1
|
Yang Q, Chen X, Zhang Y, Hu S, Hu F, Huang Y, Ma T, Hu H, Tian H, Tian S, Ji YX, She ZG, Zhang P, Zhang XJ, Hu Y, Yang H, Yuan Y, Li H. The E3 Ubiquitin Ligase Ring Finger Protein 5 Ameliorates NASH Through Ubiquitin-Mediated Degradation of 3-Hydroxy-3-Methylglutaryl CoA Reductase Degradation Protein 1. Hepatology 2021; 74:3018-3036. [PMID: 34272738 DOI: 10.1002/hep.32061] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS NAFLD is the most prevalent chronic liver disease worldwide, but no effective pharmacological therapeutics are available for clinical use. NASH is the more severe stage of NAFLD. During this progress, dysregulation of endoplasmic reticulum (ER)-related pathways and proteins is one of the predominant hallmarks. We aimed to reveal the role of ring finger protein 5 (RNF5), an ER-localized E3 ubiquitin-protein ligase, in NASH and to explore its underlying mechanism. APPROACH AND RESULTS We first inspected the expression level of RNF5 and found that it was markedly decreased in livers with NASH in multiple species including humans. We then introduced adenoviruses for Rnf5 overexpression or knockdown into primary mouse hepatocytes and found that palmitic acid/oleic acid (PAOA)-induced lipid accumulation and inflammation in hepatocytes were markedly attenuated by Rnf5 overexpression but exacerbated by Rnf5 gene silencing. Hepatocyte-specific Rnf5 knockout significantly exacerbated hepatic steatosis, inflammatory response, and fibrosis in mice challenged with diet-induced NASH. Mechanistically, we identified 3-hydroxy-3-methylglutaryl CoA reductase degradation protein 1 (HRD1) as a binding partner of RNF5 by systematic interactomics analysis. RNF5 directly bound to HRD1 and promoted its lysine 48 (K48)-linked and K33-linked ubiquitination and subsequent proteasomal degradation. Furthermore, Hrd1 overexpression significantly exacerbated PAOA-induced lipid accumulation and inflammation, and short hairpin RNA-mediated Hrd1 knockdown exerted the opposite effects. Notably, Hrd1 knockdown significantly diminished PAOA-induced lipid deposition, and up-regulation of related genes resulted from Rnf5 ablation in hepatocytes. CONCLUSIONS These data indicate that RNF5 inhibits NASH progression by targeting HRD1 in the ubiquitin-mediated proteasomal pathway. Targeting the RNF5-HRD1 axis may provide insights into the pathogenesis of NASH and pave the way for developing strategies for NASH prevention and treatment.
Collapse
Affiliation(s)
- Qin Yang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xi Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedures of Hepatobiliary and Pancreatic Diseases of Hubei Province, Hubei, China
| | - Yanfang Zhang
- Institute of Model Animal of Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Sha Hu
- Institute of Model Animal of Wuhan University, Wuhan, China
| | - Fengjiao Hu
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongping Huang
- Institute of Model Animal of Wuhan University, Wuhan, China
| | - Tengfei Ma
- Institute of Model Animal of Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Heng Hu
- Institute of Model Animal of Wuhan University, Wuhan, China
| | - Han Tian
- Institute of Model Animal of Wuhan University, Wuhan, China
| | - Song Tian
- Institute of Model Animal of Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan-Xiao Ji
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Institute of Model Animal of Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Peng Zhang
- Institute of Model Animal of Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Institute of Model Animal of Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yufeng Hu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hailong Yang
- Institute of Model Animal of Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedures of Hepatobiliary and Pancreatic Diseases of Hubei Province, Hubei, China
| | - Hongliang Li
