1
|
Dahl-Jessen M, Terkelsen T, Bak RO, Jensen UB. Characterization of the role of spatial proximity of DNA double-strand breaks in the formation of CRISPR-Cas9-induced large structural variations. Genome Res 2025; 35:231-241. [PMID: 39805705 PMCID: PMC11874742 DOI: 10.1101/gr.278575.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Structural variations (SVs) play important roles in genetic diversity, evolution, and carcinogenesis and are, as such, important for human health. However, it remains unclear how spatial proximity of double-strand breaks (DSBs) affects the formation of SVs. To investigate if spatial proximity between two DSBs affects DNA repair, we used data from 3C experiments (Hi-C, ChIA-PET, and ChIP-seq) to identify highly interacting loci on six different chromosomes. The target regions correlate with the borders of megabase-sized topologically associated domains (TADs), and we used CRISPR-Cas9 nuclease and pairs of single guide RNAs (sgRNAs) against these targets to generate DSBs in both K562 cells and H9 human embryonic stem cells (hESCs). Droplet digital PCR (ddPCR) was used to quantify the resulting recombination events, and high-throughput sequencing was used to analyze the chimeric junctions created between the two DSBs. We observe a significantly higher formation frequency of deletions and inversions with DSBs in proximity compared with deletions and inversions with DSBs not in proximity in K562 cells. Additionally, our results suggest that DSB proximity may affect the ligation of chimeric deletion junctions. Taken together, spatial proximity between DSBs is a significant predictor of large-scale deletion and inversion frequency induced by CRISPR-Cas9 in K562 cells. This finding has implications for understanding SVs in the human genome and for the future application of CRISPR-Cas9 in gene editing and the modeling of rare SVs.
Collapse
Affiliation(s)
- Mikkel Dahl-Jessen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Thorkild Terkelsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Department for Clinical Genetics, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, 8000 Aarhus, Denmark
| | - Uffe Birk Jensen
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark;
- Department for Clinical Genetics, Aarhus University Hospital, 8200 Aarhus, Denmark
| |
Collapse
|
2
|
Qiu S, Wang F, Gao X, Guan W, Dai T, Yin L, Wang F, Sun J, Guo P, Wu H, Feng S, Tang C. Prp19/CDC5L promotes gastric cancer via activation of the MAPK pathway-mediated homologous recombination. Int J Biol Sci 2025; 21:1603-1618. [PMID: 39990666 PMCID: PMC11844288 DOI: 10.7150/ijbs.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/15/2025] [Indexed: 02/25/2025] Open
Abstract
Background: Recent advances in gastric cancer (GC) treatment have not substantially improved the 5-year survival rate nor have they significantly reduced the high recurrence rate. This highlights the need for further research to explore the underlying mechanisms of GC. Cell Division Cycle 5-Like Protein (CDC5L) has been implicated in various malignant behaviors of tumors. Methods: We investigated the expression of CDC5L in gastric cancer (GC) using data from The Cancer Genome Atlas (TCGA) and clinical specimens. To explore the role of CDC5L in GC, we conducted in vitro and in vivo assays, alongside molecular mechanism studies using luciferase reporter assays, co-immunoprecipitation (CO-IP), and mass spectrometry (MS). Results: Our findings indicate a significant elevation of CDC5L in GC, with CDC5L overexpression correlating with poorer survival outcomes, advanced TNM stages, and higher pathological grades in GC patients. In vitro, interference of CDC5L markedly inhibited GC progression. We discovered that the Pre-mRNA Processing Factor 19 (Prp19) directly binds to the CDC5L promoter, enhancing its transcription and inhibiting its lysosome-mediated degradation. Additionally, CO-IP and MS assays revealed that CDC5L interacts with MAPK1, activating the MAPK signaling axis and consequently augmenting homologous recombination in GC. Conclusions: In summary, our study confirms that Prp19 upregulates CDC5L expression, which binds to MAPK1, thereby promoting GC progression via the MAPK pathway-mediated homologous recombination. Targeting CDC5L could be a promising strategy in the precision therapy of GC.
