1
|
Suwittayarak R, Klincumhom N, Phrueksotsai C, Limjeerajarus N, Limjeerajarus CN, Egusa H, Osathanon T. Shear stress preconditioning enhances periodontal ligament stem cell survival. Arch Oral Biol 2025; 173:106232. [PMID: 40086040 DOI: 10.1016/j.archoralbio.2025.106232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
OBJECTIVE The study investigated in vitro the influences of shear stress preconditioning on human periodontal ligament stem cells (hPDLSCs) under serum deprivation. DESIGN hPDLSCs were subjected to shear stress at 0.5 and 5 dyn/cm², both with and without serum starvation. Cell viability and apoptosis were assessed using the Resazurin assay and flow cytometry analysis, respectively. Gene and protein expressions were analysed by real-time polymerase chain reaction, immunofluorescent staining, and Western blotting. RESULTS Our results revealed that shear stress potentially mitigated serum derivation-induced cell death by inducing cell viability, enhancing colony formation, and inhibiting cell apoptosis. The addition of an ERK inhibitor inhibited the shear stress-induced cell apoptosis resistance. Shear stress treatment upregulated cell viability-related gene expression, including SOX2, SOD1 and BIRC5. In particular, shear stress promoted the nuclear translocation of SOX2. Meanwhile, the expression of BIRC5 was not inhibited by cycloheximide. Shear stress-induced SOX2 and BIRC5 expression was attenuated by PI3K and ERK inhibitors, respectively. CONCLUSIONS Shear stress contributes to promoting SOX2 and BIRC5 expression by hPDLSCs, implicating the promotion of stemness and cell survival under serum starvation.
Collapse
Affiliation(s)
- Ravipha Suwittayarak
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nuttha Klincumhom
- Center of Excellence for Regenerative Dentistry and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chaloemrit Phrueksotsai
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nuttapol Limjeerajarus
- Office of Academic Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chalida Nakalekha Limjeerajarus
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
2
|
Angelova DM, Tsolova A, Prater M, Ballasy N, Bacon W, Hamilton RS, Blackwell D, Yu Z, Li X, Liu X, Hemberger M, Charnock-Jones DS. Single-cell RNA sequencing identifies CXADR as a fate determinant of the placental exchange surface. Nat Commun 2025; 16:142. [PMID: 39747179 PMCID: PMC11695997 DOI: 10.1038/s41467-024-55597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
The placenta is the critical interface between mother and fetus, and consequently, placental dysfunction underlies many pregnancy complications. Placental formation requires an adequate expansion of trophoblast stem and progenitor cells followed by finely tuned lineage specification events. Here, using single-cell RNA sequencing of mouse trophoblast stem cells during the earliest phases of differentiation, we identify gatekeepers of the stem cell state, notably Nicol1, and uncover unsuspected trajectories of cell lineage diversification as well as regulators of lineage entry points. We show that junctional zone precursors and precursors of one of the two syncytial layers of the mouse placental labyrinth, the Syncytiotrophoblast-I lineage, initially share similar trajectories. Importantly, our functional analysis of one such lineage precursor marker, CXADR, demonstrates that this cell surface protein regulates the differentiation dynamics between the two syncytial layers of the mouse labyrinth, ensuring the correct establishment of the placental exchange surface. Deciphering the mechanisms underlying trophoblast lineage specification will inform our understanding of human pregnancy in health and disease.
Collapse
Affiliation(s)
- Dafina M Angelova
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
- Loke Centre for Trophoblast Research, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Aleksandra Tsolova
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada
| | - Malwina Prater
- Loke Centre for Trophoblast Research, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Functional Genomics Centre, Cancer Research Horizons, Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
| | - Noura Ballasy
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada
| | - Wendi Bacon
- Loke Centre for Trophoblast Research, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- School of Life, Health & Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Russell S Hamilton
- Loke Centre for Trophoblast Research, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Danielle Blackwell
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada
| | - Ziyi Yu
- College of Chemical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xin Li
- Sphere Fluidics Ltd., Building One, Granta Centre, Granta Park, Great Abington, Cambridge, England, United Kingdom
| | - Xin Liu
- Sphere Fluidics Ltd., Building One, Granta Centre, Granta Park, Great Abington, Cambridge, England, United Kingdom
| | - Myriam Hemberger
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada.
| | - D Stephen Charnock-Jones
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom.
- Loke Centre for Trophoblast Research, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
3
|
Ballasy N, Apantaku I, Dean W, Hemberger M. Off to a good start: The importance of the placental exchange surface - Lessons from the mouse. Dev Biol 2025; 517:248-264. [PMID: 39491740 DOI: 10.1016/j.ydbio.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/04/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The role of the chorio-allantoic placenta as the critical nutrient- and oxygen-supplying organ to nourish the demands of the fetus has been well recognized. This function relies on the successful establishment of the placental feto-maternal exchange unit, or interhaemal barrier, across which all nutrients as well as waste products must pass to cross from the maternal to the fetal blood circulation, or vice versa, respectively. As a consequence, defects in the establishment of this elaborate interface lead to fetal growth retardation or even embryonic lethality, depending on the severity of the defect. Beyond this essential role, however, it has also emerged that the functionality of the feto-maternal interface dictates the proper development of specific embryonic organs, with tightest links observed to the formation of the heart. In this article, we build on the foundational strength of the mouse as experimental model in which the placental causality of embryonic defects can be genetically proven. We discuss in detail the formation of the interhaemal barrier that makes up the labyrinth layer of the murine placenta, including insights into drivers of its formation and the interdependence of the cell types that make up this essential interface, from in vivo and in vitro data using mouse trophoblast stem cells. We highlight mouse genetic tools that enable the elucidation of cause-effect relationships between defects driven by either the trophoblast cells of the placenta or by embryonic cell types. We specifically emphasize gene knockouts for which a placental causality of embryonic heart defects has been demonstrated. This in-depth perspective provides much-needed insights while highlighting remaining gaps in knowledge that are essential for gaining a better understanding of the multi-facetted roles of the placenta in setting us up for a healthy start in life well beyond nutritional support alone.
Collapse
Affiliation(s)
- Noura Ballasy
- Dept. of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Ifeoluwa Apantaku
- Dept. of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Wendy Dean
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada; Dept. of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Myriam Hemberger
- Dept. of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
4
|
Li S, Li J, Xu J, Shen Y, Shang X, Li H, Wang J, Liu Y, Qiang L, Qiao Z, Wang J, He Y, Hu Y. Removal-Free and Multicellular Suspension Bath-Based 3D Bioprinting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406891. [PMID: 39394784 DOI: 10.1002/adma.202406891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/27/2024] [Indexed: 10/14/2024]
Abstract
Suspension bath-based 3D bioprinting (SUB3BP) is effective in creating engineered vascular structures. The transfer of oxygen and nutrients via engineered vascular networks is necessary for tissue or organ survival and integration following transplantation. Existing SUB3BP techniques face challenges in fabricating hierarchical structures with multicellular organization, including issues related to suspension bath removal, restricted material choices, and low accuracy. A next-generation SUB3BP technique that is removal-free and multicellular is presented. A simple, storable, stable, and scalable starch hydrogel design leverages the diverse spectrum of hydrogels available for use in SUB3BP. Starch granules (8.1 µm) create vascular structures with minimal surface roughness (2.5 µm) that simulate more natural vessel walls compared to prior research. The development of cells and organoids, as well as the bioprinting of multicellular skin models with vasculature, demonstrates that starch suspension baths eliminate the removal process and have the potential for fabricating artificial tissue with a hierarchical structure and multicellular distribution.
Collapse
Affiliation(s)
- Shuai Li
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jianping Li
- Zhejiang Key Laboratory of Precision Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jian Xu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yifan Shen
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiushuai Shang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Hangyu Li
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jingwen Wang
- Zhejiang Key Laboratory of Precision Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yihao Liu
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Lei Qiang
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhiguang Qiao
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jinwu Wang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yong He
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yihe Hu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| |
Collapse
|
5
|
Niharika, Ureka L, Roy A, Patra SK. Dissecting SOX2 expression and function reveals an association with multiple signaling pathways during embryonic development and in cancer progression. Biochim Biophys Acta Rev Cancer 2024; 1879:189136. [PMID: 38880162 DOI: 10.1016/j.bbcan.2024.189136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
SRY (Sex Determining Region) box 2 (SOX2) is an essential transcription factor that plays crucial roles in activating genes involved in pre- and post-embryonic development, adult tissue homeostasis, and lineage specifications. SOX2 maintains the self-renewal property of stem cells and is involved in the generation of induced pluripotency stem cells. SOX2 protein contains a particular high-mobility group domain that enables SOX2 to achieve the capacity to participate in a broad variety of functions. The information about the involvement of SOX2 with gene regulatory elements, signaling networks, and microRNA is gradually emerging, and the higher expression of SOX2 is functionally relevant to various cancer types. SOX2 facilitates the oncogenic phenotype via cellular proliferation and enhancement of invasive tumor properties. Evidence are accumulating in favor of three dimensional (higher order) folding of chromatin and epigenetic control of the SOX2 gene by chromatin modifications, which implies that the expression level of SOX2 can be modulated by epigenetic regulatory mechanisms, specifically, via DNA methylation and histone H3 modification. In view of this, and to focus further insights into the roles SOX2 plays in physiological functions, involvement of SOX2 during development, precisely, the advances of our knowledge in pre- and post-embryonic development, and interactions of SOX2 in this scenario with various signaling pathways in tumor development and cancer progression, its potential as a therapeutic target against many cancers are summarized and discussed in this article.
Collapse
Affiliation(s)
- Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Lina Ureka
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
6
|
Zheng Y, Zha X, Zhang B, Elsabagh M, Wang H, Wang M, Zhang H. The interaction of ER stress and autophagy in trophoblasts: navigating pregnancy outcome†. Biol Reprod 2024; 111:292-311. [PMID: 38678504 DOI: 10.1093/biolre/ioae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024] Open
Abstract
The endoplasmic reticulum is a complex and dynamic organelle that initiates unfolded protein response and endoplasmic reticulum stress in response to the accumulation of unfolded or misfolded proteins within its lumen. Autophagy is a paramount intracellular degradation system that facilitates the transportation of proteins, cytoplasmic components, and organelles to lysosomes for degradation and recycling. Preeclampsia and intrauterine growth retardation are two common complications of pregnancy associated with abnormal trophoblast differentiation and placental dysfunctions and have a major impact on fetal development and maternal health. The intricate interplay between endoplasmic reticulum stress, and autophagy and their impact on pregnancy outcomes, through mediating trophoblast differentiation and placental development, has been highlighted in various reports. Autophagy controls trophoblast regulation through a variety of gene expressions and signaling pathways while excessive endoplasmic reticulum stress triggers downstream apoptotic signaling, culminating in trophoblast apoptosis. This comprehensive review delves into the intricacies of placental development and explores the underlying mechanisms of preeclampsia and intrauterine growth retardation. In addition, this review will elucidate the molecular mechanisms of endoplasmic reticulum stress and autophagy, both individually and in their interplay, in mediating placental development and trophoblast differentiation, particularly highlighting their roles in preeclampsia and intrauterine growth retardation development. This research seeks to the interplay between endoplasmic reticulum stress and impaired autophagy in the placental trophoderm, offering novel insights into their contribution to pregnancy complications.