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Fan L, He Z, Head SA, Zhou Y, Lu T, Feng X, Zhang X, Zhang M, Dang Y, Jiang X, Wang M. Clofoctol and sorafenib inhibit prostate cancer growth via synergistic induction of endoplasmic reticulum stress and UPR pathways. Cancer Manag Res 2018; 10:4817-4829. [PMID: 30425575 PMCID: PMC6205540 DOI: 10.2147/cmar.s175256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background/Purpose Prostate cancer is a major burden on public health and a major cause of morbidity and mortality among men worldwide. Drug combination therapy is known as a powerful tool for the treatment of cancer. The aim of this study is to evaluate the synergistic inhibitory mechanisms of clofoctol and sorafenib in the treatment of prostate cancer. However, the molecular mechanisms of this phenomenon have not been illuminated clearly. In this study, we investigated the anti-tumor effects of clofoctol in combination with sorafenib in vitro and in vivo. Methods The activity and mechanism of clofoctol in combination with sorafenib were examined in PC-3cells. mRNA and protein expression of key players in the ER stress pathway were detected with RT-PCR and Western blotting. Cell viability was estimated by CCK-8 assay or Alamar blue assay, and apoptosis and cell cycle were monitored and measured by flow cytometry. PC-3 cells were inoculated subcutaneously in male BALB/c nude mice. The therapeutic regimen was initiated when the tumor began showing signs of growth and treatment continued for 5 weeks. Results Our data indicate that clofototol and sorafenib induce cell death through synergistic induction of endoplasmic reticulum (ER) stress, resulting in activation of the unfolded protein response (UPR). Combination therapy with clofoctol and sorafenib induced an upregulation of markers of all three ER stress pathways: PERK, IRE1 and ATF6. In addition, combination therapy with clofoctol and sorafenib markedly inhibited the growth of prostate cancer xenograft tumors, compared with clofoctol or sorafenib alone. Conclusion The combination of clofoctol and sorafenib can serve as a novel clinical treatment regimen, potentially enhancing antitumor efficacy in prostate cancer and decreasing the dose and adverse effects of either clofoctol or sorafenib alone. These results lay the foundation for subsequent research on this novel therapeutic regimen in human prostate cancer.
Collapse
Affiliation(s)
- Lixia Fan
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, Jiangsu, China,
| | - Zhenglei He
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, Jiangsu, China,
| | - Sarah A Head
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Yinghui Zhou
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, Jiangsu, China,
| | - Ting Lu
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, Jiangsu, China,
| | - Xulong Feng
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, Jiangsu, China,
| | - Xueqing Zhang
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, Jiangsu, China,
| | - Meng Zhang
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, Jiangsu, China,
| | - Yongjun Dang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Xinghong Jiang
- Department of Neurobiology, Medical College, Soochow University, Suzhou, China,
| | - Minghua Wang
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, Jiangsu, China,
| |
Collapse
|
3
|
Cui H, Deng M, Zhang Y, Yin F, Liu J. Geniposide Increases Unfolded Protein Response-Mediating HRD1 Expression to Accelerate APP Degradation in Primary Cortical Neurons. Neurochem Res 2018; 43:669-680. [DOI: 10.1007/s11064-018-2469-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/03/2017] [Accepted: 01/08/2018] [Indexed: 02/20/2023]
|
4
|
Li Q, Wei H, Liu L, Yang X, Zhang X, Xie Q. Unfolded protein response activation compensates endoplasmic reticulum-associated degradation deficiency in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:506-521. [PMID: 28418178 DOI: 10.1111/jipb.12544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/10/2017] [Indexed: 05/16/2023]
Abstract
Abiotic stresses often disrupt protein folding and induce endoplasmic reticulum (ER) stress. There is a sophisticated ER quality control (ERQC) system to mitigate the effects of malfunctioning proteins and maintain ER homeostasis. The accumulation of misfolded proteins in the ER activates the unfolded protein response (UPR) to enhance ER protein folding and the degradation of misfolded proteins mediate by ER-associated degradation (ERAD). That ERQC reduces abiotic stress damage has been well studied in mammals and yeast. However, in plants, both ERAD and UPR have been studied separately and found to be critical for plant abiotic stress tolerance. In this study, we discovered that UPR-associated transcription factors AtbZIP17, AtbZIP28 and AtbZIP60 responded to tunicamycin (TM) and NaCl induced ER stress and subsequently enhanced Arabidopsis thaliana abiotic stress tolerance. They regulated the expression level of ER chaperones and the HRD1-complex components. Moreover, overexpression of AtbZIP17, AtbZIP28 and AtbZIP60 could restore stress tolerance via ERAD in the HRD1-complex mutant hrd3a-2, which suggested that UPR and ERAD have an interactive mechanism in Arabidopsis.
