1
|
Liu Y, Wang Y, He Z, Zhao Z. Roles of programmed cell death in paramyxovirus infection. Zhejiang Da Xue Xue Bao Yi Xue Ban 2025:1-12. [PMID: 40394914 DOI: 10.3724/zdxbyxb-2024-0512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Paramyxoviruses are significant respiratory pathogens with substantial clinical relevance in pediatric infectious diseases. During infection, they induce multiple forms of programmed cell death (PCD), which play pivotal roles in viral replication, dissemination, and host immune responses, thereby profoundly influencing the viral life cycle and disease progression. On one hand, PCD facilitates the clearance of infected cells, restricts viral spread, and activates host immune defenses, thereby enhancing antiviral immunity. On the other hand, excessive or dysregulated cell death may lead to tissue damage and immune imbalance, creating a microenvironment conducive to viral replication and exacerbating disease severity. For instance, apoptosis-mediated by both intrinsic and extrinsic pathways-contributes to infection control but may also be hijacked by viruses to promote dissemination. Pyroptosis, driven by inflammasome activation, triggers lytic cell death and the release of pro-inflammatory cytokines. Necroptosis, mediated by the RIPK1-RIPK3-MLKL signaling axis, and pyroptosis both amplify innate immune responses but may concurrently induce inflammatory dysregulation. Immunogenic cell death (ICD), characterized by the release of damage-associated molecular patterns (DAMPs) and neoantigens, activates antigen-specific immune responses and holds therapeutic potential for antiviral and antitumor interventions. Emerging evidence suggests that ferroptosis, through the modulation of iron metabolism and associated transporters, may also participate in viral replication and infected cell clearance. This review comprehensively summarizes the roles of apoptosis, pyroptosis, necroptosis, ICD, and ferroptosis in paramyxovirus infection, aiming to deepen the understanding of paramyxovirus pathogenesis and provide insights for developing novel antiviral strategies, particularly in pediatric populations.
Collapse
Affiliation(s)
- Ye Liu
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Yilong Wang
- National Clinical Research Center for Child Health, Hangzhou 310052, China
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Zhixu He
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China.
| | - Zhengyan Zhao
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China.
- National Clinical Research Center for Child Health, Hangzhou 310052, China.
- Department of Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China.
| |
Collapse
|
2
|
Barbero-Úriz Ó, Valenti M, Molina M, Fernández-Acero T, Cid VJ. Modeling Necroptotic and Pyroptotic Signaling in Saccharomyces cerevisiae. Biomolecules 2025; 15:530. [PMID: 40305268 PMCID: PMC12025182 DOI: 10.3390/biom15040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
The yeast Saccharomyces cerevisiae is the paradigm of a eukaryotic model organism. In virtue of a substantial degree of functional conservation, it has been extensively exploited to understand multiple aspects of the genetic, molecular, and cellular biology of human disease. Many aspects of cell signaling in cancer, aging, or metabolic diseases have been tackled in yeast. Here, we review the strategies undertaken throughout the years for the development of humanized yeast models to study regulated cell death (RCD) pathways in general, and specifically, those related to innate immunity and inflammation, with an emphasis on pyroptosis and necroptosis. Such pathways involve the assembly of distinct modular signaling complexes such as the inflammasome and the necrosome. Like other supramolecular organizing centers (SMOCs), such intricate molecular arrangements trigger the activity of enzymes, like caspases or protein kinases, culminating in the activation of lytic pore-forming final effectors, respectively, Gasdermin D (GSDMD) in pyroptosis and MLKL in necroptosis. Even though pathways related to those governing innate immunity and inflammation in mammals are missing in fungi, the heterologous expression of their components in the S. cerevisiae model provides a "cellular test tube" to readily study their properties and interactions, thus constituting a valuable tool for finding novel therapies.
Collapse
Affiliation(s)
| | | | | | | | - Víctor J. Cid
- Department of Microbiology and Parasitology, School of Pharmacy, Universidad Complutense de Madrid, Pza. de Ramón y Cajal s/n, 28040 Madrid, Spain; (Ó.B.-Ú.); (M.V.); (M.M.); (T.F.-A.)
| |
Collapse
|
3
|
Lee C, Kim JE, Cha YE, Moon JH, Kim ER, Chang DK, Kim YH, Hong SN. IFN-γ-Induced intestinal epithelial cell-type-specific programmed cell death: PANoptosis and its modulation in Crohn's disease. Front Immunol 2025; 16:1523984. [PMID: 40230837 PMCID: PMC11994596 DOI: 10.3389/fimmu.2025.1523984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/04/2025] [Indexed: 04/16/2025] Open
Abstract
Background Crohn's disease (CD) is a chronic inflammatory bowel disease (IBD) and is considered a Th1-mediated disease, supported by the over-expression of interferon-gamma (IFN-γ) in the intestinal lamina propria. IFN-γ has a pleiotropic effect on the intestinal epithelial cells (IECs), suggesting that IFN-γ-induced responses may differ between epithelial cell types. Methods We established human small intestinal organoids (enteroids) derived from non-IBD controls and CD patients. Using human enteroids, the major response of IECs induced by IFN-γ was evaluated, focusing on the IFN-γ-induced programmed cell death (PCD) pathway. Identified IFN-γ-induced responses were validated in surgically resected intestinal samples and publicly available single-cell RNA-sequencing datasets. Results IFN-γ stimulated programmed cell death (PCD) of IECs in both control and CD enteroids in a dose-dependent manner. Pyroptosis, apoptosis. and necroptosis were activated in enteroids, suggesting that PANoptosis was the main process of IFN-γ-induced PCD in IECs. The response to IFN-γ depends on the cell type of the IECs. IFN-γ induced depletion of enterocytes with upregulation of PANoptosis-associated genes, while leading to expansion of goblet cells without significant change in PANoptosis-associated gene expression. Individual PCD inhibitors were insufficient to block IFN-γ-induced cytotoxicity, whereas the selective JAK1 inhibitor (upadacitinib) effectively blocked IFN-γ-induced cytotoxicity and PANoptosis. Furthermore, PANoptosis was significantly activated in surgically resected tissues and in publicly available single-cell RNA-sequencing datasets of intestinal tissues from patients with CD. Conclusion IFN-γ induces PANoptosis in enterocytes, which can be treated with a selective JAK1 inhibitor in patients with CD.
Collapse
Affiliation(s)
- Chansu Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Ji Eun Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yeo-Eun Cha
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Ji Hwan Moon
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Eun Ran Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dong Kyung Chang
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young-Ho Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sung Noh Hong
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Center, Samsung Medical Center, Seoul, Republic of Korea
| |
Collapse
|
4
|
Nourazarian A, Yousefi H, Biray Avci C, Shademan B, Behboudi E. The Interplay Between Viral Infection and Cell Death: A Ping-Pong Effect. Adv Virol 2025; 2025:5750575. [PMID: 39959654 PMCID: PMC11824611 DOI: 10.1155/av/5750575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/05/2024] [Accepted: 01/10/2025] [Indexed: 02/18/2025] Open
Abstract
Programmed cell death (PCD) is a well-studied cellular mechanism that plays a critical role in immune responses, developmental processes, and the maintenance of tissue homeostasis. However, viruses have developed diverse strategies to bypass or manipulate the host apoptotic machinery to enhance their replication and survival. As a result, the interaction between PCD pathways and viruses has garnered increased interest, leading to many studies being published in recent years. This study aims to provide an overview of the current understanding of PCD pathways and their significance in viral infections. We will discuss various forms of cell death pathways, including apoptosis, autophagy, necroptosis, and pyroptosis, as well as their corresponding molecular mechanisms. In addition, we will show how viruses manipulate host PCD pathways to prevent or delay cell death or facilitate viral replication. This study emphasizes the importance of investigating the mechanisms by which viruses control the host's PCD machinery to gain insight into the evolutionary dynamics of host-pathogen interactions and to develop new approaches for predicting and managing viral threats. Overall, we aimed to highlight new research areas in PCD and viruses, including introduction of new targets for the development of new antiviral drugs to modulate the cellular apoptotic machinery and novel inhibitors of host cell death pathways.
Collapse
Affiliation(s)
- Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Hadi Yousefi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Behrouz Shademan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emad Behboudi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| |
Collapse
|
5
|
Li D, Xu W, He S, Li X, Wang Y, Lv Q, Chen N, Dong L, Guo F, Shi F. Scutellarin inhibits pyroptosis via selective autophagy degradation of p30/GSDMD and suppression of ASC oligomerization. Pharmacol Res 2025; 212:107605. [PMID: 39824372 DOI: 10.1016/j.phrs.2025.107605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/02/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Most of the pyroptosis inhibitors targeted Gasdermin D (GSDMD) are functioning by restraining GSDMD-N (p30) oligomerization. For the first time, this work discovered a pyroptosis inhibitor taking effect by degrading p30 and GSDMD. As the principal bioactive constituent in Erigeron breviscapus, scutellarin (SCU) assumes a pivotal role in the realm of anti-inflammatory processes. In this study, SCU demonstrated efficacy in hindering pyroptosis mediated by the NOD-like receptor protein 3 (NLRP3) inflammasome, absent in melanoma 2 (AIM2) inflammasome, NLR-family CARD-containing protein 4 (NLRC4) inflammasome, and that activated through the non-canonical pathway. The inhibitory effect is achieved by thwarting apoptosis-associated speck-like protein containing CARD (ASC) oligomerization and inducing the ubiquitin-dependent selective autophagy of p30/GSDMD. Throughout the autophagic process, SCU facilitates selective autophagy of the pyroptosis executor p30/GSDMD through K33-linked polyubiquitination at Lys51 catalyzed by the E3 ligase tripartite motif-containing 21 (TRIM21). This process contributes to the recognition of p30/GSDMD by the cargo receptor sequestosome 1 (SQSTM1)/p62. The characteristic positions SCU as a prospective clinical intervention for a broader spectrum of inflammatory-related disorders.
Collapse
Affiliation(s)
- Danyue Li
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China; Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weilv Xu
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China
| | - Suhui He
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyue Li
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yumeng Wang
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Lv
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nan Chen
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lu Dong
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Guo
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310012,China
| | - Fushan Shi
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China; Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Qi WH, Tang N, Zhao ZJ, Li XQ. Transient receptor potential channels in viral infectious diseases: Biological characteristics and regulatory mechanisms. J Adv Res 2024:S2090-1232(24)00541-1. [PMID: 39551130 DOI: 10.1016/j.jare.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Viral infectious diseases have long posed a challenge to humanity. In recent decades, transient receptor potential (TRP) channels have emerged as newly investigated cation channels. Increasing evidence suggests that TRP channel-mediated Ca2+ homeostasis disruptions, along with associated pathological changes, are critical factors in the onset and progression of viral infectious diseases. However, the precise roles and mechanisms of TRP channels in these diseases remain to be systematically elucidated. AIM OF REVIEW The aim of this review is to systematically summarize recent advances in understanding TRP channels in viral infections, and based on current progress and challenges, propose future directions for research. KEY SCIENTIFIC CONCEPTS OF REVIEW This review summarizes the classification and biological functions of the TRP family, explores the mechanisms by which TRP channels contribute to viral infections, and highlights specific mechanisms at three levels: virus, host, and outcome. These include the direct role in viral biology and replication, the indirect role in host immunity and inflammation, and the resulting pathological changes. Additionally, we discuss the potential applications of the TRP family in the treatment of viral infectious diseases and propose future research directions.
