited sequence homology. In this study, we identified YkuR, encoded by smu_318, as a unique protein deacetylase in Streptococcus mutans. Through protein acetylome analysis, we demonstrated that the deletion of ykuR significantly upregulated protein acetylation levels, affecting key enzymes in translation processes and metabolic pathways, including starch and sucrose metabolism, glycolysis/gluconeogenesis, and biofilm formation. In particular, YkuR modulated extracellular polysaccharide synthesis and biofilm formation through the direct deacetylation of glucosyltransferases (Gtfs) in the presence of NAD+. Intriguingly, YkuR can be acetylated in a nonenzymatic manner, which then negatively regulated its deacetylase activity, suggesting the presence of a self-regulatory mechanism. Moreover, in vivo studies further demonstrated that the deletion of ykuR attenuated the cariogenicity of S. mutans in the rat caries model, substantiating its involvement in the pathogenesis of dental caries. Therefore, our study revealed a unique regulatory mechanism mediated by YkuR through protein deacetylation that regulates the physiology and pathogenicity of S. mutans.
Collapse
Affiliation(s)
- Qizhao Ma
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Jing Li
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Shuxing Yu
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Jing Zhou
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Yaqi Liu
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Xinyue Wang
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Dingwei Ye
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Yumeng Wu
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Tao Gong
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Qiong Zhang
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Lingyun Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT06510
| | - Jing Zou
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Yuqing Li
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Laboratory of Archaeological Repository, Center for Archaeological Science, Sichuan University, Chengdu610041, China
| |
Collapse
|
20
|
Kuhn ML, Rakus JF, Quenet D. Acetylation, ADP-ribosylation and methylation of malate dehydrogenase. Essays Biochem 2024; 68:199-212. [PMID: 38994669 PMCID: PMC11451102 DOI: 10.1042/ebc20230080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
Metabolism within an organism is regulated by various processes, including post-translational modifications (PTMs). These types of chemical modifications alter the molecular, biochemical, and cellular properties of proteins and allow the organism to respond quickly to different environments, energy states, and stresses. Malate dehydrogenase (MDH) is a metabolic enzyme that is conserved in all domains of life and is extensively modified post-translationally. Due to the central role of MDH, its modification can alter metabolic flux, including the Krebs cycle, glycolysis, and lipid and amino acid metabolism. Despite the importance of both MDH and its extensively post-translationally modified landscape, comprehensive characterization of MDH PTMs, and their effects on MDH structure, function, and metabolic flux remains underexplored. Here, we review three types of MDH PTMs - acetylation, ADP-ribosylation, and methylation - and explore what is known in the literature and how these PTMs potentially affect the 3D structure, enzymatic activity, and interactome of MDH. Finally, we briefly discuss the potential involvement of PTMs in the dynamics of metabolons that include MDH.
Collapse
Affiliation(s)
- Misty L. Kuhn
- Department of Chemistry and Biochemistry, San Francisco
State University, San Francisco, CA, U.S.A
| | - John F. Rakus
- School of Sciences, University of Louisiana at Monroe,
Monroe, LA, U.S.A
| | - Delphine Quenet
- Department of Biochemistry, Larner College of Medicine,
University of Vermont, Burlington, VT, U.S.A
| |
Collapse
|
21
|
Chen L, Huang L, Gu Y, Li C, Sun P, Xiang Y. Novel post-translational modifications of protein by metabolites with immune responses and immune-related molecules in cancer immunotherapy. Int J Biol Macromol 2024; 277:133883. [PMID: 39033895 DOI: 10.1016/j.ijbiomac.2024.133883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 06/30/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Tumour immunotherapy is an effective and essential treatment for cancer. However, the heterogeneity of tumours and the complex and changeable tumour immune microenvironment (TME) creates many uncertainties in the clinical application of immunotherapy, such as different responses to tumour immunotherapy and significant differences in individual efficacy. It makes anti-tumour immunotherapy face many challenges. Immunometabolism is a critical determinant of immune cell response to specific immune effector molecules, significantly affecting the effects of tumour immunotherapy. It is attributed mainly to the fact that metabolites can regulate the function of immune cells and immune-related molecules through the protein post-translational modifications (PTMs) pathway. This study systematically summarizes a variety of novel protein PTMs including acetylation, propionylation, butyrylation, succinylation, crotonylation, malonylation, glutarylation, 2-hydroxyisobutyrylation, β-hydroxybutyrylation, benzoylation, lactylation and isonicotinylation in the field of tumour immune regulation and immunotherapy. In particular, we elaborate on how different PTMs in the TME can affect the function of immune cells and lead to immune evasion in cancer. Lastly, we highlight the potential treatment with the combined application of target-inhibited protein modification and immune checkpoint inhibitors (ICIs) for improved immunotherapeutic outcomes.
Collapse
Affiliation(s)
- Lihua Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China
| | - Lixiang Huang
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, PR China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fuzhou 350001, Fujian, PR China
| | - Yu Gu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China
| | - Chen Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China
| | - Pengming Sun
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, PR China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fuzhou 350001, Fujian, PR China.
| | - Yang Xiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China.
| |
Collapse
|
22
|
Schofield LC, Dialpuri JS, Murshudov GN, Agirre J. Post-translational modifications in the Protein Data Bank. Acta Crystallogr D Struct Biol 2024; 80:647-660. [PMID: 39207896 PMCID: PMC11394121 DOI: 10.1107/s2059798324007794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Proteins frequently undergo covalent modification at the post-translational level, which involves the covalent attachment of chemical groups onto amino acids. This can entail the singular or multiple addition of small groups, such as phosphorylation; long-chain modifications, such as glycosylation; small proteins, such as ubiquitination; as well as the interconversion of chemical groups, such as the formation of pyroglutamic acid. These post-translational modifications (PTMs) are essential for the normal functioning of cells, as they can alter the physicochemical properties of amino acids and therefore influence enzymatic activity, protein localization, protein-protein interactions and protein stability. Despite their inherent importance, accurately depicting PTMs in experimental studies of protein structures often poses a challenge. This review highlights the role of PTMs in protein structures, as well as the prevalence of PTMs in the Protein Data Bank, directing the reader to accurately built examples suitable for use as a modelling reference.
Collapse
Affiliation(s)
- Lucy C Schofield
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Jordan S Dialpuri
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Garib N Murshudov
- MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom
| | - Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| |
Collapse
|
23
|
Liu T, Zhang M, Fan Y, Zhao L, Huang D, Zhao L, Tan M, Ye BC, Xu JY. Characterization of diverse lysine acylations in Bacillus thuringiensis: Substrate profiling and functional exploration. Proteomics 2024; 24:e2300350. [PMID: 38491406 DOI: 10.1002/pmic.202300350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Lysine acylation has been extensively investigated due to its regulatory role in a diverse range of biological functions across prokaryotic and eukaryotic species. In-depth acylomic profiles have the potential to enhance comprehension of the biological implications of organisms. However, the extent of research on global acylation profiles in microorganisms is limited. Here, four lysine acylomes were conducted in Bacillus thuringiensis by using the LC-MS/MS based proteomics combined with antibody-enrichment strategies, and a total of 3438 acetylated sites, 5797 propionylated sites, 1705 succinylated sites, and 925 malonylated sites were identified. The motif analysis of these modified proteins revealed a high conservation of glutamate in acetylation and propionylation, whereas such conservation was not observed in succinylation and malonylation modifications. Besides, conservation analysis showed that homologous acylated proteins in Bacillus subtilis and Escherichia coli were connected with ribosome and aminoacyl-tRNA biosynthesis. Further biological experiments showed that lysine acylation lowered the RNA binding ability of CodY and impaired the in vivo protein activity of MetK. In conclusion, our study expanded the current understanding of the global acylation in Bacillus, and the comparative analysis demonstrated that shared acylation proteins could play important roles in regulating both metabolism and RNA transcription progression.
