1
|
Marino Y, Inferrera F, Genovese T, Cuzzocrea S, Fusco R, Di Paola R. Mitochondrial dynamics: Molecular mechanism and implications in endometriosis. Biochimie 2025; 231:163-175. [PMID: 39884375 DOI: 10.1016/j.biochi.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/01/2025]
Abstract
Endometriosis affects about 10 % of women of reproductive age, leading to a disabling gynecologic condition. Chronic pain, inflammation, and oxidative stress have been identified as the molecular pathways involved in the progression of this disease, although its precise etiology remains uncertain. Although mitochondria are considered crucial organelles for cellular activity, their dysfunction has been linked to the development of this disease. The purpose of this review is to examine the functioning of the mitochondrion in endometriosis: in particular, we focused on the mitochondrial dynamics of biogenesis, fusion, and fission. Since excessive mitochondrial activity is reported to affect cell proliferation, we also considered mitophagy as a mechanism involved in limiting disease development. To better understand mitochondrial activity, we also considered alterations in circadian rhythms, the gut microbiome, and estrogen receptors: indeed, these mechanisms are also involved in the development of endometriosis. In addition, we focused on recent research about the impact of numerous substances on mitochondrial activity; some of them may offer a future breakthrough in endometriosis treatment by acting on mitochondria and inhibiting cell proliferation.
Collapse
Affiliation(s)
- Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Francesca Inferrera
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy; Link Campus University, Via del Casale di San Pio V, 44, Italy.
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Rosanna Di Paola
- Department of Veterinary Sciences, 98168, University of Messina, Messina, Italy.
| |
Collapse
|
2
|
Yan XD, Fan RH, Wang Y, Duan XX, Wei X, Li LS, Yu Q. α-asarone activates mitophagy to relieve diabetic encephalopathy via inhibiting apoptosis and oxidative stress. Metab Brain Dis 2025; 40:126. [PMID: 39954135 DOI: 10.1007/s11011-025-01556-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Diabetic encephalopathy (DE) is a common complication of diabetes that may result in cognitive impairment. Currently, there is limited effective therapy for DE. Herein, we explored the beneficial effect of α-Asarone on DE and its potential mechanisms. DE was induced in Type 2 diabetes mellitus mice and high-glucose (HG)-exposed PC-12 cells. Cognitive function was evaluated by MWM test. Pathological changes in the brain tissues were observed by HE staining. Cell viability was detected by CCK-8. Apoptosis was assessed by Hoechst 33,342 staining, Annexin V/PI staining and TUNEL. Mitochondrial membrane potential was analyzed by JC-1 probe. ROS production was measured by DCFH-DA staining. Target protein levels were analyzed by Western blotting. Network pharmacology was used to elucidate the beneficial mechanisms of α-Asarone in DE. Our study showed that α-Asarone enhanced cell viability and suppressed apoptosis in HG-stimulated PC-12 cells. Furthermore, α-Asarone relieved HG-induced reduction in mitochondrial membrane potential and ROS overproduction. In addition, mitophagy was triggered by α-Asarone, which was responsible for the inhibitory effect of α-Asarone on apoptosis and oxidative stress. Consistently, the in vivo experiments showed that α-Asarone treatment relieved cognitive dysfunction, apoptosis, and oxidative stress of DE mice via mitophagy induction. However, inhibition of mitophagy by Mdivi-1 counteracted the beneficial action of α-Asarone. Mechanistically, network pharmacology analysis identified 10 key targets of α-Asarone. Molecular docking substantiated a strong affinity of α-Asarone with CASP3, EGFR, NFKB1, and ESR1 proteins. Taken together, α-Asarone protected against mitochondrial dysfunction, oxidative stress and apoptosis via activating mitophagy, thereby alleviating DE. Our findings suggest α-Asarone as a potential drug for DE.
Collapse
Affiliation(s)
- Xiao-Dan Yan
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, P.R. China
| | - Rong-Hua Fan
- Department of Sanitary Chemistry, School of Public Health, Shenyang Medical College, Shenyang, 110034, Liaoning Province, P.R. China
| | - Yu Wang
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, P.R. China
| | - Xiao-Xu Duan
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, Liaoning Province, P.R. China
| | - Xuan Wei
- Department of Medical and Health Industry, Shenyang Medical College, No. 146 Huanghe North Street, Shenyang, 110034, Liaoning Province, P.R. China
| | - Lin-Sen Li
- Graduate School, Shenyang Medical College, No. 146 Huanghe North Street, Shenyang, Xiao, 110034, Liaoning Province, P.R. China.
| | - Qing Yu
- Department of Medical and Health Industry, Shenyang Medical College, No. 146 Huanghe North Street, Shenyang, 110034, Liaoning Province, P.R. China.
| |
Collapse
|
3
|
Zhang L, Yang S, Cui H, Hang C, Wang X, An L, Shan Z, Liang Z, Shao R, Tang Z. Hypothermia regulates mitophagy and apoptosis via PINK1/Parkin-VDAC 3 signaling pathway during oxygen-glucose deprivation/recovery injury. Sci Rep 2025; 15:4607. [PMID: 39920327 PMCID: PMC11806084 DOI: 10.1038/s41598-025-89176-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/03/2025] [Indexed: 02/09/2025] Open
Abstract
Post-cardiac arrest brain injury (PCABI), as the main cause of high mortality and long-term disability in patients, induces mitochondrial damage and cell apoptosis. Hypothermia is well-known as an effective neuroprotective therapy, but its underlying mechanisms deserve further exploration. Previous study has demonstrated that hypothermia provides neuroprotection via increasing PINK1/Parkin-mediated mitophagy. However, whether hypothermia can regulate both apoptosis and mitophagy through the PINK1/Parkin-VDAC3 signaling pathway or not. In this study, BV2 mouse microglial cells were cultured under oxygen-glucose deprivation for 6 h following reperfusion with or without hypothermia for 2-4 h. Cell viability was examined by trypan blue stain. Mitophagy was observed by transmission electron microscope. Mitochondrial membrane potential (MMP) and mitochondrial permeability transition pore (mPTP) opening were determined respectively by JC-1 staining and BBcellProbe M61 staining using a flow cytometer. Expression of mitophagy-related proteins (Cleaved PINK1, Parkin, SQSTM1/p62, Beclin-1, LC3B II/LC3B I), apoptosis-related proteins (Bcl-2, Cytochrome C, caspase-3, cleaved caspase3) and VDAC3 were assessed using western blot analysis and quantitative real-time PCR. The interaction between Parkin and VDAC3 was confirmed by immunofluorescence colocalization. The results showed that hypothermia alleviated MMP damage, inhibited mPTP opening, then decreased cell apoptosis and activated mitophagy at 2 h after temperature intervention, which might be mediated by the PINK1/Parkin-VDAC3 signaling pathway. Moreover, the effects of hypothermia were reduced or reversed at 4 h after temperature intervention. In conclusion, the potential mechanisms of hypothermia during oxygen-glucose deprivation/recovery could be summarized as follows:1) At 2 h after temperature intervention, hypothermia provided neuroprotective effects via promoting mitophagy and reducing apoptosis through activating the PINK1/Parkin-VDAC3 signaling pathway. 2) The curative effect of hypothermia was timeliness. At 4 h after temperature intervention, hypothermia aggravated apoptosis through inhibiting Parkin recruitment to mitochondria and aggravating the release of Cyt C through open mPTP.
Collapse
Affiliation(s)
- Luying Zhang
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Song Yang
- Department of Emergency Medicine, Beijing Huairou Hospital, Beijing, 101400, China
| | - Hao Cui
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Chenchen Hang
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xingsheng Wang
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Le An
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zhenyu Shan
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zhen Liang
- Department of Critical Care Medicine, Mi-Yun Teaching Hospital, Capital Medical University, Beijing, 101500, China
| | - Rui Shao
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Ziren Tang
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
4
|
Yang Y, Chen H, Huang S, Chen H, Verkhratsky A, Niu J, Qu Y, Yi C. BOK-engaged mitophagy alleviates neuropathology in Alzheimer's disease. Brain 2025; 148:432-447. [PMID: 39054908 DOI: 10.1093/brain/awae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Mitochondrial malfunction associated with impaired mitochondrial quality control and self-renewal machinery, known as mitophagy, is an under-appreciated mechanism precipitating synaptic loss and cognitive impairments in Alzheimer's disease. Promoting mitophagy has been shown to improve cognitive function in Alzheimer's disease animals. However, the regulatory mechanism was unclear, which formed the aim of this study. Here, we found that a neuron-specific loss of Bcl-2 family member BOK in patients with Alzheimer's disease and APPswe/PS1dE9 (APP/PS1) mice is closely associated with mitochondrial damage and mitophagy defects. We further revealed that BOK is the key to the Parkin-mediated mitophagy through competitive binding to the MCL1/Parkin complex, resulting in Parkin release and translocation to damaged mitochondria to initiate mitophagy. Furthermore, overexpressing bok in hippocampal neurons of APP/PS1 mice alleviated mitophagy and mitochondrial malfunction, resulting in improved cognitive function. Conversely, the knockdown of bok worsened the aforementioned Alzheimer's disease-related changes. Our findings uncover a novel mechanism of BOK signalling through regulating Parkin-mediated mitophagy to mitigate amyloid pathology, mitochondrial and synaptic malfunctions, and cognitive decline in Alzheimer's disease, thus representing a promising therapeutic target.
Collapse
Affiliation(s)
- Yang Yang
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Shuwen Huang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Hao Chen
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Bilbao 48011, Spain
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius 01102, Lithuania
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang 110122, China
| | - Jianqin Niu
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory of Neurobiology, Chongqing 400038, China
| | - Yibo Qu
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 50630, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China
| |
Collapse
|
5
|
Li Y, Gao Y, Yu G, Ye Y, Zhu H, Wang J, Li Y, Chen L, Gu L. G6PD protects against cerebral ischemia-reperfusion injury by inhibiting excessive mitophagy. Life Sci 2025; 362:123367. [PMID: 39756510 DOI: 10.1016/j.lfs.2024.123367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
AIMS Cerebral ischemia-reperfusion injury (CIRI) exacerbates post-stroke brain damage. We aimed to understand the role of glucose-6-phosphate dehydrogenase (G6PD) in CIRI and mitophagy. MATERIALS AND METHODS Lentivirus and small interfering RNA were utilized to suppress G6PD in tissues and cells, leading to the establishment of in vivo and in vitro models of ischemia-reperfusion following middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation/ reoxygenation (OGD/R). The expression and function of G6PD were investigated through differential gene analysis and weighted correlation network analysis (WGCNA), immunofluorescence, and western blotting (WB). KEY FINDINGS G6PD mRNA levels increased 3 d after MCAO, and G6PD protein expression was elevated in the ischemic penumbra of mice and HT22 cells following OGD/R. G6PD knockdown increased neural deficits, enlarged infarct volume in mice after CIRI, and reduced HT22 cell survival during OGD/R. WGCNA indicated a correlation between G6PD and mitophagy in CIRI. Following G6PD knockdown, the p-DRP1/DRP ratio increased, the PINK1/Parkin pathway was further activated, and TOMM20 expression was downregulated. The mitophagy inhibitor Mdivi-1 reversed these changes, as well as the nerve damage caused by G6PD knockdown, and alleviated mitochondrial damage in the ischemic penumbra. SIGNIFICANCE The role of G6PD in CIRI was revealed and its interaction with mitophagy was explored, providing important insights for understanding the molecular mechanism of CIRI and developing new therapeutic strategies.
Collapse
Affiliation(s)
- Yina Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yikun Gao
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Guixiang Yu
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Hua Zhu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Jin Wang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yilin Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Lei Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| |
Collapse
|
6
|
Stanigut AM, Tuta L, Pana C, Alexandrescu L, Suceveanu A, Blebea NM, Vacaroiu IA. Autophagy and Mitophagy in Diabetic Kidney Disease-A Literature Review. Int J Mol Sci 2025; 26:806. [PMID: 39859520 PMCID: PMC11766107 DOI: 10.3390/ijms26020806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Autophagy and mitophagy are critical cellular processes that maintain homeostasis by removing damaged organelles and promoting cellular survival under stress conditions. In the context of diabetic kidney disease, these mechanisms play essential roles in mitigating cellular damage. This review provides an in-depth analysis of the recent literature on the relationship between autophagy, mitophagy, and diabetic kidney disease, highlighting the current state of knowledge, existing research gaps, and potential areas for future investigations. Diabetic nephropathy (DN) is traditionally defined as a specific form of kidney disease caused by long-standing diabetes, characterized by the classic histological lesions in the kidney, including mesangial expansion, glomerular basement membrane thickening, nodular glomerulosclerosis (Kimmelstiel-Wilson nodules), and podocyte injury. Clinical markers for DN are albuminuria and the gradual decline in glomerular filtration rate (GFR). Diabetic kidney disease (DKD) is a broader and more inclusive term, for all forms of chronic kidney disease (CKD) in individuals with diabetes, regardless of the underlying pathology. This includes patients who may have diabetes-associated kidney damage without the typical histological findings of diabetic nephropathy. It also accounts for patients with other coexisting kidney diseases (e.g., hypertensive nephrosclerosis, ischemic nephropathy, tubulointerstitial nephropathies), even in the absence of albuminuria, such as a reduction in GFR.