Collapse
Affiliation(s)
- Wen-Hui Qi
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, Air Force Medical University, Xi'an, Shaanxi 710032, China; Research Institution, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China.
| | - Na Tang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, Air Force Medical University, Xi'an, Shaanxi 710032, China; Research Institution, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China.
| | - Zhi-Jing Zhao
- Research Institution, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China; Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China.
| | - Xiao-Qiang Li
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, Air Force Medical University, Xi'an, Shaanxi 710032, China; Research Institution, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
7
|
Hou Z, Jin S, Liang Y, Wang H, Jiang D, Cao N, Sun M, Tian Y, Liu W, Xu D, Fu X. Apoptosis, inflammatory and innate immune responses induced by infection with a novel goose astrovirus in goose embryonic kidney cells. Front Cell Infect Microbiol 2024; 14:1452158. [PMID: 39502173 PMCID: PMC11534606 DOI: 10.3389/fcimb.2024.1452158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Since 2016, a highly lethal visceral gout induced by infection with the novel goose astrovirus (GoAstV) resulted in an ongoing outbreak in goslings in China, with a mortality rate ranging from 10% to 50%, and causing considerable economic losses in the goose industry. However, the pathogenesis of GoAstV and the molecular mechanism by which kidney lesions are induced by GoAstV infection are unclear. Methods In the present study, a GEK cell infection model for GoAstV was established, and the apoptosis, inflammatory and innate immune responses induced by GoAstV were investigated in GEK cells. Results The results shown that the expression of proapoptotic proteins, including Bax, caspase-3, caspase-9 and cytochrome c, increased in the infection group; however, the expression of the antiapoptotic protein Bcl-2 decreased, indicating that apoptosis was induced by GoAstV infection in GEK cells. Besides, the activation of the RIG-I/MDA5 pathway and the downstream upregulation of proinflammatory cytokines, including the adapter proteins MAVS, IRF7 and NF-κB and the proinflammatory cytokines IL-6, IL-8 and TNF-α, were detected in GEK cells infected with GoAstV. In addition, GoAstV infection induces the activation of the NLPR3 pathway and further stimulates the increased production of IL-1β. In summary, the present study revealed that GoAstV infection could induce apoptosis and the activation of the RIG-I/MDA5 and NLRP3 pathways in GEK cells, as well as the massive release of proinflammatory cytokines. Discussion These results are helpful for elucidating the molecular mechanism of pathological lesions in the kidney in gout goslings infected with GoAstV and the interaction between GoAstV and the innate immune system of the host.
Collapse
Affiliation(s)
- Zhanpeng Hou
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Shaobing Jin
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yu Liang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Haiyue Wang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Danli Jiang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Nan Cao
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Minhua Sun
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yunbo Tian
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wenjun Liu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Danning Xu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xinliang Fu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
8
|
Laybourn HA, Hellemann Polhaus C, Kristensen C, Lyngfeldt Henriksen B, Zhang Y, Brogaard L, Larsen CA, Trebbien R, Larsen LE, Kalogeropoulos K, Auf dem Keller U, Skovgaard K. Multi-omics analysis reveals the impact of influenza a virus host adaptation on immune signatures in pig tracheal tissue. Front Immunol 2024; 15:1432743. [PMID: 39247193 PMCID: PMC11378526 DOI: 10.3389/fimmu.2024.1432743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Influenza A virus (IAV) infection is a global respiratory disease, which annually leads to 3-5 million cases of severe illness, resulting in 290,000-650,000 deaths. Additionally, during the past century, four global IAV pandemics have claimed millions of human lives. The epithelial lining of the trachea plays a vital role during IAV infection, both as point of viral entry and replication as well as in the antiviral immune response. Tracheal tissue is generally inaccessible from human patients, which makes animal models crucial for the study of the tracheal host immune response. Method In this study, pigs were inoculated with swine- or human-adapted H1N1 IAV to gain insight into how host adaptation of IAV shapes the innate immune response during infection. In-depth multi-omics analysis (global proteomics and RNA sequencing) of the host response in upper and lower tracheal tissue was conducted, and results were validated by microfluidic qPCR. Additionally, a subset of samples was selected for histopathological examination. Results A classical innate antiviral immune response was induced in both upper and lower trachea after infection with either swine- or human-adapted IAV with upregulation of genes and higher abundance of proteins associated with viral infection and recognition, accompanied by a significant induction of interferon stimulated genes with corresponding higher proteins concentrations. Infection with the swine-adapted virus induced a much stronger immune response compared to infection with a human-adapted IAV strain in the lower trachea, which could be a consequence of a higher viral load and a higher degree of inflammation. Discussion Central components of the JAK-STAT pathway, apoptosis, pyrimidine metabolism, and the cytoskeleton were significantly altered depending on infection with swine- or human-adapted virus and might be relevant mechanisms in relation to antiviral immunity against putative zoonotic IAV. Based on our findings, we hypothesize that during host adaptation, IAV evolve to modulate important host cell elements to favor viral infectivity and replication.
Collapse
Affiliation(s)
- Helena Aagaard Laybourn
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Charlotte Kristensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Yaolei Zhang
- Qingdao Key Laboratory of Marine Genomics, BGI-Qingdao, Qingdao, China
| | - Louise Brogaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Cathrine Agnete Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ramona Trebbien
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Lars Erik Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
9
|
Deng Y, Águeda-Pinto A, Brune W. No Time to Die: How Cytomegaloviruses Suppress Apoptosis, Necroptosis, and Pyroptosis. Viruses 2024; 16:1272. [PMID: 39205246 PMCID: PMC11359067 DOI: 10.3390/v16081272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Viruses are obligate intracellular pathogens as their replication depends on the metabolism of the host cell. The induction of cellular suicide, known as programmed cell death (PCD), has the potential to hinder viral replication and act as a first line of defense against viral pathogens. Apoptosis, necroptosis, and pyroptosis are three important PCD modalities. Different signaling pathways are involved in their execution, and they also differ in their ability to cause inflammation. Cytomegaloviruses (CMV), beta-herpesviruses with large double-stranded DNA genomes, encode a great variety of immune evasion genes, including several cell death suppressors. While CMV inhibitors of apoptosis and necroptosis have been known and studied for years, the first pyroptosis inhibitor has been identified and characterized only recently. Here, we describe how human and murine CMV interfere with apoptosis, necroptosis, and pyroptosis signaling pathways. We also discuss the importance of the different PCD forms and their viral inhibitors for the containment of viral replication and spread in vivo.
Collapse
Affiliation(s)
| | | | - Wolfram Brune
- Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany; (Y.D.); (A.Á.-P.)
| |
Collapse
|
10
|
Kozlovski I, Jaimes-Becerra A, Sharoni T, Lewandowska M, Karmi O, Moran Y. Induction of apoptosis by double-stranded RNA was present in the last common ancestor of cnidarian and bilaterian animals. PLoS Pathog 2024; 20:e1012320. [PMID: 39012849 PMCID: PMC11251625 DOI: 10.1371/journal.ppat.1012320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/06/2024] [Indexed: 07/18/2024] Open
Abstract
Apoptosis, a major form of programmed cell death, is an essential component of host defense against invading intracellular pathogens. Viruses encode inhibitors of apoptosis to evade host responses during infection, and to support their own replication and survival. Therefore, hosts and their viruses are entangled in a constant evolutionary arms race to control apoptosis. Until now, apoptosis in the context of the antiviral immune system has been almost exclusively studied in vertebrates. This limited phyletic sampling makes it impossible to determine whether a similar mechanism existed in the last common ancestor of animals. Here, we established assays to probe apoptosis in the sea anemone Nematostella vectensis, a model species of Cnidaria, a phylum that diverged approximately 600 million years ago from the rest of animals. We show that polyinosinic:polycytidylic acid (poly I:C), a synthetic long double-stranded RNA mimicking viral RNA and a primary ligand for the vertebrate RLR melanoma differentiation-associated protein 5 (MDA5), is sufficient to induce apoptosis in N. vectensis. Furthermore, at the transcriptomic level, apoptosis related genes are significantly enriched upon poly(I:C) exposure in N. vectensis as well as bilaterian invertebrates. Our phylogenetic analysis of caspase family genes in N. vectensis reveals conservation of all four caspase genes involved in apoptosis in mammals and revealed a cnidarian-specific caspase gene which was strongly upregulated. Altogether, our findings suggest that apoptosis in response to a viral challenge is a functionally conserved mechanism that can be traced back to the last common ancestor of Bilateria and Cnidaria.
Collapse
Affiliation(s)
- Itamar Kozlovski
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adrian Jaimes-Becerra
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ton Sharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Magda Lewandowska
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ola Karmi
- Research Infrastructure Facility, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
11
|
Sgibnev A, Kremleva E. Lactobacilli Have an Opposite Effect on the Resistance to Oxidative Damage of HPV-Infected Compared with Uninfected Vaginal Epithelial Cells. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10317-0. [PMID: 38941060 DOI: 10.1007/s12602-024-10317-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
To study how indigenous or probiotic-introduced lactobacilli affect the sensitivity (estimated as the proportion of surviving, apoptotic, and nonapoptotic deaths) of vaginal epithelial cells obtained from HPV-negative and HPV-positive patients to oxidative damage. The tendency to resist oxidative damage in vaginal epithelial cells of 147 HPV-positive and 59 HPV-negative patients with physiological or suboptimal levels of Lactobacillus was evaluated. Adaptation of cell to curb the oxidative damage in 146 HPV positive and 41 HPV negative with probiotic (Lacticaseibacillus rhamnosus Lcr35) supplementation and without was studied. Resistance of epithelial cells to damage was measured by the ratio of surviving, apoptotic, and dead nonapoptotic cells after three times of hydrogen peroxide treatment using a kit containing annexin V-fluorescein in combination with propidium iodide. If uninfected epithelial cells were in an environment with a physiological level of lactobacilli for significant duration, then these cells were more resilient to damage, and if they lost their viability, it was mainly due to apoptosis. Probiotic therapy also increased the resistance of uninfected epithelial cells to damage. HPV-infected epithelial cells were less resistant to damage at normal levels of lactobacilli compared with Lactobacillus deficiency. In HPV-positive patients with Lactobacillus deficiency, probiotic therapy decreased the resistance of infected epithelial cells to damage; the increase in cell death was mainly due to apoptosis.
Collapse
Affiliation(s)
- Andrey Sgibnev
- Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, 11, Pionerskaja Str., Orenburg, 460000, Russian Federation.
- Department of Chemistry, Orenburg State Medical University, Ministry of Healthcare of the Russian Federation, 6 Sovetskaya Str., Orenburg, 460000, Russian Federation.
| | - Elena Kremleva
- Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, 11, Pionerskaja Str., Orenburg, 460000, Russian Federation
- Department of Obstetrics and Gynecology, Orenburg State Medical University, Ministry of Healthcare of the Russian Federation, 6 Sovetskaya Str., Orenburg, 460000, Russian Federation
| |
Collapse
|
12
|
Li M, Zhou Y, Cheng J, Wang Y, Lan C, Shen Y. Response of the mosquito immune system and symbiotic bacteria to pathogen infection. Parasit Vectors 2024; 17:69. [PMID: 38368353 PMCID: PMC10874582 DOI: 10.1186/s13071-024-06161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/24/2024] [Indexed: 02/19/2024] Open
Abstract
Mosquitoes are the deadliest animal in the word, transmitting a variety of insect-borne infectious diseases, such as malaria, dengue fever, yellow fever, and Zika, causing more deaths than any other vector-borne pathogen. Moreover, in the absence of effective drugs and vaccines to prevent and treat insect-borne diseases, mosquito control is particularly important as the primary measure. In recent decades, due to the gradual increase in mosquito resistance, increasing attention has fallen on the mechanisms and effects associated with pathogen infection. This review provides an overview of mosquito innate immune mechanisms in terms of physical and physiological barriers, pattern recognition receptors, signalling pathways, and cellular and humoral immunity, as well as the antipathogenic effects of mosquito symbiotic bacteria. This review contributes to an in-depth understanding of the interaction process between mosquitoes and pathogens and provides a theoretical basis for biological defence strategies against mosquito-borne infectious diseases.