Collapse
Affiliation(s)
- Tianxian Liu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mingya Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yameng Fan
- School of Pharmacy, Henan University, Kaifeng, China
| | - Lei Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Dan Huang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Liuchang Zhao
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, Henan University, Kaifeng, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jun-Yu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
24
|
Fu Y, Zhao LC, Shen JL, Zhou SY, Yin BC, Ye BC, You D. A network of acetyl phosphate-dependent modification modulates c-di-AMP homeostasis in Actinobacteria. mBio 2024; 15:e0141124. [PMID: 38980040 PMCID: PMC11323494 DOI: 10.1128/mbio.01411-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024] Open
Abstract
Cyclic purine nucleotides are important signal transduction molecules across all domains of life. 3',5'-cyclic di-adenosine monophosphate (c-di-AMP) has roles in both prokaryotes and eukaryotes, while the signals that adjust intracellular c-di-AMP and the molecular machinery enabling a network-wide homeostatic response remain largely unknown. Here, we present evidence for an acetyl phosphate (AcP)-governed network responsible for c-di-AMP homeostasis through two distinct substrates, the diadenylate cyclase DNA integrity scanning protein (DisA) and its newly identified transcriptional repressor, DasR. Correspondingly, we found that AcP-induced acetylation exerts these regulatory actions by disrupting protein multimerization, thus impairing c-di-AMP synthesis via K66 acetylation of DisA. Conversely, the transcriptional inhibition of disA was relieved during DasR acetylation at K78. These findings establish a pivotal physiological role for AcP as a mediator to balance c-di-AMP homeostasis. Further studies revealed that acetylated DisA and DasR undergo conformational changes that play crucial roles in differentiation. Considering the broad distribution of AcP-induced acetylation in response to environmental stress, as well as the high conservation of the identified key sites, we propose that this unique regulation of c-di-AMP homeostasis may constitute a fundamental property of central circuits in Actinobacteria and thus the global control of cellular physiology.IMPORTANCESince the identification of c-di-AMP is required for bacterial growth and cellular physiology, a major challenge is the cell signals and stimuli that feed into the decision-making process of c-di-AMP concentration and how that information is integrated into the regulatory pathways. Using the bacterium Saccharopolyspora erythraea as a model, we established that AcP-dependent acetylation of the diadenylate cyclase DisA and its newly identified transcriptional repressor DasR is involved in coordinating environmental and intracellular signals, which are crucial for c-di-AMP homeostasis. Specifically, DisA acetylated at K66 directly inactivates its diadenylate cyclase activity, hence the production of c-di-AMP, whereas DasR acetylation at K78 leads to increased disA expression and c-di-AMP levels. Thus, AcP represents an essential molecular switch in c-di-AMP maintenance, responding to environmental changes and possibly hampering efficient development. Therefore, AcP-mediated posttranslational processes constitute a network beyond the usual and well-characterized synthetase/hydrolase governing c-di-AMP homeostasis.
Collapse
Affiliation(s)
- Yu Fu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Liu-Chang Zhao
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jin-Long Shen
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Shi-Yu Zhou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bin-Cheng Yin
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Di You
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
25
|
Popova L, Carr RA, Carabetta VJ. Recent Contributions of Proteomics to Our Understanding of Reversible N ε-Lysine Acylation in Bacteria. J Proteome Res 2024; 23:2733-2749. [PMID: 38442041 PMCID: PMC11296938 DOI: 10.1021/acs.jproteome.3c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Post-translational modifications (PTMs) have been extensively studied in both eukaryotes and prokaryotes. Lysine acetylation, originally thought to be a rare occurrence in bacteria, is now recognized as a prevalent and important PTM in more than 50 species. This expansion in interest in bacterial PTMs became possible with the advancement of mass spectrometry technology and improved reagents such as acyl-modification specific antibodies. In this Review, we discuss how mass spectrometry-based proteomic studies of lysine acetylation and other acyl modifications have contributed to our understanding of bacterial physiology, focusing on recently published studies from 2018 to 2023. We begin with a discussion of approaches used to study bacterial PTMs. Next, we discuss newly characterized acylomes, including acetylomes, succinylomes, and malonylomes, in different bacterial species. In addition, we examine proteomic contributions to our understanding of bacterial virulence and biofilm formation. Finally, we discuss the contributions of mass spectrometry to our understanding of the mechanisms of acetylation, both enzymatic and nonenzymatic. We end with a discussion of the current state of the field and possible future research avenues to explore.
Collapse
Affiliation(s)
- Liya Popova
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey 08103, United States
| | - Rachel A Carr
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey 08103, United States
| | - Valerie J Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey 08103, United States
| |
Collapse
|
26
|
Volkov M, Kampstra ASB, van Schie KAJ, van Mourik AG, Kwekkeboom JC, de Ru A, van Veelen PA, Huizinga TWJ, Toes REM, van der Woude D. Acetylated bacterial proteins as potent antigens inducing an anti-modified protein antibody response. RMD Open 2024; 10:e004411. [PMID: 39038910 PMCID: PMC11268051 DOI: 10.1136/rmdopen-2024-004411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/22/2024] [Indexed: 07/24/2024] Open
Abstract
OBJECTIVE Gut-residing bacteria, such as Escherichia coli, can acetylate their proteome under conditions of amine starvation. It is postulated that the (gut) microbiome is involved in the breach of immune tolerance to modified self-proteins leading to the anti-modified protein antibodies (AMPAs), hallmarking seropositive rheumatoid arthritis (RA). Our aim was to determine whether acetylated bacterial proteins can induce AMPA responses cross-reactive to modified self-proteins and be recognised by human AMPA (hAMPA). METHODS E. coli bacteria were grown under amine starvation to generate endogenously acetylated bacterial proteins. Furthermore, E. coli proteins were acetylated chemically. Recognition of these proteins by hAMPA was analysed by western blotting and ELISA; recognition by B cells carrying a modified protein-reactive B cell receptor (BCR) was analysed by pSyk (Syk phosphorylation) activation assay. C57BL/6 mice were immunised with (modified) bacterial protein fractions, and sera were analysed by ELISA. RESULTS Chemically modified bacterial protein fractions contained high levels of acetylated proteins and were readily recognised by hAMPA and able to activate B cells carrying modified protein-reactive BCRs. Likely due to substantially lower levels of acetylation, endogenously acetylated protein fractions were not recognised by hAMPA or hAMPA-expressing B cells. Immunising mice with chemically modified protein fractions induced a strong cross-reactive AMPA response, targeting various modified antigens including citrullinated proteins. CONCLUSIONS Acetylated bacterial proteins are recognisable by hAMPA and are capable of inducing cross-reactive AMPA in mice. These observations provide the first conceptual evidence for a novel mechanism involving the (endogenous) acetylation of the bacterial proteome, allowing a breach of tolerance to modified proteins and the formation of cross-reactive AMPA.