Collapse
Affiliation(s)
- Qingliang Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hai Wei
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Lijing Liu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoyuan Yang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiansheng Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
5
|
Plant Virus Infection and the Ubiquitin Proteasome Machinery: Arms Race along the Endoplasmic Reticulum. Viruses 2016; 8:v8110314. [PMID: 27869775 PMCID: PMC5127028 DOI: 10.3390/v8110314] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/29/2016] [Accepted: 11/08/2016] [Indexed: 12/24/2022] Open
Abstract
The endoplasmic reticulum (ER) is central to plant virus replication, translation, maturation, and egress. Ubiquitin modification of ER associated cellular and viral proteins, alongside the actions of the 26S proteasome, are vital for the regulation of infection. Viruses can arrogate ER associated ubiquitination as well as cytosolic ubiquitin ligases with the purpose of directing the ubiquitin proteasome system (UPS) to new targets. Such targets include necessary modification of viral proteins which may stabilize certain complexes, or modification of Argonaute to suppress gene silencing. The UPS machinery also contributes to the regulation of effector triggered immunity pattern recognition receptor immunity. Combining the results of unrelated studies, many positive strand RNA plant viruses appear to interact with cytosolic Ub-ligases to provide novel avenues for controlling the deleterious consequences of disease. Viral interactions with the UPS serve to regulate virus infection in a manner that promotes replication and movement, but also modulates the levels of RNA accumulation to ensure successful biotrophic interactions. In other instances, the UPS plays a central role in cellular immunity. These opposing roles are made evident by contrasting studies where knockout mutations in the UPS can either hamper viruses or lead to more aggressive diseases. Understanding how viruses manipulate ER associated post-translational machineries to better manage virus–host interactions will provide new targets for crop improvement.
Collapse
|
6
|
NAD(P)H quinone oxidoreductase 1 inhibits the proteasomal degradation of homocysteine-induced endoplasmic reticulum protein. Biochem Biophys Res Commun 2016; 473:1276-1280. [DOI: 10.1016/j.bbrc.2016.04.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/12/2016] [Indexed: 01/14/2023]
|
7
|
Abstract
Endoplasmic reticulum (ER) stress is an intricate mechanism that mediates numerous responses during brain ischemia, thus being essential to determine the fate of neurons. In recent years, studies of the mechanisms of brain ischemic injury have centered on ER stress, glutamate excitotoxicity, dysfunction of mitochondria, inflammatory reactions, calcium overload and death receptor pathways. The role of ER stress is highly important. In addition to resulting in neuronal cell death through calcium toxicity and apoptotic pathways, ER stress also triggers a series of adaptive responses including unfolded protein response (UPR), autophagy, the expression of pro-survival proteins and the enhancement of ER self-repair ability, leading to less ischemic brain damage. This paper provides an overview of recent advances in understanding of the relations between ER stress and brain ischemia.
Collapse
Affiliation(s)
- Yingchao Su
- a Department of Neurology, the Second Affiliated Hospital of Harbin Medical University , Harbin 150086 , China
| | - Feng Li
- a Department of Neurology, the Second Affiliated Hospital of Harbin Medical University , Harbin 150086 , China
| |
Collapse
|
8
|
Abstract
E3 ubiquitin ligases play a central role in viral and cellular degradation of MHC-I. HCMV US2 and US11 hijack the mammalian ERAD machinery to induce MHC-I degradation. We identified the TRC8 and TMEM129 E3 ligases as crucial for US2/11 function. The US2/11 degradation hubs are flexible and enable viral evasion of different immune functions. Cellular quality control of MHC-I is controlled by the HRD1/SEL1L E3 ligase complex.