Collapse
Affiliation(s)
- Shengkui Qiu
- Department of General Surgery, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Feiran Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226000, Jiangsu Province, China
| | - Xuesong Gao
- Department of General Surgery, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Weiyu Guan
- Department of General Surgery, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Ting Dai
- Department of Gastroenterology, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Lei Yin
- Department of General Surgery, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Fei Wang
- Department of General Surgery, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Jinjie Sun
- Department of General Surgery, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Peng Guo
- Department of General Surgery, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Hao Wu
- Department of General Surgery, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Shichun Feng
- Department of General Surgery, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Chong Tang
- Department of General Surgery, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong 226001, Jiangsu Province, China
- Nantong Clinical Medical College, Kangda College of Nanjing Medical University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
3
|
Rose JC, Belk JA, Wong ITL, Luebeck J, Horn HT, Daniel B, Jones MG, Yost KE, Hung KL, Kolahi KS, Curtis EJ, Kuo CJ, Bafna V, Mischel PS, Chang HY. Disparate Pathways for Extrachromosomal DNA Biogenesis and Genomic DNA Repair. Cancer Discov 2025; 15:69-82. [PMID: 39109936 PMCID: PMC11726015 DOI: 10.1158/2159-8290.cd-23-1117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/16/2024] [Accepted: 08/05/2024] [Indexed: 01/14/2025]
Abstract
SIGNIFICANCE Our study harnesses a CRISPR-based method to examine ecDNA biogenesis, uncovering efficient circularization between double-strand breaks. ecDNAs and their corresponding chromosomal scars can form via nonhomologous end joining or microhomology-mediated end joining, but the ecDNA and scar formation processes are distinct. Based on our findings, we establish a mechanistic model of excisional ecDNA formation.
Collapse
Affiliation(s)
- John C. Rose
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California
| | - Julia A. Belk
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California
| | - Ivy Tsz-Lo Wong
- Sarafan ChEM-H, Stanford University, Stanford, California
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Jens Luebeck
- Department of Computer Science and Engineering, UC San Diego, La Jolla, California
| | - Hudson T. Horn
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Bence Daniel
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Matthew G. Jones
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California
| | - Kathryn E. Yost
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California
| | - King L. Hung
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California
| | - Kevin S. Kolahi
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Ellis J. Curtis
- Sarafan ChEM-H, Stanford University, Stanford, California
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Calvin J. Kuo
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Vineet Bafna
- Department of Computer Science and Engineering, UC San Diego, La Jolla, California
- Halicioglu Data Science Institute, UC San Diego, La Jolla, California
| | - Paul S. Mischel
- Sarafan ChEM-H, Stanford University, Stanford, California
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Howard Y. Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California
- Howard Hughes Medical Institute, Stanford, California
| |
Collapse
|
4
|
Estrada MD, Gebhardt CJ, Salem M, Sharma K, Bassing CH, Oltz EM, Collins PL. Transcriptional regulation of the non-homologous end joining gene Ligase IV by an intronic regulatory element directs thymocyte development. RESEARCH SQUARE 2025:rs.3.rs-5718046. [PMID: 39866872 PMCID: PMC11760251 DOI: 10.21203/rs.3.rs-5718046/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Double-strand breaks represent the most dangerous form of DNA damage, and in resting cells, these breaks are sealed via the non-homologous end joining (NHEJ) factor Ligase IV (LIG4). Excessive NHEJ may be genotoxic, necessitating multiple mechanisms to control NHEJ activity. However, a clear mechanism of transcriptional control for them has not yet been identified. Here, we examine mechanisms governing Lig4 transcription in mammals, finding that most tissues maintain very low levels of LIG4 production. Select tissues upregulate LIG4, employing different strategies for genomic regulation. In developing lymphocytes, the Lig4 locus is devoid of long-range chromatin contacts; instead, its expression and role in immune development depend upon a promoter-proximal intronic regulatory element. Deletion of the Lig4 intronic regulatory element results in thymocyte-specific loss of Lig4 upregulation, defects in lymphocyte development and altered antigen receptor rearrangement. Our findings show the NHEJ gene, Lig4, is transcriptionally controlled to support stage-specific function concurrent with programmed DSBs. Moreover, we provide an example of how DNA cis-regulatory elements very close to a promoter can have substantial transcriptional effects.