Collapse
Affiliation(s)
- Mikhail Volkov
- Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | - Arnoud de Ru
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A van Veelen
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom W J Huizinga
- Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - René E M Toes
- Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
27
|
Qin C, Graf LG, Striska K, Janetzky M, Geist N, Specht R, Schulze S, Palm GJ, Girbardt B, Dörre B, Berndt L, Kemnitz S, Doerr M, Bornscheuer UT, Delcea M, Lammers M. Acetyl-CoA synthetase activity is enzymatically regulated by lysine acetylation using acetyl-CoA or acetyl-phosphate as donor molecule. Nat Commun 2024; 15:6002. [PMID: 39019872 PMCID: PMC11255334 DOI: 10.1038/s41467-024-49952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024] Open
Abstract
The AMP-forming acetyl-CoA synthetase is regulated by lysine acetylation both in bacteria and eukaryotes. However, the underlying mechanism is poorly understood. The Bacillus subtilis acetyltransferase AcuA and the AMP-forming acetyl-CoA synthetase AcsA form an AcuA•AcsA complex, dissociating upon lysine acetylation of AcsA by AcuA. Crystal structures of AcsA from Chloroflexota bacterium in the apo form and in complex with acetyl-adenosine-5'-monophosphate (acetyl-AMP) support the flexible C-terminal domain adopting different conformations. AlphaFold2 predictions suggest binding of AcuA stabilizes AcsA in an undescribed conformation. We show the AcuA•AcsA complex dissociates upon acetyl-coenzyme A (acetyl-CoA) dependent acetylation of AcsA by AcuA. We discover an intrinsic phosphotransacetylase activity enabling AcuA•AcsA generating acetyl-CoA from acetyl-phosphate (AcP) and coenzyme A (CoA) used by AcuA to acetylate and inactivate AcsA. Here, we provide mechanistic insights into the regulation of AMP-forming acetyl-CoA synthetases by lysine acetylation and discover an intrinsic phosphotransacetylase allowing modulation of its activity based on AcP and CoA levels.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Leonie G Graf
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Kilian Striska
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Markus Janetzky
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Norman Geist
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Robin Specht
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Sabrina Schulze
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Gottfried J Palm
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Britta Girbardt
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Babett Dörre
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Leona Berndt
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Stefan Kemnitz
- Department for High Performance Computing, University Computing Center, University of Greifswald, 17489, Greifswald, Germany
| | - Mark Doerr
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Mihaela Delcea
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Michael Lammers
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany.
| |
Collapse
|
28
|
Duława-Kobeluszczyk J, Strzałka A, Tracz M, Bartyńska M, Pawlikiewicz K, Łebkowski T, Wróbel S, Szymczak J, Zarek A, Małecki T, Jakimowicz D, Szafran M. The activity of CobB1 protein deacetylase contributes to nucleoid compaction in Streptomyces venezuelae spores by increasing HupS affinity for DNA. Nucleic Acids Res 2024; 52:7112-7128. [PMID: 38783097 PMCID: PMC11229371 DOI: 10.1093/nar/gkae418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Streptomyces are soil bacteria with complex life cycle. During sporulation Streptomyces linear chromosomes become highly compacted so that the genetic material fits within limited spore volume. The key players in this process are nucleoid-associated proteins (NAPs). Among them, HU (heat unstable) proteins are the most abundant NAPs in the cell and the most conserved in bacteria. HupS, one of the two HU homologues encoded by the Streptomyces genome, is the best-studied spore-associated NAP. In contrast to other HU homologues, HupS contains a long, C-terminal domain that is extremely rich in lysine repeats (LR domain) similar to eukaryotic histone H2B and mycobacterial HupB protein. Here, we have investigated, whether lysine residues in HupS are posttranslationally modified by reversible lysine acetylation. We have confirmed that Streptomyces venezuelae HupS is acetylated in vivo. We showed that HupS binding to DNA in vitro is controlled by the acetylation. Moreover, we identified that CobB1, one of two Sir2 homologues in Streptomyces, controls HupS acetylation levels in vivo. We demonstrate that the elimination of CobB1 increases HupS mobility, reduces chromosome compaction in spores, and affects spores maturation. Thus, our studies indicate that HupS acetylation affects its function by diminishing DNA binding and disturbing chromosome organization.
Collapse
Affiliation(s)
| | | | - Michał Tracz
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | | | | | - Tomasz Łebkowski
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Sara Wróbel
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Justyna Szymczak
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Anna Zarek
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Tomasz Małecki
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | | | - Marcin J Szafran
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| |
Collapse
|
29
|
Rizo J, Encarnación-Guevara S. Bacterial protein acetylation: mechanisms, functions, and methods for study. Front Cell Infect Microbiol 2024; 14:1408947. [PMID: 39027134 PMCID: PMC11254643 DOI: 10.3389/fcimb.2024.1408947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Lysine acetylation is an evolutionarily conserved protein modification that changes protein functions and plays an essential role in many cellular processes, such as central metabolism, transcriptional regulation, chemotaxis, and pathogen virulence. It can alter DNA binding, enzymatic activity, protein-protein interactions, protein stability, or protein localization. In prokaryotes, lysine acetylation occurs non-enzymatically and by the action of lysine acetyltransferases (KAT). In enzymatic acetylation, KAT transfers the acetyl group from acetyl-CoA (AcCoA) to the lysine side chain. In contrast, acetyl phosphate (AcP) is the acetyl donor of chemical acetylation. Regardless of the acetylation type, the removal of acetyl groups from acetyl lysines occurs only enzymatically by lysine deacetylases (KDAC). KATs are grouped into three main superfamilies based on their catalytic domain sequences and biochemical characteristics of catalysis. Specifically, members of the GNAT are found in eukaryotes and prokaryotes and have a core structural domain architecture. These enzymes can acetylate small molecules, metabolites, peptides, and proteins. This review presents current knowledge of acetylation mechanisms and functional implications in bacterial metabolism, pathogenicity, stress response, translation, and the emerging topic of protein acetylation in the gut microbiome. Additionally, the methods used to elucidate the biological significance of acetylation in bacteria, such as relative quantification and stoichiometry quantification, and the genetic code expansion tool (CGE), are reviewed.
Collapse
Affiliation(s)
| | - Sergio Encarnación-Guevara
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
30
|
Chamrád I, Simerský R, Lenobel R, Novák O. Exploring affinity chromatography in proteomics: A comprehensive review. Anal Chim Acta 2024; 1306:342513. [PMID: 38692783 DOI: 10.1016/j.aca.2024.342513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 05/03/2024]
Abstract
Over the past decades, the proteomics field has undergone rapid growth. Progress in mass spectrometry and bioinformatics, together with separation methods, has brought many innovative approaches to the study of the molecular biology of the cell. The potential of affinity chromatography was recognized immediately after its first application in proteomics, and since that time, it has become one of the cornerstones of many proteomic protocols. Indeed, this chromatographic technique exploiting the specific binding between two molecules has been employed for numerous purposes, from selective removal of interfering (over)abundant proteins or enrichment of scarce biomarkers in complex biological samples to mapping the post-translational modifications and protein interactions with other proteins, nucleic acids or biologically active small molecules. This review presents a comprehensive survey of this versatile analytical tool in current proteomics. To navigate the reader, the haphazard space of affinity separations is classified according to the experiment's aims and the separated molecule's nature. Different types of available ligands and experimental strategies are discussed in further detail for each of the mentioned procedures.
Collapse
Affiliation(s)
- Ivo Chamrád
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic.
| | - Radim Simerský
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| | - René Lenobel
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| |
Collapse
|
31
|
Kan Y, Xie S, Sun Y, Ye T, Bian Y, Guo F, Zhang M, Liu T, Liu T, Ji J, Liu B, Tan M, Xu JY. Substrate and functional characterization of the lysine acetyltransferase MsKat and deacetylase MsCobB in Mycobacterium smegmatis. J Proteomics 2024; 300:105177. [PMID: 38631426 DOI: 10.1016/j.jprot.2024.105177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Tuberculosis (TB) is a serious cause of infectious death worldwide. Recent studies have reported that about 30% of the Mtb proteome was modified post-translationally, indicating that their functions are essential for drug resistance, mycobacterial survival, and pathogenicity. Among them, lysine acetylation, reversibly regulated by acetyltransferase and deacetylase, has important roles involved in energy metabolism, cellular adaptation, and protein interactions. However, the substrate and biological functions of these two important regulatory enzymes remain unclear. Herein, we utilized the non-pathogenic M. smegmatis strain as a model and systematically investigated the dynamic proteome changes in response to the overexpressing of MsKat/MsCobB in mycobacteria. A total of 4179 proteins and 1236 acetylated sites were identified in our data. Further analysis of the dynamic changes involved in proteome and acetylome showed that MsKat/MsCobB played a regulatory role in various metabolic pathways and nucleic acid processes. After that, the quantitative mass spectrometric method was utilized and proved that the AMP-dependent synthetase, Citrate synthase, ATP-dependent specificity component of the Clp protease, and ATP-dependent DNA/RNA helicases were identified to be the substrates of MsKat. Overall, our study provided an important resource underlying the substrates and functions of the acetylation regulatory enzymes in mycobacteria. SIGNIFICANCE: In this study, we systematically analyzed the dynamic molecular changes in response to the MsKat/MsCobB overexpression in mycobacteria at proteome and lysine acetylation level by using a TMT-based quantitative proteomic approach. Pathways related with glycolysis, degradation of branched chain amino acids, phosphotransferase system were affected after disturbance of the two regulates enzymes involved in lysine acetylation. We also proved that AMP-dependent synthetase Clp protease, ATP-dependent DNA/RNA helicases and citrate synthase was the substrate of MsKat according to our proteomic data and biological validation. Together, our study underlined the substrates and functions of the acetylation regulatory enzymes in mycobacteria.