The human cytomegalovirus (HCMV) US2 and US11 gene products hijack mammalian ER-associated degradation (ERAD) to induce rapid degradation of major histocompatibility class I (MHC-I) molecules. The rate-limiting step in this pathway is thought to be the polyubiquitination of MHC-I by distinct host ERAD E3 ubiquitin ligases. TRC8 was identified as the ligase responsible for US2-mediated MHC-I degradation and shown to be required for the cleavage-dependent degradation of some tail-anchored proteins. In addition to MHC-I, plasma membrane profiling identified further immune receptors, which are also substrates for the US2/TRC8 complex. These include at least six α integrins, the coagulation factor thrombomodulin and the NK cell ligand CD112. US2’s use of specific HCMV-encoded adaptors makes it an adaptable viral degradation hub. US11-mediated degradation is MHC-I-specific and genetic screens have identified TMEM129, an uncharacterised RING-C2 E3 ligase, as responsible for US11-mediated degradation. In a unique auto-regulatory loop, US11 readily responds to changes in cellular expression of MHC-I. Free US11 either rebinds more MHC-I or is itself degraded by the HRD1/SEL1L E3 ligase complex. While virally encoded US2 and US11 appropriate mammalian ERAD, the MHC-I complex also undergoes stringent cellular quality control and misfolded MHC-I is degraded by the HRD1/SEL1L complex. We discuss the identification and central role of E3 ubiquitin ligases in ER quality control and viral degradation of the MHC-I chain.
Collapse
Affiliation(s)
- D J H van den Boomen
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge CB2 0XY, UK.
| | - P J Lehner
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge CB2 0XY, UK.
| |
Collapse
|
9
|
Jeon YJ, Khelifa S, Ratnikov B, Scott DA, Feng Y, Parisi F, Ruller C, Lau E, Kim H, Brill LM, Jiang T, Rimm DL, Cardiff RD, Mills GB, Smith JW, Osterman AL, Kluger Y, Ronai ZA. Regulation of glutamine carrier proteins by RNF5 determines breast cancer response to ER stress-inducing chemotherapies. Cancer Cell 2015; 27:354-69. [PMID: 25759021 PMCID: PMC4356903 DOI: 10.1016/j.ccell.2015.02.006] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 10/28/2014] [Accepted: 02/05/2015] [Indexed: 10/23/2022]
Abstract
Many tumor cells are fueled by altered metabolism and increased glutamine (Gln) dependence. We identify regulation of the L-glutamine carrier proteins SLC1A5 and SLC38A2 (SLC1A5/38A2) by the ubiquitin ligase RNF5. Paclitaxel-induced ER stress to breast cancer (BCa) cells promotes RNF5 association, ubiquitination, and degradation of SLC1A5/38A2. This decreases Gln uptake, levels of TCA cycle components, mTOR signaling, and proliferation while increasing autophagy and cell death. Rnf5-deficient MMTV-PyMT mammary tumors were less differentiated and showed elevated SLC1A5 expression. Whereas RNF5 depletion in MDA-MB-231 cells promoted tumorigenesis and abolished paclitaxel responsiveness, SLC1A5/38A2 knockdown elicited opposing effects. Inverse RNF5(hi)/SLC1A5/38A2(lo) expression was associated with positive prognosis in BCa. Thus, RNF5 control of Gln uptake underlies BCa response to chemotherapies.
Collapse
Affiliation(s)
- Young Joo Jeon
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Sihem Khelifa
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Boris Ratnikov
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - David A Scott
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Yongmei Feng
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Fabio Parisi
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Chelsea Ruller
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Eric Lau
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Hyungsoo Kim
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Laurence M Brill
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Tingting Jiang
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - David L Rimm
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Robert D Cardiff
- Department of Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Gordon B Mills
- Department of Systems Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeffrey W Smith
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Andrei L Osterman
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Yuval Kluger
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Ze'ev A Ronai
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
10
|
Senft D, Ronai ZA. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem Sci 2015; 40:141-8. [PMID: 25656104 DOI: 10.1016/j.tibs.2015.01.002] [Citation(s) in RCA: 820] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/29/2014] [Accepted: 01/06/2015] [Indexed: 12/18/2022]
Abstract
Cellular stress, induced by external or internal cues, activates several well-orchestrated processes aimed at either restoring cellular homeostasis or committing to cell death. Those processes include the unfolded protein response (UPR), autophagy, hypoxia, and mitochondrial function, which are part of the global endoplasmic reticulum (ER) stress (ERS) response. When one of the ERS elements is impaired, as often occurs under pathological conditions, overall cellular homeostasis may be perturbed. Further, activation of the UPR could trigger changes in mitochondrial function or autophagy, which could modulate the UPR, exemplifying crosstalk processes. Among the numerous factors that control the magnitude or duration of these processes are ubiquitin ligases, which govern overall cellular stress outcomes. Here we summarize crosstalk among the fundamental processes governing ERS responses.