Collapse
Affiliation(s)
- Matthew D Estrada
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - Christopher J Gebhardt
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - Mariam Salem
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - Kruthika Sharma
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - Craig H Bassing
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Eugene M Oltz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - Patrick L Collins
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
5
|
Soni A, Beisser D, Mladenov E, Höller M, Wohlers I, Nikolov V, Magin S, Mussfeldt T, Klein-Hitpass L, Cornforth MN, Loucas BD, Rahmann S, Iliakis G. NGS Detects Extensive Genomic Alterations in Survivors of Irradiated Normal Human Fibroblast Cells. Radiat Res 2025; 203:37-52. [PMID: 39726225 DOI: 10.1667/rade-24-00094.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024]
Abstract
It is thought that cells surviving ionizing radiation exposure repair DNA double-strand breaks (DSBs) and restore their genomes. However, the recent biochemical and genetic characterization of DSB repair pathways reveals that only homologous recombination (HR) can function in an error-free manner and that the non-homologous end joining (NHEJ) pathways canonical NHEJ (c-NHEJ), alternative end joining (alt-EJ), and single-strand annealing (SSA) are error-prone, and potentially leave behind genomic scars and altered genomes. The strong cell cycle restriction of HR to S/G2 phases and the unparalleled efficiency of c-NHEJ throughout the cell cycle, raise the intriguing question as to how far a surviving cell "reaches" after repairing the genome back to its pre-irradiation state. Indeed, there is evidence that the genomes of cells surviving radiation treatment harbor extensive genomic alterations. To directly investigate this possibility, we adopted next-generation sequencing (NGS) technologies and tested a normal human fibroblast cell line, 82-6 hTert, after exposure up to 6 Gy. Cells were irradiated and surviving colonies expanded and the cells frozen. Sequencing analysis using the Illumina sequencing platform and comparison with the unirradiated genome detected frequent genomic alterations in the six investigated radiation survivor clones, including translocations and large deletions. Translocations detected by this analysis and predicted to generate visible cytogenetic alterations were frequently (three out of five) confirmed using mFISH cytogenetic analysis. PCR analysis of selected deletions also confirmed seven of the ten examined. We conclude that cells surviving radiation exposure tolerate and pass to their progeny a wide spectrum of genomic alterations. This recognition needs to be integrated into the interpretation of biological results at all endpoints, as well as in the formulation of mathematical models of radiation action. NGS analysis of irradiated genomes promises to enhance molecular cytogenetics by increasing the spectrum of detectable genomic alterations and advance our understanding of key molecular radiobiological effects and the logic underpinning DSB repair. However, further developments in the technology will be required to harness its full potential.