Collapse
Affiliation(s)
- Yunbo Kan
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Shanghai Easymass Co., Ltd, Shanghai 201318, China
| | - Shuyu Xie
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Yewen Sun
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, China
| | - Tong Ye
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Yunxu Bian
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, China
| | - Fang Guo
- Shanghai Easymass Co., Ltd, Shanghai 201318, China
| | - Mingya Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tianxian Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tianqi Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, China
| | - Jing Ji
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China.
| | - Minjia Tan
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, China.
| | - Jun-Yu Xu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, China.
| |
Collapse
|
32
|
Prus G, Satpathy S, Weinert BT, Narita T, Choudhary C. Global, site-resolved analysis of ubiquitylation occupancy and turnover rate reveals systems properties. Cell 2024; 187:2875-2892.e21. [PMID: 38626770 PMCID: PMC11136510 DOI: 10.1016/j.cell.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/19/2023] [Accepted: 03/19/2024] [Indexed: 04/18/2024]
Abstract
Ubiquitylation regulates most proteins and biological processes in a eukaryotic cell. However, the site-specific occupancy (stoichiometry) and turnover rate of ubiquitylation have not been quantified. Here we present an integrated picture of the global ubiquitylation site occupancy and half-life. Ubiquitylation site occupancy spans over four orders of magnitude, but the median ubiquitylation site occupancy is three orders of magnitude lower than that of phosphorylation. The occupancy, turnover rate, and regulation of sites by proteasome inhibitors are strongly interrelated, and these attributes distinguish sites involved in proteasomal degradation and cellular signaling. Sites in structured protein regions exhibit longer half-lives and stronger upregulation by proteasome inhibitors than sites in unstructured regions. Importantly, we discovered a surveillance mechanism that rapidly and site-indiscriminately deubiquitylates all ubiquitin-specific E1 and E2 enzymes, protecting them against accumulation of bystander ubiquitylation. The work provides a systems-scale, quantitative view of ubiquitylation properties and reveals general principles of ubiquitylation-dependent governance.
Collapse
Affiliation(s)
- Gabriela Prus
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Shankha Satpathy
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Brian T Weinert
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Takeo Narita
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Chunaram Choudhary
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
33
|
Liu Y, Zhou M, Bu Y, Qin L, Zhang Y, Shao S, Wang Q. Lysine acetylation regulates the AT-rich DNA possession ability of H-NS. Nucleic Acids Res 2024; 52:1645-1660. [PMID: 38059366 PMCID: PMC10899749 DOI: 10.1093/nar/gkad1172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/01/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023] Open
Abstract
H-NS, the histone-like nucleoid-structuring protein in bacteria, regulates the stability of the bacterial genome by inhibiting the transcription of horizontally transferred genes, such as the type III and type VI secretion systems (T3/T6SS). While eukaryotic histone posttranslational modifications (PTMs) have been extensively studied, little is known about prokaryotic H-NS PTMs. Here, we report that the acetylation of H-NS attenuates its ability to silence horizontally transferred genes in response to amino acid nutrition and immune metabolites. Moreover, LC-MS/MS profiling showed that the acetyllysine sites of H-NS and K120 are indispensable for its DNA-binding ability. Acetylation of K120 leads to a low binding affinity for DNA and enhances T3/T6SS expression. Furthermore, acetylation of K120 impairs the AT-rich DNA recognition ability of H-NS. In addition, lysine acetylation in H-NS modulates in vivo bacterial virulence. These findings reveal the mechanism underlying H-NS PTMs and propose a novel mechanism by which bacteria counteract the xenogeneic silencing of H-NS.
Collapse
Affiliation(s)
- Yabo Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mengqing Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yifan Bu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Qin
- New Product R&D, GenScript Biotech Corporation, Nanjing 211100, China
| | - Yuanxing Zhang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
- Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China
| | - Shuai Shao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
- Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
- Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China
| |
Collapse
|
34
|
Kremer M, Schulze S, Eisenbruch N, Nagel F, Vogt R, Berndt L, Dörre B, Palm GJ, Hoppen J, Girbardt B, Albrecht D, Sievers S, Delcea M, Baumann U, Schnetz K, Lammers M. Bacteria employ lysine acetylation of transcriptional regulators to adapt gene expression to cellular metabolism. Nat Commun 2024; 15:1674. [PMID: 38395951 PMCID: PMC10891134 DOI: 10.1038/s41467-024-46039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The Escherichia coli TetR-related transcriptional regulator RutR is involved in the coordination of pyrimidine and purine metabolism. Here we report that lysine acetylation modulates RutR function. Applying the genetic code expansion concept, we produced site-specifically lysine-acetylated RutR proteins. The crystal structure of lysine-acetylated RutR reveals how acetylation switches off RutR-DNA-binding. We apply the genetic code expansion concept in E. coli in vivo revealing the consequences of RutR acetylation on the transcriptional level. We propose a model in which RutR acetylation follows different kinetic profiles either reacting non-enzymatically with acetyl-phosphate or enzymatically catalysed by the lysine acetyltransferases PatZ/YfiQ and YiaC. The NAD+-dependent sirtuin deacetylase CobB reverses enzymatic and non-enzymatic acetylation of RutR playing a dual regulatory and detoxifying role. By detecting cellular acetyl-CoA, NAD+ and acetyl-phosphate, bacteria apply lysine acetylation of transcriptional regulators to sense the cellular metabolic state directly adjusting gene expression to changing environmental conditions.
Collapse
Affiliation(s)
- Magdalena Kremer
- Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, 50674, Cologne, Germany
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Sabrina Schulze
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Nadja Eisenbruch
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Felix Nagel
- Institute of Biochemistry, Department of Biophysical Chemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Robert Vogt
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Leona Berndt
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Babett Dörre
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Gottfried J Palm
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Jens Hoppen
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Britta Girbardt
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Dirk Albrecht
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Susanne Sievers
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Mihaela Delcea
- Institute of Biochemistry, Department of Biophysical Chemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, 50674, Cologne, Germany
| | - Karin Schnetz
- Institute for Genetics, University of Cologne Zülpicher Straße 47a, 50674, Cologne, Germany
| | - Michael Lammers
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany.
| |
Collapse
|
35
|
Lozano-Terol G, Chiozzi RZ, Gallego-Jara J, Sola-Martínez RA, Vivancos AM, Ortega Á, Heck AJ, Díaz MC, de Diego Puente T. Relative impact of three growth conditions on the Escherichia coli protein acetylome. iScience 2024; 27:109017. [PMID: 38333705 PMCID: PMC10850759 DOI: 10.1016/j.isci.2024.109017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/04/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Nε-lysine acetylation is a common posttranslational modification observed in Escherichia coli. In the present study, integrative analysis of the proteome and acetylome was performed using label-free quantitative mass spectrometry to analyze the relative influence of three factors affecting growth. The results revealed differences in the proteome, mainly owing to the type of culture medium used (defined or complex). In the acetylome, 7482 unique acetylation sites were identified. Acetylation is directly related to the abundance of proteins, and the level of acetylation in each type of culture is associated with extracellular acetate concentration. Furthermore, most acetylated lysines in the exponential phase remained in the stationary phase without dynamic turnover. Interestingly, unique acetylation sites were detected in proteins whose presence or abundance was linked to the type of culture medium. Finally, the biological function of the acetylation changes was demonstrated for three central metabolic proteins (GapA, Mdh, and AceA).