Collapse
Affiliation(s)
- Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Bei Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde, Turkey
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, KafrelSheikh, Egypt
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Science, Shihezi, P. R. China
| | - Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
7
|
Li L, Lai F, Liu L, Lu X, Hu X, Liu B, Lin Z, Fan Q, Kong F, Xu Q, Xie W. Lineage regulators TFAP2C and NR5A2 function as bipotency activators in totipotent embryos. Nat Struct Mol Biol 2024; 31:950-963. [PMID: 38243114 DOI: 10.1038/s41594-023-01199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/05/2023] [Indexed: 01/21/2024]
Abstract
During the first lineage segregation, a mammalian totipotent embryo differentiates into the inner cell mass (ICM) and trophectoderm (TE). However, how transcription factors (TFs) regulate this earliest cell-fate decision in vivo remains elusive, with their regulomes primarily inferred from cultured cells. Here, we investigated the TF regulomes during the first lineage specification in early mouse embryos, spanning the pre-initiation, initiation, commitment, and maintenance phases. Unexpectedly, we found that TFAP2C, a trophoblast regulator, bound and activated both early TE and inner cell mass (ICM) genes at the totipotent (two- to eight-cell) stages ('bipotency activation'). Tfap2c deficiency caused downregulation of early ICM genes, including Nanog, Nr5a2, and Tdgf1, and early TE genes, including Tfeb and Itgb5, in eight-cell embryos. Transcription defects in both ICM and TE lineages were also found in blastocysts, accompanied by increased apoptosis and reduced cell numbers in ICMs. Upon trophoblast commitment, TFAP2C left early ICM genes but acquired binding to late TE genes in blastocysts, where it co-bound with CDX2, and later to extra-embryonic ectoderm (ExE) genes, where it cooperatively co-occupied with the former ICM regulator SOX2. Finally, 'bipotency activation' in totipotent embryos also applied to a pluripotency regulator NR5A2, which similarly bound and activated both ICM and TE lineage genes at the eight-cell stage. These data reveal a unique transcription circuity of totipotency underpinned by highly adaptable lineage regulators.
Collapse
Affiliation(s)
- Lijia Li
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Fangnong Lai
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Ling Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xukun Lu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xiaoyu Hu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Bofeng Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zili Lin
- College of Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Qiang Fan
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Feng Kong
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qianhua Xu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
8
|
Saha D, Animireddy S, Bartholomew B. The SWI/SNF ATP-dependent chromatin remodeling complex in cell lineage priming and early development. Biochem Soc Trans 2024; 52:603-616. [PMID: 38572912 PMCID: PMC11088921 DOI: 10.1042/bst20230416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
ATP dependent chromatin remodelers have pivotal roles in transcription, DNA replication and repair, and maintaining genome integrity. SWI/SNF remodelers were first discovered in yeast genetic screens for factors involved in mating type switching or for using alternative energy sources therefore termed SWI/SNF complex (short for SWItch/Sucrose NonFermentable). The SWI/SNF complexes utilize energy from ATP hydrolysis to disrupt histone-DNA interactions and shift, eject, or reposition nucleosomes making the underlying DNA more accessible to specific transcription factors and other regulatory proteins. In development, SWI/SNF orchestrates the precise activation and repression of genes at different stages, safe guards the formation of specific cell lineages and tissues. Dysregulation of SWI/SNF have been implicated in diseases such as cancer, where they can drive uncontrolled cell proliferation and tumor metastasis. Additionally, SWI/SNF defects are associated with neurodevelopmental disorders, leading to disruption of neural development and function. This review offers insights into recent developments regarding the roles of the SWI/SNF complex in pluripotency and cell lineage primining and the approaches that have helped delineate its importance. Understanding these molecular mechanisms is crucial for unraveling the intricate processes governing embryonic stem cell biology and developmental transitions and may potentially apply to human diseases linked to mutations in the SWI/SNF complex.
Collapse
Affiliation(s)
- Dhurjhoti Saha
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77054, U.S.A
| | - Srinivas Animireddy
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77054, U.S.A
| | - Blaine Bartholomew
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77054, U.S.A
| |
Collapse
|
9
|
Yang Y, Jia W, Luo Z, Li Y, Liu H, Fu L, Li J, Jiang Y, Lai J, Li H, Saeed BJ, Zou Y, Lv Y, Wu L, Zhou T, Shan Y, Liu C, Lai Y, Liu L, Hutchins AP, Esteban MA, Mazid MA, Li W. VGLL1 cooperates with TEAD4 to control human trophectoderm lineage specification. Nat Commun 2024; 15:583. [PMID: 38233381 PMCID: PMC10794710 DOI: 10.1038/s41467-024-44780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/05/2024] [Indexed: 01/19/2024] Open
Abstract
In contrast to rodents, the mechanisms underlying human trophectoderm and early placenta specification are understudied due to ethical barriers and the scarcity of embryos. Recent reports have shown that human pluripotent stem cells (PSCs) can differentiate into trophectoderm (TE)-like cells (TELCs) and trophoblast stem cells (TSCs), offering a valuable in vitro model to study early placenta specification. Here, we demonstrate that the VGLL1 (vestigial-like family member 1), which is highly expressed during human and non-human primate TE specification in vivo but is negligibly expressed in mouse, is a critical regulator of cell fate determination and self-renewal in human TELCs and TSCs derived from naïve PSCs. Mechanistically, VGLL1 partners with the transcription factor TEAD4 (TEA domain transcription factor 4) to regulate chromatin accessibility at target gene loci through histone acetylation and acts in cooperation with GATA3 and TFAP2C. Our work is relevant to understand primate early embryogenesis and how it differs from other mammalian species.
Collapse
Affiliation(s)
- Yueli Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenqi Jia
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiwei Luo
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Yunpan Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Hao Liu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Lixin Fu
- University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Shenzhen, China
| | - Jinxiu Li
- University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Shenzhen, China
| | - Yu Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Junjian Lai
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
- BGI Research, Shenzhen, China
| | - Haiwei Li
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Babangida Jabir Saeed
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Yi Zou
- BGI Research, Shenzhen, China
| | - Yuan Lv
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
- BGI Research, Shenzhen, China
| | - Liang Wu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Ting Zhou
- Stem Cell Research Facility, Sloan Kettering Institute, New York, NY, USA
| | - Yongli Shan
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | | | - Yiwei Lai
- BGI Research, Shenzhen, China
- BGI Research, Hangzhou, China
| | - Longqi Liu
- BGI Research, Shenzhen, China
- BGI Research, Hangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Miguel A Esteban
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China.
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.
- BGI Research, Shenzhen, China.
- BGI Research, Hangzhou, China.
| | - Md Abdul Mazid
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China.
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.
| | - Wenjuan Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China.
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.
| |
Collapse
|
10
|
Dou C, Wu L, Zhang J, He H, Xu T, Yu Z, Su P, Zhang X, Wang J, Miao YL, Zhou J. The transcriptional activator Klf5 recruits p300-mediated H3K27ac for maintaining trophoblast stem cell pluripotency. J Mol Cell Biol 2024; 15:mjad045. [PMID: 37533201 PMCID: PMC10768793 DOI: 10.1093/jmcb/mjad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/14/2023] [Accepted: 05/11/2023] [Indexed: 08/04/2023] Open
Abstract
The effective proliferation and differentiation of trophoblast stem cells (TSCs) is indispensable for the development of the placenta, which is the key to maintaining normal fetal growth during pregnancy. Kruppel-like factor 5 (Klf5) is implicated in the activation of pluripotency gene expression in embryonic stem cells (ESCs), yet its function in TSCs is poorly understood. Here, we showed that Klf5 knockdown resulted in the downregulation of core TSC-specific genes, consequently causing rapid differentiation of TSCs. Consistently, Klf5-depleted embryos lost the ability to establish TSCs in vitro. At the molecular level, Klf5 preferentially occupied the proximal promoter regions and maintained an open chromatin architecture of key TSC-specific genes. Deprivation of Klf5 impaired the enrichment of p300, a major histone acetyl transferase of H3 lysine 27 acetylation (H3K27ac), and further reduced the occupancy of H3K27ac at promoter regions, leading to decreased transcriptional activity of TSC pluripotency genes. Thus, our findings highlight a novel mechanism of Klf5 in regulating the self-renewal and differentiation of TSCs and provide a reference for understanding placental development and improving pregnancy rates.
Collapse
Affiliation(s)
- Chengli Dou
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Linhui Wu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Jingjing Zhang
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Hainan He
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Tian Xu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Zhisheng Yu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Peng Su
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Xia Zhang
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Junling Wang
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic, Edong Healthcare Group, Huangshi 435000, China
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jilong Zhou
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| |
Collapse
|
11
|
Huang L, Zhu X, Li Q, Kong D, Huang Q, Luo J, Kong S, Peng Y, Zhang Y. Distinct enhancer-promoter modes determine Sox2 regulation in mouse pluripotent cells. Genes Dis 2024; 11:26-29. [PMID: 37588210 PMCID: PMC10425743 DOI: 10.1016/j.gendis.2022.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/18/2022] [Indexed: 12/29/2022] Open
Affiliation(s)
- Lei Huang
- Animal Functional Genomics Group, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MAPA, Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Xiusheng Zhu
- Animal Functional Genomics Group, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MAPA, Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Qing Li
- Animal Functional Genomics Group, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MAPA, Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Dashuai Kong
- Animal Functional Genomics Group, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MAPA, Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Qitong Huang
- Animal Functional Genomics Group, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MAPA, Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen 6708PB, Netherlands
| | - Jing Luo
- Animal Functional Genomics Group, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MAPA, Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Siyuan Kong
- Animal Functional Genomics Group, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MAPA, Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Yanling Peng
- Animal Functional Genomics Group, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MAPA, Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Yubo Zhang
- Animal Functional Genomics Group, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MAPA, Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, China
| |
Collapse
|
12
|
Mao Q, Ye Q, Xu Y, Jiang J, Fan Y, Zhuang L, Liu G, Wang T, Zhang Z, Feng T, Kong S, Lu J, Zhang H, Wang H, Lin CP. Murine trophoblast organoids as a model for trophoblast development and CRISPR-Cas9 screening. Dev Cell 2023; 58:2992-3008.e7. [PMID: 38056451 DOI: 10.1016/j.devcel.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/27/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
The placenta becomes one of the most diversified organs during placental mammal radiation. The main in vitro model for studying mouse trophoblast development is the 2D differentiation model of trophoblast stem cells, which is highly skewed to certain lineages and thus hampers systematic screens. Here, we established culture conditions for the establishment, maintenance, and differentiation of murine trophoblast organoids. Murine trophoblast organoids under the maintenance condition contain stem cell-like populations, whereas differentiated organoids possess various trophoblasts resembling placental ones in vivo. Ablation of Nubpl or Gcm1 in trophoblast organoids recapitulated their deficiency phenotypes in vivo, suggesting that those organoids are valid in vitro models for trophoblast development. Importantly, we performed an efficient CRISPR-Cas9 screening in mouse trophoblast organoids using a focused sgRNA (single guide RNA) library targeting G protein-coupled receptors. Together, our results establish an organoid model to investigate mouse trophoblast development and a practicable approach to performing forward screening in trophoblast lineages.
Collapse
Affiliation(s)
- Qian Mao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qinying Ye
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yiwen Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jingwei Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yunhao Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lili Zhuang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Guohui Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tengfei Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhenwu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Teng Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jinhua Lu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hui Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
13
|
Zhao X, Radford BN, Ungrin M, Dean W, Hemberger M. The Trophoblast Compartment Helps Maintain Embryonic Pluripotency and Delays Differentiation towards Cardiomyocytes. Int J Mol Sci 2023; 24:12423. [PMID: 37569800 PMCID: PMC10418709 DOI: 10.3390/ijms241512423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Normal developmental progression relies on close interactions between the embryonic and extraembryonic lineages in the pre- and peri-gastrulation stage conceptus. For example, mouse epiblast-derived FGF and NODAL signals are required to maintain a stem-like state in trophoblast cells of the extraembryonic ectoderm, while visceral endoderm signals are pivotal to pattern the anterior region of the epiblast. These developmental stages also coincide with the specification of the first heart precursors. Here, we established a robust differentiation protocol of mouse embryonic stem cells (ESCs) into cardiomyocyte-containing embryoid bodies that we used to test the impact of trophoblast on this key developmental process. Using trophoblast stem cells (TSCs) to produce trophoblast-conditioned medium (TCM), we show that TCM profoundly slows down the cardiomyocyte differentiation dynamics and specifically delays the emergence of cardiac mesoderm progenitors. TCM also strongly promotes the retention of pluripotency transcription factors, thereby sustaining the stem cell state of ESCs. By applying TCM from various mutant TSCs, we further show that those mutations that cause a trophoblast-mediated effect on early heart development in vivo alter the normal cardiomyocyte differentiation trajectory. Our approaches provide a meaningful deconstruction of the intricate crosstalk between the embryonic and the extraembryonic compartments. They demonstrate that trophoblast helps prolong a pluripotent state in embryonic cells and delays early differentiative processes, likely through production of leukemia inhibitory factor (LIF). These data expand our knowledge of the multifaceted signaling interactions among distinct compartments of the early conceptus that ensure normal embryogenesis, insights that will be of significance for the field of synthetic embryo research.