Collapse
Affiliation(s)
- Manjin Li
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Yang Zhou
- Nanjing Medical University, Nanjing, 211166, China
| | - Jin Cheng
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Yiqing Wang
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Cejie Lan
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
| | - Yuan Shen
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
- Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
13
|
Lucas CL. Human genetic errors of immunity illuminate an adaptive arsenal model of rapid defenses. Trends Immunol 2024; 45:113-126. [PMID: 38302340 DOI: 10.1016/j.it.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024]
Abstract
New discoveries in the field of human monogenic immune diseases highlight critical genes and pathways governing immune responses. Here, I describe how the ~500 currently defined human inborn errors of immunity help shape what I propose is an 'adaptive arsenal model of rapid defenses', emphasizing the set of immunological defenses poised for rapid responses in the natural environment. This arsenal blurs the lines between innate and adaptive immunity and is established through molecular relays between cell types, often traversing from sensors (pathogen detection) to intermediates to executioners (pathogen clearance) via soluble factors. Predictions and missing information based on the adaptive arsenal model are discussed, as are emergent and outstanding questions fundamental to advances in the field.
Collapse
Affiliation(s)
- Carrie L Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
14
|
Adeosun WB, Loots DT. Medicinal Plants against Viral Infections: A Review of Metabolomics Evidence for the Antiviral Properties and Potentials in Plant Sources. Viruses 2024; 16:218. [PMID: 38399995 PMCID: PMC10892737 DOI: 10.3390/v16020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Most plants have developed unique mechanisms to cope with harsh environmental conditions to compensate for their lack of mobility. A key part of their coping mechanisms is the synthesis of secondary metabolites. In addition to their role in plants' defense against pathogens, they also possess therapeutic properties against diseases, and their use by humans predates written history. Viruses are a unique class of submicroscopic agents, incapable of independent existence outside a living host. Pathogenic viruses continue to pose a significant threat to global health, leading to innumerable fatalities on a yearly basis. The use of medicinal plants as a natural source of antiviral agents has been widely reported in literature in the past decades. Metabolomics is a powerful research tool for the identification of plant metabolites with antiviral potentials. It can be used to isolate compounds with antiviral capacities in plants and study the biosynthetic pathways involved in viral disease progression. This review discusses the use of medicinal plants as antiviral agents, with a special focus on the metabolomics evidence supporting their efficacy. Suggestions are made for the optimization of various metabolomics methods of characterizing the bioactive compounds in plants and subsequently understanding the mechanisms of their operation.
Collapse
Affiliation(s)
- Wilson Bamise Adeosun
- Human Metabolomics, North-West University, Private Bag X6001, Box 269, Potchefstroom 2531, South Africa;
| | | |
Collapse
|
15
|
M Bader S, Cooney JP, Bhandari R, Mackiewicz L, Dayton M, Sheerin D, Georgy SR, Murphy JM, Davidson KC, Allison CC, Pellegrini M, Doerflinger M. Necroptosis does not drive disease pathogenesis in a mouse infective model of SARS-CoV-2 in vivo. Cell Death Dis 2024; 15:100. [PMID: 38286985 PMCID: PMC10825138 DOI: 10.1038/s41419-024-06471-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/31/2024]
Abstract
Necroptosis, a type of lytic cell death executed by the pseudokinase Mixed Lineage Kinase Domain-Like (MLKL) has been implicated in the detrimental inflammation caused by SARS-CoV-2 infection. We minimally and extensively passaged a single clinical SARS-CoV-2 isolate to create models of mild and severe disease in mice allowing us to dissect the role of necroptosis in SARS-CoV-2 disease pathogenesis. We infected wild-type and MLKL-deficient mice and found no significant differences in viral loads or lung pathology. In our model of severe COVID-19, MLKL-deficiency did not alter the host response, ameliorate weight loss, diminish systemic pro-inflammatory cytokines levels, or prevent lethality in aged animals. Our in vivo models indicate that necroptosis is dispensable in the pathogenesis of mild and severe COVID-19.
Collapse
Affiliation(s)
- Stefanie M Bader
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3050, Australia
| | - James P Cooney
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3050, Australia
| | - Reet Bhandari
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3050, Australia
| | - Liana Mackiewicz
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
| | - Merle Dayton
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
| | - Dylan Sheerin
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3050, Australia
| | - Smitha Rose Georgy
- Department of Anatomic Pathology, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, VIC, 3030, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3050, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Kathryn C Davidson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3050, Australia
| | - Cody C Allison
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3050, Australia
| | - Marcel Doerflinger
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3050, Australia.
| |
Collapse
|
16
|
Deng Y, Ostermann E, Brune W. A cytomegalovirus inflammasome inhibitor reduces proinflammatory cytokine release and pyroptosis. Nat Commun 2024; 15:786. [PMID: 38278864 PMCID: PMC10817922 DOI: 10.1038/s41467-024-45151-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
In response to viral infection, cells can initiate programmed cell death (PCD), leading to a reduction in the release of viral progeny. Viruses have therefore evolved specific mechanisms to curb PCD. Cytomegaloviruses (CMVs) are sophisticated manipulators of cellular defenses and encode potent inhibitors of apoptosis and necroptosis. However, a CMV inhibitor of pyroptosis has not been clearly identified and characterized. Here we identify the mouse cytomegalovirus M84 protein as an inhibitor of pyroptosis and proinflammatory cytokine release. M84 interacts with the pyrin domain of AIM2 and ASC to inhibit inflammasome assembly. It thereby prevents Caspase-1-mediated activation of interleukin 1β (IL-1β), IL-18, and Gasdermin D. Growth attenuation of an M84-deficient MCMV in macrophages is rescued by knockout of either Aim2 or Asc or by treatment with a Caspase-1 inhibitor, and its attenuation in infected mice is partially rescued in Asc knockout mice. Thus, viral inhibition of the inflammasome-pyroptosis pathway is important to promote viral replication in vivo.
Collapse
Affiliation(s)
- Yingqi Deng
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | | | - Wolfram Brune
- Leibniz Institute of Virology (LIV), Hamburg, Germany.
| |
Collapse
|
17
|
Fan Y, Guan B, Xu J, Zhang H, Yi L, Yang Z. Role of toll-like receptor-mediated pyroptosis in sepsis-induced cardiomyopathy. Biomed Pharmacother 2023; 167:115493. [PMID: 37734261 DOI: 10.1016/j.biopha.2023.115493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Sepsis, a life-threatening dysregulated status of the host response to infection, can cause multiorgan dysfunction and mortality. Sepsis places a heavy burden on the cardiovascular system due to the pathological imbalance of hyperinflammation and immune suppression. Myocardial injury and cardiac dysfunction caused by the aberrant host responses to pathogens can lead to cardiomyopathy, one of the most critical complications of sepsis. However, many questions about the specific mechanisms and characteristics of this complication remain to be answered. The causes of sepsis-induced cardiac dysfunction include abnormal cardiac perfusion, myocardial inhibitory substances, autonomic dysfunction, mitochondrial dysfunction, and calcium homeostasis dysregulation. The fight between the host and pathogens acts as the trigger for sepsis-induced cardiomyopathy. Pyroptosis, a form of programmed cell death, plays a critical role in the progress of sepsis. Toll-like receptors (TLRs) act as pattern recognition receptors and participate in innate immune pathways that recognize damage-associated molecular patterns as well as pathogen-associated molecular patterns to mediate pyroptosis. Notably, pyroptosis is tightly associated with cardiac dysfunction in sepsis and septic shock. In line with these observations, induction of TLR-mediated pyroptosis may be a promising therapeutic approach to treat sepsis-induced cardiomyopathy. This review focuses on the potential roles of TLR-mediated pyroptosis in sepsis-induced cardiomyopathy, to shed light on this promising therapeutic approach, thus helping to prevent and control septic shock caused by cardiovascular disorders and improve the prognosis of sepsis patients.
Collapse
Affiliation(s)
- Yixuan Fan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyi Guan
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine
| | - Jianxing Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - He Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Liang Yi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Zhixu Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
18
|
Echavarria-Consuegra L, Dinesh Kumar N, van der Laan M, Mauthe M, Van de Pol D, Reggiori F, Smit JM. Mitochondrial protein BNIP3 regulates Chikungunya virus replication in the early stages of infection. PLoS Negl Trop Dis 2023; 17:e0010751. [PMID: 38011286 PMCID: PMC10703415 DOI: 10.1371/journal.pntd.0010751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/07/2023] [Accepted: 10/05/2023] [Indexed: 11/29/2023] Open
Abstract
Chikungunya virus (CHIKV) is a human pathogen causing outbreaks of febrile illness for which vaccines and specific treatments remain unavailable. Autophagy-related (ATG) proteins and autophagy receptors are a set of host factors that participate in autophagy, but have also shown to function in other unrelated cellular pathways. Although autophagy is reported to both inhibit and enhance CHIKV replication, the specific role of individual ATG proteins remains largely unknown. Here, a siRNA screen was performed to evaluate the importance of the ATG proteome and autophagy receptors in controlling CHIKV infection. We observed that 7 out of 50 ATG proteins impact the replication of CHIKV. Among those, depletion of the mitochondrial protein and autophagy receptor BCL2 Interacting Protein 3 (BNIP3) increased CHIKV infection. Interestingly, BNIP3 controls CHIKV independently of autophagy and cell death. Detailed analysis of the CHIKV viral cycle revealed that BNIP3 interferes with the early stages of infection. Moreover, the antiviral role of BNIP3 was found conserved across two distinct CHIKV genotypes and the closely related Semliki Forest virus. Altogether, this study describes a novel and previously unknown function of the mitochondrial protein BNIP3 in the control of the early stages of the alphavirus viral cycle.
Collapse
Affiliation(s)
- Liliana Echavarria-Consuegra
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nilima Dinesh Kumar
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marleen van der Laan
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mario Mauthe
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Denise Van de Pol
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jolanda M. Smit
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
19
|
Holmdahl I, Chakraborty S, Hoyer A, Filiou A, Asarnoj A, Sjölander A, Borres MP, van Hage M, Hedlin G, Konradsen JR, Söderhäll C. Inflammatory related plasma proteins involved in acute preschool wheeze. Clin Transl Allergy 2023; 13:e12308. [PMID: 38006384 PMCID: PMC10618892 DOI: 10.1002/clt2.12308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/01/2023] [Accepted: 10/16/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Preschool wheeze is a risk factor for asthma development. However, the molecular mechanism behind a wheezing episode is not well understood. OBJECTIVE Our aims were to assess the association of plasma proteins with acute preschool wheeze and to study the proteins with differential expression at the acute phase at revisit after 3 months. Additionally, to investigate the relationship between protein expression and clinical parameters. METHOD We measured 92 inflammatory proteins in plasma and clinical parameters from 145 children during an episode of preschool wheeze (PW) and at the revisit after 3 months (PW-R, n = 113/145) and 101 healthy controls (HC) aged 6-48 months in the GEWAC cohort using the antibody-mediated proximity extension-based assay (Olink Proteomics, Uppsala). RESULTS Of the 74 analysed proteins, 52 were differentially expressed between PW and HC. The expression profiles of the top 10 proteins, Oncostatin M (OSM), IL-10, IL-6, Fibroblast growth factor 21 (FGF21), AXIN1, CXCL10, SIRT2, TNFSF11, Tumour necrosis factor β (TNF-β) and CASP8, could almost entirely separate PW from HC. Five out of 10 proteins were associated with intake of oral corticosteroids (OCS) 24 h preceding blood sampling (OSM, CASP8, IL-10, TNF-β and CXCL10). No differences in protein expression were seen between PWs with or without OCS in comparison to HC. At the revisit after 3 months, differential protein expressions were still seen between PW-R and HC for three (IL-10, SIRT2 and FGF21) of the 10 proteins. CONCLUSION Our results contribute to unravelling potential immunopathological pathways shared between preschool wheeze and asthma.