Collapse
Affiliation(s)
- Alina Mihaela Stanigut
- Clinical Medical Disciplines Department, Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania; (A.M.S.); (L.T.); (L.A.); (A.S.)
- Nephrology Department, County Emergency Clinical Hospital of Constanta, 145 Tomis Street, 900591 Constanta, Romania
| | - Liliana Tuta
- Clinical Medical Disciplines Department, Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania; (A.M.S.); (L.T.); (L.A.); (A.S.)
- Nephrology Department, County Emergency Clinical Hospital of Constanta, 145 Tomis Street, 900591 Constanta, Romania
| | - Camelia Pana
- Clinical Medical Disciplines Department, Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania; (A.M.S.); (L.T.); (L.A.); (A.S.)
- Nephrology Department, County Emergency Clinical Hospital of Constanta, 145 Tomis Street, 900591 Constanta, Romania
| | - Luana Alexandrescu
- Clinical Medical Disciplines Department, Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania; (A.M.S.); (L.T.); (L.A.); (A.S.)
- Gastroenterology Department, County Emergency Clinical Hospital of Constanta, 145 Tomis Street, 900591 Constanta, Romania
| | - Adrian Suceveanu
- Clinical Medical Disciplines Department, Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania; (A.M.S.); (L.T.); (L.A.); (A.S.)
- Gastroenterology Department, County Emergency Clinical Hospital of Constanta, 145 Tomis Street, 900591 Constanta, Romania
| | - Nicoleta-Mirela Blebea
- Department of Pharmacotherapy, Faculty of Pharmacy, Ovidius University of Constanta, Aleea Universitatii Nr. 1, 900470 Constanta, Romania
| | - Ileana Adela Vacaroiu
- Department of Nephrology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Nephrology, Sf. Ioan Clinical Emergency Hospital, 042122 Bucharest, Romania
| |
Collapse
|
7
|
Niu X, You Q, Hou K, Tian Y, Wei P, Zhu Y, Gao B, Ashrafizadeh M, Aref AR, Kalbasi A, Cañadas I, Sethi G, Tergaonkar V, Wang L, Lin Y, Kang D, Klionsky DJ. Autophagy in cancer development, immune evasion, and drug resistance. Drug Resist Updat 2025; 78:101170. [PMID: 39603146 DOI: 10.1016/j.drup.2024.101170] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Macroautophagy/autophagy is a highly conserved evolutionary mechanism involving lysosomes for the degradation of cytoplasmic components including organelles. The constitutive, basal level of autophagy is fundamental for preserving cellular homeostasis; however, alterations in autophagy can cause disease pathogenesis, including cancer. The role of autophagy in cancer is particularly complicated, since this process acts both as a tumor suppressor in precancerous stages but facilitates tumor progression during carcinogenesis and later stages of cancer progression. This shift between anti-tumor and pro-tumor roles may be influenced by genetic and environmental factors modulating key pathways such as those involving autophagy-related proteins, the PI3K-AKT-MTOR axis, and AMPK, which often show dysregulation in tumors. Autophagy regulates various cellular functions, including metabolism of glucose, glutamine, and lipids, cell proliferation, metastasis, and several types of cell death (apoptosis, ferroptosis, necroptosis and immunogenic cell death). These multifaceted roles demonstrate the potential of autophagy to affect DNA damage repair, cell death pathways, proliferation and survival, which are critical in determining cancer cells' response to chemotherapy. Therefore, targeting autophagy pathways presents a promising strategy to combat chemoresistance, as one of the major reasons for the failure in cancer patient treatment. Furthermore, autophagy modulates immune evasion and the function of immune cells such as T cells and dendritic cells, influencing the tumor microenvironment and cancer's biological behavior. However, the therapeutic targeting of autophagy is complex due to its dual role in promoting survival and inducing cell death in cancer cells, highlighting the need for strategies that consider both the beneficial and detrimental effects of autophagy modulation in cancer therapy. Hence, both inducers and inhibitors of autophagy have been introduced for the treatment of cancer. This review emphasizes the intricate interplay between autophagy, tumor biology, and immune responses, offering insights into potential therapeutic approaches that deploy autophagy in the cancer suppression.
Collapse
Affiliation(s)
- Xuegang Niu
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Qi You
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Kaijian Hou
- School of Public Health(Long Hu people hospital), Shantou University, Shantou, 515000, Guangdong, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, IL 60532, USA
| | - Penghui Wei
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Yang Zhu
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Bin Gao
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Amir Reza Aref
- VitroVision Department, DeepkinetiX, Inc, Boston, MA, USA
| | - Alireza Kalbasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Israel Cañadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Gautam Sethi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Lingzhi Wang
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Yuanxiang Lin
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Dezhi Kang
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Yang Z, Wang J, Zhao T, Wang L, Liang T, Zheng Y. Mitochondrial structure and function: A new direction for the targeted treatment of chronic liver disease with Chinese herbal medicine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118461. [PMID: 38908494 DOI: 10.1016/j.jep.2024.118461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Excessive fat accumulation, biological clock dysregulation, viral infections, and sustained inflammatory responses can lead to liver inflammation, fibrosis, and cancer, thus promoting the development of chronic liver disease. A comprehensive understanding of the etiological factors leading to chronic liver disease and the intrinsic mechanisms influencing its onset and progression can aid in identifying potential targets for targeted therapy. Mitochondria, as key organelles that maintain the metabolic homeostasis of the liver, provide an important foundation for exploring therapeutic targets for chronic liver disease. Recent studies have shown that active ingredients in herbal medicines and their natural products can modulate chronic liver disease by influencing the structure and function of mitochondria. Therefore, studying how Chinese herbs target mitochondrial structure and function to treat chronic liver diseases is of great significance. AIM OF THE STUDY Investigating the prospects of herbal medicine the Lens of chronic liver disease based on mitochondrial structure and function. MATERIALS AND METHODS A computerized search of PubMed was conducted using the keywords "mitochondrial structure", "mitochondrial function", "mitochondria and chronic liver disease", "botanicals, mitochondria and chronic liver disease".Data from the Web of Science and Science Direct databases were also included. The research findings regarding herbal medicines targeting mitochondrial structure and function for the treatment of chronic liver disease are summarized. RESULTS A computerized search of PubMed using the keywords "mitochondrial structure", "mitochondrial function", "mitochondria and chronic liver disease", "phytopharmaceuticals, mitochondria, and chronic liver disease", as well as the Web of Science and Science Direct databases was conducted to summarize information on studies of mitochondrial structure- and function-based Chinese herbal medicines for the treatment of chronic liver disease and to suggest that the effects of herbal medicines on mitochondrial division and fusion.The study suggested that there is much room for research on the influence of Chinese herbs on mitochondrial division and fusion. CONCLUSIONS Targeting mitochondrial structure and function is crucial for herbal medicine to combat chronic liver disease.
Collapse
Affiliation(s)
- Zhihui Yang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Jiahui Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Tiejian Zhao
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Lei Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Tianjian Liang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China.
| | - Yang Zheng
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China.
| |
Collapse
|
9
|
Lin J, Chen X, Du Y, Li J, Guo T, Luo S. Mitophagy in Cell Death Regulation: Insights into Mechanisms and Disease Implications. Biomolecules 2024; 14:1270. [PMID: 39456203 PMCID: PMC11506020 DOI: 10.3390/biom14101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Mitophagy, a selective form of autophagy, plays a crucial role in maintaining optimal mitochondrial populations, normal function, and intracellular homeostasis by monitoring and removing damaged or excess mitochondria. Furthermore, mitophagy promotes mitochondrial degradation via the lysosomal pathway, and not only eliminates damaged mitochondria but also regulates programmed cell death-associated genes, thus preventing cell death. The interaction between mitophagy and various forms of cell death has recently gained increasing attention in relation to the pathogenesis of clinical diseases, such as cancers and osteoarthritis, neurodegenerative, cardiovascular, and renal diseases. However, despite the abundant literature on this subject, there is a lack of understanding regarding the interaction between mitophagy and cell death. In this review, we discuss the main pathways of mitophagy, those related to cell death mechanisms (including apoptosis, ferroptosis, and pyroptosis), and the relationship between mitophagy and cell death uncovered in recent years. Our study offers potential directions for therapeutic intervention and disease diagnosis, and contributes to understanding the molecular mechanism of mitophagy.
Collapse
Affiliation(s)
| | | | | | | | | | - Sai Luo
- The 1st Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150000, China; (J.L.); (X.C.); (Y.D.); (J.L.); (T.G.)
| |
Collapse
|
10
|
Chang SH, Chuang KC, Li ZY, Chang MC, Liu KT, Hsu CS, Huang SW, Chung MC, Wang SC, Chen YJ, Shieh JJ. The Protective Effects of Mcl-1 on Mitochondrial Damage and Oxidative Stress in Imiquimod-Induced Cancer Cell Death. Cancers (Basel) 2024; 16:3060. [PMID: 39272918 PMCID: PMC11394135 DOI: 10.3390/cancers16173060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Mitochondria, vital organelles that generate ATP, determine cell fate. Dysfunctional and damaged mitochondria are fragmented and removed through mitophagy, a mitochondrial quality control mechanism. The FDA-approved drug IMQ, a synthetic agonist of Toll-like receptor 7, exhibits antitumor activity against various skin malignancies. We previously reported that IMQ promptly reduced the level of the antiapoptotic Mcl-1 protein and that Mcl-1 overexpression attenuated IMQ-triggered apoptosis in skin cancer cells. Furthermore, IMQ profoundly disrupted mitochondrial function, promoted mitochondrial fragmentation, induced mitophagy, and caused cell death by generating high levels of ROS. However, whether Mcl-1 protects mitochondria from IMQ treatment is still unknown. In this study, we demonstrated that Mcl-1 overexpression induced resistance to IMQ-induced apoptosis and reduced both IMQ-induced ROS generation and oxidative stress in cancer cells. Mcl-1 overexpression maintained mitochondrial function and integrity and prevented mitophagy in IMQ-treated cancer cells. Furthermore, IL-6 protected against IMQ-induced apoptosis by increasing Mcl-1 expression and attenuating IMQ-induced mitochondrial fragmentation. Mcl-1 overexpression ameliorates IMQ-induced ROS generation and mitochondrial fragmentation, thereby increasing mitochondrial stability and ultimately attenuating IMQ-induced cell death. Investigating the roles of Mcl-1 in mitochondria is a potential strategy for cancer therapy development.
Collapse
Affiliation(s)
- Shu-Hao Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Kai-Cheng Chuang
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Zheng-Yi Li
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Mao-Chia Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Kuang-Ting Liu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Pathology & Laboratory Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 325208, Taiwan
| | - Chien-Sheng Hsu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402202, Taiwan
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua 500209, Taiwan
| | - Shi-Wei Huang
- Center for Cell Therapy and Translation Research, China Medical University Hospital, Taichung 404327, Taiwan
| | - Mu-Chi Chung
- Division of Nephrology, Department of Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- PhD Program in Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Biotechnology, Asia University, Taichung 413305, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - Shih-Chung Wang
- Division of Pediatric Hematology/Oncology, Changhua Christian Children Hospital, Changhua 500209, Taiwan
| | - Yi-Ju Chen
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Dermatology, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Jeng-Jer Shieh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402202, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Education and Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| |
Collapse
|
11
|
Deepak K, Roy PK, Das CK, Mukherjee B, Mandal M. Mitophagy at the crossroads of cancer development: Exploring the role of mitophagy in tumor progression and therapy resistance. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119752. [PMID: 38776987 DOI: 10.1016/j.bbamcr.2024.119752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/27/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Preserving a functional mitochondrial network is crucial for cellular well-being, considering the pivotal role of mitochondria in ensuring cellular survival, especially under stressful conditions. Mitophagy, the selective removal of damaged mitochondria through autophagy, plays a pivotal role in preserving cellular homeostasis by preventing the production of harmful reactive oxygen species from dysfunctional mitochondria. While the involvement of mitophagy in neurodegenerative diseases has been thoroughly investigated, it is becoming increasingly evident that mitophagy plays a significant role in cancer biology. Perturbations in mitophagy pathways lead to suboptimal mitochondrial quality control, catalyzing various aspects of carcinogenesis, including establishing metabolic plasticity, stemness, metabolic reconfiguration of cancer-associated fibroblasts, and immunomodulation. While mitophagy performs a delicate balancing act at the intersection of cell survival and cell death, mounting evidence indicates that, particularly in the context of stress responses induced by cancer therapy, it predominantly promotes cell survival. Here, we showcase an overview of the current understanding of the role of mitophagy in cancer biology and its potential as a target for cancer therapy. Gaining a more comprehensive insight into the interaction between cancer therapy and mitophagy has the potential to reveal novel targets and pathways, paving the way for enhanced treatment strategies for therapy-resistant tumors in the near future.