Collapse
Affiliation(s)
- Xiang Zhao
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (B.N.R.); (M.U.)
| | - Bethany N. Radford
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (B.N.R.); (M.U.)
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Mark Ungrin
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (B.N.R.); (M.U.)
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Wendy Dean
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (B.N.R.); (M.U.)
| | - Myriam Hemberger
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (B.N.R.); (M.U.)
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
14
|
Naama M, Rahamim M, Zayat V, Sebban S, Radwan A, Orzech D, Lasry R, Ifrah A, Jaber M, Sabag O, Yassen H, Khatib A, Epsztejn-Litman S, Novoselsky-Persky M, Makedonski K, Deri N, Goldman-Wohl D, Cedar H, Yagel S, Eiges R, Buganim Y. Pluripotency-independent induction of human trophoblast stem cells from fibroblasts. Nat Commun 2023; 14:3359. [PMID: 37291192 PMCID: PMC10250329 DOI: 10.1038/s41467-023-39104-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
Human trophoblast stem cells (hTSCs) can be derived from embryonic stem cells (hESCs) or be induced from somatic cells by OCT4, SOX2, KLF4 and MYC (OSKM). Here we explore whether the hTSC state can be induced independently of pluripotency, and what are the mechanisms underlying its acquisition. We identify GATA3, OCT4, KLF4 and MYC (GOKM) as a combination of factors that can generate functional hiTSCs from fibroblasts. Transcriptomic analysis of stable GOKM- and OSKM-hiTSCs reveals 94 hTSC-specific genes that are aberrant specifically in OSKM-derived hiTSCs. Through time-course-RNA-seq analysis, H3K4me2 deposition and chromatin accessibility, we demonstrate that GOKM exert greater chromatin opening activity than OSKM. While GOKM primarily target hTSC-specific loci, OSKM mainly induce the hTSC state via targeting hESC and hTSC shared loci. Finally, we show that GOKM efficiently generate hiTSCs from fibroblasts that harbor knockout for pluripotency genes, further emphasizing that pluripotency is dispensable for hTSC state acquisition.
Collapse
Affiliation(s)
- Moriyah Naama
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Moran Rahamim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Valery Zayat
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Shulamit Sebban
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Ahmed Radwan
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Dana Orzech
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Rachel Lasry
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Annael Ifrah
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Mohammad Jaber
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Ofra Sabag
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Hazar Yassen
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Areej Khatib
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Silvina Epsztejn-Litman
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, 91031, Jerusalem, Israel
- The Hebrew University School of Medicine, 91120, Jerusalem, Israel
| | - Michal Novoselsky-Persky
- The Magda and Richard Hoffman Laboratory of Human Placental Research, Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Kirill Makedonski
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Noy Deri
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Debra Goldman-Wohl
- The Magda and Richard Hoffman Laboratory of Human Placental Research, Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Howard Cedar
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Simcha Yagel
- The Magda and Richard Hoffman Laboratory of Human Placental Research, Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, 91031, Jerusalem, Israel
- The Hebrew University School of Medicine, 91120, Jerusalem, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel.
| |
Collapse
|
15
|
Hawdon A, Geoghegan ND, Mohenska M, Elsenhans A, Ferguson C, Polo JM, Parton RG, Zenker J. Apicobasal RNA asymmetries regulate cell fate in the early mouse embryo. Nat Commun 2023; 14:2909. [PMID: 37253716 DOI: 10.1038/s41467-023-38436-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
The spatial sorting of RNA transcripts is fundamental for the refinement of gene expression to distinct subcellular regions. Although, in non-mammalian early embryogenesis, differential RNA localisation presages cell fate determination, in mammals it remains unclear. Here, we uncover apical-to-basal RNA asymmetries in outer blastomeres of 16-cell stage mouse preimplantation embryos. Basally directed RNA transport is facilitated in a microtubule- and lysosome-mediated manner. Yet, despite an increased accumulation of RNA transcripts in basal regions, higher translation activity occurs at the more dispersed apical RNA foci, demonstrated by spatial heterogeneities in RNA subtypes, RNA-organelle interactions and translation events. During the transition to the 32-cell stage, the biased inheritance of RNA transcripts, coupled with differential translation capacity, regulates cell fate allocation of trophectoderm and cells destined to form the pluripotent inner cell mass. Our study identifies a paradigm for the spatiotemporal regulation of post-transcriptional gene expression governing mammalian preimplantation embryogenesis and cell fate.
Collapse
Affiliation(s)
- Azelle Hawdon
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Niall D Geoghegan
- Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Monika Mohenska
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, 3800, Australia
- Adelaide Centre for Epigenetics, University of Adelaide, Adelaide, South Australia, Australia
- South Australian immunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Anja Elsenhans
- Department of Biology, University of Duisburg-Essen, Essen, Germany
| | - Charles Ferguson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Jose M Polo
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, 3800, Australia
- Adelaide Centre for Epigenetics, University of Adelaide, Adelaide, South Australia, Australia
- South Australian immunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland, Australia
| | - Jennifer Zenker
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
16
|
Lackner A, Müller M, Gamperl M, Stoeva D, Langmann O, Papuchova H, Roitinger E, Dürnberger G, Imre R, Mechtler K, Latos PA. The Fgf/Erf/NCoR1/2 repressive axis controls trophoblast cell fate. Nat Commun 2023; 14:2559. [PMID: 37137875 DOI: 10.1038/s41467-023-38101-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/15/2023] [Indexed: 05/05/2023] Open
Abstract
Placental development relies on coordinated cell fate decisions governed by signalling inputs. However, little is known about how signalling cues are transformed into repressive mechanisms triggering lineage-specific transcriptional signatures. Here, we demonstrate that upon inhibition of the Fgf/Erk pathway in mouse trophoblast stem cells (TSCs), the Ets2 repressor factor (Erf) interacts with the Nuclear Receptor Co-Repressor Complex 1 and 2 (NCoR1/2) and recruits it to key trophoblast genes. Genetic ablation of Erf or Tbl1x (a component of the NCoR1/2 complex) abrogates the Erf/NCoR1/2 interaction. This leads to mis-expression of Erf/NCoR1/2 target genes, resulting in a TSC differentiation defect. Mechanistically, Erf regulates expression of these genes by recruiting the NCoR1/2 complex and decommissioning their H3K27ac-dependent enhancers. Our findings uncover how the Fgf/Erf/NCoR1/2 repressive axis governs cell fate and placental development, providing a paradigm for Fgf-mediated transcriptional control.
Collapse
Affiliation(s)
- Andreas Lackner
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Michael Müller
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Magdalena Gamperl
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Delyana Stoeva
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Olivia Langmann
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Henrieta Papuchova
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria
| | | | | | - Richard Imre
- Institute of Molecular Pathology, A-1030, Vienna, Austria
| | - Karl Mechtler
- Institute of Molecular Pathology, A-1030, Vienna, Austria
| | - Paulina A Latos
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria.
| |
Collapse
|
17
|
Ozguldez HO, Govindasamy N, Fan R, Long H, Mildner K, Zeuschner D, Trappmann B, Ranga A, Bedzhov I. Polarity inversion reorganizes the stem cell compartment of the trophoblast lineage. Cell Rep 2023; 42:112313. [PMID: 36989113 PMCID: PMC10157138 DOI: 10.1016/j.celrep.2023.112313] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/12/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
The extra-embryonic tissues that form the placenta originate from a small population of trophectoderm cells with stem cell properties, positioned at the embryonic pole of the mouse blastocyst. During the implantation stages, the polar trophectoderm rapidly proliferates and transforms into extra-embryonic ectoderm. The current model of trophoblast morphogenesis suggests that tissue folding reshapes the trophoblast during the blastocyst to egg cylinder transition. Instead of through folding, here we found that the tissue scale architecture of the stem cell compartment of the trophoblast lineage is reorganized via inversion of the epithelial polarity axis. Our findings show the developmental significance of polarity inversion and provide a framework for the morphogenetic transitions in the peri-implantation trophoblast.
Collapse
Affiliation(s)
- Hatice O Ozguldez
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Niraimathi Govindasamy
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Rui Fan
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Hongyan Long
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Karina Mildner
- Electron Microscopy Facility, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Dagmar Zeuschner
- Electron Microscopy Facility, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Britta Trappmann
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Adrian Ranga
- Laboratory of Bioengineering and Morphogenesis, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Ivan Bedzhov
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany.
| |
Collapse
|
18
|
Liang J, Liang J, Tan Q, Wang Z. ELAC2 Functions as a Key Gene in the Early Development of Placental Formation Based on WGCNA. Cells 2023; 12:cells12040613. [PMID: 36831280 PMCID: PMC9954566 DOI: 10.3390/cells12040613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The placenta plays a crucial role in mammalian fetal growth. The most important cell type in the placenta is the trophoblast cell. Many genes have been reported to play important functions in the differentiation of early placental trophoblast cells. Weighted gene co-expression network analysis (WGCNA) is a systematic biological method for describing the correlation patterns among genes across microarray samples. We used WGCNA to screen placental trophoblast development-related genes, and through experimental confirmation, we showed that, among these genes, ELAC2 may play an important regulatory role in the early development of mammalian placental formation. ELAC2 regulates early placental trophoblast differentiation by affecting cell migration and cell proliferation. In addition, ELAC2 may be involved in regulating cell migration processes in a manner that affects epithelial mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Junyong Liang
- College of Animal Sciences, Zhejiang University, Hangzhou 310000, China
| | - Jingjie Liang
- College of Animal Sciences, Zhejiang University, Hangzhou 310000, China
| | - Qiang Tan
- College of Animal Sciences, Zhejiang University, Hangzhou 310000, China
| | - Zhengguang Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310000, China
- Hainan Institute, Zhejiang University, Sanya 572000, China
- Correspondence:
| |
Collapse
|
19
|
Dupont C, Schäffers OJ, Tan BF, Merzouk S, Bindels EM, Zwijsen A, Huylebroeck D, Gribnau J. Efficient generation of ETX embryoids that recapitulate the entire window of murine egg cylinder development. SCIENCE ADVANCES 2023; 9:eadd2913. [PMID: 36652512 PMCID: PMC9848479 DOI: 10.1126/sciadv.add2913] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The murine embryonic-trophoblast-extra-embryonic endoderm (ETX) model is an integrated stem cell-based model to study early postimplantation development. It is based on the self-assembly potential of embryonic, trophoblast, and hypoblast/primitive/visceral endoderm-type stem cell lines (ESC, TSC, and XEN, respectively) to arrange into postimplantation egg cylinder-like embryoids. Here, we provide an optimized method for reliable and efficient generation of ETX embryoids that develop into late gastrulation in static culture conditions. It is based on transgenic Gata6-overproducing ESCs and modified assembly and culture conditions. Using this method, up to 43% of assembled ETX embryoids exhibited a correct spatial distribution of the three stem cell derivatives at day 4 of culture. Of those, 40% progressed into ETX embryoids that both transcriptionally and morphologically faithfully mimicked in vivo postimplantation mouse development between E5.5 and E7.5. The ETX model system offers the opportunity to study the murine postimplantation egg cylinder stages and could serve as a source of various cell lineage precursors.