Collapse
Affiliation(s)
- Aashish Soni
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Daniela Beisser
- Department of Engineering and Natural Sciences, Westphalian University of Applied Sciences, Recklinghausen, Germany
| | - Emil Mladenov
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Matthias Höller
- Genome Informatics, Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Inken Wohlers
- Genome Informatics, Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Vladimir Nikolov
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Simon Magin
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Tamara Mussfeldt
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Ludger Klein-Hitpass
- Institute of Cell Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Michael N Cornforth
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, Texas
| | - Bradford D Loucas
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, Texas
| | - Sven Rahmann
- Department of Engineering and Natural Sciences, Westphalian University of Applied Sciences, Recklinghausen, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| |
Collapse
|
6
|
Mendez-Dorantes C, Zeng X, Karlow JA, Schofield P, Turner S, Kalinowski J, Denisko D, Lee EA, Burns KH, Zhang CZ. Chromosomal rearrangements and instability caused by the LINE-1 retrotransposon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.14.628481. [PMID: 39764018 PMCID: PMC11702581 DOI: 10.1101/2024.12.14.628481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
LINE-1 (L1) retrotransposition is widespread in many cancers, especially those with a high burden of chromosomal rearrangements. However, whether and to what degree L1 activity directly impacts genome integrity is unclear. Here, we apply whole-genome sequencing to experimental models of L1 expression to comprehensively define the spectrum of genomic changes caused by L1. We provide definitive evidence that L1 expression frequently and directly causes both local and long-range chromosomal rearrangements, small and large segmental copy-number alterations, and subclonal copy-number heterogeneity due to ongoing chromosomal instability. Mechanistically, all these alterations arise from DNA double-strand breaks (DSBs) generated by L1-encoded ORF2p. The processing of ORF2p-generated DSB ends prior to their ligation can produce diverse rearrangements of the target sequences. Ligation between DSB ends generated at distal loci can generate either stable chromosomes or unstable dicentric, acentric, or ring chromosomes that undergo subsequent evolution through breakage-fusion bridge cycles or DNA fragmentation. Together, these findings suggest L1 is a potent mutagenic force capable of driving genome evolution beyond simple insertions.
Collapse
Affiliation(s)
- Carlos Mendez-Dorantes
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Xi Zeng
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, PRC
| | - Jennifer A Karlow
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Phillip Schofield
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Serafina Turner
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Jupiter Kalinowski
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Danielle Denisko
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kathleen H Burns
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Cheng-Zhong Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
7
|
Degtev D, Bravo J, Emmanouilidi A, Zdravković A, Choong OK, Liz Touza J, Selfjord N, Weisheit I, Francescatto M, Akcakaya P, Porritt M, Maresca M, Taylor D, Sienski G. Engineered PsCas9 enables therapeutic genome editing in mouse liver with lipid nanoparticles. Nat Commun 2024; 15:9173. [PMID: 39511150 PMCID: PMC11544209 DOI: 10.1038/s41467-024-53418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Clinical implementation of therapeutic genome editing relies on efficient in vivo delivery and the safety of CRISPR-Cas tools. Previously, we identified PsCas9 as a Type II-B family enzyme capable of editing mouse liver genome upon adenoviral delivery without detectable off-targets and reduced chromosomal translocations. Yet, its efficacy remains insufficient with non-viral delivery, a common challenge for many Cas9 orthologues. Here, we sought to redesign PsCas9 for in vivo editing using lipid nanoparticles. We solve the PsCas9 ribonucleoprotein structure with cryo-EM and characterize it biochemically, providing a basis for its rational engineering. Screening over numerous guide RNA and protein variants lead us to develop engineered PsCas9 (ePsCas9) with up to 20-fold increased activity across various targets and preserved safety advantages. We apply the same design principles to boost the activity of FnCas9, an enzyme phylogenetically relevant to PsCas9. Remarkably, a single administration of mRNA encoding ePsCas9 and its guide formulated with lipid nanoparticles results in high levels of editing in the Pcsk9 gene in mouse liver, a clinically relevant target for hypercholesterolemia treatment. Collectively, our findings introduce ePsCas9 as a highly efficient, and precise tool for therapeutic genome editing, in addition to the engineering strategy applicable to other Cas9 orthologues.
Collapse
Affiliation(s)
- Dmitrii Degtev
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden.
| | - Jack Bravo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Aikaterini Emmanouilidi
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Aleksandar Zdravković
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Oi Kuan Choong
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Julia Liz Touza
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Niklas Selfjord
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Isabel Weisheit
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Margherita Francescatto
- Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Pinar Akcakaya
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Michelle Porritt
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Marcello Maresca
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden.
| | - David Taylor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA.