Collapse
Affiliation(s)
- Gema Lozano-Terol
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
| | - Riccardo Zenezini Chiozzi
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padulaan 8, Utrecht 3584 CH, the Netherlands
| | - Julia Gallego-Jara
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
| | - Rosa Alba Sola-Martínez
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
| | - Adrián Martínez Vivancos
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
| | - Álvaro Ortega
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
| | - Albert J.R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padulaan 8, Utrecht 3584 CH, the Netherlands
| | - Manuel Cánovas Díaz
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
| | - Teresa de Diego Puente
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
| |
Collapse
|
36
|
Egas RA, Sahonero-Canavesi DX, Bale NJ, Koenen M, Yildiz Ç, Villanueva L, Sousa DZ, Sánchez-Andrea I. Acetic acid stress response of the acidophilic sulfate reducer Acididesulfobacillus acetoxydans. Environ Microbiol 2024; 26:e16565. [PMID: 38356112 DOI: 10.1111/1462-2920.16565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/12/2023] [Indexed: 02/16/2024]
Abstract
Acid mine drainage (AMD) waters are a severe environmental threat, due to their high metal content and low pH (pH <3). Current technologies treating AMD utilize neutrophilic sulfate-reducing microorganisms (SRMs), but acidophilic SRM could offer advantages. As AMDs are low in organics these processes require electron donor addition, which is often incompletely oxidized into organic acids (e.g., acetic acid). At low pH, acetic acid is undissociated and toxic to microorganisms. We investigated the stress response of the acetotrophic Acididesulfobacillus acetoxydans to acetic acid. A. acetoxydans was cultivated in bioreactors at pH 5.0 (optimum). For stress experiments, triplicate reactors were spiked until 7.5 mM of acetic acid and compared with (non-spiked) triplicate reactors for physiological, transcriptomic, and membrane lipid changes. After acetic acid spiking, the optical density initially dropped, followed by an adaptation phase during which growth resumed at a lower growth rate. Transcriptome analysis revealed a downregulation of genes involved in glutamate and aspartate synthesis following spiking. Membrane lipid analysis revealed a decrease in iso and anteiso fatty acid relative abundance; and an increase of acetyl-CoA as a fatty acid precursor. These adaptations allow A. acetoxydans to detoxify acetic acid, creating milder conditions for other microorganisms in AMD environments.
Collapse
Affiliation(s)
- Reinier A Egas
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Diana X Sahonero-Canavesi
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Texel, Den Burg, The Netherlands
| | - Nicole J Bale
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Texel, Den Burg, The Netherlands
| | - Michel Koenen
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Texel, Den Burg, The Netherlands
| | - Çağlar Yildiz
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Texel, Den Burg, The Netherlands
- Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Utrecht, The Netherlands
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Environmental Sciences and Sustainability Department, Science & Technology School, IE University, Segovia, Spain
| |
Collapse
|
37
|
Jia K, Yang M, Liu X, Zhang Q, Cao G, Ge F, Zhao J. Deciphering the structure, function, and mechanism of lysine acetyltransferase cGNAT2 in cyanobacteria. PLANT PHYSIOLOGY 2024; 194:634-661. [PMID: 37770070 DOI: 10.1093/plphys/kiad509] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023]
Abstract
Lysine acetylation is a conserved regulatory posttranslational protein modification that is performed by lysine acetyltransferases (KATs). By catalyzing the transfer of acetyl groups to substrate proteins, KATs play critical regulatory roles in all domains of life; however, no KATs have yet been identified in cyanobacteria. Here, we tested all predicted KATs in the cyanobacterium Synechococcus sp. PCC 7002 (Syn7002) and demonstrated that A1596, which we named cyanobacterial Gcn5-related N-acetyltransferase (cGNAT2), can catalyze lysine acetylation in vivo and in vitro. Eight amino acid residues were identified as the key residues in the putative active site of cGNAT2, as indicated by structural simulation and site-directed mutagenesis. The loss of cGNAT2 altered both growth and photosynthetic electron transport in Syn7002. In addition, quantitative analysis of the lysine acetylome identified 548 endogenous substrates of cGNAT2 in Syn7002. We further demonstrated that cGNAT2 can acetylate NAD(P)H dehydrogenase J (NdhJ) in vivo and in vitro, with the inability to acetylate K89 residues, thus decreasing NdhJ activity and affecting both growth and electron transport in Syn7002. In summary, this study identified a KAT in cyanobacteria and revealed that cGNAT2 regulates growth and photosynthesis in Syn7002 through an acetylation-mediated mechanism.
Collapse
Affiliation(s)
- Kun Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430070, China
| | - Qi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaoxiang Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jindong Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
38
|
Fatema N, Li X, Gan Q, Fan C. Characterizing lysine acetylation of glucokinase. Protein Sci 2024; 33:e4845. [PMID: 37996965 PMCID: PMC10731539 DOI: 10.1002/pro.4845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023]
Abstract
Glucokinase (GK) catalyzes the phosphorylation of glucose to form glucose-6-phosphate as the substrate of glycolysis for energy production. Acetylation of lysine residues in Escherichia coli GK has been identified at multiple sites by a series of proteomic studies, but the impact of acetylation on GK functions remains largely unknown. In this study, we applied the genetic code expansion strategy to produce site-specifically acetylated GK variants which naturally exist in cells. Enzyme assays and kinetic analyses showed that lysine acetylation decreases the GK activity, mostly resulting from acetylation of K214 and K216 at the entrance of the active site, which impairs the binding of substrates. We also compared results obtained from the glutamine substitution method and the genetic acetyllysine incorporation approach, showing that glutamine substitution is not always effective for mimicking acetylated lysine. Further genetic studies as well as in vitro acetylation and deacetylation assays were performed to determine acetylation and deacetylation mechanisms, which showed that E. coli GK could be acetylated by acetyl-phosphate without enzymes and deacetylated by CobB deacetylase.
Collapse
Affiliation(s)
- Nour Fatema
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleArkansasUSA
| | - Xinyu Li
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleArkansasUSA
| | - Qinglei Gan
- Department of Chemistry and BiochemistryUniversity of ArkansasFayettevilleArkansasUSA
| | - Chenguang Fan
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleArkansasUSA
- Department of Chemistry and BiochemistryUniversity of ArkansasFayettevilleArkansasUSA
| |
Collapse
|
39
|
Dale AL, Man L, Cordwell SJ. Global Acetylomics of Campylobacter jejuni Shows Lysine Acetylation Regulates CadF Adhesin Processing and Human Fibronectin Binding. J Proteome Res 2023; 22:3519-3533. [PMID: 37830485 DOI: 10.1021/acs.jproteome.3c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Lysine acetylation (KAc) is a reversible post-translational modification (PTM) that can alter protein structure and function; however, specific roles for KAc are largely undefined in bacteria. Acetyl-lysine immunoprecipitation and LC-MS/MS identified 5567 acetylated lysines on 1026 proteins from the gastrointestinal pathogen Campylobacter jejuni (∼63% of the predicted proteome). KAc was identified on proteins from all subcellular locations, including the outer membrane (OM) and extracellular proteins. Label-based LC-MS/MS identified proteins and KAc sites during growth in 0.1% sodium deoxycholate (DOC, a component of gut bile salts). 3410 acetylated peptides were quantified, and 784 (from 409 proteins) were differentially abundant in DOC growth. Changes in KAc involved multiple pathways, suggesting a dynamic role for this PTM in bile resistance. As observed elsewhere, we show KAc is primarily nonenzymatically mediated via acetyl-phosphate; however, the deacetylase CobB also contributes to a global elevation of this modification in DOC. We observed several multiply acetylated OM proteins and altered DOC abundance of acetylated peptides in the fibronectin (Fn)-binding adhesin CadF. We show KAc reduces CadF Fn binding and prevalence of lower mass variants. This study provides the first system-wide lysine acetylome of C. jejuni and contributes to our understanding of KAc as an emerging PTM in bacteria.