Collapse
Affiliation(s)
- Daniela Senft
- Sanford-Burnham Medical Research Institute, La Jolla, CA, 92037, USA.
| | - Ze'ev A Ronai
- Sanford-Burnham Medical Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
11
|
Raina K, Noblin DJ, Serebrenik YV, Adams A, Zhao C, Crews CM. Targeted protein destabilization reveals an estrogen-mediated ER stress response. Nat Chem Biol 2014; 10:957-62. [PMID: 25242550 PMCID: PMC4324732 DOI: 10.1038/nchembio.1638] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/14/2014] [Indexed: 12/16/2022]
Abstract
Accumulation of unfolded proteins within the endoplasmic reticulum (ER) of eukaryotic cells leads to an unfolded protein response (UPR) that either restores homeostasis or commits the cells to apoptosis. Tools traditionally used to study the UPR are proapoptotic and thus confound analysis of long-term cellular responses to ER stress. Here, we describe an ER-localized HaloTag (ERHT) protein that can be conditionally destabilized using a small-molecule hydrophobic tag (HyT36). Treatment of ERHT-expressing cells with HyT36 induces acute, resolvable ER stress that results in transient UPR activation without induction of apoptosis. Transcriptome analysis of late-stage responses to this UPR stimulus reveals a link between UPR activity and estrogen signaling.
Collapse
Affiliation(s)
- Kanak Raina
- 1] Department of Chemistry, Yale University New Haven, Connecticut, USA. [2]
| | - Devin J Noblin
- 1] Department of Molecular, Cellular and Developmental Biology, Yale University New Haven, Connecticut, USA. [2]
| | - Yevgeniy V Serebrenik
- Department of Molecular, Cellular and Developmental Biology, Yale University New Haven, Connecticut, USA
| | - Alison Adams
- Department of Molecular, Cellular and Developmental Biology, Yale University New Haven, Connecticut, USA
| | - Connie Zhao
- Molecular Biophysics and Biochemistry, Yale University New Haven, Connecticut, USA
| | - Craig M Crews
- 1] Department of Chemistry, Yale University New Haven, Connecticut, USA. [2] Department of Molecular, Cellular and Developmental Biology, Yale University New Haven, Connecticut, USA. [3] Department of Pharmacology, Yale University New Haven, Connecticut, USA
| |
Collapse
|
12
|
Koenig PA, Nicholls PK, Schmidt FI, Hagiwara M, Maruyama T, Frydman GH, Watson N, Page DC, Ploegh HL. The E2 ubiquitin-conjugating enzyme UBE2J1 is required for spermiogenesis in mice. J Biol Chem 2014; 289:34490-502. [PMID: 25320092 DOI: 10.1074/jbc.m114.604132] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
ER-resident proteins destined for degradation are dislocated into the cytosol by components of the ER quality control machinery for proteasomal degradation. Dislocation substrates are ubiquitylated in the cytosol by E2 ubiquitin-conjugating/E3 ligase complexes. UBE2J1 is one of the well-characterized E2 enzymes that participate in this process. However, the physiological function of Ube2j1 is poorly defined. We find that Ube2j1(-/-) mice have reduced viability and fail to thrive early after birth. Male Ube2j1(-/-) mice are sterile due to a defect in late spermatogenesis. Ultrastructural analysis shows that removal of the cytoplasm is incomplete in Ube2j1(-/-) elongating spermatids, compromising the release of mature elongate spermatids into the lumen of the seminiferous tubule. Our findings identify an essential function for the ubiquitin-proteasome-system in spermiogenesis and define a novel, non-redundant physiological function for the dislocation step of ER quality control.