Collapse
Affiliation(s)
- Cathérine Dupont
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Olivier J. M. Schäffers
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Obstetrics and Fetal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Beatrice F. Tan
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Sarra Merzouk
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Eric M. Bindels
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - An Zwijsen
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
- Oncode Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
20
|
Zhu A, Qi S, Li W, Chen D, Zheng X, Xu J, Feng Y. Hyperglycemia-induced endothelial exosomes trigger trophoblast dysregulation and abnormal placentation through PUM2-mediated repression of SOX2. Hum Exp Toxicol 2023; 42:9603271221149656. [PMID: 36607285 DOI: 10.1177/09603271221149656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Hyperglycemia is closely related to adverse pregnancy outcomes including pre-eclampsia (PE), a life-threatening complication with a substantial morbidity and mortality. However, the pathogenesis of abnormal placentation in gestational diabetes mellitus (GDM)-associated PE remains elusive. METHOD Here we isolated exosomes from the human umbilical vein endothelial cells (HUVECs) treated with normal level of glucose (NG) and high levels of glucose (HG). The exosomes were added to HTR-8a/SVneo cells, a trophoblast cell line. High-throughput RNA-sequencing was performed to analyzed the changed RNAs in the exosomes and exosome-treated HTR-8a/SVneo cells. HTR-8a/SVneo cell phenotypes were evaluated from the aspects of cell proliferation, cell invasion and DNA damage. RESULTS After treatment with HG, the changed RNAs in exosomes was enriched in RNA stabilization and oxidative stress. The altered RNAs in the HTR-8a/SVneo cells treated with exosomes from HG-induced HUVECs were enriched in pathways related to cell adhesion, migration, DNA damage response and angiogenesis. The HG-induced exosomes impaired the proliferation and invasion of HTR-8a cells and caused the DNA damage. HG up-regulated PUM2 in the exosomes and exosome-treated HTR-8a/SVneo cells. PUM2 interacted with SOX2 mRNA, resulting in the mRNA degradation. Overexpression of SOX2 prevented the damage to HTR-8a/SVneo cells caused by the exosomes from HG-induced HUVECs. CONCLUSIONS We demonstrate that high glucose-induced endothelial exosomes mediate abnormal phenotypes of trophoblasts through PUM2-mediated repression of SOX2. Our results reveal a novel regulatory mechanism of hyperglycemia in development of abnormal placentation and provide potential targets for preventing adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Aibing Zhu
- Department of Anesthesiology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, 12461Jiangnan University, Jiangsu, China
| | - Suwan Qi
- Department of Obstetrics and Gynecology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, 12461Jiangnan University, Jiangsu, China
| | - Wenjuan Li
- Department of Obstetrics and Gynecology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, 12461Jiangnan University, Jiangsu, China
| | - Dashu Chen
- Department of Obstetrics and Gynecology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, 12461Jiangnan University, Jiangsu, China
| | - Xiaomin Zheng
- Department of Obstetrics and Gynecology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, 12461Jiangnan University, Jiangsu, China
| | - Jianjuan Xu
- Department of Obstetrics and Gynecology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, 12461Jiangnan University, Jiangsu, China
| | - Yaling Feng
- Department of Obstetrics and Gynecology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, 12461Jiangnan University, Jiangsu, China
| |
Collapse
|
21
|
Sathyanarayanan A, Ing-Simmons E, Chen R, Jeong HW, Ozguldez HO, Fan R, Duethorn B, Kim KP, Kim YS, Stehling M, Brinkmann H, Schöler HR, Adams RH, Vaquerizas JM, Bedzhov I. Early developmental plasticity enables the induction of an intermediate extraembryonic cell state. SCIENCE ADVANCES 2022; 8:eabl9583. [PMID: 36332016 PMCID: PMC9635831 DOI: 10.1126/sciadv.abl9583] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/19/2022] [Indexed: 05/23/2023]
Abstract
Two fundamental elements of pre-implantation embryogenesis are cells' intrinsic self-organization program and their developmental plasticity, which allows embryos to compensate for alterations in cell position and number; yet, these elements are still poorly understood. To be able to decipher these features, we established culture conditions that enable the two fates of blastocysts' extraembryonic lineages-the primitive endoderm and the trophectoderm-to coexist. This plasticity emerges following the mechanisms of the first lineage segregation in the mouse embryo, and it manifests as an extended potential for extraembryonic chimerism during the pre-implantation embryogenesis. Moreover, this shared state enables robust assembly into higher-order blastocyst-like structures, thus combining both the cell fate plasticity and self-organization features of the early extraembryonic lineages.
Collapse
Affiliation(s)
- Anusha Sathyanarayanan
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Elizabeth Ing-Simmons
- Regulatory Genomics Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Rui Chen
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Hyun-Woo Jeong
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
- Faculty of Medicine, University of Münster, Röntgenstrasse 20, 48149 Münster, Germany
| | - Hatice O. Ozguldez
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Rui Fan
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Binyamin Duethorn
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Kee-Pyo Kim
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero Seocho-gu, Seoul 06591, Korea
| | - Yung Su Kim
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Heike Brinkmann
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Hans R. Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Ralf H. Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
- Faculty of Medicine, University of Münster, Röntgenstrasse 20, 48149 Münster, Germany
| | - Juan M. Vaquerizas
- Regulatory Genomics Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Ivan Bedzhov
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| |
Collapse
|
22
|
Malik V, Zang R, Fuentes-Iglesias A, Huang X, Li D, Fidalgo M, Zhou H, Wang J. Comparative functional genomics identifies unique molecular features of EPSCs. Life Sci Alliance 2022; 5:5/11/e202201608. [PMID: 35961778 PMCID: PMC9378845 DOI: 10.26508/lsa.202201608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/03/2022] Open
Abstract
The authors provide a comprehensive resource on proteomics, transcriptomic, and epigenetic level details of EPSCs to shed light on possible molecular pathways regulating their expanded pluripotency potential. Extended pluripotent or expanded potential stem cells (EPSCs) possess superior developmental potential to embryonic stem cells (ESCs). However, the molecular underpinning of EPSC maintenance in vitro is not well defined. We comparatively studied transcriptome, chromatin accessibility, active histone modification marks, and relative proteomes of ESCs and the two well-established EPSC lines to probe the molecular foundation underlying EPSC developmental potential. Despite some overlapping transcriptomic and chromatin accessibility features, we defined sets of molecular signatures that distinguish EPSCs from ESCs in transcriptional and translational regulation as well as metabolic control. Interestingly, EPSCs show similar reliance on pluripotency factors Oct4, Sox2, and Nanog for self-renewal as ESCs. Our study provides a rich resource for dissecting the regulatory network that governs the developmental potency of EPSCs and exploring alternative strategies to capture totipotent stem cells in culture.
Collapse
Affiliation(s)
- Vikas Malik
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Ruge Zang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Alejandro Fuentes-Iglesias
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Xin Huang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Dan Li
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Miguel Fidalgo
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Hongwei Zhou
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
23
|
Suzuki D, Sasaki K, Kumamoto S, Tanaka K, Ogawa H. Dynamic Changes of Gene Expression in Mouse Mural Trophectoderm Regulated by Cdx2 During Implantation. Front Cell Dev Biol 2022; 10:945241. [PMID: 36051443 PMCID: PMC9425295 DOI: 10.3389/fcell.2022.945241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
Implantation of the blastocyst into the uterus is a specific and essential process for mammalian embryonic development. In mice, implantation is initiated from the mural trophectoderm of the blastocyst and the mTE controls implantation progression by acquiring the ability to attach and invade into the endometrium while differentiating into primary trophoblast giant cells. Nevertheless, it remains largely unclear when and how the mTE differentiates and acquires this ability during implantation. Here, by RNA sequencing analysis with the pre- and peri-implantation mTE, we show that the mTE undergoes stage-specific and dynamic changes of gene expression during implantation. We also reveal that the mTE begins down-regulating Cdx2 and up-regulating differentiation marker genes during the peri-implantation stage. In addition, using trophectoderm (TE) -specific lentiviral vector-mediated gene transduction, we demonstrate that TE-specific Cdx2 overexpression represses differentiation of the mTE into the primary trophoblast giant cells. Moreover, we reveal that TE-specific Cdx2 overexpression also represses the up-regulation of cell adhesion- and migration-related genes, including Slc6a14, Slc16a3, Itga7, Itgav and Itgb3, which are known to regulate migration of trophectoderm cells. In particular, the expression of Itgb3, an integrin subunit gene, exhibits high inverse correlation with that of Cdx2 in the TE. Reflecting the down-regulation of the genes for TE migration, TE-specific Cdx2 overexpression causes suppression of the blastocyst outgrowth in vitro and abnormal progression of implantation in vivo. Thus, our results specify the time-course changes of global gene expression in the mTE during implantation and uncover the significance of Cdx2 down-regulation for implantation progression.
Collapse
Affiliation(s)
- Daisuke Suzuki
- Department of Bioscience, Graduate School of Life Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Keisuke Sasaki
- Bioresource Center, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Soichiro Kumamoto
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Hidehiko Ogawa
- Department of Bioscience, Graduate School of Life Science, Tokyo University of Agriculture, Tokyo, Japan
- *Correspondence: Hidehiko Ogawa,
| |
Collapse
|
24
|
Padi2/3 Deficiency Alters the Epigenomic Landscape and Causes Premature Differentiation of Mouse Trophoblast Stem Cells. Cells 2022; 11:cells11162466. [PMID: 36010543 PMCID: PMC9406452 DOI: 10.3390/cells11162466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022] Open
Abstract
Histone citrullination is a relatively poorly studied epigenetic modification that involves the irreversible conversion of arginine residues into citrulline. It is conferred by a small family of enzymes known as protein arginine deiminases (PADIs). PADI function supports the pluripotent state of embryonic stem cells, but in other contexts, also promotes efficient cellular differentiation. In the current study, we sought to gain deeper insights into the possible roles of PADIs in mouse trophoblast stem cells (TSCs). We show that Padi2 and Padi3 are the most highly expressed PADI family members in TSCs and are rapidly down-regulated upon differentiation. Padi2/3 double knockout (DKO) TSCs express lower levels of stem cell transcription factors CDX2 and SOX2 and are prone to differentiate into extremely large trophoblast giant cells, an effect that may be mediated by centrosome duplication defects. Interestingly, Padi2/3 DKO TSCs display alterations to their epigenomic landscape, with fewer H3K9me3-marked chromocentric foci and globally reduced 5-methylcytosine levels. DNA methylation profiling identifies that this effect is specifically evident at CpG islands of critical trophoblast genes, such as Gata3, Peg3, Socs3 and Hand1. As a consequence of the hypomethylated state, these factors are up-regulated in Padi2/3 DKO TSCs, driving their premature differentiation. Our data uncover a critical epigenetic role for PADI2/3 in safeguarding the stem cell state of TSCs by modulating the DNA methylation landscape to restrict precocious trophoblast differentiation.
Collapse
|
25
|
Hagey DW, Bergsland M, Muhr J. SOX2 transcription factor binding and function. Development 2022; 149:276045. [DOI: 10.1242/dev.200547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The transcription factor SOX2 is a vital regulator of stem cell activity in various developing and adult tissues. Mounting evidence has demonstrated the importance of SOX2 in regulating the induction and maintenance of stemness as well as in controlling cell proliferation, lineage decisions and differentiation. Recent studies have revealed that the ability of SOX2 to regulate these stem cell features involves its function as a pioneer factor, with the capacity to target nucleosomal DNA, modulate chromatin accessibility and prepare silent genes for subsequent activation. Moreover, although SOX2 binds to similar DNA motifs in different stem cells, its multifaceted and cell type-specific functions are reliant on context-dependent features. These cell type-specific properties include variations in partner factor availability and SOX2 protein expression levels. In this Primer, we discuss recent findings that have increased our understanding of how SOX2 executes its versatile functions as a master regulator of stem cell activities.