Collapse
Affiliation(s)
- Idun Holmdahl
- Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
- Astrid Lindgren's Children's HospitalKarolinska University HospitalStockholmSweden
| | - Sandip Chakraborty
- Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
- Astrid Lindgren's Children's HospitalKarolinska University HospitalStockholmSweden
| | - Angela Hoyer
- Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
- Astrid Lindgren's Children's HospitalKarolinska University HospitalStockholmSweden
| | - Anastasia Filiou
- Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
- Astrid Lindgren's Children's HospitalKarolinska University HospitalStockholmSweden
| | - Anna Asarnoj
- Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
- Astrid Lindgren's Children's HospitalKarolinska University HospitalStockholmSweden
| | | | - Magnus P. Borres
- Thermo Fisher ScientificUppsalaSweden
- Department of Women's and Children's HealthUppsala UniversityUppsalaSweden
| | - Marianne van Hage
- Division of Immunology and AllergyDepartment of Medicine SolnaKarolinska Institutet and Karolinska University HospitalStockholmSweden
| | - Gunilla Hedlin
- Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
| | - Jon R. Konradsen
- Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
- Astrid Lindgren's Children's HospitalKarolinska University HospitalStockholmSweden
| | - Cilla Söderhäll
- Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
- Astrid Lindgren's Children's HospitalKarolinska University HospitalStockholmSweden
| |
Collapse
|
20
|
Borase H, Shukla D. The Interplay of Genital Herpes with Cellular Processes: A Pathogenesis and Therapeutic Perspective. Viruses 2023; 15:2195. [PMID: 38005873 PMCID: PMC10675801 DOI: 10.3390/v15112195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Genital herpes, primarily caused by herpes simplex virus-2 (HSV-2), remains a pressing global health concern. Its remarkable ability to intertwine with cellular processes, from harnessing host machinery for replication to subverting antiviral defenses like autophagy and programmed cell death, exemplifies the intricate interplay at the heart of its pathogenesis. While the biomedical community has extensively researched antiviral interventions, the efficiency of these strategies in managing HSV-2 remains suboptimal. Recognizing this, attention has shifted toward leveraging host cellular components to regulate HSV-2 replication and influence the cell cycle. Furthermore, innovative interventional strategies-including drug repurposing, microbivacs, connecting the host microbiome, and exploiting natural secondary metabolites-are emerging as potential game changers. This review summarizes the key steps in HSV-2 pathogenesis and newly discovered cellular interactions, presenting the latest developments in the field, highlighting existing challenges, and offering a fresh perspective on HSV-2's pathogenesis and the potential avenues for its treatment by targeting cellular proteins and pathways.
Collapse
Affiliation(s)
- Hemant Borase
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
21
|
Cheung J, Remiszewski S, Chiang LW, Ahmad E, Pal M, Rahman SA, Nikolovska-Coleska Z, Chan GC. Inhibition of SIRT2 promotes death of human cytomegalovirus-infected peripheral blood monocytes via apoptosis and necroptosis. Antiviral Res 2023; 217:105698. [PMID: 37562606 DOI: 10.1016/j.antiviral.2023.105698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Peripheral blood monocytes are the cells predominantly responsible for systemic dissemination of human cytomegalovirus (HCMV) and a significant cause of morbidity and mortality in immunocompromised patients. HCMV establishes a silent/quiescent infection in monocytes, which is defined by the lack of viral replication and lytic gene expression. The absence of replication shields the virus within infected monocytes from the current available antiviral drugs that are designed to suppress active replication. Our previous work has shown that HCMV stimulates a noncanonical phosphorylation of Akt and the subsequent upregulation of a distinct subset of prosurvival proteins in normally short-lived monocytes. In this study, we found that SIRT2 activity is required for the unique activation profile of Akt induced within HCMV-infected monocytes. Importantly, both therapeutic and prophylactic treatment with a novel SIRT2 inhibitor, FLS-379, promoted death of infected monocytes via both the apoptotic and necroptotic cell death pathways. Mechanistically, SIRT2 inhibition reduced expression of Mcl-1, an Akt-dependent antiapoptotic Bcl-2 family member, and enhanced activation of MLKL, the executioner kinase of necroptosis. We have previously reported HCMV to block necroptosis by stimulating cellular autophagy. Here, we additionally demonstrate that inhibition of SIRT2 suppressed Akt-dependent HCMV-induced autophagy leading to necroptosis of infected monocytes. Overall, our data show that SIRT2 inhibition can simultaneously promote death of quiescently infected monocytes by two distinct death pathways, apoptosis and necroptosis, which may be vital for limiting viral dissemination to peripheral organs in immunosuppressed patients.
Collapse
Affiliation(s)
- Jennifer Cheung
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Stacy Remiszewski
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA
| | - Lillian W Chiang
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA
| | - Ejaz Ahmad
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Mohan Pal
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sm Ashikur Rahman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Zaneta Nikolovska-Coleska
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gary C Chan
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
22
|
Tang X, Zhang Y, Xing J, Sheng X, Chi H, Zhan W. Proteomic and Phosphoproteomic Analysis Reveals Differential Immune Response to Hirame Novirhabdovirus (HIRRV) Infection in the Flounder ( Paralichthys olivaceus) under Different Temperature. BIOLOGY 2023; 12:1145. [PMID: 37627029 PMCID: PMC10452491 DOI: 10.3390/biology12081145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Hirame novirhabdovirus (HIRRV) is one of most serious viral pathogens causing significant economic losses to the flounder (Paralichthys olivaceus)-farming industry. Previous studies have shown that the outbreak of HIRRV is highly temperature-dependent, and revealed the viral replication was significantly affected by the antiviral response of flounders under different temperatures. In the present study, the proteome and phosphoproteome was used to analyze the different antiviral responses in the HIRRV-infected flounder under 10 °C and 20 °C. Post viral infection, 472 differentially expressed proteins (DEPs) were identified in the spleen of flounder under 10 °C, which related to NOD-like receptor signaling pathway, RIG-I-like receptor signaling pathway, RNA transport and so on. Under 20 °C, 652 DEPs were identified and involved in focal adhesion, regulation of actin cytoskeleton, phagosome, NOD-like receptor signaling pathway and RIG-I-like receptor signaling pathway. Phosphoproteome analysis showed that 675 differentially expressed phosphoproteins (DEPPs) were identified in the viral infected spleen under 10 °C and significantly enriched in Spliceosome, signaling pathway, necroptosis and RNA transport. Under 20 °C, 1304 DEPPs were identified and significantly enriched to Proteasome, VEGF signaling pathway, apoptosis, Spliceosome, mTOR signaling pathway, mRNA surveillance pathway, and RNA transport. To be noted, the proteins and phosphoproteins involved in interferon production and signaling showed significant upregulations in the viral infected flounder under 20 °C compared with that under 10 °C. Furthermore, the temporal expression profiles of eight selected antiviral-related mRNA including IRF3, IRF7, IKKβ, TBK1, IFIT1, IFI44, MX1 and ISG15 were detected by qRT-PCR, which showed a significantly stronger response at early infection under 20 °C. These results provided fundamental resources for subsequent in-depth research on the HIRRV infection mechanism and the antiviral immunity of flounder, and also gives evidences for the high mortality of HIRRV-infected flounder under low temperature.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; (X.T.); (Y.Z.); (J.X.); (X.S.); (H.C.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yingfeng Zhang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; (X.T.); (Y.Z.); (J.X.); (X.S.); (H.C.)
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; (X.T.); (Y.Z.); (J.X.); (X.S.); (H.C.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; (X.T.); (Y.Z.); (J.X.); (X.S.); (H.C.)
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; (X.T.); (Y.Z.); (J.X.); (X.S.); (H.C.)
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; (X.T.); (Y.Z.); (J.X.); (X.S.); (H.C.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
23
|
Liu L, Zhou L, Wang LL, Zheng PD, Zhang FQ, Mao ZY, Zhang HJ, Liu HG. Programmed Cell Death in Asthma: Apoptosis, Autophagy, Pyroptosis, Ferroptosis, and Necroptosis. J Inflamm Res 2023; 16:2727-2754. [PMID: 37415620 PMCID: PMC10321329 DOI: 10.2147/jir.s417801] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
Bronchial asthma is a complex heterogeneous airway disease, which has emerged as a global health issue. A comprehensive understanding of the different molecular mechanisms of bronchial asthma may be an efficient means to improve its clinical efficacy in the future. Increasing research evidence indicates that some types of programmed cell death (PCD), including apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis, contributed to asthma pathogenesis, and may become new targets for future asthma treatment. This review briefly discusses the molecular mechanism and signaling pathway of these forms of PCD focuses on summarizing their roles in the pathogenesis and treatment strategies of asthma and offers some efficient means to improve clinical efficacy of therapeutics for asthma in the near future.
Collapse
Affiliation(s)
- Lu Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ling-Ling Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Peng-Dou Zheng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Feng-Qin Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhen-Yu Mao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Huo-Jun Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Hui-Guo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
24
|
Ramli S, Wu YS, Batumalaie K, Guad RM, Choy KW, Kumar A, Gopinath SCB, Rahman Sarker MM, Subramaniyan V, Sekar M, Fuloria NK, Fuloria S, Chinni SV, Ramachawolran G. Phytochemicals of Withania somnifera as a Future Promising Drug against SARS-CoV-2: Pharmacological Role, Molecular Mechanism, Molecular Docking Evaluation, and Efficient Delivery. Microorganisms 2023; 11:1000. [PMID: 37110423 PMCID: PMC10142625 DOI: 10.3390/microorganisms11041000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Coronavirus disease (COVID-19) has killed millions of people since first reported in Wuhan, China, in December 2019. Intriguingly, Withania somnifera (WS) has shown promising antiviral effects against numerous viral infections, including SARS-CoV and SARS-CoV-2, which are contributed by its phytochemicals. This review focused on the updated testing of therapeutic efficacy and associated molecular mechanisms of WS extracts and their phytochemicals against SARS-CoV-2 infection in preclinical and clinical studies with the aim to develop a long-term solution against COVID-19. It also deciphered the current use of the in silico molecular docking approach in developing potential inhibitors from WS targeting SARS-CoV-2 and host cell receptors that may aid the development of targeted therapy against SARS-CoV-2 ranging from prior to viral entry until acute respiratory distress syndrome (ARDS). This review also discussed nanoformulations or nanocarriers in achieving effective WS delivery to enhance its bioavailability and therapeutic efficacy, consequently preventing the emergence of drug resistance, and eventually therapeutic failure.