Collapse
Affiliation(s)
- K Deepak
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Pritam Kumar Roy
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Chandan Kanta Das
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Budhaditya Mukherjee
- Infectious Disease and Immunology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Mahitosh Mandal
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
12
|
Sun J, Zhang Y, Zhang Q, Hu L, Zhao L, Wang H, Yuan Y, Niu H, Wang D, Zhang H, Liu J, Feng X, Su X, Qiu J, Sun J, Xu H, Zhang C, Wang K, Bi Y, Engleman EG, Shen L. Metabolic regulator LKB1 controls adipose tissue ILC2 PD-1 expression and mitochondrial homeostasis to prevent insulin resistance. Immunity 2024; 57:1289-1305.e9. [PMID: 38772366 DOI: 10.1016/j.immuni.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/06/2024] [Accepted: 04/25/2024] [Indexed: 05/23/2024]
Abstract
Adipose tissue group 2 innate lymphoid cells (ILC2s) help maintain metabolic homeostasis by sustaining type 2 immunity and promoting adipose beiging. Although impairment of the ILC2 compartment contributes to obesity-associated insulin resistance, the underlying mechanisms have not been elucidated. Here, we found that ILC2s in obese mice and humans exhibited impaired liver kinase B1 (LKB1) activation. Genetic ablation of LKB1 disrupted ILC2 mitochondrial metabolism and suppressed ILC2 responses, resulting in exacerbated insulin resistance. Mechanistically, LKB1 deficiency induced aberrant PD-1 expression through activation of NFAT, which in turn enhanced mitophagy by suppressing Bcl-xL expression. Blockade of PD-1 restored the normal functions of ILC2s and reversed obesity-induced insulin resistance in mice. Collectively, these data present the LKB1-PD-1 axis as a promising therapeutic target for the treatment of metabolic disease.
Collapse
Affiliation(s)
- Jiping Sun
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Youqin Zhang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qingbing Zhang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lin Hu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Linfeng Zhao
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongdong Wang
- Department of Endocrinology, Drum Tower Hospital affiliated with Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing 210008, China
| | - Yue Yuan
- Department of Endocrinology, Drum Tower Hospital affiliated with Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing 210008, China
| | - Hongshen Niu
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dongdi Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huasheng Zhang
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jianyue Liu
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xujiao Feng
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaohui Su
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Heping Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Catherine Zhang
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Kathleen Wang
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Yan Bi
- Department of Endocrinology, Drum Tower Hospital affiliated with Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing 210008, China
| | - Edgar G Engleman
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Lei Shen
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
13
|
Degli Esposti M. Did mitophagy follow the origin of mitochondria? Autophagy 2024; 20:985-993. [PMID: 38361280 PMCID: PMC11135861 DOI: 10.1080/15548627.2024.2307215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/30/2023] [Accepted: 01/13/2024] [Indexed: 02/17/2024] Open
Abstract
Mitophagy is the process of selective autophagy that removes superfluous and dysfunctional mitochondria. Mitophagy was first characterized in mammalian cells and is now recognized to follow several pathways including basal forms in specific organs. Mitophagy pathways are regulated by multiple, often interconnected factors. The present review aims to streamline this complexity and evaluate common elements that may define the evolutionary origin of mitophagy. Key issues surrounding mitophagy signaling at the mitochondrial surface may fundamentally derive from mitochondrial membrane dynamics. Elements of such membrane dynamics likely originated during the endosymbiosis of the alphaproteobacterial ancestor of our mitochondria but underwent an evolutionary leap forward in basal metazoa that determined the currently known variations in mitophagy signaling.Abbreviations: AGPAT, 1-acylglycerol-3-phosphate O-acyltransferase; ATG, autophagy related; BCL2L13, BCL2 like 13; BNIP3, BCL2 interacting protein 3; BNIP3L, BCL2 interacting protein 3 like; CALCOCO, calcium binding and coiled-coil domain; CL, cardiolipin; ER, endoplasmic reticulum; ERMES, ER-mitochondria encounter structure; FBXL4, F-box and leucine rich repeat protein 4; FUNDC1, FUN14 domain containing 1; GABARAPL1, GABA type A receptor associated protein like 1; HIF, hypoxia inducible factor; IMM, inner mitochondrial membrane; LBPA/BMP, lysobisphosphatidic acid; LIR, LC3-interacting region; LPA, lysophosphatidic acid; MAM, mitochondria-associated membranes; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MCL, monolysocardiolipin; ML, maximum likelihood; NBR1, NBR1 autophagy cargo receptor; OMM, outer mitochondrial membrane; PA, phosphatidic acid; PACS2, phosphofurin acidic cluster sorting protein 2; PC/PLC, phosphatidylcholine; PE, phosphatidylethanolamine; PHB2, prohibitin 2; PINK1, PTEN induced kinase 1; PtdIns, phosphatidylinositol; SAR, Stramenopiles, Apicomplexa and Rhizaria; TAX1BP1, Tax1 binding protein 1; ULK1, unc-51 like autophagy activating kinase 1; VDAC/porin, voltage dependent anion channel.
Collapse
Affiliation(s)
- Mauro Degli Esposti
- Center for Genomic Sciences, UNAM Campus de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
14
|
Deng H, Han Y, Liu L, Zhang H, Liu D, Wen J, Huang M, Zhao L. Targeting Myeloid Leukemia-1 in Cancer Therapy: Advances and Directions. J Med Chem 2024; 67:5963-5998. [PMID: 38597264 DOI: 10.1021/acs.jmedchem.3c01998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
As a tripartite cell death switch, B-cell lymphoma protein 2 (Bcl-2) family members precisely regulate the endogenous apoptosis pathway in response to various cell signal stresses through protein-protein interactions. Myeloid leukemia-1 (Mcl-1), a key anti-apoptotic Bcl-2 family member, is positioned downstream in the endogenous apoptotic pathway and plays a central role in regulating mitochondrial function. Mcl-1 is highly expressed in a variety of hematological malignancies and solid tumors, contributing to tumorigenesis, poor prognosis, and chemoresistance, making it an attractive target for cancer treatment. This Perspective aims to discuss the mechanism by which Mcl-1 regulates apoptosis and non-apoptotic functions in cancer cells and to outline the discovery and optimization process of potent Mcl-1 modulators. In addition, we summarize the structural characteristics of potent inhibitors that bind to Mcl-1 through multiple co-crystal structures and analyze the cardiotoxicity caused by current Mcl-1 inhibitors, providing prospects for rational targeting of Mcl-1.
Collapse
Affiliation(s)
- Hongguang Deng
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Han
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Liang Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hong Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiachen Wen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Min Huang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linxiang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
15
|
Yildirim N, Sarojam L, Smith VM, Pieper NM, Anders M, Jackson RA, Fuhrmann DC, Särchen V, Brücher D, Weigert A, Dyer MJS, Vogler M. Identification of a novel form of caspase-independent cell death triggered by BH3-mimetics in diffuse large B-cell lymphoma cell lines. Cell Death Dis 2024; 15:266. [PMID: 38622118 PMCID: PMC11018778 DOI: 10.1038/s41419-024-06652-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
BH3-mimetics represent promising anti-cancer agents in tumors that rely on the anti-apoptotic function of B-Cell Lymphoma 2 (BCL2) proteins, particularly in leukemia and lymphoma cells primed for apoptosis. Mechanistically, BH3-mimetics may displace pro-apoptotic binding partners thus inducing BAX/BAK-mediated mitochondrial permeabilization followed by cytochrome c release, activation of the caspase cascade and apoptosis. Here, we describe a novel mode of caspase-independent cell death (CICD) induced by BH3-mimetics in a subset of diffuse large B-cell lymphoma (DLBCL) cells. Of note, rather than occurring via necroptosis, CICD induced immediately after mitochondrial permeabilization was associated with transcriptional reprogramming mediated by activation of c-Jun N-terminal Kinase (JNK) signaling and Activator Protein 1 (AP1). Thereby, CICD resulted in the JNK/AP1-mediated upregulation of inflammatory chemokines and increased migration of cytotoxic Natural Killer (NK) cells. Taken together, our study describes a novel mode of CICD triggered by BH3-mimetics that may alter the immune response towards dying cells.
Collapse
Affiliation(s)
- Nahide Yildirim
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Lakshmi Sarojam
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Victoria M Smith
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Nadja M Pieper
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Marius Anders
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Ross A Jackson
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Dominik C Fuhrmann
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Vinzenz Särchen
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Daniela Brücher
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt, Germany
| | - Martin J S Dyer
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Meike Vogler
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt, Germany.
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt, Germany.
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe-University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
16
|
Huang Z, Pan T, Xu L, Shi L, Ma X, Zhou L, Wang L, Wang J, Zhu G, Chen D, Song L, Pan X, Wang X, Li X, Luo Y, Chen Y. FGF4 protects the liver from immune-mediated injury by activating CaMKK β-PINK1 signal pathway to inhibit hepatocellular apoptosis. Acta Pharm Sin B 2024; 14:1605-1623. [PMID: 38572102 PMCID: PMC10985030 DOI: 10.1016/j.apsb.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 04/05/2024] Open
Abstract
Immune-mediated liver injury (ILI) is a condition where an aberrant immune response due to various triggers causes the destruction of hepatocytes. Fibroblast growth factor 4 (FGF4) was recently identified as a hepatoprotective cytokine; however, its role in ILI remains unclear. In patients with autoimmune hepatitis (type of ILI) and mouse models of concanavalin A (ConA)- or S-100-induced ILI, we observed a biphasic pattern in hepatic FGF4 expression, characterized by an initial increase followed by a return to basal levels. Hepatic FGF4 deficiency activated the mitochondria-associated intrinsic apoptotic pathway, aggravating hepatocellular apoptosis. This led to intrahepatic immune hyper-reactivity, inflammation accentuation, and subsequent liver injury in both ILI models. Conversely, administration of recombinant FGF4 reduced hepatocellular apoptosis and rectified immune imbalance, thereby mitigating liver damage. The beneficial effects of FGF4 were mediated by hepatocellular FGF receptor 4, which activated the Ca2+/calmodulin-dependent protein kinasekinase 2 (CaMKKβ) and its downstream phosphatase and tensin homologue-induced putative kinase 1 (PINK1)-dependent B-cell lymphoma 2-like protein 1-isoform L (Bcl-XL) signalling axis in the mitochondria. Hence, FGF4 serves as an early response factor and plays a protective role against ILI, suggesting a therapeutic potential of FGF4 and its analogue for treating clinical immune disorder-related liver injuries.
Collapse
Affiliation(s)
- Zhifeng Huang
- Hepatology Diagnosis and Treatment Center, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Tongtong Pan
- Hepatology Diagnosis and Treatment Center, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Liang Xu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University & Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou 325035, China
| | - Lu Shi
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Liya Zhou
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Luyao Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jiaojiao Wang
- Hepatology Diagnosis and Treatment Center, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Guoqing Zhu
- Hepatology Diagnosis and Treatment Center, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Dazhi Chen
- Hangzhou Medical College, Hangzhou 311300, China
| | - Lingtao Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaomin Pan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaodong Wang
- Hepatology Diagnosis and Treatment Center, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yongde Luo
- Hepatology Diagnosis and Treatment Center, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yongping Chen
- Hepatology Diagnosis and Treatment Center, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
17
|
Fan K, Liao Q, Yuan P, Xu R, Liu Z. Defective autophagy contributes to bupivacaine-induced aggravation of painful diabetic neuropathy in db/db mice. Neuropharmacology 2024; 245:109814. [PMID: 38104768 DOI: 10.1016/j.neuropharm.2023.109814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/08/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Current evidence suggests that hyperactivated or impaired autophagy can lead to neuronal death. The effect of local anesthetics on painful diabetic neuropathy (PDN) and the role of autophagy in the above pathological process remain unclear, warranting further studies. So, PDN models were established by assessing the paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) in leptin gene-mutation (db/db) mice. Wild type (WT) and PDN mice received intrathecal 0.75% bupivacaine or/with intraperitoneal drug treatment (rapamycin or bafilomycin A1). Subsequently, the PWT and PWL were measured to assess hyperalgesia at 6 h, 24 h, 30 h, and 48 h after intrathecal bupivacaine. Also, sensory nerve conduction velocity (SNCV) and motor nerve conduction velocity (MNCV) were measured before and 48 h after intrathecal bupivacaine treatment. The spinal cord tissue of L4-L6 segments and serum were harvested to evaluate the change of autophagy, oxidative stress, oxidative injury, and apoptosis. We found that bupivacaine induced the activation of autophagy but did not affect the pain threshold, SNCV and MNCV in WT mice at predefined time points. Conversely, bupivacaine lowered autophagosome generation and degradation, slowed SNCV and aggravated spinal dorsal horn neuron oxidative injury and hyperalgesia in PDN mice. The autophagy activator (rapamycin) could decrease spinal dorsal horn neuron oxidative injury, alleviate the alterations in SNCV and hyperalgesia in bupivacaine-treated PDN mice. Meanwhile, the autophagy inhibitor (bafilomycin A1) could exacerbate spinal dorsal horn neuron oxidative injury, the alterations in SNCV and hyperalgesia in bupivacaine-treated PDN mice. Our results showed that bupivacaine could induce defective autophagy, slowed SNCV and aggravate spinal dorsal horn neuron oxidative injury and hyperalgesia in PDN mice. Restoring autophagy may represent a potential therapeutic approach against nerve injury in PDN patients with local anesthesia and analgesia.