Collapse
Affiliation(s)
- Ashleigh L Dale
- School of Life and Environmental Sciences, The University of Sydney, New South Wales 2006, Australia
- Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia
| | - Lok Man
- School of Life and Environmental Sciences, The University of Sydney, New South Wales 2006, Australia
- Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia
| | - Stuart J Cordwell
- School of Life and Environmental Sciences, The University of Sydney, New South Wales 2006, Australia
- Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia
- Sydney Mass Spectrometry, The University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
40
|
Norris V, Kayser C, Muskhelishvili G, Konto-Ghiorghi Y. The roles of nucleoid-associated proteins and topoisomerases in chromosome structure, strand segregation, and the generation of phenotypic heterogeneity in bacteria. FEMS Microbiol Rev 2023; 47:fuac049. [PMID: 36549664 DOI: 10.1093/femsre/fuac049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
How to adapt to a changing environment is a fundamental, recurrent problem confronting cells. One solution is for cells to organize their constituents into a limited number of spatially extended, functionally relevant, macromolecular assemblies or hyperstructures, and then to segregate these hyperstructures asymmetrically into daughter cells. This asymmetric segregation becomes a particularly powerful way of generating a coherent phenotypic diversity when the segregation of certain hyperstructures is with only one of the parental DNA strands and when this pattern of segregation continues over successive generations. Candidate hyperstructures for such asymmetric segregation in prokaryotes include those containing the nucleoid-associated proteins (NAPs) and the topoisomerases. Another solution to the problem of creating a coherent phenotypic diversity is by creating a growth-environment-dependent gradient of supercoiling generated along the replication origin-to-terminus axis of the bacterial chromosome. This gradient is modulated by transcription, NAPs, and topoisomerases. Here, we focus primarily on two topoisomerases, TopoIV and DNA gyrase in Escherichia coli, on three of its NAPs (H-NS, HU, and IHF), and on the single-stranded binding protein, SSB. We propose that the combination of supercoiling-gradient-dependent and strand-segregation-dependent topoisomerase activities result in significant differences in the supercoiling of daughter chromosomes, and hence in the phenotypes of daughter cells.
Collapse
Affiliation(s)
- Vic Norris
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Clara Kayser
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Georgi Muskhelishvili
- Agricultural University of Georgia, School of Natural Sciences, 0159 Tbilisi, Georgia
| | - Yoan Konto-Ghiorghi
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| |
Collapse
|
41
|
Ni J, Li S, Lai Y, Wang Z, Wang D, Tan Y, Fan Y, Lu J, Yao YF. Global profiling of ribosomal protein acetylation reveals essentiality of acetylation homeostasis in maintaining ribosome assembly and function. Nucleic Acids Res 2023; 51:10411-10427. [PMID: 37742082 PMCID: PMC10602876 DOI: 10.1093/nar/gkad768] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/15/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
Acetylation is a global post-translational modification that regulates various cellular processes. Bacterial acetylomic studies have revealed extensive acetylation of ribosomal proteins. However, the role of acetylation in regulating ribosome function remains poorly understood. In this study, we systematically profiled ribosomal protein acetylation and identified a total of 289 acetylated lysine residues in 52 ribosomal proteins (r-proteins) from Salmonella Typhimurium. The majority of acetylated lysine residues of r-proteins were found to be regulated by both acetyltransferase Pat and metabolic intermediate acetyl phosphate. Our results show that acetylation plays a critical role in the assembly of the mature 70S ribosome complex by modulating r-proteins binding to rRNA. Moreover, appropriate acetylation is important for the interactions between elongation factors and polysomes, as well as regulating ribosome translation efficiency and fidelity. Dysregulation of acetylation could alter bacterial sensitivity to ribosome-targeting antibiotics. Collectively, our data suggest that the acetylation homeostasis of ribosomes is crucial for their assembly and function. Furthermore, this mechanism may represent a universal response to environmental signals across different cell types.
Collapse
Affiliation(s)
- Jinjing Ni
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shuxian Li
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanan Lai
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zuoqiang Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Danni Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yongcong Tan
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yongqiang Fan
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai 200025, China
| |
Collapse
|
42
|
Yayli G, Bernardini A, Mendoza Sanchez PK, Scheer E, Damilot M, Essabri K, Morlet B, Negroni L, Vincent SD, Timmers HTM, Tora L. ATAC and SAGA co-activator complexes utilize co-translational assembly, but their cellular localization properties and functions are distinct. Cell Rep 2023; 42:113099. [PMID: 37682711 PMCID: PMC10591836 DOI: 10.1016/j.celrep.2023.113099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/19/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
To understand the function of multisubunit complexes, it is of key importance to uncover the precise mechanisms that guide their assembly. Nascent proteins can find and bind their interaction partners during their translation, leading to co-translational assembly. Here, we demonstrate that the core modules of ATAC (ADA-two-A-containing) and SAGA (Spt-Ada-Gcn5-acetyltransferase), two lysine acetyl transferase-containing transcription co-activator complexes, assemble co-translationally in the cytoplasm of mammalian cells. In addition, a SAGA complex containing all of its modules forms in the cytoplasm and acetylates non-histone proteins. In contrast, ATAC complex subunits cannot be detected in the cytoplasm of mammalian cells. However, an endogenous ATAC complex containing two functional modules forms and functions in the nucleus. Thus, the two related co-activators, ATAC and SAGA, assemble using co-translational pathways, but their subcellular localization, cytoplasmic abundance, and functions are distinct.
Collapse
Affiliation(s)
- Gizem Yayli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Andrea Bernardini
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Paulina Karen Mendoza Sanchez
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Freiburg, Germany; Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Elisabeth Scheer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Mylène Damilot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Karim Essabri
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Bastien Morlet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Luc Negroni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Stéphane D Vincent
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - H T Marc Timmers
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Freiburg, Germany; Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France.
| |
Collapse
|
43
|
Watson PR, Christianson DW. Structure and Function of Kdac1, a Class II Deacetylase from the Multidrug-Resistant Pathogen Acinetobacter baumannii. Biochemistry 2023; 62:2689-2699. [PMID: 37624144 PMCID: PMC10528293 DOI: 10.1021/acs.biochem.3c00288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Proteomics studies indicate that 10% of proteins in the opportunistic pathogen Acinetobacter baumannii are acetylated, suggesting that lysine acetyltransferases and deacetylases function to maintain and regulate a robust bacterial acetylome. As the first step in exploring these fascinating prokaryotic enzymes, we now report the preparation and characterization of the lysine deacetylase Kdac1. We show that Kdac1 catalyzes the deacetylation of free acetyllysine and acetyllysine tetrapeptide assay substrates, and we also report the X-ray crystal structures of unliganded Kdac1 as well as its complex with the hydroxamate inhibitor Citarinostat. Kdac1 is a tetramer in solution and in the crystal; the crystal structure reveals that the L1 loop functions to stabilize quaternary structure, forming inter-subunit hydrogen bonds and salt bridges around a central arginine residue (R30). Surprisingly, the L1 loop partially blocks entry to the active site, but it is sufficiently flexible to allow for the binding of two Citarinostat molecules in the active site. The L12 loop is also important for maintaining quaternary structure; here, a conserved arginine (R278) accepts hydrogen bonds from the backbone carbonyl groups of residues in an adjacent monomer. Structural comparisons with two other prokaryotic lysine deacetylases reveal conserved residues in the L1 and L12 loops that similarly support tetramer assembly. These studies provide a structural foundation for understanding enzymes that regulate protein function in bacteria through reversible lysine acetylation, serving as a first step in the exploration of these enzymes as possible targets for the development of new antibiotics.