Collapse
Affiliation(s)
- Daniel W. Hagey
- Karolinska Institutet 1 Department of Laboratory Medicine , , SE-171 77 Stockholm , Sweden
| | - Maria Bergsland
- Karolinska Institutet 2 Department of Cell and Molecular Biology , , Solnavägen 9, SE-171 65 Stockholm , Sweden
| | - Jonas Muhr
- Karolinska Institutet 2 Department of Cell and Molecular Biology , , Solnavägen 9, SE-171 65 Stockholm , Sweden
| |
Collapse
|
26
|
Transcription factor networks in trophoblast development. Cell Mol Life Sci 2022; 79:337. [PMID: 35657505 PMCID: PMC9166831 DOI: 10.1007/s00018-022-04363-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022]
Abstract
The placenta sustains embryonic development and is critical for a successful pregnancy outcome. It provides the site of exchange between the mother and the embryo, has immunological functions and is a vital endocrine organ. To perform these diverse roles, the placenta comprises highly specialized trophoblast cell types, including syncytiotrophoblast and extravillous trophoblast. The coordinated actions of transcription factors (TFs) regulate their emergence during development, subsequent specialization, and identity. These TFs integrate diverse signaling cues, form TF networks, associate with chromatin remodeling and modifying factors, and collectively determine the cell type-specific characteristics. Here, we summarize the general properties of TFs, provide an overview of TFs involved in the development and function of the human trophoblast, and address similarities and differences to their murine orthologs. In addition, we discuss how the recent establishment of human in vitro models combined with -omics approaches propel our knowledge and transform the human trophoblast field.
Collapse
|
27
|
Xu Y, Zhao J, Ren Y, Wang X, Lyu Y, Xie B, Sun Y, Yuan X, Liu H, Yang W, Fu Y, Yu Y, Liu Y, Mu R, Li C, Xu J, Deng H. Derivation of totipotent-like stem cells with blastocyst-like structure forming potential. Cell Res 2022; 32:513-529. [PMID: 35508506 PMCID: PMC9160264 DOI: 10.1038/s41422-022-00668-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/08/2022] [Indexed: 12/27/2022] Open
Abstract
It is challenging to derive totipotent stem cells in vitro that functionally and molecularly resemble cells from totipotent embryos. Here, we report that a chemical cocktail enables the derivation of totipotent-like stem cells, designated as totipotent potential stem (TPS) cells, from 2-cell mouse embryos and extended pluripotent stem cells, and that these TPS cells can be stably maintained long term in vitro. TPS cells shared features with 2-cell mouse embryos in terms of totipotency markers, transcriptome, chromatin accessibility and DNA methylation patterns. In vivo chimera formation assays show that these cells have embryonic and extraembryonic developmental potentials at the single-cell level. Moreover, TPS cells can be induced into blastocyst-like structures resembling preimplantation mouse blastocysts. Mechanistically, inhibition of HDAC1/2 and DOT1L activity and activation of RARγ signaling are important for inducing and maintaining totipotent features of TPS cells. Our study opens up a new path toward fully capturing totipotent stem cells in vitro.
Collapse
Affiliation(s)
- Yaxing Xu
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jingru Zhao
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yixuan Ren
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xuyang Wang
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yulin Lyu
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | - Bingqing Xie
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yiming Sun
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | - Xiandun Yuan
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - Haiyin Liu
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Weifeng Yang
- Beijing Vitalstar Biotechnology Co., Ltd, Beijing, China
| | - Yenan Fu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, PKU International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Yu Yu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, PKU International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Yinan Liu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University Health Science Center, Peking University, Beijing, China
| | - Rong Mu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China.
| | - Jun Xu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University Health Science Center, Peking University, Beijing, China.
| | - Hongkui Deng
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
28
|
Voss L, Bartos M, Elgueta C, Sauer JF. Interneuron function and cognitive behavior are preserved upon postnatal removal of Lhx6. Sci Rep 2022; 12:4923. [PMID: 35318414 PMCID: PMC8941127 DOI: 10.1038/s41598-022-09003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 03/09/2022] [Indexed: 11/22/2022] Open
Abstract
LIM homeobox domain transcription factor 6 (Lhx6) is crucial for the prenatal specification and differentiation of hippocampal GABAergic interneuron precursors. Interestingly, Lhx6 remains to be expressed in parvalbumin-positive hippocampal interneurons (PVIs) long after specification and differentiation have been completed, the functional implications of which remain elusive. We addressed the role of adult-expressed Lhx6 in the hippocampus by knocking down Lhx6 in adult mice (> 8 weeks old) using viral or transgenic expression of Cre-recombinase in Lhx6loxP/loxP mice. Late removal of Lhx6 did not affect the number of PVIs and had no impact on the morphological and physiological properties of PVIs. Furthermore, mice lacking Lhx6 in PVIs displayed normal cognitive behavior. Loss of Lhx6 only partially reduced the expression of Sox6 and Arx, downstream transcription factors that depend on Lhx6 during embryonic development of PVIs. Our data thus suggest that while Lhx6 is vitally important to drive interneuron transcriptional networks during early development, it becomes uncoupled from downstream effectors during postnatal life.
Collapse
Affiliation(s)
- Lars Voss
- Institute of Physiology I, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Marlene Bartos
- Institute of Physiology I, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Claudio Elgueta
- Institute of Physiology I, Medical Faculty, University of Freiburg, Freiburg, Germany.
| | - Jonas-Frederic Sauer
- Institute of Physiology I, Medical Faculty, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
29
|
Suzuki D, Okura K, Nagakura S, Ogawa H. CDX2 downregulation in mouse mural trophectoderm during peri-implantation is heteronomous, dependent on the YAP-TEAD pathway and controlled by estrogen-induced factors. Reprod Med Biol 2022; 21:e12446. [PMID: 35386376 PMCID: PMC8967280 DOI: 10.1002/rmb2.12446] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 01/31/2023] Open
Abstract
Purpose To investigate the transition of CDX2 expression patterns in mouse trophectoderm (TE) and its regulatory mechanisms during implantation. Methods Mouse E3.5-4.5 blastocysts were used to immunostain CDX2, YAP, TEAD4, and ESRRB. Endogenous estrogen signaling was perturbed by administrating estrogen receptor antagonist ICI 182,780 or ovariectomy followed by administration of progesterone and β-estradiol to elucidate the relationship between the transition of CDX2 expression patterns and ovarian estrogen-dependent change in the uterine environment. Results CDX2 expression was gradually downregulated in the mural TE from E4.0 in vivo, whereas CDX2 downregulation was not observed in blastocysts cultured in KSOM. Fetal bovine serum (FBS) supplementation in KSOM induced CDX2 downregulation independently of blastocyst attachment to dishes. CDX2 downregulation in the mural TE was repressed by administration of ICI 182,780 or by ovariectomy, and administration of β-estradiol into ovariectomized mice retriggered CDX2 downregulation. Furthermore, Cdx2 expression in the mural TE might be controlled by the YAP-TEAD pathway. Conclusions CDX2 downregulation was induced heteronomously in the mural TE from E4.0 by uterus-derived factors, the secretion of which was stimulated by ovarian estrogen.
Collapse
Affiliation(s)
- Daisuke Suzuki
- Department of BioscienceTokyo University of AgricultureTokyoJapan
- Research Fellow of Japan Society for the Promotion of ScienceTokyoJapan
| | - Keitaro Okura
- Department of BioscienceTokyo University of AgricultureTokyoJapan
| | - Seina Nagakura
- Department of BioscienceTokyo University of AgricultureTokyoJapan
| | - Hidehiko Ogawa
- Department of BioscienceTokyo University of AgricultureTokyoJapan
| |
Collapse
|
30
|
Shah Z, Filonenko ES, Ramensky V, Fan C, Wang C, Ullah H, Zhang B, Volchkov P, Samokhvalov IM. MYB bi-allelic targeting abrogates primitive clonogenic progenitors while the emergence of primitive blood cells is not affected. Haematologica 2021; 106:2191-2202. [PMID: 32732364 PMCID: PMC8327747 DOI: 10.3324/haematol.2020.249193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Indexed: 01/21/2023] Open
Abstract
MYB is a key regulator of definitive hematopoiesis and it is dispensable for the development of primitive hematopoietic cells in vertebrates. In order to delineate definitive versus primitive hematopoiesis during differentiation of human embryonic stem cells, we have introduced reporters into the MYB locus and inactivated the gene by bi-allelic targeting. In order to recapitulate the early developmental events more adequately, mutant and wild-type human embryonic stem cell lines were differentiated in defined culture conditions without the addition of hematopoietic cytokines. The differentiation of the reporter cell lines demonstrated that MYB is specifically expressed throughout emerging hematopoietic cell populations. Here we show that the disruption of the MYB gene leads to severe defects in the development and proliferation of primitive hematopoietic progenitors while the emergence of primitive blood cells is not affected. We also provide evidence that MYB is essential for neutrophil and T-cell development and the upregulation of innate immunity genes during hematopoietic differentiation. Our results suggest that the endothelial origin of primitive blood cells is direct and does not include the intermediate step of primitive hematopoietic progenitors.
Collapse
Affiliation(s)
- Zahir Shah
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Elena S Filonenko
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Vasily Ramensky
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Chenyu Fan
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Cuihua Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hanif Ullah
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Baoyun Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Pavel Volchkov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Igor M Samokhvalov
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
31
|
Prudovsky I. Cellular Mechanisms of FGF-Stimulated Tissue Repair. Cells 2021; 10:cells10071830. [PMID: 34360000 PMCID: PMC8304273 DOI: 10.3390/cells10071830] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/10/2023] Open
Abstract
Growth factors belonging to the FGF family play important roles in tissue and organ repair after trauma. In this review, I discuss the regulation by FGFs of the aspects of cellular behavior important for reparative processes. In particular, I focus on the FGF-dependent regulation of cell proliferation, cell stemness, de-differentiation, inflammation, angiogenesis, cell senescence, cell death, and the production of proteases. In addition, I review the available literature on the enhancement of FGF expression and secretion in damaged tissues resulting in the increased FGF supply required for tissue repair.
Collapse
Affiliation(s)
- Igor Prudovsky
- Maine Medical Center Research Institute, 81 Research Dr., Scarborough, ME 04074, USA
| |
Collapse
|
32
|
Guo G, Stirparo GG, Strawbridge SE, Spindlow D, Yang J, Clarke J, Dattani A, Yanagida A, Li MA, Myers S, Özel BN, Nichols J, Smith A. Human naive epiblast cells possess unrestricted lineage potential. Cell Stem Cell 2021; 28:1040-1056.e6. [PMID: 33831366 PMCID: PMC8189439 DOI: 10.1016/j.stem.2021.02.025] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 09/17/2020] [Accepted: 02/23/2021] [Indexed: 01/04/2023]
Abstract
Classic embryological experiments have established that the early mouse embryo develops via sequential lineage bifurcations. The first segregated lineage is the trophectoderm, essential for blastocyst formation. Mouse naive epiblast and derivative embryonic stem cells are restricted accordingly from producing trophectoderm. Here we show, in contrast, that human naive embryonic stem cells readily make blastocyst trophectoderm and descendant trophoblast cell types. Trophectoderm was induced rapidly and efficiently by inhibition of ERK/mitogen-activated protein kinase (MAPK) and Nodal signaling. Transcriptome comparison with the human embryo substantiated direct formation of trophectoderm with subsequent differentiation into syncytiotrophoblast, cytotrophoblast, and downstream trophoblast stem cells. During pluripotency progression lineage potential switches from trophectoderm to amnion. Live-cell tracking revealed that epiblast cells in the human blastocyst are also able to produce trophectoderm. Thus, the paradigm of developmental specification coupled to lineage restriction does not apply to humans. Instead, epiblast plasticity and the potential for blastocyst regeneration are retained until implantation.