Collapse
Affiliation(s)
- Keke Fan
- Department of Anesthesiology, Shenzhen Children's Hospital, Yantian Road 7019, Shenzhen, 518000, Guangdong Province, China.
| | - Qinming Liao
- Department of Neurosurgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong Province, China.
| | - Pengfei Yuan
- Department of Anesthesiology, South China Hospital of Shenzhen University, Fuxin Road 1, ShenZhen, 518116, Guangdong Province, China.
| | - Rui Xu
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China.
| | - Zhongjie Liu
- Department of Anesthesiology, Shenzhen Children's Hospital, Yantian Road 7019, Shenzhen, 518000, Guangdong Province, China; Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China.
| |
Collapse
|
18
|
Zhang LW, Feng HQ, Fu SB, Sun DJ. Low Selenium and Low Protein Exacerbate Myocardial Damage in Keshan Disease by Affecting the PINK1/Parkin-mediated Mitochondrial Autophagy Pathway. Curr Med Sci 2024; 44:93-101. [PMID: 38393524 DOI: 10.1007/s11596-024-2834-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/25/2023] [Indexed: 02/25/2024]
Abstract
OBJECTIVE Keshan disease (KD) is a myocardial mitochondrial disease closely related to insufficient selenium (Se) and protein intake. PTEN induced putative kinase 1 (PINK1)/Parkin mediated mitochondrial autophagy regulates various physiological and pathological processes in the body. This study aimed to elucidate the relationship between PINK1/Parkin-regulated mitochondrial autophagy and KD-related myocardial injury. METHODS A low Se and low protein animal model was established. One hundred Wistar rats were randomly divided into 5 groups (control group, low Se group, low protein group, low Se + low protein group, and corn from KD area group). The JC-1 method was used to detect the mitochondrial membrane potential (MMP). ELISA was used to detect serum creatine kinase MB (CK-MB), cardiac troponin I (cTnI), and mitochondrial-glutamicoxalacetic transaminase (M-GOT) levels. RT-PCR and Western blot analysis were used to detect the expression of PINK1, Parkin, sequestome 1 (P62), and microtubule-associated proteins1A/1B light chain 3B (MAP1LC3B). RESULTS The MMP was significantly decreased and the activity of CK-MB, cTnI, and M-GOT significantly increased in each experimental group (low Se group, low protein group, low Se + low protein group and corn from KD area group) compared with the control group (P<0.05 for all). The mRNA and protein expression levels of PINK1, Parkin and MAP1LC3B were profoundly increased, and those of P62 markedly decreased in the experimental groups compared with the control group (P<0.05 for all). CONCLUSION Low Se and low protein levels exacerbate myocardial damage in KD by affecting the PINK1/Parkin-mediated mitochondrial autophagy pathway.
Collapse
Affiliation(s)
- Li-Wei Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University), Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin, 150086, China
| | - Hong-Qi Feng
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University), Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin, 150086, China
| | - Song-Bo Fu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University), Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin, 150086, China
| | - Dian-Jun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University), Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin, 150086, China.
| |
Collapse
|
19
|
Lee C, Park SH, Yoon SK. The E3 ligase HUWE1 increases the sensitivity of CRC to oxaliplatin through TOMM20 degradation. Oncogene 2024; 43:636-649. [PMID: 38184713 DOI: 10.1038/s41388-023-02928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/08/2024]
Abstract
Continuous administration of oxaliplatin, the most widely used first-line chemotherapy drug for colorectal cancer (CRC), eventually leads to drug resistance. Increasing the sensitivity of CRC cells to oxaliplatin is a key strategy to overcome this issue. Impairment of mitochondrial function is a pivotal mechanism determining the sensitivity of CRC to oxaliplatin. We discovered an inverse correlation between Translocase of Outer Mitochondrial Membrane 20 (TOMM20) and oxaliplatin sensitivity as well as an inverse relationship between TOMM20 and HECT, UBA, and WWE domain containing E3 ligase 1 (HUWE1) expression in CRC. For the first time, we demonstrated that HUWE1 ubiquitinates TOMM20 directly and also regulates TOMM20 degradation via the PARKIN-mediated pathway. Furthermore, we showed that overexpression of HUWE1 in CRC cells has a negative effect on mitochondrial function, including the generation of ATP and maintenance of mitochondrial membrane potential, leading to increased production of ROS and apoptosis. This effect was amplified when cells were treated simultaneously with oxaliplatin. Our study conclusively shows that TOMM20 is a novel target of HUWE1. Our findings indicate that HUWE1 plays a critical role in regulating oxaliplatin sensitivity by degrading TOMM20 and inducing mitochondrial damage in CRC.
Collapse
Affiliation(s)
- Chanhaeng Lee
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 065-691, Republic of Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 065-691, Republic of Korea
| | - Sang-Hee Park
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 065-691, Republic of Korea
| | - Sungjoo Kim Yoon
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 065-691, Republic of Korea.
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 065-691, Republic of Korea.
| |
Collapse
|
20
|
Lambrecht R, Rudolf F, Ückert AK, Sladky VC, Phan TS, Jansen J, Naim S, Kaufmann T, Keogh A, Kirschnek S, Mangerich A, Stengel F, Leist M, Villunger A, Brunner T. Non-canonical BIM-regulated energy metabolism determines drug-induced liver necrosis. Cell Death Differ 2024; 31:119-131. [PMID: 38001256 PMCID: PMC10781779 DOI: 10.1038/s41418-023-01245-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 11/02/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Paracetamol (acetaminophen, APAP) overdose severely damages mitochondria and triggers several apoptotic processes in hepatocytes, but the final outcome is fulminant necrotic cell death, resulting in acute liver failure and mortality. Here, we studied this switch of cell death modes and demonstrate a non-canonical role of the apoptosis-regulating BCL-2 homolog BIM/Bcl2l11 in promoting necrosis by regulating cellular bioenergetics. BIM deficiency enhanced total ATP production and shifted the bioenergetic profile towards glycolysis, resulting in persistent protection from APAP-induced liver injury. Modulation of glucose levels and deletion of Mitofusins confirmed that severe APAP toxicity occurs only in cells dependent on oxidative phosphorylation. Glycolytic hepatocytes maintained elevated ATP levels and reduced ROS, which enabled lysosomal recycling of damaged mitochondria by mitophagy. The present study highlights how metabolism and bioenergetics affect drug-induced liver toxicity, and identifies BIM as important regulator of glycolysis, mitochondrial respiration, and oxidative stress signaling.
Collapse
Affiliation(s)
- Rebekka Lambrecht
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Franziska Rudolf
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Anna-Katharina Ückert
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Valentina C Sladky
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria
| | - Truong San Phan
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Jasmin Jansen
- Biochemistry and Mass Spectrometry, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Samara Naim
- Institute of Pharmacology, University of Bern, Inselspital, Bern University Hospital, INO-F, Freiburgstrasse 16C, 3010, Bern, Switzerland
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Inselspital, Bern University Hospital, INO-F, Freiburgstrasse 16C, 3010, Bern, Switzerland
| | - Adrian Keogh
- Visceral and Transplantation Surgery, Department of Clinical Research, Inselspital, Bern University Hospital, 3008, Bern, Switzerland
| | - Susanne Kirschnek
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, 79104, Freiburg, Germany
| | - Aswin Mangerich
- Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Florian Stengel
- Biochemistry and Mass Spectrometry, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Marcel Leist
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria
- The Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
- Ludwig Boltzman Institute for Rare and Undiagnosed Diseases (LBI-RUD), Lazarettgasse 14, 1090, Vienna, Austria
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany.
| |
Collapse
|
21
|
Chattopadhyay M, Chanda A, Pal B. Unravelling the Nexus: Mitochondrial Oxidative Stress, Tumour Microenvironment, and Escape from Immune Surveillance. CANCER DRUG DISCOVERY AND DEVELOPMENT 2024:255-286. [DOI: 10.1007/978-3-031-66421-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
|
22
|
Kobayashi H, Imanaka S, Yoshimoto C, Matsubara S, Shigetomi H. Molecular mechanism of autophagy and apoptosis in endometriosis: Current understanding and future research directions. Reprod Med Biol 2024; 23:e12577. [PMID: 38645639 PMCID: PMC11031673 DOI: 10.1002/rmb2.12577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/23/2024] Open
Abstract
Background Endometriosis is a common gynecological condition, with symptoms including pain and infertility. Regurgitated endometrial cells into the peritoneal cavity encounter hypoxia and nutrient starvation. Endometriotic cells have evolved various adaptive mechanisms to survive in this inevitable condition. These adaptations include escape from apoptosis. Autophagy, a self-degradation system, controls apoptosis during stress conditions. However, to date, the mechanisms regulating the interplay between autophagy and apoptosis are still poorly understood. In this review, we summarize the current understanding of the molecular characteristics of autophagy in endometriosis and discuss future therapeutic challenges. Methods A search of PubMed and Google Scholar databases were used to identify relevant studies for this narrative literature review. Results Autophagy may be dynamically regulated through various intrinsic (e.g., PI3K/AKT/mTOR signal transduction network) and extrinsic (e.g., hypoxia and iron-mediated oxidative stress) pathways, contributing to the development and progression of endometriosis. Upregulation of mTOR expression suppresses apoptosis via inhibiting the autophagy pathway, whereas hypoxia or excess iron often inhibits apoptosis via promoting autophagy. Conclusion Endometriotic cells may have acquired antiapoptotic mechanisms through unique intrinsic and extrinsic autophagy pathways to survive in changing environments.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive MedicineMs.Clinic MayOneKashiharaJapan
- Department of Obstetrics and GynecologyNara Medical UniversityKashiharaJapan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive MedicineMs.Clinic MayOneKashiharaJapan
- Department of Obstetrics and GynecologyNara Medical UniversityKashiharaJapan
| | - Chiharu Yoshimoto
- Department of Obstetrics and GynecologyNara Medical UniversityKashiharaJapan
- Department of Obstetrics and GynecologyNara Prefecture General Medical CenterNaraJapan
| | - Sho Matsubara
- Department of Obstetrics and GynecologyNara Medical UniversityKashiharaJapan
- Department of MedicineKei Oushin ClinicNishinomiyaJapan
| | - Hiroshi Shigetomi
- Department of Obstetrics and GynecologyNara Medical UniversityKashiharaJapan
- Department of Gynecology and Reproductive MedicineAska Ladies ClinicNaraJapan
| |
Collapse
|
23
|
Kawasaki N, Tomita M, Yamashita-Kashima Y, Yoshimura Y, Yoshiura S. Efficacy of retreatment with polatuzumab vedotin in combination with rituximab in polatuzumab vedotin-resistant DLBCL models. Leuk Lymphoma 2023; 64:1938-1948. [PMID: 37548343 DOI: 10.1080/10428194.2023.2243531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
Polatuzumab vedotin (Pola) was approved for first-line and relapsed/refractory (r/r) diffuse large B-cell lymphoma (DLBCL) in many countries. This means that retreatment with Pola for r/r DLBCL could be considered after first-line Pola treatment; however, there is currently no evidence on the effectiveness of Pola-retreatment. To address this, we established two Pola-resistant cells from DLBCL cells (SU-DHL-4 and STR-428) and evaluated the combination efficacy of Pola plus rituximab (Rit), the key component of DLBCL therapy. MDR1 overexpression and decreased Bim expression were suggested to be the resistant mechanisms to Pola in Pola-resistant SU-DHL-4 and Pola-resistant STR-428, respectively. In these cells, Pola significantly increased Rit-induced CDC sensitivity either with increased MAC formation or reduced Mcl-1 expression. Additionally, treatment with Pola + Rit significantly enhanced antitumor activity in Pola-resistant STR-428 xenograft mouse models. Based on these results, Pola + Rit retreatment could have preserved efficacy because of the effect of Pola on sensitizing cells to Rit.
Collapse
Affiliation(s)
- Natsumi Kawasaki
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Mayu Tomita
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | | | - Yasushi Yoshimura
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Shigeki Yoshiura
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| |
Collapse
|
24
|
Xu W, Gao W, Guo Y, Xue F, Di L, Fang S, Fan L, He Y, Zhou Y, Xie X, Pang X. Targeting mitophagy for depression amelioration: a novel therapeutic strategy. Front Neurosci 2023; 17:1235241. [PMID: 37869512 PMCID: PMC10587558 DOI: 10.3389/fnins.2023.1235241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Major depressive disorder is a global psychiatric condition characterized by persistent low mood and anhedonia, which seriously jeopardizes the physical and mental well-being of affected individuals. While various hypotheses have been proposed to explicate the etiology of depression, the precise pathogenesis and effective treatment of this disorder remain elusive. Mitochondria, as the primary organelles responsible for cellular energy production, possess the ability to meet the essential energy demands of the brain. Research indicated that the accumulation of damaged mitochondria is associated with the onset of depression. Mitophagy, a type of cellular autophagy, specifically targets and removes excess or damaged mitochondria. Emerging evidence demonstrated that mitophagy dysfunction was involved in the progression of depression, and several pharmacological interventions that stimulating mitophagy exerted excellent antidepressant actions. We provided an overview of updated advancements on the regulatory mechanism of mitophagy and the mitophagy abnormality in depressed patients and animals, as well as in cell models of depression. Meanwhile, various therapeutic strategies to restore mitophagy for depression alleviation were also discussed in this review.