Collapse
Affiliation(s)
- Paris R. Watson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323, United States
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323, United States
| |
Collapse
|
44
|
You Y, Tsai CF, Patel R, Sarkar S, Clair G, Zhou M, Liu T, Metz TO, Das C, Nakayasu ES. Analysis of a macrophage carbamylated proteome reveals a function in post-translational modification crosstalk. Cell Commun Signal 2023; 21:241. [PMID: 37723562 PMCID: PMC10506243 DOI: 10.1186/s12964-023-01257-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/05/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Lysine carbamylation is a biomarker of rheumatoid arthritis and kidney diseases. However, its cellular function is understudied due to the lack of tools for systematic analysis of this post-translational modification (PTM). METHODS We adapted a method to analyze carbamylated peptides by co-affinity purification with acetylated peptides based on the cross-reactivity of anti-acetyllysine antibodies. We also performed immobilized-metal affinity chromatography to enrich for phosphopeptides, which allowed us to obtain multi-PTM information from the same samples. RESULTS By testing the pipeline with RAW 264.7 macrophages treated with bacterial lipopolysaccharide, 7,299, 8,923 and 47,637 acetylated, carbamylated, and phosphorylated peptides were identified, respectively. Our analysis showed that carbamylation occurs on proteins from a variety of functions on sites with similar as well as distinct motifs compared to acetylation. To investigate possible PTM crosstalk, we integrated the carbamylation data with acetylation and phosphorylation data, leading to the identification 1,183 proteins that were modified by all 3 PTMs. Among these proteins, 54 had all 3 PTMs regulated by lipopolysaccharide and were enriched in immune signaling pathways, and in particular, the ubiquitin-proteasome pathway. We found that carbamylation of linear diubiquitin blocks the activity of the anti-inflammatory deubiquitinase OTULIN. CONCLUSIONS Overall, our data show that anti-acetyllysine antibodies can be used for effective enrichment of carbamylated peptides. Moreover, carbamylation may play a role in PTM crosstalk with acetylation and phosphorylation, and that it is involved in regulating ubiquitination in vitro. Video Abstract.
Collapse
Affiliation(s)
- Youngki You
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Rishi Patel
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Geremy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Mowei Zhou
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
45
|
Li Z, Gong T, Wu Q, Zhang Y, Zheng X, Li Y, Ren B, Peng X, Zhou X. Lysine lactylation regulates metabolic pathways and biofilm formation in Streptococcus mutans. Sci Signal 2023; 16:eadg1849. [PMID: 37669396 DOI: 10.1126/scisignal.adg1849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/11/2023] [Indexed: 09/07/2023]
Abstract
In eukaryotes, lactate produced during glycolysis is involved in regulating multiple metabolic processes through lysine lactylation (Kla). To explore the potential link between metabolism and Kla in prokaryotes, we investigated the distribution of Kla in the cariogenic bacterium Streptococcus mutans during planktonic growth in low-sugar conditions and in biofilm-promoting, high-sugar conditions. We identified 1869 Kla sites in 469 proteins under these two conditions, with the biofilm growth state showing a greater number of lactylated sites and proteins. Although high sugar increased Kla globally, it reduced lactylation of RNA polymerase subunit α (RpoA) at Lys173. Lactylation at this residue inhibited the synthesis of extracellular polysaccharides, a major constituent of the cariogenic biofilm. The Gcn5-related N-acetyltransferase (GNAT) superfamily enzyme GNAT13 exhibited lysine lactyltransferase activity in cells and lactylated Lys173 in RpoA in vitro. Either GNAT13 overexpression or lactylation of Lys173 in RpoA inhibited biofilm formation. These results provide an overview of the distribution and potential functions of Kla and improve our understanding of the role of lactate in the metabolic regulation of prokaryotes.
Collapse
Affiliation(s)
- Zhengyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qinrui Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yixin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Guo L, Liu M, Bi Y, Qi Q, Xian M, Zhao G. Using a synthetic machinery to improve carbon yield with acetylphosphate as the core. Nat Commun 2023; 14:5286. [PMID: 37648707 PMCID: PMC10468489 DOI: 10.1038/s41467-023-41135-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
In microbial cell factory, CO2 release during acetyl-CoA production from pyruvate significantly decreases the carbon atom economy. Here, we construct and optimize a synthetic carbon conserving pathway named as Sedoheptulose-1,7-bisphosphatase Cycle with Trifunctional PhosphoKetolase (SCTPK) in Escherichia coli. This cycle relies on a generalist phosphoketolase Xfspk and converts glucose into the stoichiometric amounts of acetylphosphate (AcP). Furthermore, genetic circuits responding to AcP positively or negatively are created. Together with SCTPK, they constitute a gene-metabolic oscillator that regulates Xfspk and enzymes converting AcP into valuable chemicals in response to intracellular AcP level autonomously, allocating metabolic flux rationally and improving the carbon atom economy of bioconversion process. Using this synthetic machinery, mevalonate is produced with a yield higher than its native theoretical yield, and the highest titer and yield of 3-hydroxypropionate via malonyl-CoA pathway are achieved. This study provides a strategy for improving the carbon yield of microbial cell factories.
Collapse
Affiliation(s)
- Likun Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Min Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yujia Bi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Mo Xian
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Guang Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| |
Collapse
|
47
|
Yayli G, Bernardini A, Sanchez PKM, Scheer E, Damilot M, Essabri K, Morlet B, Negroni L, Vincent SD, Timmers HTM, Tora L. ATAC and SAGA coactivator complexes utilize co-translational assembly, but their cellular localization properties and functions are distinct. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551787. [PMID: 37577620 PMCID: PMC10418265 DOI: 10.1101/2023.08.03.551787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
To understand the function of multisubunit complexes it is of key importance to uncover the precise mechanisms that guide their assembly. Nascent proteins can find and bind their interaction partners during their translation, leading to co-translational assembly. Here we demonstrate that the core modules of ATAC (ADA-Two-A-Containing) and SAGA (Spt-Ada-Gcn5-acetyltransferase), two lysine acetyl transferase-containing transcription coactivator complexes, assemble co-translationally in the cytoplasm of mammalian cells. In addition, SAGA complex containing all of its modules forms in the cytoplasm and acetylates non-histones proteins. In contrast, fully assembled ATAC complex cannot be detected in the cytoplasm of mammalian cells. However, endogenous ATAC complex containing two functional modules forms and functions in the nucleus. Thus, the two related coactivators, ATAC and SAGA, assemble by using co-translational pathways, but their subcellular localization, cytoplasmic abundance and functions are distinct.