Collapse
Affiliation(s)
- Suaidah Ramli
- Department of Pharmacy, Hospital Sultanah Nur Zahirah, Kuala Terengganu 20400, Malaysia;
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences, Faculty of Health Sciences, Asia Metropolitan University, Johor Bahru 81750, Malaysia;
| | - Rhanye Mac Guad
- Department of Biomedical Science and Therapeutics, Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| | - Ker Woon Choy
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Malaysia;
| | - Ashok Kumar
- Department of Internal Medicine, Division of Pulmonary, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA;
| | - Subash C. B. Gopinath
- Centre of Excellence (CoE), Faculty of Chemical Engineering & Technology & Micro System Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia;
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar 01000, Malaysia
| | - Md. Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
- Health Med Science Research Network, 3/1, Block F, Lalmatia, Dhaka 1207, Bangladesh
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia;
- Department of Pharmacology, School of Medicine, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Subang Jaya 42610, Malaysia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia;
| | - Neeraj Kumar Fuloria
- Centre of Excellence for Biomaterials Engineering & Faculty of Pharmacy, AIMST University, Bedong 08100, Malaysia;
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Malaysia;
| | - Suresh V. Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom 42610, Malaysia;
- Department of Periodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Chennai 600077, India
| | - Gobinath Ramachawolran
- Department of Foundation, RCSI & UCD Malaysia Campus, No 4, Jalan Sepoy Lines, Georgetown 10450, Malaysia
| |
Collapse
|
25
|
Wong YP, Tan GC, Khong TY. SARS-CoV-2 Transplacental Transmission: A Rare Occurrence? An Overview of the Protective Role of the Placenta. Int J Mol Sci 2023; 24:4550. [PMID: 36901979 PMCID: PMC10002996 DOI: 10.3390/ijms24054550] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
The outbreak of the coronavirus disease 2019 (COVID-19) pandemic, caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a global public health crisis, causing substantial concern especially to the pregnant population. Pregnant women infected with SARS-CoV-2 are at greater risk of devastating pregnancy complications such as premature delivery and stillbirth. Irrespective of the emerging reported cases of neonatal COVID-19, reassuringly, confirmatory evidence of vertical transmission is still lacking. The protective role of the placenta in limiting in utero spread of virus to the developing fetus is intriguing. The short- and long-term impact of maternal COVID-19 infection in the newborn remains an unresolved question. In this review, we explore the recent evidence of SARS-CoV-2 vertical transmission, cell-entry pathways, placental responses towards SARS-CoV-2 infection, and its potential effects on the offspring. We further discuss how the placenta serves as a defensive front against SARS-CoV-2 by exerting various cellular and molecular defense pathways. A better understanding of the placental barrier, immune defense, and modulation strategies involved in restricting transplacental transmission may provide valuable insights for future development of antiviral and immunomodulatory therapies to improve pregnancy outcomes.
Collapse
Affiliation(s)
- Yin Ping Wong
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Department of Pathology, SA Pathology, Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - T. Yee Khong
- Department of Pathology, SA Pathology, Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
- Department of Pathology, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
26
|
Porcine sapovirus-induced RIPK1-dependent necroptosis is proviral in LLC-PK cells. PLoS One 2023; 18:e0279843. [PMID: 36735696 PMCID: PMC9897573 DOI: 10.1371/journal.pone.0279843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/15/2022] [Indexed: 02/04/2023] Open
Abstract
Sapoviruses belonging to the genus Sapovirus within the family Caliciviridae are commonly responsible for severe acute gastroenteritis in both humans and animals. Caliciviruses are known to induce intrinsic apoptosis in vitro and in vivo, however, calicivirus-induced necroptosis remains to be fully elucidated. Here, we demonstrate that infection of porcine kidney LLC-PK cells with porcine sapovirus (PSaV) Cowden strain as a representative of caliciviruses induces receptor-interacting protein kinase 1 (RIPK1)-dependent necroptosis and acts as proviral compared to the antiviral function of PSaV-induced apoptosis. Infection of LLC-PK cells with PSaV Cowden strain showed that the interaction of phosphorylated RIPK1 (pRIPK1) with RIPK3 (pRIPK3), mixed lineage kinase domain-like protein (pMLKL) increased in a time-dependent manner, indicating induction of PSaV-induced RIPK1-dependent necroptosis. Interfering of PSaV-infected cells with each necroptotic molecule (RIPK1, RIPK3, or MLKL) by treatment with each specific chemical inhibitor or knockdown with each specific siRNA significantly reduced replication of PSaV but increased apoptosis and cell viability, implying proviral action of PSaV-induced necroptosis. In contrast, treatment of PSaV-infected cells with pan-caspase inhibitor Z-VAD-FMK increased PSaV replication and necroptosis, indicating an antiviral action of PSaV-induced apoptosis. These results suggest that PSaV-induced RIPK1-dependent necroptosis and apoptosis‒which have proviral and antiviral effects, respectively‒counterbalanced each other in virus-infected cells. Our study contributes to understanding the nature of PSaV-induced necroptosis and apoptosis and will aid in developing efficient and affordable therapies against PSaV and other calicivirus infections.
Collapse
|
27
|
Mitochondria Dysfunction at the Heart of Viral Myocarditis: Mechanistic Insights and Therapeutic Implications. Viruses 2023; 15:v15020351. [PMID: 36851568 PMCID: PMC9963085 DOI: 10.3390/v15020351] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
The myocardium/heart is the most mitochondria-rich tissue in the human body with mitochondria comprising approximately 30% of total cardiomyocyte volume. As the resident "powerhouse" of cells, mitochondria help to fuel the high energy demands of a continuously beating myocardium. It is no surprise that mitochondrial dysfunction underscores the pathogenesis of many cardiovascular ailments, including those of viral origin such as virus-induced myocarditis. Enteroviruses have been especially linked to injuries of the myocardium and its sequelae dilated cardiomyopathy for which no effective therapies currently exist. Intriguingly, recent mechanistic insights have demonstrated viral infections to directly damage mitochondria, impair the mitochondrial quality control processes of the cell, such as disrupting mitochondrial antiviral innate immune signaling, and promoting mitochondrial-dependent pathological inflammation of the infected myocardium. In this review, we briefly highlight recent insights on the virus-mitochondria crosstalk and discuss the therapeutic implications of targeting mitochondria to preserve heart function and ultimately combat viral myocarditis.
Collapse
|
28
|
Abstract
Poxviruses have been long regarded as potent inhibitors of apoptotic cell death. More recently, they have been shown to inhibit necroptotic cell death through two distinct strategies. These strategies involve either blocking virus sensing by the host pattern recognition receptor, ZBP1 (also called DAI) or by influencing receptor interacting protein kinase (RIPK)3 signal transduction by inhibition of activation of the executioner of necroptosis, mixed lineage kinase-like protein (MLKL). Vaccinia virus E3 specifically blocks ZBP1 → RIPK3 → MLKL necroptosis, leaving virus-infected cells susceptible to the TNF death-receptor signaling (e.g., TNFR1 → FADD → RIPK1 → RIPK3 → MLKL), and, potentially, TLR3 → TRIF → RIPK3 → MLKL necroptosis. While E3 restriction of necroptosis appears to be common to many poxviruses that infect vertebrate hosts, another modulatory strategy not observed in vaccinia or variola virus manifests through subversion of MLKL activation. Recently described viral mimics of MLKL in other chordopoxviruses inhibit all three modes of necroptotic cell death. As with inhibition of apoptosis, the evolution of potentially redundant viral mechanisms to inhibit programmed necroptotic cell death emphasizes the importance of this pathway in the arms race between pathogens and their hosts.
Collapse
Affiliation(s)
- Heather S Koehler
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Vaccine Center, Atlanta, GA, 30322, USA
| | - Bertram L Jacobs
- Arizona State University, Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Tempe, AZ, 85287, USA.
| |
Collapse
|
29
|
Mocarski ES. Programmed Necrosis in Host Defense. Curr Top Microbiol Immunol 2023; 442:1-40. [PMID: 37563336 DOI: 10.1007/82_2023_264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Host control over infectious disease relies on the ability of cells in multicellular organisms to detect and defend against pathogens to prevent disease. Evolution affords mammals with a wide variety of independent immune mechanisms to control or eliminate invading infectious agents. Many pathogens acquire functions to deflect these immune mechanisms and promote infection. Following successful invasion of a host, cell autonomous signaling pathways drive the production of inflammatory cytokines, deployment of restriction factors and induction of cell death. Combined, these innate immune mechanisms attract dendritic cells, neutrophils and macrophages as well as innate lymphoid cells such as natural killer cells that all help control infection. Eventually, the development of adaptive pathogen-specific immunity clears infection and provides immune memory of the encounter. For obligate intracellular pathogens such as viruses, diverse cell death pathways make a pivotal contribution to early control by eliminating host cells before progeny are produced. Pro-apoptotic caspase-8 activity (along with caspase-10 in humans) executes extrinsic apoptosis, a nonlytic form of cell death triggered by TNF family death receptors (DRs). Over the past two decades, alternate extrinsic apoptosis and necroptosis outcomes have been described. Programmed necrosis, or necroptosis, occurs when receptor interacting protein kinase 3 (RIPK3) activates mixed lineage kinase-like (MLKL), causing cell leakage. Thus, activation of DRs, toll-like receptors (TLRs) or pathogen sensor Z-nucleic acid binding protein 1 (ZBP1) initiates apoptosis as well as necroptosis if not blocked by virus-encoded inhibitors. Mammalian cell death pathways are blocked by herpesvirus- and poxvirus-encoded cell death suppressors. Growing evidence has revealed the importance of Z-nucleic acid sensor, ZBP1, in the cell autonomous recognition of both DNA and RNA virus infection. This volume will explore the detente between viruses and cells to manage death machinery and avoid elimination to support dissemination within the host animal.
Collapse
Affiliation(s)
- Edward S Mocarski
- Robert W. Woodruff Professor Emeritus, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Professor Emeritus, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
30
|
Nainu F, Ophinni Y, Shiratsuchi A, Nakanishi Y. Apoptosis and Phagocytosis as Antiviral Mechanisms. Subcell Biochem 2023; 106:77-112. [PMID: 38159224 DOI: 10.1007/978-3-031-40086-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Viruses are infectious entities that make use of the replication machinery of their hosts to produce more progenies, causing disease and sometimes death. To counter viral infection, metazoan hosts are equipped with various defense mechanisms, from the rapid-evoking innate immune responses to the most advanced adaptive immune responses. Previous research demonstrated that cells in fruit flies and mice infected with Drosophila C virus and influenza, respectively, undergo apoptosis, which triggers the engulfment of apoptotic virus-infected cells by phagocytes. This process involves the recognition of eat-me signals on the surface of virus-infected cells by receptors of specialized phagocytes, such as macrophages and neutrophils in mice and hemocytes in fruit flies, to facilitate the phagocytic elimination of virus-infected cells. Inhibition of phagocytosis led to severe pathologies and death in both species, indicating that apoptosis-dependent phagocytosis of virus-infected cells is a conserved antiviral mechanism in multicellular organisms. Indeed, our understanding of the mechanisms underlying apoptosis-dependent phagocytosis of virus-infected cells has shed a new perspective on how hosts defend themselves against viral infection. This chapter explores the mechanisms of this process and its potential for developing new treatments for viral diseases.
Collapse
Affiliation(s)
- Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia.
| | - Youdiil Ophinni
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
- Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Akiko Shiratsuchi
- Center for Medical Education, Sapporo Medical University, Sapporo, Japan
- Division of Biological Function and Regulation, Graduate School of Medicine, Sapporo Medical University, Sapporo, Japan
| | | |
Collapse
|
31
|
Bencze M. Mechanisms of Myofibre Death in Muscular Dystrophies: The Emergence of the Regulated Forms of Necrosis in Myology. Int J Mol Sci 2022; 24:ijms24010362. [PMID: 36613804 PMCID: PMC9820579 DOI: 10.3390/ijms24010362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022] Open
Abstract
Myofibre necrosis is a central pathogenic process in muscular dystrophies (MD). As post-lesional regeneration cannot fully compensate for chronic myofibre loss, interstitial tissue accumulates and impairs muscle function. Muscle regeneration has been extensively studied over the last decades, however, the pathway(s) controlling muscle necrosis remains largely unknown. The recent discovery of several regulated cell death (RCD) pathways with necrotic morphology challenged the dogma of necrosis as an uncontrolled process, opening interesting perspectives for many degenerative disorders. In this review, we focus on how cell death affects myofibres in MDs, integrating the latest research in the cell death field, with specific emphasis on Duchenne muscular dystrophy, the best-known and most common hereditary MD. The role of regulated forms of necrosis in myology is still in its infancy but there is increasing evidence that necroptosis, a genetically programmed form of necrosis, is involved in muscle degenerating disorders. The existence of apoptosis in myofibre demise will be questioned, while other forms of non-apoptotic RCDs may also have a role in myonecrosis, illustrating the complexity and possibly the heterogeneity of the cell death pathways in muscle degenerating conditions.