Collapse
Affiliation(s)
- Wangjun Xu
- School of Pharmacy, Henan University, Kaifeng, China
| | - Weiping Gao
- School of Pharmacy, Henan University, Kaifeng, China
| | - Yukun Guo
- School of Pharmacy, Henan University, Kaifeng, China
| | - Feng Xue
- School of Pharmacy, Henan University, Kaifeng, China
| | - Lulu Di
- School of Pharmacy, Henan University, Kaifeng, China
| | - Shaojie Fang
- School of Pharmacy, Henan University, Kaifeng, China
| | - Linlin Fan
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Pharmacy, Henan University, Kaifeng, China
| | - Yangyang He
- School of Pharmacy, Henan University, Kaifeng, China
- Institutes of Traditional Chinese Medicine, Henan University, Kaifeng, China
| | - Yunfeng Zhou
- School of Pharmacy, Henan University, Kaifeng, China
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng, China
| | - Xinmei Xie
- School of Pharmacy, Henan University, Kaifeng, China
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng, China
| | - Xiaobin Pang
- School of Pharmacy, Henan University, Kaifeng, China
- Institutes of Traditional Chinese Medicine, Henan University, Kaifeng, China
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng, China
| |
Collapse
|
25
|
Titus AS, Sung EA, Zablocki D, Sadoshima J. Mitophagy for cardioprotection. Basic Res Cardiol 2023; 118:42. [PMID: 37798455 PMCID: PMC10556134 DOI: 10.1007/s00395-023-01009-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023]
Abstract
Mitochondrial function is maintained by several strictly coordinated mechanisms, collectively termed mitochondrial quality control mechanisms, including fusion and fission, degradation, and biogenesis. As the primary source of energy in cardiomyocytes, mitochondria are the central organelle for maintaining cardiac function. Since adult cardiomyocytes in humans rarely divide, the number of dysfunctional mitochondria cannot easily be diluted through cell division. Thus, efficient degradation of dysfunctional mitochondria is crucial to maintaining cellular function. Mitophagy, a mitochondria specific form of autophagy, is a major mechanism by which damaged or unnecessary mitochondria are targeted and eliminated. Mitophagy is active in cardiomyocytes at baseline and in response to stress, and plays an essential role in maintaining the quality of mitochondria in cardiomyocytes. Mitophagy is mediated through multiple mechanisms in the heart, and each of these mechanisms can partially compensate for the loss of another mechanism. However, insufficient levels of mitophagy eventually lead to mitochondrial dysfunction and the development of heart failure. In this review, we discuss the molecular mechanisms of mitophagy in the heart and the role of mitophagy in cardiac pathophysiology, with the focus on recent findings in the field.
Collapse
Affiliation(s)
- Allen Sam Titus
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA
| | - Eun-Ah Sung
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA
| | - Daniela Zablocki
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA.
| |
Collapse
|
26
|
Kadam A, Jadiya P, Tomar D. Post-translational modifications and protein quality control of mitochondrial channels and transporters. Front Cell Dev Biol 2023; 11:1196466. [PMID: 37601094 PMCID: PMC10434574 DOI: 10.3389/fcell.2023.1196466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Mitochondria play a critical role in energy metabolism and signal transduction, which is tightly regulated by proteins, metabolites, and ion fluxes. Metabolites and ion homeostasis are mainly mediated by channels and transporters present on mitochondrial membranes. Mitochondria comprise two distinct compartments, the outer mitochondrial membrane (OMM) and the inner mitochondrial membrane (IMM), which have differing permeabilities to ions and metabolites. The OMM is semipermeable due to the presence of non-selective molecular pores, while the IMM is highly selective and impermeable due to the presence of specialized channels and transporters which regulate ion and metabolite fluxes. These channels and transporters are modulated by various post-translational modifications (PTMs), including phosphorylation, oxidative modifications, ions, and metabolites binding, glycosylation, acetylation, and others. Additionally, the mitochondrial protein quality control (MPQC) system plays a crucial role in ensuring efficient molecular flux through the mitochondrial membranes by selectively removing mistargeted or defective proteins. Inefficient functioning of the transporters and channels in mitochondria can disrupt cellular homeostasis, leading to the onset of various pathological conditions. In this review, we provide a comprehensive overview of the current understanding of mitochondrial channels and transporters in terms of their functions, PTMs, and quality control mechanisms.
Collapse
Affiliation(s)
- Ashlesha Kadam
- Department of Internal Medicine, Section of Cardiovascular Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Pooja Jadiya
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Dhanendra Tomar
- Department of Internal Medicine, Section of Cardiovascular Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
27
|
Tantawy SI, Timofeeva N, Sarkar A, Gandhi V. Targeting MCL-1 protein to treat cancer: opportunities and challenges. Front Oncol 2023; 13:1226289. [PMID: 37601693 PMCID: PMC10436212 DOI: 10.3389/fonc.2023.1226289] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
Evading apoptosis has been linked to tumor development and chemoresistance. One mechanism for this evasion is the overexpression of prosurvival B-cell lymphoma-2 (BCL-2) family proteins, which gives cancer cells a survival advantage. Mcl-1, a member of the BCL-2 family, is among the most frequently amplified genes in cancer. Targeting myeloid cell leukemia-1 (MCL-1) protein is a successful strategy to induce apoptosis and overcome tumor resistance to chemotherapy and targeted therapy. Various strategies to inhibit the antiapoptotic activity of MCL-1 protein, including transcription, translation, and the degradation of MCL-1 protein, have been tested. Neutralizing MCL-1's function by targeting its interactions with other proteins via BCL-2 interacting mediator (BIM)S2A has been shown to be an equally effective approach. Encouraged by the design of venetoclax and its efficacy in chronic lymphocytic leukemia, scientists have developed other BCL-2 homology (BH3) mimetics-particularly MCL-1 inhibitors (MCL-1i)-that are currently in clinical trials for various cancers. While extensive reviews of MCL-1i are available, critical analyses focusing on the challenges of MCL-1i and their optimization are lacking. In this review, we discuss the current knowledge regarding clinically relevant MCL-1i and focus on predictive biomarkers of response, mechanisms of resistance, major issues associated with use of MCL-1i, and the future use of and maximization of the benefits from these agents.
Collapse
Affiliation(s)
- Shady I. Tantawy
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalia Timofeeva
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Aloke Sarkar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
28
|
Bhatia D, Choi ME. Autophagy and mitophagy: physiological implications in kidney inflammation and diseases. Am J Physiol Renal Physiol 2023; 325:F1-F21. [PMID: 37167272 PMCID: PMC10292977 DOI: 10.1152/ajprenal.00012.2023] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023] Open
Abstract
Autophagy is a ubiquitous intracellular cytoprotective quality control program that maintains cellular homeostasis by recycling superfluous cytoplasmic components (lipid droplets, protein, or glycogen aggregates) and invading pathogens. Mitophagy is a selective form of autophagy that by recycling damaged mitochondrial material, which can extracellularly act as damage-associated molecular patterns, prevents their release. Autophagy and mitophagy are indispensable for the maintenance of kidney homeostasis and exert crucial functions during both physiological and disease conditions. Impaired autophagy and mitophagy can negatively impact the pathophysiological state and promote its progression. Autophagy helps in maintaining structural integrity of the kidney. Mitophagy-mediated mitochondrial quality control is explicitly critical for regulating cellular homeostasis in the kidney. Both autophagy and mitophagy attenuate inflammatory responses in the kidney. An accumulating body of evidence highlights that persistent kidney injury-induced oxidative stress can contribute to dysregulated autophagic and mitophagic responses and cell death. Autophagy and mitophagy also communicate with programmed cell death pathways (apoptosis and necroptosis) and play important roles in cell survival by preventing nutrient deprivation and regulating oxidative stress. Autophagy and mitophagy are activated in the kidney after acute injury. However, their aberrant hyperactivation can be deleterious and cause tissue damage. The findings on the functions of autophagy and mitophagy in various models of chronic kidney disease are heterogeneous and cell type- and context-specific dependent. In this review, we discuss the roles of autophagy and mitophagy in the kidney in regulating inflammatory responses and during various pathological manifestations.
Collapse
Affiliation(s)
- Divya Bhatia
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, United States
| | - Mary E Choi
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, United States
| |
Collapse
|
29
|
Liu Y, Ji X, Zhou Z, Zhang J, Zhang J. Myocardial ischemia-reperfusion injury; Molecular mechanisms and prevention. Microvasc Res 2023:104565. [PMID: 37307911 DOI: 10.1016/j.mvr.2023.104565] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Cardiovascular diseases are one of the leading causes of mortality in developed countries. Among cardiovascular disorders, myocardial infarction remains a life-threatening problem predisposing to the development and progression of ischemic heart failure. Ischemia/reperfusion (I/R) injury is a critical cause of myocardial injury. In recent decades, many efforts have been made to find the molecular and cellular mechanisms underlying the development of myocardial I/R injury and post-ischemic remodeling. Some of these mechanisms are mitochondrial dysfunction, metabolic alterations, inflammation, high production of ROS, and autophagy deregulation. Despite continuous efforts, myocardial I/R injury remains a major challenge in medical treatments of thrombolytic therapy, heart disease, primary percutaneous coronary intervention, and coronary arterial bypass grafting. The development of effective therapeutic strategies to reduce or prevent myocardial I/R injury is of great clinical significance.
Collapse
Affiliation(s)
- Yang Liu
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Xiang Ji
- Department of Integrative, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Zhou Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Jingwen Zhang
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Juan Zhang
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China; First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250011, China.
| |
Collapse
|
30
|
Song T, Yin F, Wang Z, Zhang H, Liu P, Guo Y, Tang Y, Zhang Z. Hsp70-Bim interaction facilitates mitophagy by recruiting parkin and TOMM20 into a complex. Cell Mol Biol Lett 2023; 28:46. [PMID: 37237369 DOI: 10.1186/s11658-023-00458-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND For cancer therapy, the identification of both selective autophagy targets and small molecules that specifically regulate autophagy is greatly needed. Heat shock protein 70 (Hsp70) is a recently discovered BH3 receptor that forms a protein‒protein interaction (PPI) with Bcl-2-interacting mediator of cell death (Bim). Herein, a specific inhibitor of the Hsp70-Bim PPI, S1g-2, and its analog S1, which is a Bcl-2-Bim disruptor, were used as chemical tools to explore the role of Hsp70-Bim PPI in regulating mitophagy. METHODS Co-immunoprecipitation and immunofluorescence assays were used to determine protein interactions and colocalization patterns. Organelle purification and immunodetection of LC3-II/LC3-I on mitochondria, endoplasmic reticulum (ER) and Golgi were applied to identify specific types of autophagy. Cell-based and in vitro ubiquitination studies were used to study the role of the Hsp70-Bim PPI in parkin-mediated ubiquitination of outer mitochondrial membrane 20 (TOMM20). RESULTS We found that after the establishment of their PPI, Hsp70 and Bim form a complex with parkin and TOMM20, which in turn facilitates parkin translocation to mitochondria, TOMM20 ubiquitination and mitophagic flux independent of Bax/Bak. Moreover, S1g-2 selectively inhibits stress-induced mitophagy without interfering with basal autophagy. CONCLUSIONS The findings highlight the dual protective function of the Hsp70-Bim PPI in regulating both mitophagy and apoptosis. S1g-2 is thus a newly discovered antitumor drug candidate that drives both mitophagy and cell death via apoptosis.
Collapse
Affiliation(s)
- Ting Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, China.
| | - Fangkui Yin
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Ziqian Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Hong Zhang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Peng Liu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Yafei Guo
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Yao Tang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Zhichao Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, China.
| |
Collapse
|
31
|
Fu T, Ma Y, Li Y, Wang Y, Wang Q, Tong Y. Mitophagy as a mitochondrial quality control mechanism in myocardial ischemic stress: from bench to bedside. Cell Stress Chaperones 2023; 28:239-251. [PMID: 37093549 PMCID: PMC10167083 DOI: 10.1007/s12192-023-01346-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023] Open
Abstract
Myocardial ischemia reduces the supply of oxygen and nutrients to cardiomyocytes, leading to an energetic crisis or cell death. Mitochondrial dysfunction is a decisive contributor to the reception, transmission, and modification of cardiac ischemic signals. Cells with damaged mitochondria exhibit impaired mitochondrial metabolism and increased vulnerability to death stimuli due to disrupted mitochondrial respiration, reactive oxygen species overproduction, mitochondrial calcium overload, and mitochondrial genomic damage. Various intracellular and extracellular stress signaling pathways converge on mitochondria, so dysfunctional mitochondria tend to convert from energetic hubs to apoptotic centers. To interrupt the stress signal transduction resulting from lethal mitochondrial damage, cells can activate mitophagy (mitochondria-specific autophagy), which selectively eliminates dysfunctional mitochondria to preserve mitochondrial quality control. Different pharmacological and non-pharmacological strategies have been designed to augment the protective properties of mitophagy and have been validated in basic animal experiments and pre-clinical human trials. In this review, we describe the process of mitophagy in cardiomyocytes under ischemic stress, along with its regulatory mechanisms and downstream effects. Then, we discuss promising therapeutic approaches to preserve mitochondrial homeostasis and protect the myocardium against ischemic damage by inducing mitophagy.