Collapse
Affiliation(s)
- Gizem Yayli
- Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Medicale, U1258, Illkirch, France
- Universite de Strasbourg, Illkirch, France
| | - Andrea Bernardini
- Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Medicale, U1258, Illkirch, France
- Universite de Strasbourg, Illkirch, France
| | - Paulina Karen Mendoza Sanchez
- German Cancer Consortium (DKTK) partner site Freiburg, German Cancer Research, Center (DKFZ) and Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Elisabeth Scheer
- Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Medicale, U1258, Illkirch, France
- Universite de Strasbourg, Illkirch, France
| | - Mylène Damilot
- Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Medicale, U1258, Illkirch, France
- Universite de Strasbourg, Illkirch, France
| | - Karim Essabri
- Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Medicale, U1258, Illkirch, France
- Universite de Strasbourg, Illkirch, France
| | - Bastien Morlet
- Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Medicale, U1258, Illkirch, France
- Universite de Strasbourg, Illkirch, France
| | - Luc Negroni
- Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Medicale, U1258, Illkirch, France
- Universite de Strasbourg, Illkirch, France
| | - Stéphane D. Vincent
- Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Medicale, U1258, Illkirch, France
- Universite de Strasbourg, Illkirch, France
| | - HT Marc Timmers
- German Cancer Consortium (DKTK) partner site Freiburg, German Cancer Research, Center (DKFZ) and Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
| | - László Tora
- Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Medicale, U1258, Illkirch, France
- Universite de Strasbourg, Illkirch, France
| |
Collapse
|
48
|
Bardani E, Kallemi P, Tselika M, Katsarou K, Kalantidis K. Spotlight on Plant Bromodomain Proteins. BIOLOGY 2023; 12:1076. [PMID: 37626962 PMCID: PMC10451976 DOI: 10.3390/biology12081076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023]
Abstract
Bromodomain-containing proteins (BRD-proteins) are the "readers" of histone lysine acetylation, translating chromatin state into gene expression. They act alone or as components of larger complexes and exhibit diverse functions to regulate gene expression; they participate in chromatin remodeling complexes, mediate histone modifications, serve as scaffolds to recruit transcriptional regulators or act themselves as transcriptional co-activators or repressors. Human BRD-proteins have been extensively studied and have gained interest as potential drug targets for various diseases, whereas in plants, this group of proteins is still not well investigated. In this review, we aimed to concentrate scientific knowledge on these chromatin "readers" with a focus on Arabidopsis. We organized plant BRD-proteins into groups based on their functions and domain architecture and summarized the published work regarding their interactions, activity and diverse functions. Overall, it seems that plant BRD-proteins are indispensable components and fine-tuners of the complex network plants have built to regulate development, flowering, hormone signaling and response to various biotic or abiotic stresses. This work will facilitate the understanding of their roles in plants and highlight BRD-proteins with yet undiscovered functions.
Collapse
Affiliation(s)
- Eirini Bardani
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece
| | - Paraskevi Kallemi
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
| | - Martha Tselika
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
| | - Konstantina Katsarou
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece
| | - Kriton Kalantidis
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece
| |
Collapse
|
49
|
Jiang HW, Chen H, Zheng YX, Wang XN, Meng Q, Xie J, Zhang J, Zhang C, Xu ZW, Chen ZQ, Wang L, Kong WS, Zhou K, Ma ML, Zhang HN, Guo SJ, Xue JB, Hou JL, Liu ZY, Niu WX, Wang FJ, Wang T, Li W, Wang RN, Dang YJ, Czajkowsky DM, Pei J, Dong JJ, Tao SC. Specific pupylation as IDEntity reporter (SPIDER) for the identification of protein-biomolecule interactions. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1869-1887. [PMID: 37059927 PMCID: PMC10103678 DOI: 10.1007/s11427-023-2316-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 04/16/2023]
Abstract
Protein-biomolecule interactions play pivotal roles in almost all biological processes. For a biomolecule of interest, the identification of the interacting protein(s) is essential. For this need, although many assays are available, highly robust and reliable methods are always desired. By combining a substrate-based proximity labeling activity from the pupylation pathway of Mycobacterium tuberculosis and the streptavidin (SA)-biotin system, we developed the Specific Pupylation as IDEntity Reporter (SPIDER) method for identifying protein-biomolecule interactions. Using SPIDER, we validated the interactions between the known binding proteins of protein, DNA, RNA, and small molecule. We successfully applied SPIDER to construct the global protein interactome for m6A and mRNA, identified a variety of uncharacterized m6A binding proteins, and validated SRSF7 as a potential m6A reader. We globally identified the binding proteins for lenalidomide and CobB. Moreover, we identified SARS-CoV-2-specific receptors on the cell membrane. Overall, SPIDER is powerful and highly accessible for the study of protein-biomolecule interactions.
Collapse
Affiliation(s)
- He-Wei Jiang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hong Chen
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yun-Xiao Zheng
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xue-Ning Wang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qingfeng Meng
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jin Xie
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jiong Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200240, China
| | - ChangSheng Zhang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhao-Wei Xu
- Key Laboratory of Gastrointestinal Cancer, Fujian Medical University, Ministry of Education, Fuzhou, 350122, China
| | - Zi-Qing Chen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08540, USA
| | - Lei Wang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei-Sha Kong
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kuan Zhou
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ming-Liang Ma
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hai-Nan Zhang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shu-Juan Guo
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun-Biao Xue
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing-Li Hou
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhe-Yi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wen-Xue Niu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Fang-Jun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tao Wang
- Institute of Systems Biology, Shenzhen Bay Laboratory, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Rui-Na Wang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200240, China
| | - Yong-Jun Dang
- Center for Novel Target and Therapeutic Intervention, Chongqing Medical University, Chongqing, 400016, China
| | - Daniel M Czajkowsky
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - JianFeng Pei
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Jia-Jia Dong
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200240, China.
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
50
|
Sun Y, Zhang Y, Zhao T, Luan Y, Wang Y, Yang C, Shen B, Huang X, Li G, Zhao S, Zhao G, Wang Q. Acetylation coordinates the crosstalk between carbon metabolism and ammonium assimilation in Salmonella enterica. EMBO J 2023; 42:e112333. [PMID: 37183585 PMCID: PMC10308350 DOI: 10.15252/embj.2022112333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/21/2023] [Accepted: 04/28/2023] [Indexed: 05/16/2023] Open
Abstract
Enteric bacteria use up to 15% of their cellular energy for ammonium assimilation via glutamine synthetase (GS)/glutamate synthase (GOGAT) and glutamate dehydrogenase (GDH) in response to varying ammonium availability. However, the sensory mechanisms for effective and appropriate coordination between carbon metabolism and ammonium assimilation have not been fully elucidated. Here, we report that in Salmonella enterica, carbon metabolism coordinates the activities of GS/GDH via functionally reversible protein lysine acetylation. Glucose promotes Pat acetyltransferase-mediated acetylation and activation of adenylylated GS. Simultaneously, glucose induces GDH acetylation to inactivate the enzyme by impeding its catalytic centre, which is reversed upon GDH deacetylation by deacetylase CobB. Molecular dynamics (MD) simulations indicate that adenylylation is required for acetylation-dependent activation of GS. We show that acetylation and deacetylation occur within minutes of "glucose shock" to promptly adapt to ammonium/carbon variation and finely balance glutamine/glutamate synthesis. Finally, in a mouse infection model, reduced S. enterica growth caused by the expression of adenylylation-mimetic GS is rescued by acetylation-mimicking mutations. Thus, glucose-driven acetylation integrates signals from ammonium assimilation and carbon metabolism to fine-tune bacterial growth control.
Collapse
Affiliation(s)
- Yunwei Sun
- Department of Gastroenterology of Ruijin Hospital, Shanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuebin Zhang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Tingting Zhao
- Department of Gastroenterology of Ruijin Hospital, Shanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi Luan
- Department of Pharmacology, Vascular Biology and Therapeutic ProgramYale University School of MedicineNew HavenCTUSA
| | - Ying Wang
- Department of Gastroenterology of Ruijin Hospital, Shanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chen Yang
- CAS‐Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Bo Shen
- Department of Gastroenterology of Ruijin Hospital, Shanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xi Huang
- Department of Gastroenterology of Ruijin Hospital, Shanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Shimin Zhao
- State Key Lab of Genetic Engineering & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Department of Microbiology and Microbial Engineering, School of Life SciencesFudan UniversityShanghaiChina
- Collaborative Innovation Center for Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Guo‐ping Zhao
- CAS‐Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
- State Key Lab of Genetic Engineering & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Department of Microbiology and Microbial Engineering, School of Life SciencesFudan UniversityShanghaiChina
- Shanghai‐MOST Key Laboratory of Disease and Health GenomicsChinese National Human Genome Center at ShanghaiShanghaiChina
- Department of Microbiology and Li KaShing Institute of Health SciencesThe Chinese University of Hong Kong, Prince of Wales HospitalShatin, New Territories, Hong Kong SARChina
| | - Qijun Wang
- Department of Gastroenterology of Ruijin Hospital, Shanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Pharmacology, Vascular Biology and Therapeutic ProgramYale University School of MedicineNew HavenCTUSA
| |
Collapse
|