Collapse
Affiliation(s)
- Maximilien Bencze
- “Biology of the Neuromuscular System” Team, Institut Mondor de Recherche Biomédicale (IMRB), University Paris-Est Créteil, INSERM, U955 IMRB, 94010 Créteil, France;
- École Nationale Vétérinaire d’Alfort, IMRB, 94700 Maisons-Alfort, France
| |
Collapse
|
32
|
Gao X, Fang D, Liang Y, Deng X, Chen N, Zeng M, Luo M. Circular RNAs as emerging regulators in COVID-19 pathogenesis and progression. Front Immunol 2022; 13:980231. [PMID: 36439162 PMCID: PMC9681929 DOI: 10.3389/fimmu.2022.980231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), an infectious acute respiratory disease caused by a newly emerging RNA virus, is a still-growing pandemic that has caused more than 6 million deaths globally and has seriously threatened the lives and health of people across the world. Currently, several drugs have been used in the clinical treatment of COVID-19, such as small molecules, neutralizing antibodies, and monoclonal antibodies. In addition, several vaccines have been used to prevent the spread of the pandemic, such as adenovirus vector vaccines, inactivated vaccines, recombinant subunit vaccines, and nucleic acid vaccines. However, the efficacy of vaccines and the onset of adverse reactions vary among individuals. Accumulating evidence has demonstrated that circular RNAs (circRNAs) are crucial regulators of viral infections and antiviral immune responses and are heavily involved in COVID-19 pathologies. During novel coronavirus infection, circRNAs not only directly affect the transcription process and interfere with viral replication but also indirectly regulate biological processes, including virus-host receptor binding and the immune response. Consequently, understanding the expression and function of circRNAs during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection will provide novel insights into the development of circRNA-based methods. In this review, we summarize recent progress on the roles and underlying mechanisms of circRNAs that regulate the inflammatory response, viral replication, immune evasion, and cytokines induced by SARS-CoV-2 infection, and thus highlighting the diagnostic and therapeutic challenges in the treatment of COVID-19 and future research directions.
Collapse
Affiliation(s)
- Xiaojun Gao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Dan Fang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Liang
- College of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xin Deng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ni Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Min Zeng
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Mao Luo
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
33
|
Zheng W, Yan Q, Li Z, Wang X, Wu P, Liao F, Lao Z, Jiang Y, Liu X, Zhan S, Li G. Liver transcriptomics reveals features of the host response in a mouse model of dengue virus infection. Front Immunol 2022; 13:892469. [PMID: 36091000 PMCID: PMC9459046 DOI: 10.3389/fimmu.2022.892469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Dengue virus (DENV) infection induces various clinical manifestations and even causes organ injuries, leading to severe dengue haemorrhagic fever and dengue shock syndrome. Hepatic dysfunction was identified as a risk predictor of progression to severe disease during the febrile phase of dengue. However, the underlying mechanisms of hepatic injury remain unclear. Methods A model of dengue disease was established in IFNAR−/− C57BL/6 mice by challenge with DENV-2. Body weight, symptoms, haematological parameters and liver pathological observations in mice were used to determine the effects of DENV infection. Liver transcriptome sequencing was performed to evaluate the features of the host response in IFNAR−/− mice challenged with DENV. Functional enrichment analysis and analysis of significantly differentially expressed genes (DEGs) were used to determine the critical molecular mechanism of hepatic injury. Results We observed haemoconcentration, leukopenia and liver pathologies in mice, consistent with findings in clinical dengue patients. Some differences in gene expression and biological processes were identified in this study. Transcriptional patterns in the liver indicated that antiviral responses to DENV and tissue damage via abnormal expression of proinflammatory cytokines were induced. Further analysis showed that the upregulated DEGs were significantly enriched in the leukocyte transendothelial migration, complement and coagulation cascades, and cytokine-cytokine receptor interactions signalling pathways, which are considered to be closely associated with the pathogenic mechanism of dengue. IL6, IL 10, ICAM-1, VCAM-1, MMP9 and NLRP3 were identified as biomarkers of progression to severe disease. Conclusions The interactions of these cytokines, which activate inflammatory signalling, may lead to organ injury and haemoconcentration and even to vascular leakage in tissues, including the mouse liver. Our study identifies candidate host targets that could be used for further functional verification.
Collapse
Affiliation(s)
- Wenjiang Zheng
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Animal Experiment Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qian Yan
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zonghui Li
- Animal Experiment Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianyang Wang
- Animal Experiment Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Wu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Feng Liao
- Animal Experiment Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zizhao Lao
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Yong Jiang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Xiaohong Liu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Xiaohong Liu, ; Shaofeng Zhan, ; Geng Li,
| | - Shaofeng Zhan
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Xiaohong Liu, ; Shaofeng Zhan, ; Geng Li,
| | - Geng Li
- Animal Experiment Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Xiaohong Liu, ; Shaofeng Zhan, ; Geng Li,
| |
Collapse
|
34
|
Rex DAB, Keshava Prasad TS, Kandasamy RK. Revisiting Regulated Cell Death Responses in Viral Infections. Int J Mol Sci 2022; 23:ijms23137023. [PMID: 35806033 PMCID: PMC9266763 DOI: 10.3390/ijms23137023] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/07/2023] Open
Abstract
The fate of a viral infection in the host begins with various types of cellular responses, such as abortive, productive, latent, and destructive infections. Apoptosis, necroptosis, and pyroptosis are the three major types of regulated cell death mechanisms that play critical roles in viral infection response. Cell shrinkage, nuclear condensation, bleb formation, and retained membrane integrity are all signs of osmotic imbalance-driven cytoplasmic swelling and early membrane damage in necroptosis and pyroptosis. Caspase-driven apoptotic cell demise is considered in many circumstances as an anti-inflammatory, and some pathogens hijack the cell death signaling routes to initiate a targeted attack against the host. In this review, the selected mechanisms by which viruses interfere with cell death were discussed in-depth and were illustrated by compiling the general principles and cellular signaling mechanisms of virus–host-specific molecule interactions.
Collapse
Affiliation(s)
| | - Thottethodi Subrahmanya Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
- Correspondence: (T.S.K.P.); (R.K.K.)
| | - Richard K. Kandasamy
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O Box 505055, United Arab Emirates
- Correspondence: (T.S.K.P.); (R.K.K.)
| |
Collapse
|
35
|
Mahmoodpoor A, Sanaie S, Ostadi Z, Eskandari M, Behrouzi N, Asghari R, Zahirnia A, Sohrabifar N, Kazeminasab S. Roles of mitochondrial DNA in dynamics of the immune response to COVID-19. Gene 2022; 836:146681. [PMID: 35728769 PMCID: PMC9219426 DOI: 10.1016/j.gene.2022.146681] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/29/2022] [Accepted: 06/10/2022] [Indexed: 12/18/2022]
Abstract
Mitochondria dynamics have a pivotal role in many aspects of immune function. Viral infections affect mitochondrial dynamics and trigger the release of mitochondrial DNA (mtDNA) in host cells. Released mtDNA guides the immune response towards an inflammatory response against pathogens. In addition, circulating cell-free mtDNA (ccf-mtDNA) is considered an invaluable indicator for the prognosis and severity of infectious diseases. This study provides an overview of the role of mtDNA in the dynamics of the immune response to COVID-19. We focused on the possible roles of mtDNA in inducing the signaling pathways, and the inflammasome activation and regulation in SARS-CoV-2. Targeting mtDNA-related pathways can provide critical insights into therapeutic strategies for COVID-19.
Collapse
Affiliation(s)
- Ata Mahmoodpoor
- Research Center for Integrative Medicine in Aging, Aging research institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging research institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zoherh Ostadi
- Department of Anesthesiology and intensive care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maqsoud Eskandari
- Department of Anesthesiology and intensive care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Behrouzi
- Department of Anesthesiology and intensive care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roqayyeh Asghari
- Department of Anesthesiology and intensive care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Zahirnia
- Nasle Farda Health Foundation, Medical Genetic Laboratory, Tabriz, Iran
| | - Nasim Sohrabifar
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Somayeh Kazeminasab
- Nasle Farda Health Foundation, Medical Genetic Laboratory, Tabriz, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
36
|
Abstract
The process of adaptation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to humans probably had started decades ago, when its ancestor diverged from the bat coronavirus. The adaptive process comprises strategies the virus uses to overcome the respiratory tract defense barriers and replicate and shed in the host cells. These strategies include the impairment of interferon production, hiding immunogenic motifs, avoiding viral RNA detection, manipulating cell autophagy, triggering host cell death, inducing lymphocyte exhaustion and depletion, and finally, mutation and escape from immunity. In addition, SARS-CoV-2 employs strategies to take advantage of host cell resources for its benefits, such as inhibiting the ubiquitin-proteasome system, hijacking mitochondria functions, and usage of enhancing antibodies. It may be anticipated that as the tradeoffs of adaptation progress, the virus destructive burden will gradually subside. Some evidence suggests that SARS-CoV-2 will become part of the human respiratory virome, as had occurred with other coronaviruses, and coevolve with its host.
Collapse
Affiliation(s)
- Eduardo Tosta
- Universidade de Brasília, Faculdade de Medicina, Brasília, DF, Brasil
| |
Collapse
|
37
|
Liu W, Yang Y, Zeng Z, Tian Y, Wu Q, Zhou M, Fu ZF, Zhao L. G protein-coupled receptor 17 restricts rabies virus replication via BAK-mediated apoptosis. Vet Microbiol 2021; 265:109326. [PMID: 34979406 DOI: 10.1016/j.vetmic.2021.109326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 01/10/2023]
Abstract
Rabies, caused by rabies virus (RABV), is an ancient zoonotic disease that significantly affects human and animal health throughout the world. RABV causes acute encephalitis in mammals with a high fatality rate in developing countries. G protein-coupled receptor 17 (GPR17) is a vital gene in the central nervous system (CNS) that plays important roles in demyelinating diseases and ischemia brain. However, it is still unclear whether GPR17 participates in the regulation of RABV infection. Here, we found that upregulation or activation of GPR17 can reduce the virus titer; conversely, the inactivation or silence of GPR17 led to increased RABV replication in N2a cells. The recombinant RABV expressing GPR17 (rRABV-GPR17) showed reduced replication capacity compared to the parent virus rRABV. Moreover, overexpression of GPR17 can attenuate RABV pathogenicity in mice. Further study demonstrated that GPR17 suppressed RABV replication via BAK-mediated apoptosis. Our findings uncover an unappreciated role of GPR17 in suppressing RABV infection, where GPR17 mediates cell apoptosis to limit RABV replication and may be an attractive candidate for new therapeutic interventions in the treatment of rabies.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaping Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zonghui Zeng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuling Tian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiong Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
38
|
Wang X, Xie F, Zhou X, Chen T, Xue Y, Wang W. 18β-Glycyrrhetinic acid inhibits the apoptosis of cells infected with rotavirus SA11 via the Fas/FasL pathway. PHARMACEUTICAL BIOLOGY 2021; 59:1098-1105. [PMID: 34411493 PMCID: PMC8382007 DOI: 10.1080/13880209.2021.1961821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 06/01/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT 18β-Glycyrrhetinic acid (18β-GA), a pentacyclic triterpenoid saponin metabolite of glycyrrhizin, exhibits several biological activities. OBJECTIVE We investigated the effects of 18β-GA on MA104 cells infected with rotavirus (RV) and its potential mechanism of action. MATERIALS AND METHODS Cell Counting Kit-8 was used to assess tissue culture infective dose 50 (TCID50) and 50% cellular cytotoxicity (CC50) concentration. MA104 cells infected with RV SA11 were treated with 18β-GA (1, 2, 4, and 8 μg/mL, respectively). Cytopathic effects were observed. The virus inhibition rate, concentration for 50% of maximal effect (EC50), and selection index (SI) were calculated. Cell cycle, cell apoptosis, and mRNA and protein expression related to the Fas/FasL pathway were detected. RESULTS TCID50 of RV SA11 was 10-4.47/100 µL; the CC50 of 18β-GA on MA104 cells was 86.92 µg/mL. 18β-GA showed significant antiviral activity; EC50 was 3.14 μg/mL, and SI was 27.68. The ratio of MA104 cells infected with RV SA11 in the G0/G1 phase and the G2/M phase decreased and increased, respectively, after 18β-GA treatment. 18β-GA significantly induced apoptosis in the infected cells. Furthermore, after 18β-GA treatment, the mRNA and protein expression levels of Fas, FasL, caspase 3, and Bcl-2 decreased, whereas the expression levels of Bax increased. DISCUSSION AND CONCLUSIONS The study demonstrates that 18β-GA may be a promising candidate for the treatment of RV SA11 infection and provides theoretical support for the clinical development of glycyrrhizic acid compounds for the treatment of RV infection.