Collapse
Affiliation(s)
- Tong Fu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- Brandeis University, Waltham, MA, 02453, USA
| | - Yanchun Ma
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yan Li
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yingwei Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Qi Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Ying Tong
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
32
|
Hogh-Binder SA, Klein D, Wolfsperger F, Huber SM, Hennenlotter J, Stenzl A, Rudner J. Protein Levels of Anti-Apoptotic Mcl-1 and the Deubiquitinase USP9x Are Cooperatively Upregulated during Prostate Cancer Progression and Limit Response of Prostate Cancer Cells to Radiotherapy. Cancers (Basel) 2023; 15:cancers15092496. [PMID: 37173959 PMCID: PMC10177233 DOI: 10.3390/cancers15092496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Radiotherapy constitutes an important therapeutic option for prostate cancer. However, prostate cancer cells often acquire resistance during cancer progression, limiting the cytotoxic effects of radiotherapy. Among factors regulating sensitivity to radiotherapy are members of the Bcl-2 protein family, known to regulate apoptosis at the mitochondrial level. Here, we analyzed the role of anti-apoptotic Mcl-1 and USP9x, a deubiquitinase stabilizing Mcl-1 protein levels, in prostate cancer progression and response to radiotherapy. METHODS Changes in Mcl-1 and USP9x levels during prostate cancer progression were determined by immunohistochemistry. Neutralization of Mcl-1 and USP9x was achieved by siRNA-mediated knockdown. We analyzed Mcl-1 stability after translational inhibition by cycloheximide. Cell death was determined by flow cytometry using an exclusion assay of mitochondrial membrane potential-sensitive dye. Changes in the clonogenic potential were examined by colony formation assay. RESULTS Protein levels of Mcl-1 and USP9x increased during prostate cancer progression, and high protein levels correlated with advanced prostate cancer stages. The stability of Mcl-1 reflected Mcl-1 protein levels in LNCaP and PC3 prostate cancer cells. Moreover, radiotherapy itself affected Mcl-1 protein turnover in prostate cancer cells. Particularly in LNCaP cells, the knockdown of USP9x expression reduced Mcl-1 protein levels and increased sensitivity to radiotherapy. CONCLUSION Posttranslational regulation of protein stability was often responsible for high protein levels of Mcl-1. Moreover, we demonstrated that deubiquitinase USP9x as a factor regulating Mcl-1 levels in prostate cancer cells, thus limiting cytotoxic response to radiotherapy.
Collapse
Affiliation(s)
- Sophia A Hogh-Binder
- Department of Radiation Oncology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
| | - Diana Klein
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Virchowstr. 173, 45147 Essen, Germany
| | - Frederik Wolfsperger
- Department of Radiation Oncology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
| | - Stephan M Huber
- Department of Radiation Oncology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
| | - Jörg Hennenlotter
- Department of Urology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
| | - Justine Rudner
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Virchowstr. 173, 45147 Essen, Germany
| |
Collapse
|
33
|
Frtús A, Smolková B, Uzhytchak M, Lunova M, Jirsa M, Petrenko Y, Dejneka A, Lunov O. Mechanical Regulation of Mitochondrial Dynamics and Function in a 3D-Engineered Liver Tumor Microenvironment. ACS Biomater Sci Eng 2023; 9:2408-2425. [PMID: 37001010 PMCID: PMC10170482 DOI: 10.1021/acsbiomaterials.2c01518] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
It has become evident that physical stimuli of the cellular microenvironment transmit mechanical cues regulating key cellular functions, such as proliferation, migration, and malignant transformation. Accumulating evidence suggests that tumor cells face variable mechanical stimuli that may induce metabolic rewiring of tumor cells. However, the knowledge of how tumor cells adapt metabolism to external mechanical cues is still limited. We therefore designed soft 3D collagen scaffolds mimicking a pathological mechanical environment to decipher how liver tumor cells would adapt their metabolic activity to physical stimuli of the cellular microenvironment. Here, we report that the soft 3D microenvironment upregulates the glycolysis of HepG2 and Alexander cells. Both cell lines adapt their mitochondrial activity and function under growth in the soft 3D microenvironment. Cells grown in the soft 3D microenvironment exhibit marked mitochondrial depolarization, downregulation of mitochondrially encoded cytochrome c oxidase I, and slow proliferation rate in comparison with stiff monolayer cultures. Our data reveal the coupling of liver tumor glycolysis to mechanical cues. It is proposed here that soft 3D collagen scaffolds can serve as a useful model for future studies of mechanically regulated cellular functions of various liver (potentially other tissues as well) tumor cells.
Collapse
Affiliation(s)
- Adam Frtús
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18221, Czech Republic
| | - Barbora Smolková
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18221, Czech Republic
| | - Mariia Uzhytchak
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18221, Czech Republic
| | - Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18221, Czech Republic
- Institute for Clinical & Experimental Medicine (IKEM), Prague 14021, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), Prague 14021, Czech Republic
| | - Yuriy Petrenko
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18221, Czech Republic
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18221, Czech Republic
| |
Collapse
|
34
|
Sun X, Ye G, Mai Y, Shu Y, Wang L, Zhang J. Parkin exerts the tumor-suppressive effect through targeting mitochondria. Med Res Rev 2023. [PMID: 36916678 DOI: 10.1002/med.21938] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 12/10/2022] [Accepted: 02/26/2023] [Indexed: 03/16/2023]
Abstract
The role of PARKIN in Parkinson's disease is well established but its role in cancer has recently emerged. PARKIN serves as a tumor suppressor in many cancers and loses the tumor-suppressive function due to loss of heterozygosity and DNA copy number. But how PARKIN protects against cancer is poorly understood. Through the analysis of PARKIN substrates and their association with mitochondria, this viewpoint discussed that PARKIN exerts its anti-cancer activity through targeting mitochondria. Mitochondria function as a convergence point for many signaling pathways and biological processes, including apoptosis, cell cycle, mitophagy, energy metabolism, oxidative stress, calcium homeostasis, inflammation, and so forth. PARKIN participates in these processes through regulating its mitochondrial targets. Conversely, these mitochondrial substrates also influence the function of PARKIN under different cellular circumstances. We believe that future studies in this area may lead to novel therapeutic targets and strategies for cancer therapy.
Collapse
Affiliation(s)
- Xin Sun
- Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Guiqin Ye
- Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.,Hangzhou Medical College, Hangzhou, China
| | - Yuanyuan Mai
- Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.,Hangzhou Medical College, Hangzhou, China
| | - Yuhan Shu
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Lei Wang
- Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jianbin Zhang
- Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
35
|
Connelly EM, Frankel KS, Shaw GS. Parkin and mitochondrial signalling. Cell Signal 2023; 106:110631. [PMID: 36803775 DOI: 10.1016/j.cellsig.2023.110631] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Aging, toxic chemicals and changes to the cellular environment are sources of oxidative damage to mitochondria which contribute to neurodegenerative conditions including Parkinson's disease. To counteract this, cells have developed signalling mechanisms to identify and remove select proteins and unhealthy mitochondria to maintain homeostasis. Two important proteins that work in concert to control mitochondrial damage are the protein kinase PINK1 and the E3 ligase parkin. In response to oxidative stress, PINK1 phosphorylates ubiquitin present on proteins at the mitochondrial surface. This signals the translocation of parkin, accelerates further phosphorylation, and stimulates ubiquitination of outer mitochondrial membrane proteins such as Miro1/2 and Mfn1/2. The ubiquitination of these proteins is the key step needed to target them for degradation via the 26S proteasomal machinery or eliminate the entire organelle through mitophagy. This review highlights the signalling mechanisms used by PINK1 and parkin and presents several outstanding questions yet to be resolved.
Collapse
Affiliation(s)
- Elizabeth M Connelly
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Karling S Frankel
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Gary S Shaw
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
36
|
Li J, Yang D, Li Z, Zhao M, Wang D, Sun Z, Wen P, Dai Y, Gou F, Ji Y, Zhao D, Yang L. PINK1/Parkin-mediated mitophagy in neurodegenerative diseases. Ageing Res Rev 2023; 84:101817. [PMID: 36503124 DOI: 10.1016/j.arr.2022.101817] [Citation(s) in RCA: 129] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Mitochondria play key roles in bioenergetics, metabolism, and signaling; therefore, stable mitochondrial function is essential for cell survival, particularly in energy-intensive neuronal cells. In neurodegenerative diseases, damaged mitochondria accumulate in neurons causing associated bioenergetics deficiency, impaired cell signaling, defective cytoplasmic calcium buffering, and other pathological changes. Mitochondrial quality control is an important mechanism to ensure the maintenance of mitochondrial health, homeostasis, and mitophagy, the latter of which is a pathway that delivers defective mitochondria to the lysosome for degradation. Defective mitophagy is thought to be responsible for the accumulation of damaged mitochondria, which leads to cellular dysfunction and/or death in neurodegenerative diseases. PINK1/Parkin mainly regulates ubiquitin-dependent mitophagy, which is crucial for many aspects of mitochondrial physiology, particularly the initiation of autophagic mechanisms. Therefore, in the present review, we summarize the current knowledge of the conventional mitophagy pathway, focusing on the molecular mechanisms underlying mitophagy dysregulation in prion disease and other age-related neurodegenerative diseases, especially in relation to the PINK1/Parkin pathway. Moreover, we list the inducers of mitophagy that possess neuroprotective effects, in addition to their mechanisms related to the PINK1/Parkin pathway. These mechanisms may provide potential interventions centered on the regulation of mitophagy and offer therapeutic strategies for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jie Li
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Dongming Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Zhiping Li
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Mengyang Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Dongdong Wang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Zhixin Sun
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Pei Wen
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Yuexin Dai
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Fengting Gou
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Yilan Ji
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Lifeng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China.
| |
Collapse
|
37
|
Su L, Zhang J, Gomez H, Kellum JA, Peng Z. Mitochondria ROS and mitophagy in acute kidney injury. Autophagy 2023; 19:401-414. [PMID: 35678504 PMCID: PMC9851232 DOI: 10.1080/15548627.2022.2084862] [Citation(s) in RCA: 340] [Impact Index Per Article: 170.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 01/22/2023] Open
Abstract
Mitophagy is an essential mitochondrial quality control mechanism that eliminates damaged mitochondria and the production of reactive oxygen species (ROS). The relationship between mitochondria oxidative stress, ROS production and mitophagy are intimately interwoven, and these processes are all involved in various pathological conditions of acute kidney injury (AKI). The elimination of damaged mitochondria through mitophagy in mammals is a complicated process which involves several pathways. Furthermore, the interplay between mitophagy and different types of cell death, such as apoptosis, pyroptosis and ferroptosis in kidney injury is unclear. Here we will review recent advances in our understanding of the relationship between ROS and mitophagy, the different mitophagy pathways, the relationship between mitophagy and cell death, and the relevance of these processes in the pathogenesis of AKI.Abbreviations: AKI: acute kidney injury; AMBRA1: autophagy and beclin 1 regulator 1; ATP: adenosine triphosphate; BAK1: BCL2 antagonist/killer 1; BAX: BCL2 associated X, apoptosis regulator; BCL2: BCL2 apoptosis regulator; BECN1: beclin 1; BH3: BCL2 homology domain 3; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2 interacting protein 3 like; CASP1: caspase 1; CAT: catalase; CCCP: carbonyl cyanide m-chlorophenylhydrazone; CI-AKI: contrast-induced acute kidney injury; CISD1: CDGSH iron sulfur domain 1; CL: cardiolipin; CNP: 2',3'-cyclic nucleotide 3'-phosphodiesterase; DNM1L/DRP1: dynamin 1 like; E3: enzyme 3; ETC: electron transport chain; FA: folic acid; FUNDC1: FUN14 domain containing 1; G3P: glycerol-3-phosphate; G6PD: glucose-6-phosphate dehydrogenase; GPX: glutathione peroxidase; GSH: glutathione; GSK3B: glycogen synthase kinase 3 beta; GSR: glutathione-disulfide reductase; HIF1A: hypoxia inducible factor 1 subunit alpha; HUWE1: HECT, UBA and WWE domain containing 1; IL1B: interleukin 1 beta; IMM: inner mitochondrial membrane; IPC: ischemic preconditioning; IRI: ischemia-reperfusion injury; LIR: LC3-interacting region; LPS: lipopolysaccharide; MA: malate-aspartate; MPT: mitochondrial permeability transition; MUL1: mitochondrial E3 ubiquitin protein ligase 1; mtROS: mitochondrial ROS; NLR: NOD-like receptor; NLRP3: NLR family pyrin domain containing 3; NOX: NADPH oxidase; OGD-R: oxygen-glucose deprivation-reperfusion; OMM: outer mitochondrial membrane; OPA1: OPA1 mitochondrial dynamin like GTPase; OXPHOS: oxidative phosphorylation; PARL: presenilin associated rhomboid like; PINK1: PTEN induced kinase 1; PLSCR3: phospholipid scramblase 3; PMP: peptidase, mitochondrial processing; PRDX: peroxiredoxin; PRKN: parkin RBR E3 ubiquitin protein ligase; RPTC: rat proximal tubular cells; ROS: reactive oxygen species; SLC7A11/xCT: solute carrier family 7 member 11; SOD: superoxide dismutase; SOR: superoxide reductase; SQSTM1/p62: sequestosome 1; TCA: tricarboxylic acid; TIMM: translocase of inner mitochondrial membrane; TOMM: translocase of outer mitochondrial membrane; TXN: thioredoxin; VDAC: voltage dependent anion channel; VCP: valosin containing protein.