Collapse
Affiliation(s)
- Ge Guo
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK.
| | - Giuliano Giuseppe Stirparo
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Stanley E Strawbridge
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Daniel Spindlow
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Jian Yang
- Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou 510530, China
| | - James Clarke
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Anish Dattani
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Ayaka Yanagida
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Meng Amy Li
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Sam Myers
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Buse Nurten Özel
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Jennifer Nichols
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1GA, UK.
| | - Austin Smith
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1QR, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
33
|
Interactions between Ligand-Bound EGFR and VEGFR2. J Mol Biol 2021; 433:167006. [PMID: 33891904 DOI: 10.1016/j.jmb.2021.167006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/25/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022]
Abstract
In this work, we put forward the provocative hypothesis that the active, ligand-bound RTK dimers from unrelated subfamilies can associate into heterooligomers with novel signaling properties. This hypothesis is based on a quantitative FRET study that monitors the interactions between EGFR and VEGFR2 in the plasma membrane of live cells in the absence of ligand, in the presence of either EGF or VEGF, and in the presence of both ligands. We show that direct interactions occur between EGFR and VEGFR2 in the absence of ligand and in the presence of the two cognate ligands. However, there are not significant heterointeractions between EGFR and VEGFR2 when only one of the ligands is present. Since RTK dimers and RTK oligomers are believed to signal differently, this finding suggests a novel mechanism for signal diversification.
Collapse
|
34
|
Ando Y, Okeyo KO, Sunaga J, Adachi T. Edge-localized alteration in pluripotency state of mouse ES cells forming topography-confined layers on designed mesh substrates. Stem Cell Res 2021; 53:102352. [PMID: 33901814 DOI: 10.1016/j.scr.2021.102352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 03/15/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022] Open
Abstract
Self-organization of pluripotent stem cells during tissue formation is directed by the adhesion microenvironment, which defines the resulting tissue topography. Although the influence of tissue topography on pluripotency state has been inferred, this aspect of self-organization remains largely unexplored. In this study, to determine the effect of self-organized tissue topography on pluripotency loss, we designed novel island mesh substrates to confine the self-organization process of mouse embryonic stem cells, enabling us to generate isolated cell layers with an island-like topography and overhanging edges. Using immunofluorescence microscopy, we determined that cells at the tissue edge exhibited deformed nuclei associated with low OCT3/4, in contrast with cells nested in the tissue interior which had round-shaped nuclei and exhibited sustained OCT3/4 expression. Interestingly, F-actin and phospho-myosin light chain were visibly enriched at the tissue edge where ERK activation and elevated AP-2γ expression were also found to be localized, as determined using both immunofluorescence microscopy and RT-qPCR analysis. Since actomyosin contractility is known to cause ERK activation, these results suggest that mechanical condition at the tissue edge can contribute to loss of pluripotency leading to differentiation. Thus, our study draws attention to the influence of self-organized tissue topography in stem cell culture and differentiation.
Collapse
Affiliation(s)
- Yuta Ando
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto 615-8530, Japan; Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kennedy Omondi Okeyo
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto 615-8530, Japan; Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Junko Sunaga
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Taiji Adachi
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto 615-8530, Japan; Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
35
|
Sun J, Zheng W, Liu W, Kou X, Zhao Y, Liang Z, Wang L, Zhang Z, Xiao J, Gao R, Gao S, Jiang C. Differential Transcriptomes and Methylomes of Trophoblast Stem Cells From Naturally-Fertilized and Somatic Cell Nuclear-Transferred Embryos. Front Cell Dev Biol 2021; 9:664178. [PMID: 33869230 PMCID: PMC8047118 DOI: 10.3389/fcell.2021.664178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/25/2021] [Indexed: 12/05/2022] Open
Abstract
Trophoblast stem cells (TSCs) are critical to mammalian embryogenesis by providing the cell source of the placenta. TSCs can be derived from trophoblast cells. However, the efficiency of TSC derivation from somatic cell nuclear transfer (NT) blastocysts is low. The regulatory mechanisms underlying transcription dynamics and epigenetic landscape remodeling during TSC derivation remain elusive. Here, we derived TSCs from the blastocysts by natural fertilization (NF), NT, and a histone deacetylase inhibitor Scriptaid-treated NT (SNT). Profiling of the transcriptomes across the stages of TSC derivation revealed that fibroblast growth factor 4 (FGF4) treatment resulted in many differentially expressed genes (DEGs) at outgrowth and initiated transcription program for TSC formation. We identified 75 transcription factors (TFs) that are continuously upregulated during NF TSC derivation, whose transcription profiles can infer the time course of NF not NT TSC derivation. Most DEGs in NT outgrowth are rescued in SNT outgrowth. The correct time course of SNT TSC derivation is inferred accordingly. Moreover, these TFs comprise an interaction network important to TSC stemness. Profiling of DNA methylation dynamics showed an extremely low level before FGF4 treatment and gradual increases afterward. FGF4 treatment results in a distinct DNA methylation remodeling process committed to TSC formation. We further identified 1,293 CpG islands (CGIs) whose DNA methylation difference is more than 0.25 during NF TSC derivation. The majority of these CGIs become highly methylated upon FGF4 treatment and remain in high levels. This may create a barrier for lineage commitment to restrict embryonic development, and ensure TSC formation. There exist hundreds of aberrantly methylated CGIs during NT TSC derivation, most of which are corrected during SNT TSC derivation. More than half of the aberrantly methylated CGIs before NT TSC formation are inherited from the donor genome. In contrast, the aberrantly methylated CGIs upon TSC formation are mainly from the highly methylated CGIs induced by FGF4 treatment. Functional annotation indicates that the aberrantly highly methylated CGIs play a role in repressing placenta development genes, etc., related to post-implantation development and maintaining TSC pluripotency. Collectively, our findings provide novel insights into the transcription dynamics, DNA methylation remodeling, and the role of FGF4 during TSC derivation.
Collapse
Affiliation(s)
- Jin Sun
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Weisheng Zheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenqiang Liu
- Clinical and Translation Research Center of Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Xiaochen Kou
- Clinical and Translation Research Center of Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Yanhong Zhao
- Clinical and Translation Research Center of Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Zehang Liang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lu Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zihao Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jing Xiao
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Rui Gao
- Clinical and Translation Research Center of Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Shaorong Gao
- Clinical and Translation Research Center of Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Cizhong Jiang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
36
|
Sun S, Yano S, Nakanishi MO, Hirose M, Nakabayashi K, Hata K, Ogura A, Tanaka S. Maintenance of mouse trophoblast stem cells in KSR-based medium allows conventional 3D culture. J Reprod Dev 2021; 67:197-205. [PMID: 33746143 PMCID: PMC8238679 DOI: 10.1262/jrd.2020-119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse trophoblast stem cells (TSCs) can differentiate into trophoblast cells, which constitute the placenta. Under conventional culture conditions, in a medium supplemented with 20% fetal bovine serum (FBS), fibroblast growth factor 4 (FGF4), and heparin and in the presence of mouse embryonic fibroblast cells (MEFs) as feeder cells, TSCs maintain their undifferentiated, proliferative status. MEFs can be replaced by a 70% MEF-conditioned medium (MEF-CM) or by TGF-ß/activin A. To find out if KnockOutTM Serum Replacement (KSR) can replace FBS for TSC maintenance, we cultured mouse TSCs in KSR-based, FBS-free medium and investigated their proliferation capacity, stemness, and differentiation potential. The results indicated that fibronectin, vitronectin, or laminin coating was necessary for adhesion of TSCs under KSR-based conditions but not for their survival or proliferation. While the presence of FGF4, heparin, and activin A was not sufficient to support the proliferation of TSCs, the addition of a pan-retinoic acid receptor inverse agonist and a ROCK-inhibitor yielded a proliferation rate comparable to that obtained under the conventional FBS-based conditions. TSCs cultured under the KSR-based conditions had a gene expression and DNA methylation profile characteristic of TSCs and exhibited a differentiation potential. Moreover, under KSR-based conditions, we could obtain a suspension culture of TSCs using extracellular matrix (ECM) coating-free dishes. Thus, we have established here, KSR-based culture conditions for the maintenance of TSCs, which should be useful for future studies.
Collapse
Affiliation(s)
- Shuai Sun
- Department of Animal Resource Sciences/Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Shota Yano
- Department of Animal Resource Sciences/Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Momo O Nakanishi
- Department of Animal Resource Sciences/Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, Research Institute, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, Research Institute, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Atsuo Ogura
- RIKEN BRC, University of Tsukuba, Tsukuba, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Satoshi Tanaka
- Department of Animal Resource Sciences/Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
37
|
He J, Babarinde IA, Sun L, Xu S, Chen R, Shi J, Wei Y, Li Y, Ma G, Zhuang Q, Hutchins AP, Chen J. Identifying transposable element expression dynamics and heterogeneity during development at the single-cell level with a processing pipeline scTE. Nat Commun 2021; 12:1456. [PMID: 33674594 PMCID: PMC7935913 DOI: 10.1038/s41467-021-21808-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/04/2021] [Indexed: 12/16/2022] Open
Abstract
Transposable elements (TEs) make up a majority of a typical eukaryote’s genome, and contribute to cell heterogeneity in unclear ways. Single-cell sequencing technologies are powerful tools to explore cells, however analysis is typically gene-centric and TE expression has not been addressed. Here, we develop a single-cell TE processing pipeline, scTE, and report the expression of TEs in single cells in a range of biological contexts. Specific TE types are expressed in subpopulations of embryonic stem cells and are dynamically regulated during pluripotency reprogramming, differentiation, and embryogenesis. Unexpectedly, TEs are expressed in somatic cells, including human disease-specific TEs that are undetectable in bulk analyses. Finally, we apply scTE to single-cell ATAC-seq data, and demonstrate that scTE can discriminate cell type using chromatin accessibly of TEs alone. Overall, our results classify the dynamic patterns of TEs in single cells and their contributions to cell heterogeneity. How transposable elements (TE) contribute to cell fate changes is unclear. Here, the authors generate a pipeline to quantify TE expression from single cell data. They show the dynamic expression of TEs from gastrulation to somatic cell reprogramming and human disease
Collapse
Affiliation(s)
- Jiangping He
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Isaac A Babarinde
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Li Sun
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Shuyang Xu
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ruhai Chen
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Junjie Shi
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yuanjie Wei
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yuhao Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Gang Ma
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Qiang Zhuang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Andrew P Hutchins
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.
| | - Jiekai Chen
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China. .,Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. .,Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
38
|
Chromatin Regulation in Development: Current Understanding and Approaches. Stem Cells Int 2021; 2021:8817581. [PMID: 33603792 PMCID: PMC7872760 DOI: 10.1155/2021/8817581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/29/2020] [Accepted: 01/21/2021] [Indexed: 11/24/2022] Open
Abstract
The regulation of mammalian stem cell fate during differentiation is complex and can be delineated across many levels. At the chromatin level, the replacement of histone variants by chromatin-modifying proteins, enrichment of specific active and repressive histone modifications, long-range gene interactions, and topological changes all play crucial roles in the determination of cell fate. These processes control regulatory elements of critical transcriptional factors, thereby establishing the networks unique to different cell fates and initiate waves of distinctive transcription events. Due to the technical challenges posed by previous methods, it was difficult to decipher the mechanism of cell fate determination at early embryogenesis through chromatin regulation. Recently, single-cell approaches have revolutionised the field of developmental biology, allowing unprecedented insights into chromatin structure and interactions in early lineage segregation events during differentiation. Here, we review the recent technological advancements and how they have furthered our understanding of chromatin regulation during early differentiation events.