Collapse
Affiliation(s)
- Xiaoyan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Fang Xie
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaofeng Zhou
- Linyi Traditional Chinese Medicine Hospital-Endoscopic Centre, Linyi, China
| | - Ting Chen
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ye Xue
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wei Wang
- Department of Spleen and Stomach Diseases, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
39
|
Saha C, Laha S, Chatterjee R, Bhattacharyya NP. Co-Regulation of Protein Coding Genes by Transcription Factor and Long Non-Coding RNA in SARS-CoV-2 Infected Cells: An In Silico Analysis. Noncoding RNA 2021; 7:74. [PMID: 34940755 PMCID: PMC8708613 DOI: 10.3390/ncrna7040074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022] Open
Abstract
Altered expression of protein coding gene (PCG) and long non-coding RNA (lncRNA) have been identified in SARS-CoV-2 infected cells and tissues from COVID-19 patients. The functional role and mechanism (s) of transcriptional regulation of deregulated genes in COVID-19 remain largely unknown. In the present communication, reanalyzing publicly available gene expression data, we observed that 66 lncRNA and 5491 PCG were deregulated in more than one experimental condition. Combining our earlier published results and using different publicly available resources, it was observed that 72 deregulated lncRNA interacted with 3228 genes/proteins. Many targets of deregulated lncRNA could also interact with SARS-CoV-2 coded proteins, modulated by IFN treatment and identified in CRISPR screening to modulate SARS-CoV-2 infection. The majority of the deregulated lncRNA and PCG were targets of at least one of the transcription factors (TFs), interferon responsive factors (IRFs), signal transducer, and activator of transcription (STATs), NFκB, MYC, and RELA/p65. Deregulated 1069 PCG was joint targets of lncRNA and TF. These joint targets are significantly enriched with pathways relevant for SARS-CoV-2 infection indicating that joint regulation of PCG could be one of the mechanisms for deregulation. Over all this manuscript showed possible involvement of lncRNA and mechanisms of deregulation of PCG in the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Chinmay Saha
- Department of Genome Science, School of Interdisciplinary Studies, University of Kalyani, Nadia 741235, India;
| | - Sayantan Laha
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India; (S.L.); (R.C.)
| | - Raghunath Chatterjee
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India; (S.L.); (R.C.)
| | - Nitai P. Bhattacharyya
- Department of Endocrinology and Metabolism, Institute of Post Graduate Medical Education & Research and Seth Sukhlal Karnani Memorial Hospital, Kolkata 700020, India
| |
Collapse
|
40
|
Choudhury SM, Ma X, Dang W, Li Y, Zheng H. Recent Development of Ruminant Vaccine Against Viral Diseases. Front Vet Sci 2021; 8:697194. [PMID: 34805327 PMCID: PMC8595237 DOI: 10.3389/fvets.2021.697194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/04/2021] [Indexed: 01/21/2023] Open
Abstract
Pathogens of viral origin produce a large variety of infectious diseases in livestock. It is essential to establish the best practices in animal care and an efficient way to stop and prevent infectious diseases that impact animal husbandry. So far, the greatest way to combat the disease is to adopt a vaccine policy. In the fight against infectious diseases, vaccines are very popular. Vaccination's fundamental concept is to utilize particular antigens, either endogenous or exogenous to induce immunity against the antigens or cells. In light of how past emerging and reemerging infectious diseases and pandemics were handled, examining the vaccination methods and technological platforms utilized for the animals may provide some useful insights. New vaccine manufacturing methods have evolved because of developments in technology and medicine and our broad knowledge of immunology, molecular biology, microbiology, and biochemistry, among other basic science disciplines. Genetic engineering, proteomics, and other advanced technologies have aided in implementing novel vaccine theories, resulting in the discovery of new ruminant vaccines and the improvement of existing ones. Subunit vaccines, recombinant vaccines, DNA vaccines, and vectored vaccines are increasingly gaining scientific and public attention as the next generation of vaccines and are being seen as viable replacements to conventional vaccines. The current review looks at the effects and implications of recent ruminant vaccine advances in terms of evolving microbiology, immunology, and molecular biology.
Collapse
Affiliation(s)
- Sk Mohiuddin Choudhury
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - XuSheng Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wen Dang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - YuanYuan Li
- Gansu Agricultural University, Lanzhou, China
| | - HaiXue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
41
|
Leiser OP, Hobbs EC, Sims AC, Korch GW, Taylor KL. Beyond the List: Bioagent-Agnostic Signatures Could Enable a More Flexible and Resilient Biodefense Posture Than an Approach Based on Priority Agent Lists Alone. Pathogens 2021; 10:1497. [PMID: 34832652 PMCID: PMC8623450 DOI: 10.3390/pathogens10111497] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 12/23/2022] Open
Abstract
As of 2021, the biothreat policy and research communities organize their efforts around lists of priority agents, which elides consideration of novel pathogens and biotoxins. For example, the Select Agents and Toxins list is composed of agents that historic biological warfare programs had weaponized or that have previously caused great harm during natural outbreaks. Similarly, lists of priority agents promulgated by the World Health Organization and the National Institute of Allergy and Infectious Diseases are composed of previously known pathogens and biotoxins. To fill this gap, we argue that the research/scientific and biodefense/biosecurity communities should categorize agents based on how they impact their hosts to augment current list-based paradigms. Specifically, we propose integrating the results of multi-omics studies to identify bioagent-agnostic signatures (BASs) of disease-namely, patterns of biomarkers that accurately and reproducibly predict the impacts of infection or intoxication without prior knowledge of the causative agent. Here, we highlight three pathways that investigators might exploit as sources of signals to construct BASs and their applicability to this framework. The research community will need to forge robust interdisciplinary teams to surmount substantial experimental, technical, and data analytic challenges that stand in the way of our long-term vision. However, if successful, our functionality-based BAS model could present a means to more effectively surveil for and treat known and novel agents alike.
Collapse
Affiliation(s)
- Owen P. Leiser
- Pacific Northwest National Laboratory, Seattle, WA 98109, USA; (O.P.L.); (E.C.H.)
| | - Errett C. Hobbs
- Pacific Northwest National Laboratory, Seattle, WA 98109, USA; (O.P.L.); (E.C.H.)
| | - Amy C. Sims
- Pacific Northwest National Laboratory, Richland, WA 99354, USA;
| | - George W. Korch
- Battelle National Biodefense Institute, LLC, Fort Detrick, MD 21072, USA;
| | - Karen L. Taylor
- Pacific Northwest National Laboratory, Seattle, WA 98109, USA; (O.P.L.); (E.C.H.)
| |
Collapse
|
42
|
Balachandran S, Mocarski ES. Viral Z-RNA triggers ZBP1-dependent cell death. Curr Opin Virol 2021; 51:134-140. [PMID: 34688984 DOI: 10.1016/j.coviro.2021.10.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022]
Abstract
Z-DNA Binding protein 1 (ZBP1) activates Receptor Interacting Protein Kinase 3 (RIPK3) -dependent cell death during lytic infection by members of the orthomyxovirus, herpesvirus and poxvirus families. ZBP1 possesses two Zα domains capable of selective binding to Z-DNA, as well as to Z-RNA. We have now unveiled Z-RNA as the ligand that activates ZBP1 in cells infected with orthomyxoviruses (influenza A and B viruses) and the poxvirus vaccinia virus (VACV). Orthomyxovirus Z-RNA is sensed by ZBP1 in the nucleus of infected cells, resulting in nuclear activation of RIPK3, consequent rupture of the nucleus, and hyper-inflammatory 'nuclear necroptosis'. VACV-generated Z-RNA accumulates in the cytoplasm, where it is sequestered from ZBP1 by E3, the viral E3L gene product. In viruses where the E3 Zα domain has been mutated, ZBP1 senses Z-RNA and triggers RIPK3-dependent necroptosis in the cytoplasm. Z-RNA is thus a new viral pathogen-associated molecular pattern (PAMP).
Collapse
Affiliation(s)
- Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| | - Edward S Mocarski
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
43
|
Abstract
Group A rotavirus (RVA), one of the leading pathogens causing severe acute gastroenteritis in children and a wide variety of young animals worldwide, induces apoptosis upon infecting cells. Though RVA-induced apoptosis mediated via the dual modulation of its NSP4 and NSP1 proteins is relatively well studied, the nature and signaling pathway(s) involved in RVA-induced necroptosis are yet to be fully elucidated. Here, we demonstrate the nature of RVA-induced necroptosis, the signaling cascade involved, and correlation with RVA-induced apoptosis. Infection with the bovine NCDV and human DS-1 RV strains was shown to activate receptor-interacting protein kinase 1 (RIPK1)/RIPK3/mixed lineage kinase domain-like protein (MLKL), the key necroptosis molecules in virus-infected cells. Using immunoprecipitation assay, RIPK1 was found to bind phosphorylated RIPK3 (pRIPK3) and pMLKL. pMLKL, the major executioner molecule in the necroptotic pathway, was translocated to the plasma membrane of RVA-infected cells to puncture the cell membrane. Interestingly, transfection of RVA NSP4 also induced necroptosis through the RIPK1/RIPK3/MLKL necroptosis pathway. Blockage of each key necroptosis molecule in the RVA-infected or NSP4-transfected cells resulted in decreased necroptosis but increased cell viability and apoptosis, thereby resulting in decreased viral yields in the RVA-infected cells. In contrast, suppression of RVA-induced apoptosis increased necroptosis and virus yields. Our findings suggest that RVA NSP4 also induces necroptosis via the RIPK1/RIPK3/MLKL necroptosis pathway. Moreover, necroptosis and apoptosis-which have proviral and antiviral effects, respectively-exhibited a crosstalk in RVA-infected cells. These findings significantly increase our understanding of the nature of RVA-induced necroptosis and the crosstalk between RVA-induced necroptosis and apoptosis. IMPORTANCE Viral infection usually culminates in cell death through apoptosis, necroptosis, and rarely, pyroptosis. Necroptosis is a form of programmed necrosis that is mediated by signaling complexes of the receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL). Although apoptosis induction by rotavirus and its NSP4 protein is well known, rotavirus-induced necroptosis is not fully understood. Here, we demonstrate that rotavirus and also its NSP4 protein can induce necroptosis in cultured cells through the activation of the RIPK1/RIPK3/MLKL necroptosis pathway. Moreover, rotavirus-induced necroptosis and apoptosis have opposite effects on viral yield, i.e., they function as proviral and antiviral processes, respectively, and counterbalance each other in rotavirus-infected cells. Our findings provide important insights for understanding the nature of rotavirus-induced necroptosis and the development of novel therapeutic strategies against infection with rotavirus and other RNA viruses.