Collapse
Affiliation(s)
- Paul-Albert Koenig
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Peter K Nicholls
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Florian I Schmidt
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Masatoshi Hagiwara
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Takeshi Maruyama
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Galit H Frydman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Nicki Watson
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - David C Page
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, and Howard Hughes Medical Institute, Cambridge, Massachusetts 02142
| | - Hidde L Ploegh
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, and
| |
Collapse
|
13
|
Koenig PA, Ploegh HL. Protein quality control in the endoplasmic reticulum. F1000PRIME REPORTS 2014; 6:49. [PMID: 25184039 PMCID: PMC4108957 DOI: 10.12703/p6-49] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
THE TOPOLOGICAL BARRIERS DEFINED BY BIOLOGICAL MEMBRANES ARE NOT IMPERMEABLE: from small solutes to intact proteins, specialized transport and translocation mechanisms adjust to the cell's needs. Here, we review the removal of unwanted proteins from the endoplasmic reticulum (ER) and emphasize the need to extend observations from tissue culture models and simple eukaryotes to studies in whole animals. The variation in protein production and composition that characterizes different cell types and tissues requires tailor-made solutions to exert proper control over both protein synthesis and breakdown. The ER is an organelle essential to achieve and maintain such homeostasis.
Collapse
Affiliation(s)
- Paul-Albert Koenig
- Klinikum rechts der Isar, Technische Universität München, Institut für Klinische Chemie und Pathobiochemie, Ismaninger Straße22, 81675 MünchenGermany
| | - Hidde L. Ploegh
- Whitehead Institute for Biomedical Research9 Cambridge Center, Cambridge, 02142 MAUSA
| |
Collapse
|
14
|
Abstract
An essential step during the intracellular life cycle of many positive-strand RNA viruses is the rearrangement of host cell membranes to generate membrane-bound replication platforms. For example, Nidovirales and Flaviviridae subvert the membrane of the endoplasmic reticulum (ER) for their replication. However, the absence of conventional ER and secretory pathway markers in virus-induced ER-derived membranes has for a long time hampered a thorough understanding of their biogenesis. Recent reports highlight the analogies between mouse hepatitis virus-, equine arteritis virus-, and Japanese encephalitis virus-induced replication platforms and ER-associated degradation (ERAD) tuning vesicles (or EDEMosomes) that display nonlipidated LC3 at their cytosolic face and segregate the ERAD factors EDEM1, OS-9, and SEL1L from the ER lumen. In this Gem, we briefly summarize the current knowledge on ERAD tuning pathways and how they might be hijacked for viral genome replication. As ERAD tuning components, such as SEL1L and nonlipidated LC3, appear to contribute to viral infection, these cellular pathways represent novel candidate drug targets to combat positive-strand RNA viruses.
Collapse
|
15
|
Nakatsukasa K, Kamura T, Brodsky JL. Recent technical developments in the study of ER-associated degradation. Curr Opin Cell Biol 2014; 29:82-91. [PMID: 24867671 DOI: 10.1016/j.ceb.2014.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/04/2014] [Accepted: 04/23/2014] [Indexed: 11/25/2022]
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is a mechanism during which native and misfolded proteins are recognized and retrotranslocated across the ER membrane to the cytosol for degradation by the ubiquitin-proteasome system. Like other cellular pathways, the factors required for ERAD have been analyzed using both conventional genetic and biochemical approaches. More recently, however, an integrated top-down approach has identified a functional network that underlies the ERAD system. In turn, bottom-up reconstitution has become increasingly sophisticated and elucidated the molecular mechanisms underlying substrate recognition, ubiquitylation, retrotranslocation, and degradation. In addition, a live cell imaging technique and a site-specific in vivo photo-crosslinking approach have further dissected specific steps during ERAD. These technical developments have revealed an unexpected dynamicity of the membrane-associated ERAD complex. In this article, we will discuss how these technical developments have improved our understanding of the ERAD pathway and have led to new questions.