Collapse
|
39
|
Histone demethylase JMJD2B/KDM4B regulates transcriptional program via distinctive epigenetic targets and protein interactors for the maintenance of trophoblast stem cells. Sci Rep 2021; 11:884. [PMID: 33441614 PMCID: PMC7806742 DOI: 10.1038/s41598-020-79601-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022] Open
Abstract
Trophoblast stem cell (TSC) is crucial to the formation of placenta in mammals. Histone demethylase JMJD2 (also known as KDM4) family proteins have been previously shown to support self-renewal and differentiation of stem cells. However, their roles in the context of the trophoblast lineage remain unclear. Here, we find that knockdown of Jmjd2b resulted in differentiation of TSCs, suggesting an indispensable role of JMJD2B/KDM4B in maintaining the stemness. Through the integration of transcriptome and ChIP-seq profiling data, we show that JMJD2B is associated with a loss of H3K36me3 in a subset of embryonic lineage genes which are marked by H3K9me3 for stable repression. By characterizing the JMJD2B binding motifs and other transcription factor binding datasets, we discover that JMJD2B forms a protein complex with AP-2 family transcription factor TFAP2C and histone demethylase LSD1. The JMJD2B-TFAP2C-LSD1 complex predominantly occupies active gene promoters, whereas the TFAP2C-LSD1 complex is located at putative enhancers, suggesting that these proteins mediate enhancer-promoter interaction for gene regulation. We conclude that JMJD2B is vital to the TSC transcriptional program and safeguards the trophoblast cell fate via distinctive protein interactors and epigenetic targets.
Collapse
|
40
|
Auer JMT, Stoddart JJ, Christodoulou I, Lima A, Skouloudaki K, Hall HN, Vukojević V, Papadopoulos DK. Of numbers and movement - understanding transcription factor pathogenesis by advanced microscopy. Dis Model Mech 2020; 13:dmm046516. [PMID: 33433399 PMCID: PMC7790199 DOI: 10.1242/dmm.046516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transcription factors (TFs) are life-sustaining and, therefore, the subject of intensive research. By regulating gene expression, TFs control a plethora of developmental and physiological processes, and their abnormal function commonly leads to various developmental defects and diseases in humans. Normal TF function often depends on gene dosage, which can be altered by copy-number variation or loss-of-function mutations. This explains why TF haploinsufficiency (HI) can lead to disease. Since aberrant TF numbers frequently result in pathogenic abnormalities of gene expression, quantitative analyses of TFs are a priority in the field. In vitro single-molecule methodologies have significantly aided the identification of links between TF gene dosage and transcriptional outcomes. Additionally, advances in quantitative microscopy have contributed mechanistic insights into normal and aberrant TF function. However, to understand TF biology, TF-chromatin interactions must be characterised in vivo, in a tissue-specific manner and in the context of both normal and altered TF numbers. Here, we summarise the advanced microscopy methodologies most frequently used to link TF abundance to function and dissect the molecular mechanisms underlying TF HIs. Increased application of advanced single-molecule and super-resolution microscopy modalities will improve our understanding of how TF HIs drive disease.
Collapse
Affiliation(s)
- Julia M T Auer
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | - Jack J Stoddart
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | | | - Ana Lima
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | | | - Hildegard N Hall
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | - Vladana Vukojević
- Center for Molecular Medicine (CMM), Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | | |
Collapse
|
41
|
Tenjin Y, Matsuura K, Kudoh S, Usuki S, Yamada T, Matsuo A, Sato Y, Saito H, Fujino K, Wakimoto J, Ichimura T, Kohrogi H, Sakagami T, Niwa H, Ito T. Distinct transcriptional programs of SOX2 in different types of small cell lung cancers. J Transl Med 2020; 100:1575-1588. [PMID: 32801334 DOI: 10.1038/s41374-020-00479-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023] Open
Abstract
SOX2 is recognized as an oncogene in human small cell lung cancer (SCLC), which is an aggressive neuroendocrine (NE) tumor. However, the role of SOX2 in SCLC is not completely understood, and strategies to selectively target SOX2 in SCLC cells remain elusive. Here, we show, using next-generation sequencing, that SOX2 expressed in the ASCL1-high SCLC (SCLC-A) subtype cell line is dependent on ASCL1, which is a lineage-specific transcriptional factor, and is involved in NE differentiation and tumorigenesis. ASCL1 recruits SOX2, which promotes INSM1 and WNT11 expression. Immunohistochemical studies revealed that SCLC tissue samples expressed SOX2, ASCL1, and INSM1 in 18 out of the 30 cases (60%). Contrary to the ASCL1-SOX2 signaling axis controlling SCLC biology in the SCLC-A subtype, SOX2 targets distinct genes such as those related to the Hippo pathway in the ASCL1-negative, YAP1-high SCLC (SCLC-Y) subtype. Although SOX2 knockdown experiments suppressed NE differentiation and cell proliferation in the SCLC-A subtype, they did not sufficiently impair the growth of the SCLC-Y subtype cell lines in vitro and ex vivo. The present results support the importance of the ASCL1-SOX2 axis as a main subtype of SCLC, and suggest the therapeutic potential of targeting the ASCL1-SOX2 axis.
Collapse
Affiliation(s)
- Yuki Tenjin
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan.,Department of Respiratory Medicine, Graduate School of Medical Science, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kumi Matsuura
- Department of Pluripotent Stem Cell Biology, Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Shinji Kudoh
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center (LILA), Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Tatsuya Yamada
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan.,Department of Thoracic Surgery, Graduate School of Medical Science, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Akira Matsuo
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Younosuke Sato
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Haruki Saito
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan.,Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kosuke Fujino
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan.,Department of Thoracic Surgery, Graduate School of Medical Science, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Joeji Wakimoto
- Division of Pathology, Minami Kyushu National Hospital, Kagoshima, 899-5293, Japan
| | - Takaya Ichimura
- Department of Pathology, Faculty of Medicine, Saitama Medical University, Saitama, 350-0495, Japan
| | - Hirotsugu Kohrogi
- Department of Respiratory Medicine, Omuta Tenryo Hospital, Tenryo 1-100, Omuta, Fukuoka, 836-8556, Japan
| | - Takuro Sakagami
- Department of Respiratory Medicine, Graduate School of Medical Science, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hitoshi Niwa
- Department of Pluripotent Stem Cell Biology, Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Takaaki Ito
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
42
|
Khan AA, Huat TJ, Al Mutery A, El-Serafi AT, Kacem HH, Abdallah SH, Reza MF, Abdullah JM, Jaafar H. Significant transcriptomic changes are associated with differentiation of bone marrow-derived mesenchymal stem cells into neural progenitor-like cells in the presence of bFGF and EGF. Cell Biosci 2020; 10:126. [PMID: 33133516 PMCID: PMC7594431 DOI: 10.1186/s13578-020-00487-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) isolated from bone marrow have different developmental origins, including neural crest. MSCs can differentiate into neural progenitor-like cells (NPCs) under the influence of bFGF and EGF. NPCs can terminally differentiate into neurons that express beta-III-tubulin and elicit action potential. The main aim of the study was to identify key genetic markers involved in differentiation of MSCs into NPCs through transcriptomic analysis. METHOD Total RNA was isolated from MSCs and MSCs-derived NPCs followed by cDNA library construction for transcriptomic analysis. Sample libraries that passed the quality and quantity assessments were subjected to high throughput mRNA sequencing using NextSeq®500. Differential gene expression analysis was performed using the DESeq2 R package with MSC samples being a reference group. The expression of eight differentially regulated genes was counter validated using real-time PCR. RESULTS In total, of the 3,252 differentially regulated genes between MSCs and NPCs with two or more folds, 1,771 were upregulated genes, whereas 1,481 were downregulated in NPCs. Amongst these differential genes, 104 transcription factors were upregulated, and 45 were downregulated in NPCs. Neurogenesis related genes were upregulated in NPCs and the main non-redundant gene ontology (GO) terms enriched in NPCs were the autonomic nervous system, cell surface receptor signalling pathways), extracellular structure organisation, and programmed cell death. The main non-redundant GO terms enriched in MSCs included cytoskeleton organisation cytoskeleton structural constituent, mitotic cell cycle), and the mitotic cell cycle process Gene set enrichment analysis also confirmed cell cycle regulated pathways as well as Biocarta integrin pathway were upregulated in MSCs. Transcription factors enrichment analysis by ChEA3 revealed Foxs1 and HEYL, amongst the top five transcription factors, inhibits and enhances, respectively, the NPCs differentiation of MSCs. CONCLUSIONS The vast differences in the transcriptomic profiles between NPCs and MSCs revealed a set of markers that can identify the differentiation stage of NPCs as well as provide new targets to enhance MSCs differentiation into NPCs.
Collapse
Affiliation(s)
- Amir Ali Khan
- Department of Applied Biology, College of Sciences, University of Sharjah, P.O. Box 27272, Emirate of Sharjah, United Arab Emirates
- Research Institute of Science and Engineering, University of Sharjah, P.O. Box 27272, Emirate of Sharjah, United Arab Emirates
| | - Tee Jong Huat
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543 Singapore
- Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Jalan Raja Perempuan Zainab II, 16150, Kubang Kerian, Kelantan Malaysia
| | - Abdullah Al Mutery
- Department of Applied Biology, College of Sciences, University of Sharjah, P.O. Box 27272, Emirate of Sharjah, United Arab Emirates
| | - Ahmed Taher El-Serafi
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, P.O. Box 581 83, Linköping, Sweden
| | - Hassen Hadj Kacem
- Department of Applied Biology, College of Sciences, University of Sharjah, P.O. Box 27272, Emirate of Sharjah, United Arab Emirates
- Research Institute of Science and Engineering, University of Sharjah, P.O. Box 27272, Emirate of Sharjah, United Arab Emirates
| | - Sallam Hasan Abdallah
- Research Institute of Science and Engineering, University of Sharjah, P.O. Box 27272, Emirate of Sharjah, United Arab Emirates
| | - Muhammed Faruque Reza
- Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Jalan Raja Perempuan Zainab II, 16150, Kubang Kerian, Kelantan Malaysia
| | - Jafri Malin Abdullah
- Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Jalan Raja Perempuan Zainab II, 16150, Kubang Kerian, Kelantan Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Jalan Raja Perempuan Zainab II, 16150, Kubang Kerian, Kelantan Malaysia
| | - Hasnan Jaafar
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Jalan Raja Perempuan Zainab II, 16150, Kubang Kerian, Kelantan Malaysia
| |
Collapse
|
43
|
Shibata S, Kobayashi EH, Kobayashi N, Oike A, Okae H, Arima T. Unique features and emerging in vitro models of human placental development. Reprod Med Biol 2020; 19:301-313. [PMID: 33071632 PMCID: PMC7542016 DOI: 10.1002/rmb2.12347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
Background The placenta is an essential organ for the normal development of mammalian fetuses. Most of our knowledge on the molecular mechanisms of placental development has come from the analyses of mice, especially histopathological examination of knockout mice. Choriocarcinoma and immortalized cell lines have also been used for basic research on the human placenta. However, these cells are quite different from normal trophoblast cells. Methods In this review, we first provide an overview of mouse and human placental development with particular focus on the differences in the anatomy, transcription factor networks, and epigenetic characteristics between these species. Next, we discuss pregnancy complications associated with abnormal placentation. Finally, we introduce emerging in vitro models to study the human placenta, including human trophoblast stem (TS) cells, trophoblast and endometrium organoids, and artificial embryos. Main findings The placental structure and development differ greatly between humans and mice. The recent establishment of human TS cells and trophoblast and endometrial organoids enhances our understanding of the mechanisms underlying human placental development. Conclusion These in vitro models will greatly advance our understanding of human placental development and potentially contribute to the elucidation of the causes of infertility and other pregnancy complications.
Collapse
Affiliation(s)
- Shun Shibata
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Eri H Kobayashi
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Norio Kobayashi
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Akira Oike
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Hiroaki Okae
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Takahiro Arima
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| |
Collapse
|
44
|
Liu Y, Zhang Y. ETV5 is Essential for Neuronal Differentiation of Human Neural Progenitor Cells by Repressing NEUROG2 Expression. Stem Cell Rev Rep 2020; 15:703-716. [PMID: 31273540 DOI: 10.1007/s12015-019-09904-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neural progenitor cells (NPCs) are multipotent cells that have the potential to produce neurons and glial cells in the neural system. NPCs undergo identity maintenance or differentiation regulated by different kinds of transcription factors. Here we present evidence that ETV5, which is an ETS transcription factor, promotes the generation of glial cells and drives the neuronal subtype-specific genes in newly differentiated neurons from the human embryonic stem cells-derived NPCs. Next, we find a new role for ETV5 in the repression of NEUROG2 expression in NPCs. ETV5 represses NEUROG2 transcription via NEUROG2 promoter and requires the ETS domain. We identify ETV5 has the binding sites and is implicated in silent chromatin in NEUROG2 promoter by chromatin immunoprecipitation (ChIP) assays. Further, NEUROG2 transcription repression by ETV5 was shown to be dependent on a transcriptional corepressor (CoREST). During NPC differentiation toward neurons, ETV5 represses NEUROG2 expression and blocks the appearance of glutamatergic neurons. This finding suggests that ETV5 negatively regulates NEUROG2 expression and increases the number of GABAergic subtype neurons derived from NPCs. Thus, ETV5 represents a potent new candidate protein with benefits for the generation of GABAergic neurons.