Collapse
|
44
|
Águeda-Pinto A, Alves LQ, Neves F, McFadden G, Jacobs BL, Castro LFC, Rahman MM, Esteves PJ. Convergent Loss of the Necroptosis Pathway in Disparate Mammalian Lineages Shapes Viruses Countermeasures. Front Immunol 2021; 12:747737. [PMID: 34539677 PMCID: PMC8445033 DOI: 10.3389/fimmu.2021.747737] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/17/2021] [Indexed: 01/21/2023] Open
Abstract
Programmed cell death is a vital process in the life cycle of organisms. Necroptosis, an evolutionary form of programmed necrosis, contributes to the innate immune response by killing pathogen-infected cells. This virus-host interaction pathway is organized around two components: the receptor-interacting protein kinase 3 (RIPK3), which recruits and phosphorylates the mixed lineage kinase-like protein (MLKL), inducing cellular plasma membrane rupture and cell death. Critically, the presence of necroptotic inhibitors in viral genomes validates necroptosis as an important host defense mechanism. Here, we show, counterintuitively, that in different mammalian lineages, central components of necroptosis, such as RIPK3 and MLKL, are deleted or display inactivating mutations. Frameshifts or premature stop codons are observed in all the studied species of cetaceans and leporids. In carnivores' genomes, the MLKL gene is deleted, while in a small number of species from afrotheria and rodentia premature stop codons are observed in RIPK3 and/or MLKL. Interestingly, we also found a strong correlation between the disruption of necroptosis in leporids and cetaceans and the absence of the N-terminal domain of E3-like homologs (responsible for necroptosis inhibition) in their naturally infecting poxviruses. Overall, our study provides the first comprehensive picture of the molecular evolution of necroptosis in mammals. The loss of necroptosis multiple times during mammalian evolution highlights the importance of gene/pathway loss for species adaptation and suggests that necroptosis is not required for normal mammalian development. Moreover, this study highlights a co-evolutionary relationship between poxviruses and their hosts, emphasizing the role of host adaptation in shaping virus evolution.
Collapse
Affiliation(s)
- Ana Águeda-Pinto
- CIBIO/InBio-Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Luís Q. Alves
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - Fabiana Neves
- CIBIO/InBio-Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Grant McFadden
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Bertram L. Jacobs
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School of Life Sciences Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - L. Filipe C. Castro
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - Masmudur M. Rahman
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Pedro J. Esteves
- CIBIO/InBio-Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CITS-Centro de Investigação em Tecnologias da Saúde, Instituto Politécnico de Saúde do Norte (IPSN), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Gandra, Portugal
| |
Collapse
|
45
|
Koehler H, Cotsmire S, Zhang T, Balachandran S, Upton JW, Langland J, Kalman D, Jacobs BL, Mocarski ES. Vaccinia virus E3 prevents sensing of Z-RNA to block ZBP1-dependent necroptosis. Cell Host Microbe 2021; 29:1266-1276.e5. [PMID: 34192517 PMCID: PMC9333947 DOI: 10.1016/j.chom.2021.05.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/02/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022]
Abstract
Necroptosis mediated by Z-nucleic-acid-binding protein (ZBP)1 (also called DAI or DLM1) contributes to innate host defense against viruses by triggering cell death to eliminate infected cells. During infection, vaccinia virus (VACV) protein E3 prevents death signaling by competing for Z-form RNA through an N-terminal Zα domain. In the absence of this E3 domain, Z-form RNA accumulates during the early phase of VACV infection, triggering ZBP1 to recruit receptor interacting protein kinase (RIPK)3 and execute necroptosis. The C-terminal E3 double-strand RNA-binding domain must be retained to observe accumulation of Z-form RNA and induction of necroptosis. Substitutions of Zα from either ZBP1 or the RNA-editing enzyme double-stranded RNA adenosine deaminase (ADAR)1 yields fully functional E3 capable of suppressing virus-induced necroptosis. Overall, our evidence reveals the importance of Z-form RNA generated during VACV infection as a pathogen-associated molecular pattern (PAMP) unleashing ZBP1/RIPK3/MLKL-dependent necroptosis unless suppressed by viral E3.
Collapse
Affiliation(s)
- Heather Koehler
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Samantha Cotsmire
- Arizona State University, Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Tempe, AZ 85287, USA
| | - Ting Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jason W Upton
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jeffery Langland
- Arizona State University, Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Tempe, AZ 85287, USA
| | - Daniel Kalman
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bertram L Jacobs
- Arizona State University, Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Tempe, AZ 85287, USA.
| | - Edward S Mocarski
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
46
|
Yang Q, Lin F, Wang Y, Zeng M, Luo M. Long Noncoding RNAs as Emerging Regulators of COVID-19. Front Immunol 2021; 12:700184. [PMID: 34408749 PMCID: PMC8366413 DOI: 10.3389/fimmu.2021.700184] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/15/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), which has high incidence rates with rapid rate of transmission, is a pandemic that spread across the world, resulting in more than 3,000,000 deaths globally. Currently, several drugs have been used for the clinical treatment of COVID-19, such as antivirals (radecivir, baritinib), monoclonal antibodies (tocilizumab), and glucocorticoids (dexamethasone). Accumulating evidence indicates that long noncoding RNAs (lncRNAs) are essential regulators of virus infections and antiviral immune responses including biological processes that are involved in the regulation of COVID-19 and subsequent disease states. Upon viral infections, cellular lncRNAs directly regulate viral genes and influence viral replication and pathology through virus-mediated changes in the host transcriptome. Additionally, several host lncRNAs could help the occurrence of viral immune escape by inhibiting type I interferons (IFN-1), while others could up-regulate IFN-1 production to play an antiviral role. Consequently, understanding the expression and function of lncRNAs during severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection will provide insights into the development of lncRNA-based methods. In this review, we summarized the current findings of lncRNAs in the regulation of the strong inflammatory response, immune dysfunction and thrombosis induced by SARS-CoV-2 infection, discussed the underlying mechanisms, and highlighted the therapeutic challenges of COVID-19 treatment and its future research directions.
Collapse
Affiliation(s)
- Qinzhi Yang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Fang Lin
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yanan Wang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Min Zeng
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mao Luo
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
47
|
Contribution of yeast models to virus research. Appl Microbiol Biotechnol 2021; 105:4855-4878. [PMID: 34086116 PMCID: PMC8175935 DOI: 10.1007/s00253-021-11331-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
Abstract Time and again, yeast has proven to be a vital model system to understand various crucial basic biology questions. Studies related to viruses are no exception to this. This simple eukaryotic organism is an invaluable model for studying fundamental cellular processes altered in the host cell due to viral infection or expression of viral proteins. Mechanisms of infection of several RNA and relatively few DNA viruses have been studied in yeast to date. Yeast is used for studying several aspects related to the replication of a virus, such as localization of viral proteins, interaction with host proteins, cellular effects on the host, etc. The development of novel techniques based on high-throughput analysis of libraries, availability of toolboxes for genetic manipulation, and a compact genome makes yeast a good choice for such studies. In this review, we provide an overview of the studies that have used yeast as a model system and have advanced our understanding of several important viruses. Key points • Yeast, a simple eukaryote, is an important model organism for studies related to viruses. • Several aspects of both DNA and RNA viruses of plants and animals are investigated using the yeast model. • Apart from the insights obtained on virus biology, yeast is also extensively used for antiviral development.
Collapse
|
48
|
Abstract
Nearly all animal cells contain proteins evolved to trigger the destruction of the cell in which they reside. The activation of these proteins occurs via sequential programs, and much effort has been expended in delineating the molecular mechanisms underlying the resulting processes of programmed cell death (PCD). These efforts have led to the definition of apoptosis as a form of nonimmunogenic PCD that is required for normal development and tissue homeostasis, and of pyroptosis and necroptosis as forms of PCD initiated by pathogen infection that are associated with inflammation and immune activation. While this paradigm has served the field well, numerous recent studies have highlighted cross talk between these programs, challenging the idea that apoptosis, pyroptosis, and necroptosis are linear pathways with defined immunological outputs. Here, we discuss the emerging idea of cell death as a signaling network, considering connections between cell death pathways both as we observe them now and in their evolutionary origins. We also discuss the engagement and subversion of cell death pathways by pathogens, as well as the key immunological outcomes of these processes.
Collapse
Affiliation(s)
- Annelise G Snyder
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, Washington 98109, USA;
| |
Collapse
|
49
|
Interferon-Independent Restriction of RNA Virus Entry and Replication by a Class of Damage-Associated Molecular Patterns. mBio 2021; 12:mBio.00584-21. [PMID: 33849978 PMCID: PMC8092255 DOI: 10.1128/mbio.00584-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this work, we explored how a class of oxidized lipids, spontaneously created during tissue damage and unprogrammed cell lysis, block the earliest events in RNA virus infection in the human epithelium. This gives us novel insight into the ways that we view infection models, unveiling a built-in mechanism to slow viral growth that neither engages the interferon response nor is subject to known viral antagonism. Mammalian cells detect microbial molecules known as pathogen-associated molecular patterns (PAMPs) as indicators of potential infection. Upon PAMP detection, diverse defensive responses are induced by the host, including those that promote inflammation and cell-intrinsic antimicrobial activities. Host-encoded molecules released from dying or damaged cells, known as damage-associated molecular patterns (DAMPs), also induce defensive responses. Both DAMPs and PAMPs are recognized for their inflammatory potential, but only the latter are well established to stimulate cell-intrinsic host defense. Here, we report a class of DAMPs that engender an antiviral state in human epithelial cells. These DAMPs include oxPAPC (oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine), PGPC (1-palmitoyl-2-glutaryl phosphatidylcholine), and POVPC [1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphatidylcholine], oxidized lipids that are naturally released from dead or dying cells. Exposing cells to these DAMPs prior to vesicular stomatitis virus (VSV) infection limits viral replication. Mechanistically, these DAMPs prevent viral entry, thereby limiting the percentage of cells that are productively infected and consequently restricting viral load. We found that the antiviral actions of oxidized lipids are distinct from those mediated by the PAMP Poly I:C, in that the former induces a more rapid antiviral response without the induction of the interferon response. These data support a model whereby interferon-independent defensive activities can be induced by DAMPs, which may limit viral replication before PAMP-mediated interferon responses are induced. This antiviral activity may impact viruses that disrupt interferon responses in the oxygenated environment of the lung, such as influenza virus and SARS-CoV-2.
Collapse
|
50
|
Talaat RM, Noweir YM, Elmaghraby AM, Elsabaawy MM, EL-Shahat M. TNF-related apoptosis-inducing ligand (TRAIL), death receptor (DR4) and Fas gene polymorphisms associated with liver cirrhosis in hepatitis C infected patients. GENE REPORTS 2021; 22:101018. [DOI: 10.1016/j.genrep.2021.101018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|