Collapse
Affiliation(s)
- Kunio Nakatsukasa
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
| | - Takumi Kamura
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
16
|
Leitman J, Shenkman M, Gofman Y, Shtern NO, Ben-Tal N, Hendershot LM, Lederkremer GZ. Herp coordinates compartmentalization and recruitment of HRD1 and misfolded proteins for ERAD. Mol Biol Cell 2014; 25:1050-60. [PMID: 24478453 PMCID: PMC3967970 DOI: 10.1091/mbc.e13-06-0350] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The unfolded protein response PERK branch induces recruitment of misfolded proteins and the ubiquitin ligase HRD1 to the ER-derived quality control compartment (ERQC), a staging ground for ER-associated degradation (ERAD). This is accomplished by up-regulation of homocysteine-induced ER protein (Herp), which recruits the ERAD complex at the ERQC. A functional unfolded protein response (UPR) is essential for endoplasmic reticulum (ER)-associated degradation (ERAD) of misfolded secretory proteins, reflecting the fact that some level of UPR activation must exist under normal physiological conditions. A coordinator of the UPR and ERAD processes has long been sought. We previously showed that the PKR-like, ER-localized eukaryotic translation initiation factor 2α kinase branch of the UPR is required for the recruitment of misfolded proteins and the ubiquitin ligase HRD1 to the ER-derived quality control compartment (ERQC), a staging ground for ERAD. Here we show that homocysteine-induced ER protein (Herp), a protein highly upregulated by this UPR branch, is responsible for this compartmentalization. Herp localizes to the ERQC, and our results suggest that it recruits HRD1, which targets to ERAD the substrate presented by the OS-9 lectin at the ERQC. Predicted overall structural similarity of Herp to the ubiquitin-proteasome shuttle hHR23, but including a transmembrane hairpin, suggests that Herp may function as a hub for membrane association of ERAD machinery components, a key organizer of the ERAD complex.
Collapse
Affiliation(s)
- Julia Leitman
- Department of Cell Research and Immunology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel Department of Biochemistry and Molecular Biology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | | | | | | | | | | | | |
Collapse
|
17
|
Huang CH, Chu YR, Ye Y, Chen X. Role of HERP and a HERP-related protein in HRD1-dependent protein degradation at the endoplasmic reticulum. J Biol Chem 2013; 289:4444-54. [PMID: 24366871 DOI: 10.1074/jbc.m113.519561] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Misfolded proteins of the endoplasmic reticulum (ER) are retrotranslocated to the cytosol and degraded by the proteasome via a process termed ER-associated degradation (ERAD). The precise mechanism of retrotranslocation is unclear. Here, we use several lumenal ERAD substrates targeted for degradation by the ubiquitin ligase HRD1 including SHH (sonic hedgehog) and NHK (null Hong Kong α1-antitrypsin) to study the geometry, organization, and regulation of the HRD1-containing ERAD machinery. We report a new HRD1-associated membrane protein named HERP2, which is homologous to the previously identified HRD1 partner HERP1. Despite sequence homology, HERP2 is constitutively expressed in cells, whereas HERP1 is highly induced by ER stress. We find that these proteins are required for efficient degradation of both glycosylated and nonglycosylated SHH proteins as well as NHK. In cells depleted of HERPs, SHH proteins are largely trapped inside the ER with a fraction of the stabilized SHH protein bound to the HRD1-SEL1L ligase complex. Ubiquitination of SHH is significantly attenuated in the absence of HERPs, suggesting a defect in retrotranslocation. Both HERP proteins interact with HRD1 through a region located in the cytosol. However, unlike its homolog in Saccharomyces cerevisiae, HERPs do not regulate HRD1 stability or oligomerization status. Instead, they help recruit DERL2 to the HRD1-SEL1L complex. Additionally, the UBL domain of HERP1 also seems to have a function independent of DERL2 recruitment in ERAD. Our studies have revealed a critical scaffolding function for mammalian HERP proteins that is required for forming an active retrotranslocation complex containing HRD1, SEL1L, and DERL2.
Collapse
Affiliation(s)
- Chih-Hsiang Huang
- From the Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan 35053, China
| | | | | | | |
Collapse
|