Collapse
Affiliation(s)
- Lianjiu Su
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan430071, China
- Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthNeuro-Oncology, Bethesda, Maryland, USA
| | - Jiahao Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan430071, China
| | - Hernando Gomez
- Center of Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, USA
| | - John A Kellum
- Center of Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, USA
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan430071, China
- Center of Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, USA
| |
Collapse
|
38
|
Ko TK, Tan DJY. Is Disrupted Mitophagy a Central Player to Parkinson's Disease Pathology? Cureus 2023; 15:e35458. [PMID: 36860818 PMCID: PMC9969326 DOI: 10.7759/cureus.35458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2023] [Indexed: 02/27/2023] Open
Abstract
Whilst the pathophysiology at a cellular level has been defined, the cause of Parkinson's disease (PD) remains poorly understood. This neurodegenerative disorder is associated with impaired dopamine transmission in the substantia nigra, and protein accumulations known as Lewy bodies are visible in affected neurons. Cell culture models of PD have indicated impaired mitochondrial function, so the focus of this paper is on the quality control processes involved in and around mitochondria. Mitochondrial autophagy (mitophagy) is the process through which defective mitochondria are removed from the cell by internalisation into autophagosomes which fuse with a lysosome. This process involves many proteins, notably including PINK1 and parkin, both of which are known to be coded on genes associated with PD. Normally in healthy individuals, PINK1 associates with the outer mitochondrial membrane, which then recruits parkin, activating it to attach ubiquitin proteins to the mitochondrial membrane. PINK1, parkin, and ubiquitin cooperate to form a positive feedback system which accelerates the deposition of ubiquitin on dysfunctional mitochondria, resulting in mitophagy. However, in hereditary PD, the genes encoding PINK1 and parkin are mutated, resulting in proteins that are less efficient at removing poorly performing mitochondria, leaving cells more vulnerable to oxidative stress and ubiquitinated inclusion bodies, such as Lewy bodies. Current research that looks into the connection between mitophagy and PD is promising, already yielding potentially therapeutic compounds; until now, pharmacological support for the mitophagy process has not been part of the therapeutic arsenal. Continued research in this area is warranted.
Collapse
Affiliation(s)
- Tsz Ki Ko
- Otolaryngology, College of Life Sciences, Leicester Medical School, George Davies Centre, Leicester, GBR
| | | |
Collapse
|
39
|
Quiles JM, Najor RH, Gonzalez E, Jeung M, Liang W, Burbach SM, Zumaya EA, Diao RY, Lampert MA, Gustafsson ÅB. Deciphering functional roles and interplay between Beclin1 and Beclin2 in autophagosome formation and mitophagy. Sci Signal 2023; 16:eabo4457. [PMID: 36719945 PMCID: PMC10019900 DOI: 10.1126/scisignal.abo4457] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 01/11/2023] [Indexed: 02/02/2023]
Abstract
The degradation of macromolecules and organelles by the process of autophagy is critical for cellular homeostasis and is often compromised during aging and disease. Beclin1 and Beclin2 are implicated in autophagy induction, and these homologs share a high degree of amino acid sequence similarity but have divergent N-terminal regions. Here, we investigated the functions of the Beclin homologs in regulating autophagy and mitophagy, a specialized form of autophagy that targets mitochondria. Both Beclin homologs contributed to autophagosome formation, but a mechanism of autophagosome formation independent of either Beclin homolog occurred in response to starvation or mitochondrial damage. Mitophagy was compromised only in Beclin1-deficient HeLa cells and mouse embryonic fibroblasts because of defective autophagosomal engulfment of mitochondria, and the function of Beclin1 in mitophagy required the phosphorylation of the conserved Ser15 residue by the kinase Ulk1. Mitochondria-ER-associated membranes (MAMs) are important sites of autophagosome formation during mitophagy, and Beclin1, but not Beclin2 or a Beclin1 mutant that could not be phosphorylated at Ser15, localized to MAMs during mitophagy. Our findings establish a regulatory role for Beclin1 in selective mitophagy by initiating autophagosome formation adjacent to mitochondria, a function facilitated by Ulk1-mediated phosphorylation of Ser15 in its distinct N-terminal region.
Collapse
Affiliation(s)
- Justin M. Quiles
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Rita H. Najor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Eileen Gonzalez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Monica Jeung
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Wenjing Liang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Sarah M. Burbach
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Erika A. Zumaya
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Rachel Y. Diao
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Mark A. Lampert
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Åsa B. Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| |
Collapse
|
40
|
Tian Y, Liu X, Pei X, Gao H, Pan P, Yang Y. Mechanism of Mitochondrial Homeostasis Controlling Ovarian Physiology. Endocrinology 2022; 164:6828017. [PMID: 36378567 DOI: 10.1210/endocr/bqac189] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Indexed: 11/17/2022]
Abstract
Ovarian cells, including oocytes, granulosa/cumulus cells, theca cells, and stromal cells, contain abundant mitochondria, which play indispensable roles in the processes of ovarian follicle development. Ovarian function is closely controlled by mitochondrial proteostasis and mitostasis. While mitochondrial proteostasis and mitostasis are disturbed by several factors, leading to dysfunction of ovarian function and initiating the mitochondrial unfolded protein response (UPRmt) and mitophagy to maintain or recover ovarian function and mitochondrial function, clear interactions between the 2 pathways in the ovary have not been fully elucidated. Here, we comprehensively summarize the molecular networks or regulatory mechanisms behind further mitochondrial research in the ovary. This review provides novel insights into the interactions between the UPRmt and mitophagy in ovarian functions.
Collapse
Affiliation(s)
- Yuan Tian
- Clinical Medical College, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xinrui Liu
- Clinical Medical College, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xiuying Pei
- Clinical Medical College, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Hui Gao
- Clinical Medical College, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Pengge Pan
- Clinical Medical College, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Yanzhou Yang
- Clinical Medical College, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
41
|
Glaesserella parasuis serotype 5 breaches the porcine respiratory epithelial barrier by inducing autophagy and blocking the cell membrane Claudin-1 replenishment. PLoS Pathog 2022; 18:e1010912. [PMID: 36228044 PMCID: PMC9595547 DOI: 10.1371/journal.ppat.1010912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/25/2022] [Accepted: 10/04/2022] [Indexed: 11/22/2022] Open
Abstract
Glaesserella parasuis (G. parasuis), the primary pathogen of Glässer's disease, colonizes the upper respiratory tract and can break through the epithelial barrier of the respiratory tract, leading to lung infection. However, the underlying mechanisms for this adverse effect remain unclear. The G. parasuis serotype 5 SQ strain (HPS5-SQ) infection decreased the integrity of piglets' lung Occludin and Claudin-1. Autophagy regulates the function of the epithelial barrier and tight junction proteins (TJs) expression. We tested the hypothesis that HPS5-SQ breaking through the porcine respiratory epithelial barrier was linked to autophagy and Claudin-1 degradation. When HPS5-SQ infected swine tracheal epithelial cells (STEC), autophagosomes encapsulated, and autolysosomes degraded oxidatively stressed mitochondria covered with Claudin-1. Furthermore, we found that autophagosomes encapsulating mitochondria resulted in cell membrane Claudin-1 being unable to be replenished after degradation and damaged the respiratory tract epithelial barrier. In conclusion, G. parasuis serotype 5 breaks through the porcine respiratory epithelial barrier by inducing autophagy and interrupting cell membrane Claudin-1 replenishment, clarifying the mechanism of the G. parasuis infection and providing a new potential target for drug design and vaccine development.
Collapse
|
42
|
Song C, Pan S, Zhang J, Li N, Geng Q. Mitophagy: A novel perspective for insighting into cancer and cancer treatment. Cell Prolif 2022; 55:e13327. [PMID: 36200262 DOI: 10.1111/cpr.13327] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/13/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Mitophagy refers to the selective self-elimination of mitochondria under damaged or certain developmental conditions. As an important regulatory mechanism to remove damaged mitochondria and maintain the internal and external cellular balance, mitophagy plays pivotal roles in carcinogenesis and progression as well as treatment. MATERIALS AND METHODS Here, we combined data from recent years to comprehensively describe the regulatory mechanisms of mitophagy and its multifaceted significance in cancer, and discusse the potential of targeted mitophagy as a cancer treatment strategy. RESULTS The molecular mechanisms regulating mitophagy are complex, diverse, and cross-talk. Inducing or blocking mitophagy has the same or completely different effects in different cancer contexts. Mitophagy plays an indispensable role in regulating cancer metabolic reprogramming, cell stemness, and chemotherapy resistance for better adaptation to tumor microenvironment. In cancer cell biology, mitophagy is considered to be a double-edged sword. And to fully understand the role of mitophagy in cancer development can provide new targets for cancer treatment in clinical practice. CONCLUSIONS This review synthesizes a large body of data to comprehensively describe the molecular mechanisms of mitophagy and its multidimensional significance in cancer and cancer treatment, which will undoubtedly deepen the understanding of mitophagy.
Collapse
Affiliation(s)
- Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shize Pan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinjin Zhang
- Department of Emergency, Taihe Hospital, Shiyan, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
43
|
Naoi M, Maruyama W, Shamoto-Nagai M. Neuroprotective Function of Rasagiline and Selegiline, Inhibitors of Type B Monoamine Oxidase, and Role of Monoamine Oxidases in Synucleinopathies. Int J Mol Sci 2022; 23:ijms231911059. [PMID: 36232361 PMCID: PMC9570229 DOI: 10.3390/ijms231911059] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/27/2022] Open
Abstract
Synucleinopathies are a group of neurodegenerative disorders caused by the accumulation of toxic species of α-synuclein. The common clinical features are chronic progressive decline of motor, cognitive, behavioral, and autonomic functions. They include Parkinson’s disease, dementia with Lewy body, and multiple system atrophy. Their etiology has not been clarified and multiple pathogenic factors include oxidative stress, mitochondrial dysfunction, impaired protein degradation systems, and neuroinflammation. Current available therapy cannot prevent progressive neurodegeneration and “disease-modifying or neuroprotective” therapy has been proposed. This paper presents the molecular mechanisms of neuroprotection by the inhibitors of type B monoamine oxidase, rasagiline and selegiline. They prevent mitochondrial apoptosis, induce anti-apoptotic Bcl-2 protein family, and pro-survival brain- and glial cell line-derived neurotrophic factors. They also prevent toxic oligomerization and aggregation of α-synuclein. Monoamine oxidase is involved in neurodegeneration and neuroprotection, independently of the catalytic activity. Type A monoamine oxidases mediates rasagiline-activated signaling pathways to induce neuroprotective genes in neuronal cells. Multi-targeting propargylamine derivatives have been developed for therapy in various neurodegenerative diseases. Preclinical studies have presented neuroprotection of rasagiline and selegiline, but beneficial effects have been scarcely presented. Strategy to improve clinical trials is discussed to achieve disease-modification in synucleinopathies.
Collapse
Affiliation(s)
- Makoto Naoi
- Correspondence: ; Tel.: +81-05-6173-1111 (ext. 3494); Fax: +81-561-731-142
| | | | | |
Collapse
|
44
|
Dagar N, Kale A, Steiger S, Anders HJ, Gaikwad AB. Receptor-mediated mitophagy: An emerging therapeutic target in acute kidney injury. Mitochondrion 2022; 66:82-91. [PMID: 35985440 DOI: 10.1016/j.mito.2022.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/29/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
Abstract
Acute kidney injury (AKI) is a global health concern associated with high morbidity and mortality. AKI etiology is linked to mitochondrial dysfunction along with oxidative stress and inflammation. The defective mitochondria are removed via mitophagy for maintaining cellular integrity. The main regulatory mechanisms of mitophagy in response to different stressors are Phosphatase and tensin homolog-induced kinase 1 (PINK1)/Parkin and receptor-mediated. Receptors like B-cell lymphoma 2/adenovirus E1B-interacting protein (BNIP3), BNIP3L, prohibitin2, tacrolimus (FK506)-binding protein8 (FKBP8), autophagy-beclin1-regulator1 (AMBRA1) and SMAD-ubiquitination regulatory factor1 (SMURF1), etc. participate in receptor-mediated mitophagy. In recent studies, receptor-mediated mitophagy showed protective effects in AKI. This review summarizes the evidence related to mitophagy in AKI and outlines the significance of receptor-mediated mitophagy modulation as a possible therapeutic approach in AKI.