Collapse
Affiliation(s)
- Yang Liu
- School of Medicine, Tongji University, No.1239, Siping Road, Shanghai, 200092, People's Republic of China.
| | - Yuanyuan Zhang
- School of Medicine, Tongji University, No.1239, Siping Road, Shanghai, 200092, People's Republic of China
| |
Collapse
|
45
|
Gao H, Gao R, Zhang L, Xiu W, Zang R, Wang H, Zhang Y, Chen J, Gao Y, Gao S. Esrrb plays important roles in maintaining self-renewal of trophoblast stem cells (TSCs) and reprogramming somatic cells to induced TSCs. J Mol Cell Biol 2020; 11:463-473. [PMID: 30299501 DOI: 10.1093/jmcb/mjy054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/19/2018] [Accepted: 10/09/2018] [Indexed: 11/14/2022] Open
Abstract
Trophoblast stem cells (TSCs), which can be derived from the trophoectoderm of a blastocyst, have the ability to sustain self-renewal and differentiate into various placental trophoblast cell types. Meanwhile, essential insights into the molecular mechanisms controlling the placental development can be gained by using TSCs as the cell model. Esrrb is a transcription factor that has been shown to play pivotal roles in both embryonic stem cell (ESC) and TSC, but the precise mechanism whereby Esrrb regulates TSC-specific transcriptome during differentiation and reprogramming is still largely unknown. In the present study, we elucidate the function of Esrrb in self-renewal and differentiation of TSCs, as well as during the induced TSC (iTSC) reprogramming. We demonstrate that the precise level of Esrrb is critical for stem state maintenance and further trophoblast differentiation of TSCs, as ectopically expressed Esrrb can partially block the rapid differentiation of TSCs in the absence of fibroblast growth factor 4. However, Esrrb depletion results in downregulation of certain key TSC-specific transcription factors, consequently causing a rapid differentiation of TSCs and these Esrrb-deficient TSCs lose the ability of hemorrhagic lesion formation in vivo. This function of Esrrb is exerted by directly binding and activating a core set of TSC-specific target genes including Cdx2, Eomes, Sox2, Fgfr4, and Bmp4. Furthermore, we show that Esrrb overexpression can facilitate the MEF-to-iTSC conversion. Moreover, Esrrb can substitute for Eomes to generate GEsTM-iTSCs. Thus, our findings provide a better understanding of the molecular mechanism of Esrrb in maintaining TSC self-renewal and during iTSC reprogramming.
Collapse
Affiliation(s)
- Haibo Gao
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China
| | - Rui Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Linfeng Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenchao Xiu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ruge Zang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hong Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yong Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yawei Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
46
|
Ebisu Y, Ishida M, Mizokami T, Kita M, Okada H, Tsuta K. Immunohistochemical analysis of SOX2 expression in small-cell neuroendocrine carcinoma of the endometrium. Mol Clin Oncol 2020; 13:115-118. [PMID: 32714533 PMCID: PMC7366239 DOI: 10.3892/mco.2020.2051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 04/10/2020] [Indexed: 12/15/2022] Open
Abstract
Small-cell neuroendocrine carcinoma (NEC) of the endometrium is an extremely rare and highly aggressive carcinoma. Sex-determining region Y-box 2 (SOX2) is a master transcription factor regulating the self-renewal, maintenance of stem cell properties and pluripotency of embryonic stem cells, and recent studies revealed that SOX2 plays important roles in cancer growth and progression in several types of carcinomas, including small-cell neuroendocrine carcinoma (NEC) of the lung and oesophagus. Few studies to date have analysed the association between SOX2 and endometrioid carcinoma, whereas the expression of SOX2 in small-cell NEC of the endometrium has not been investigated. The aim of the present study was to analyse the expression status of SOX2, p16 and paired-box gene (PAX) 8, a useful Müllerian marker, in endometrial small-cell NEC. A total of 4 patients with small-cell NEC of the endometrium were enrolled (median age, 70 years). Immunohistochemical studies revealed SOX2 expression in 3 patients and p16 expression in all patients. No patients exhibited positive immunoreactivity for PAX8. SOX2 expression has been reported to be associated with the pathogenesis of small-cell NEC of the oesophagus. Therefore, the results of the present study indicated that SOX2 expression plays an important role in the development of small-cell NEC of the endometrium and the oesophagus. Moreover, expression of p16 and loss of PAX8 do not indicate the origin of small-cell NEC of the endometrium.
Collapse
Affiliation(s)
- Yusuke Ebisu
- Department of Pathology and Laboratory Medicine, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Mitsuaki Ishida
- Department of Pathology and Laboratory Medicine, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Tomomi Mizokami
- Department of Obstetrics and Gynaecology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Masato Kita
- Department of Obstetrics and Gynaecology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Hidetaka Okada
- Department of Obstetrics and Gynaecology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Koji Tsuta
- Department of Pathology and Laboratory Medicine, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
47
|
Friman ET, Deluz C, Meireles-Filho ACA, Govindan S, Gardeux V, Deplancke B, Suter DM. Dynamic regulation of chromatin accessibility by pluripotency transcription factors across the cell cycle. eLife 2019; 8:e50087. [PMID: 31794382 PMCID: PMC6890464 DOI: 10.7554/elife.50087] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
The pioneer activity of transcription factors allows for opening of inaccessible regulatory elements and has been extensively studied in the context of cellular differentiation and reprogramming. In contrast, the function of pioneer activity in self-renewing cell divisions and across the cell cycle is poorly understood. Here we assessed the interplay between OCT4 and SOX2 in controlling chromatin accessibility of mouse embryonic stem cells. We found that OCT4 and SOX2 operate in a largely independent manner even at co-occupied sites, and that their cooperative binding is mostly mediated indirectly through regulation of chromatin accessibility. Controlled protein degradation strategies revealed that the uninterrupted presence of OCT4 is required for post-mitotic re-establishment and interphase maintenance of chromatin accessibility, and that highly OCT4-bound enhancers are particularly vulnerable to transient loss of OCT4 expression. Our study sheds light on the constant pioneer activity required to maintain the dynamic pluripotency regulatory landscape in an accessible state.
Collapse
Affiliation(s)
- Elias T Friman
- Institute of Bioengineering, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Cédric Deluz
- Institute of Bioengineering, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Antonio CA Meireles-Filho
- Institute of Bioengineering, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Subashika Govindan
- Institute of Bioengineering, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Vincent Gardeux
- Institute of Bioengineering, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Bart Deplancke
- Institute of Bioengineering, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - David M Suter
- Institute of Bioengineering, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
48
|
Okamura E, Tam OH, Posfai E, Li L, Cockburn K, Lee CQE, Garner J, Rossant J. Esrrb function is required for proper primordial germ cell development in presomite stage mouse embryos. Dev Biol 2019; 455:382-392. [PMID: 31315026 DOI: 10.1016/j.ydbio.2019.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 11/30/2022]
Abstract
Estrogen related receptor beta (Esrrb) is an orphan nuclear receptor that is required for self-renewal and pluripotency in mouse embryonic stem (ES) cells. However, in the early post-implantation mouse embryo, Esrrb is specifically expressed in the extraembryonic ectoderm (ExE) and plays a crucial role in trophoblast development. Previous studies showed that Esrrb is also required to maintain trophoblast stem (TS) cells, the in vitro stem cell model of the early trophoblast lineage. In order to identify regulatory targets of Esrrb in vivo, we performed microarray analysis of Esrrb-null versus wild-type post-implantation ExE, and identified 30 genes down-regulated in Esrrb-mutants. Among them is Bmp4, which is produced by the ExE and known to be critical for primordial germ cell (PGC) specification in vivo. We further identified an enhancer region bound by Esrrb at the Bmp4 locus by performing Esrrb ChIP-seq and luciferase reporter assay using TS cells. Finally, we established a knockout mouse line in which the enhancer region was deleted using CRISPR/Cas9 technology. Both Esrrb-null embryos and enhancer knockout embryos expressed lower levels of Bmp4 in the ExE, and had reduced numbers of PGCs. These results suggested that Esrrb functions as an upstream factor of Bmp4 in the ExE, regulating proper PGC development in mice.
Collapse
Affiliation(s)
- Eiichi Okamura
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada; Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.
| | - Oliver H Tam
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Eszter Posfai
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lingyu Li
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Katie Cockburn
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cheryl Q E Lee
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jodi Garner
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
49
|
Hemberger M, Hanna CW, Dean W. Mechanisms of early placental development in mouse and humans. Nat Rev Genet 2019; 21:27-43. [PMID: 31534202 DOI: 10.1038/s41576-019-0169-4] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
The importance of the placenta in supporting mammalian development has long been recognized, but our knowledge of the molecular, genetic and epigenetic requirements that underpin normal placentation has remained remarkably under-appreciated. Both the in vivo mouse model and in vitro-derived murine trophoblast stem cells have been invaluable research tools for gaining insights into these aspects of placental development and function, with recent studies starting to reshape our view of how a unique epigenetic environment contributes to trophoblast differentiation and placenta formation. These advances, together with recent successes in deriving human trophoblast stem cells, open up new and exciting prospects in basic and clinical settings that will help deepen our understanding of placental development and associated disorders of pregnancy.
Collapse
Affiliation(s)
- Myriam Hemberger
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada. .,Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada. .,Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK. .,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| | - Courtney W Hanna
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Wendy Dean
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada. .,Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK. .,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
50
|
Chen L, Toke NH, Luo S, Vasoya RP, Aita R, Parthasarathy A, Tsai YH, Spence JR, Verzi MP. HNF4 factors control chromatin accessibility and are redundantly required for maturation of the fetal intestine. Development 2019; 146:dev.179432. [PMID: 31345929 DOI: 10.1242/dev.179432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/10/2019] [Indexed: 12/17/2022]
Abstract
As embryos mature, cells undergo remarkable transitions that are accompanied by shifts in transcription factor regulatory networks. Mechanisms driving developmental transitions are incompletely understood. The embryonic intestine transitions from a rapidly proliferating tube with pseudostratified epithelium prior to murine embryonic day (E) 14.5 to an exquisitely folded columnar epithelium in fetal stages. We sought to identify factors driving mouse fetal intestinal maturation by mining chromatin accessibility data for transcription factor motifs. ATAC-seq accessible regions shift during tissue maturation, with CDX2 transcription factor motifs abundant at chromatin-accessible regions of the embryo. Hepatocyte nuclear factor 4 (HNF4) transcription factor motifs are the most abundant in the fetal stages (>E16.5). Genetic inactivation of Hnf4a and its paralog Hnf4g revealed that HNF4 factors are redundantly required for fetal maturation. CDX2 binds to and activates Hnf4 gene loci to elevate HNF4 expression at fetal stages. HNF4 and CDX2 transcription factors then occupy shared genomic regulatory sites to promote chromatin accessibility and gene expression in the maturing intestine. Thus, HNF4 paralogs are key components of an intestinal transcription factor network shift during the embryonic to fetal transition.
Collapse
Affiliation(s)
- Lei Chen
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Natalie H Toke
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Shirley Luo
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Roshan P Vasoya
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Rohit Aita
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Aditya Parthasarathy
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jason R Spence
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA.,Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA .,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|