Collapse
Affiliation(s)
- Neha Dagar
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Ajinath Kale
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Stefanie Steiger
- Division of Nephrology, Department of Internal Medicine IV, University Hospital of the Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Internal Medicine IV, University Hospital of the Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
45
|
Zhang Z, Yi J, Xie B, Chen J, Zhang X, Wang L, Wang J, Hou J, Wei H. Parkin, as a Regulator, Participates in Arsenic Trioxide-Triggered Mitophagy in HeLa Cells. Curr Issues Mol Biol 2022; 44:2759-2771. [PMID: 35735630 PMCID: PMC9222214 DOI: 10.3390/cimb44060189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/05/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Parkin is a well-established synergistic mediator of mitophagy in dysfunctional mitochondria. Mitochondria are the main target of arsenic trioxide (ATO) cytotoxicity, and the effect of mitophagy on ATO action remains unclear. In this study, we used stable Parkin-expressing (YFP-Parkin) and Parkin loss-of-function mutant (Parkin C431S) HeLa cell models to ascertain whether Parkin-mediated mitophagy participates in ATO-induced apoptosis/cell death. Our data showed that the overexpression of Parkin significantly sensitized HeLa cells to ATO-initiated proliferation inhibition and apoptosis; however, the mutation of Parkin C431S significantly weakened this Parkin-mediated responsiveness. Our further investigation found that ATO significantly downregulated two fusion proteins (Mfn1/2) and upregulated fission-related protein (Drp1). Autophagy was also activated as evidenced by the formation of autophagic vacuoles and mitophagosomes, increased expression of PINK1, and recruitment of Parkin to impaired mitochondria followed by their degradation, accompanied by the increased transformation of LC3-I to LC3-II, increased expression of Beclin1 and decreased expression of P62 in YFP-Parkin HeLa cells. Enhanced mitochondrial fragmentation and autophagy indicated that mitophagy was activated. Furthermore, during the process of mitophagy, the overproduction of ROS implied that ROS might represent a key factor that initiates mitophagy following Parkin recruitment to mitochondria. In conclusion, our findings indicate that Parkin is critically involved in ATO-triggered mitophagy and functions as a potential antiproliferative target in cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hulai Wei
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (Z.Z.); (J.Y.); (B.X.); (J.C.); (X.Z.); (L.W.); (J.W.); (J.H.)
| |
Collapse
|
46
|
Liu X, Bai X, Liu H, Hong Y, Cui H, Wang L, Xu W, Zhao L, Li X, Li H, Li X, Chen H, Meng Z, Lou H, Xu H, Lin Y, Du Z, Kopylov P, Yang B, Zhang Y. LncRNA LOC105378097 inhibits cardiac mitophagy in natural ageing mice. Clin Transl Med 2022; 12:e908. [PMID: 35758595 PMCID: PMC9235350 DOI: 10.1002/ctm2.908] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The development of heart ageing is the main cause of chronic disability, disease and death in the elderly. Ample evidence has established a pivotal role for significantly reduced mitophagy in the ageing heart. However, the underlying mechanisms of mitophagy deficiency in ageing heart are little known. The present study aimed to explore the underlying mechanisms of lncRNA LOC105378097 (Senescence-Mitophagy Associated LncRNA, lncR-SMAL) actions on mitophagy in the setting of heart ageing. METHODS The expression of lncR-SMAL was measured in serum from different ages of human and heart from different ages of mice through a quantitative real-time polymerase chain reaction. The effects of lncR-SMAL on heart function of mice were assessed by echocardiography and pressure-volume measurements system. Cardiac senescence was evaluated by hematoxylin-eosin staining, senescence-associated β-galactosidase staining, flow cytometry and western blot analysis of expression of ageing related markes p53 and p21. Cardiomyocyte mitophagy was assessed by western blot, mRFP-GFP-LC3 adenovirus particles transfection and mito-Keima staining. Interaction between lncR-SMAL and Parkin was validated through molecular docking, RNA immunoprecipitation (RIP) and RNA pull-down assay. Ubiquitination assay was performed to explore the molecular mechanism of Parkin inhibition. The effects of lncR-SMAL on mitochondrial function were investigated through electron microscopic examination, JC-1 staining and oxygen consumption rates analysis. RESULTS The heart-enriched lncR-SMAL reached the expression crest in the serum of human at an age of 60. Exogenously overexpression of lncRNA SMAL deteriorated cardiac function exactly as natural ageing and inhibited the associated cardiomyocytes mitophagy by depressing Parkin protein level. Improved heart ageing and mitophagy caused by Parkin overexpression were reversed by lncR-SMAL in mice. In contrast, the loss of lncR-SMAL in AC16 cells induced the upregulation of Parkin protein and ameliorated mitophagy and mitochondrial dysfunction, resulting in alleviated cardiac senescence. Besides, we found the interaction between lncR-SMAL and Parkin protein through computational docking analysis, pull-down and RIP assay. This would contribute to the promotive effect of lncR-SMAL on Parkin ubiquitination and decrease Parkin protein stability. CONCLUSIONS The present study for the first time demonstrates a heart-enriched lncRNA, SMAL, that inhibits the mitophagy of cardiomyocytes via the downregulation of Parkin protein, which further contributes to heart ageing and cardiac dysfunction in natural ageing mice.
Collapse
Affiliation(s)
- Xin Liu
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
- Research Unit of Noninfectious Chronic Diseases in Frigid ZoneChinese Academy of Medical SciencesHarbinChina
| | - Xue Bai
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Heng Liu
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Yang Hong
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Hao Cui
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Lei Wang
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Wanqing Xu
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Limin Zhao
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Xiaohan Li
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Huimin Li
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Xia Li
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Hui Chen
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Ziyu Meng
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Han Lou
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Henghui Xu
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Yuan Lin
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Zhimin Du
- Institute of Clinical PharmacyThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Philipp Kopylov
- Department of Preventive and Emergency CardiologySechenov First Moscow State Medical UniversityMoscowRussian Federation
| | - Baofeng Yang
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
- Department of Pharmacology and Therapeutics, Melbourne School of Biomedical Sciences, Faculty of MedicineDentistry and Health Sciences University of MelbourneMelbourneAustralia
- Research Unit of Noninfectious Chronic Diseases in Frigid ZoneChinese Academy of Medical SciencesHarbinChina
| | - Yong Zhang
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
- Research Unit of Noninfectious Chronic Diseases in Frigid ZoneChinese Academy of Medical SciencesHarbinChina
- Institute of Metabolic DiseaseHeilongjiang Academy of Medical ScienceHarbinChina
| |
Collapse
|
47
|
Moyzis AG, Lally NS, Liang W, Najor RH, Gustafsson ÅB. Mcl-1 Differentially Regulates Autophagy in Response to Changes in Energy Status and Mitochondrial Damage. Cells 2022; 11:cells11091469. [PMID: 35563775 PMCID: PMC9102819 DOI: 10.3390/cells11091469] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
Myeloid cell leukemia-1 (Mcl-1) is a unique antiapoptotic Bcl-2 member that is critical for mitochondrial homeostasis. Recent studies have demonstrated that Mcl-1′s functions extend beyond its traditional role in preventing apoptotic cell death. Specifically, data suggest that Mcl-1 plays a regulatory role in autophagy, an essential degradation pathway involved in recycling and eliminating dysfunctional organelles. Here, we investigated whether Mcl-1 regulates autophagy in the heart. We found that cardiac-specific overexpression of Mcl-1 had little effect on baseline autophagic activity but strongly suppressed starvation-induced autophagy. In contrast, Mcl-1 did not inhibit activation of autophagy during myocardial infarction or mitochondrial depolarization. Instead, overexpression of Mcl-1 increased the clearance of depolarized mitochondria by mitophagy independent of Parkin. The increase in mitophagy was partially mediated via Mcl-1′s LC3-interacting regions and mutation of these sites significantly reduced Mcl-1-mediated mitochondrial clearance. We also found that Mcl-1 interacted with the mitophagy receptor Bnip3 and that the interaction was increased in response to mitochondrial stress. Overall, these findings suggest that Mcl-1 suppresses nonselective autophagy during nutrient limiting conditions, whereas it enhances selective autophagy of dysfunctional mitochondria by functioning as a mitophagy receptor.
Collapse
|
48
|
Rezaeian AH, Wei W, Inuzuka H. The regulation of neuronal autophagy and cell survival by MCL1 in Alzheimer's disease. ACTA MATERIA MEDICA 2022; 1:42-55. [PMID: 35233562 DOI: 10.15212/amm-2021-0002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Maintaining neuronal integrity and functions requires precise mechanisms controlling organelle and protein quality. Alzheimer's disease (AD) is characterized by functional defects in the clearance and recycling of intracellular components. As such, neuronal homeostasis involves autophagy, mitophagy, and apoptosis. Compromised activity in these cellular processes may cause pathological phenotypes of AD. Dysfunction of mitochondria is one of the hallmarks of AD. Mitophagy is a critical mitochondria quality control system, and the impaired mitophagy is observed in AD. Myeloid cell leukemia 1 (MCL1), a member of the pro-survival B-cell lymphoma protein 2 (BCL2) family, is a mitochondria-targeted protein that contributes to maintaining mitochondrial integrity. Mcl1 knockout mice display peri-implantation lethality. The studies on conditional Mcl1 knockout mice demonstrate that MCL1 plays a central role in neurogenesis and neuronal survival during brain development. Accumulating evidence reveals the critical role of MCL1 as a regulator of neuronal autophagy, mitophagy, and survival. In this review, we discuss the emerging neuroprotective function of MCL1 and how dysregulation of MCL1 signaling is involved in the pathogenesis of AD. As the pro-survival BCL2 family of proteins are promising targets of pharmacological intervention with BH3 mimetic drugs, we also discuss the promise of MCL1-targeting therapy in AD.
Collapse
Affiliation(s)
- Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
49
|
Lee YG, Park DH, Chae YC. Role of Mitochondrial Stress Response in Cancer Progression. Cells 2022; 11:cells11050771. [PMID: 35269393 PMCID: PMC8909674 DOI: 10.3390/cells11050771] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are subcellular organelles that are a hub for key biological processes, such as bioenergetic, biosynthetic, and signaling functions. Mitochondria are implicated in all oncogenic processes, from malignant transformation to metastasis and resistance to chemotherapeutics. The harsh tumor environment constantly exposes cancer cells to cytotoxic stressors, such as nutrient starvation, low oxygen, and oxidative stress. Excessive or prolonged exposure to these stressors can cause irreversible mitochondrial damage, leading to cell death. To survive hostile microenvironments that perturb mitochondrial function, cancer cells activate a stress response to maintain mitochondrial protein and genome integrity. This adaptive mechanism, which is closely linked to mitochondrial function, enables rapid adjustment and survival in harsh environmental conditions encountered during tumor dissemination, thereby promoting cancer progression. In this review, we describe how the mitochondria stress response contributes to the acquisition of typical malignant traits and highlight the potential of targeting the mitochondrial stress response as an anti-cancer therapeutic strategy.
Collapse
Affiliation(s)
- Yu Geon Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (Y.G.L.); (D.H.P.)
- Korea Food Research Institute, Wanju 55365, Korea
| | - Do Hong Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (Y.G.L.); (D.H.P.)
| | - Young Chan Chae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (Y.G.L.); (D.H.P.)
- Correspondence: ; Tel.: +82-52-217-2524 or +82-52-217-2638
| |
Collapse
|
50
|
Yang J, Sun M, Cheng R, Tan H, Liu C, Chen R, Zhang J, Yang Y, Gao X, Huang L. Pitavastatin activates mitophagy to protect EPC proliferation through a calcium-dependent CAMK1-PINK1 pathway in atherosclerotic mice. Commun Biol 2022; 5:124. [PMID: 35145192 PMCID: PMC8831604 DOI: 10.1038/s42003-022-03081-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/28/2022] [Indexed: 01/08/2023] Open
Abstract
Statins play a major role in reducing circulating cholesterol levels and are widely used to prevent coronary artery disease. Although they are recently confirmed to up-regulate mitophagy, little is known about the molecular mechanisms and its effect on endothelial progenitor cell (EPC). Here, we explore the role and mechanism underlying statin (pitavastatin, PTV)-activated mitophagy in EPC proliferation. ApoE−/− mice are fed a high-fat diet for 8 weeks to induce atherosclerosis. In these mice, EPC proliferation decreases and is accompanied by mitochondrial dysfunction and mitophagy impairment via the PINK1-PARK2 pathway. PTV reverses mitophagy and reduction in proliferation. Pink1 knockout or silencing Atg7 blocks PTV-induced proliferation improvement, suggesting that mitophagy contributes to the EPC proliferation increase. PTV elicits mitochondrial calcium release into the cytoplasm and further phosphorylates CAMK1. Phosphorylated CAMK1 contributes to PINK1 phosphorylation as well as mitophagy and mitochondrial function recover in EPCs. Together, our findings describe a molecular mechanism of mitophagy activation, where mitochondrial calcium release promotes CAMK1 phosphorylation of threonine177 before phosphorylation of PINK1 at serine228, which recruits PARK2 and phosphorylates its serine65 to activate mitophagy. Our results further account for the pleiotropic effects of statins on the cardiovascular system and provide a promising and potential therapeutic target for atherosclerosis. Endothelial progenitor cell (EPCs) proliferation decreased, accompanied by mitochondrial dysfunction and mitophagy impairment via the PINK1-PARK2 pathway in atherosclerosis. Statins induce mitophagy to protect EPCs by mitochondrial calcium release and CAMK1-mediated PINK1 phosphorylation.
Collapse
Affiliation(s)
- Jie Yang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mengjia Sun
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ran Cheng
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hu Tan
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chuan Liu
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Renzheng Chen
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jihang Zhang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuanqi Yang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xubin Gao
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lan Huang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China. .,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|