- LIVESTRONG Cancer Institutes, Dell Medical School, Austin, TX, 78712, USA.
| | - Grzegorz Sienski
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
8
|
Wilson TE, Ahmed S, Winningham A, Glover TW. Replication stress induces POLQ-mediated structural variant formation throughout common fragile sites after entry into mitosis. Nat Commun 2024; 15:9582. [PMID: 39505880 PMCID: PMC11541566 DOI: 10.1038/s41467-024-53917-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
Genomic structural variants (SVs) greatly impact human health, but much is unknown about the mechanisms that generate the largest class of nonrecurrent alterations. Common fragile sites (CFSs) are unstable loci that provide a model for SV formation, especially large deletions, under replication stress. We study SV junction formation as it occurs in human cell lines by applying error-minimized capture sequencing to CFS DNA harvested after low-dose aphidicolin treatment. SV junctions form throughout CFS genes at a 5-fold higher rate after cells pass from G2 into M-phase. Neither SV formation nor CFS expression depend on mitotic DNA synthesis (MiDAS), an error-prone form of replication active at CFSs. Instead, analysis of tens of thousands of de novo SV junctions combined with DNA repair pathway inhibition reveal a primary role for DNA polymerase theta (POLQ)-mediated end-joining (TMEJ). We propose an important role for mitotic TMEJ in nonrecurrent SV formation genome wide.
Collapse
Affiliation(s)
- Thomas E Wilson
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Samreen Ahmed
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Amanda Winningham
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Thomas W Glover
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
9
|
Bazick HO, Mao H, Niehaus JK, Wolter JM, Zylka MJ. AAV vector-derived elements integrate into Cas9-generated double-strand breaks and disrupt gene transcription. Mol Ther 2024; 32:4122-4137. [PMID: 39367606 PMCID: PMC11573598 DOI: 10.1016/j.ymthe.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/23/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024] Open
Abstract
We previously developed an adeno-associated virus (AAV) Cas9 gene therapy for Angelman syndrome that integrated into the genome and prematurely terminated Ube3a-ATS. Here, we assessed the performance of 3 additional AAV vectors containing S. aureus Cas9 in vitro and in vivo, and 25 vectors containing N. meningitidis Cas9 in vitro, all targeting single sites within Ube3a-ATS. We found that none of these single-target gRNA vectors were as effective as multi-target gRNA vectors at reducing Ube3a-ATS expression in neurons. We also developed an anchored multiplex PCR sequencing method and analysis pipeline to quantify the relative frequency of all possible editing events at target sites, including AAV integration and unresolved double-strand breaks. We found that integration of AAV was the most frequent editing event (67%-89% of all edits) at three different single target sites, surpassing insertions and deletions (indels). None of the most frequently observed indels were capable of blocking transcription when incorporated into a Ube3a-ATS minigene reporter, whereas two vector derived elements-the poly(A) and reverse promoter-reduced downstream transcription by up to 50%. Our findings suggest that the probability that a gene trapping AAV integration event occurs is influenced by which vector-derived element(s) are integrated and by the number of target sites.
Collapse
Affiliation(s)
- Hannah O Bazick
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hanqian Mao
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jesse K Niehaus
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Justin M Wolter
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark J Zylka
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Achom M, Sadagopan A, Bao C, McBride F, Li J, Konda P, Tourdot RW, Xu Q, Nakhoul M, Gallant DS, Ahmed UA, O'Toole J, Freeman D, Lee GSM, Hecht JL, Kauffman EC, Einstein DJ, Choueiri TK, Zhang CZ, Viswanathan SR. A genetic basis for sex differences in Xp11 translocation renal cell carcinoma. Cell 2024; 187:5735-5752.e25. [PMID: 39168126 PMCID: PMC11455617 DOI: 10.1016/j.cell.2024.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
Xp11 translocation renal cell carcinoma (tRCC) is a rare, female-predominant cancer driven by a fusion between the transcription factor binding to IGHM enhancer 3 (TFE3) gene on chromosome Xp11.2 and a partner gene on either chromosome X (chrX) or an autosome. It remains unknown what types of rearrangements underlie TFE3 fusions, whether fusions can arise from both the active (chrXa) and inactive X (chrXi) chromosomes, and whether TFE3 fusions from chrXi translocations account for the female predominance of tRCC. To address these questions, we performed haplotype-specific analyses of chrX rearrangements in tRCC whole genomes. We show that TFE3 fusions universally arise as reciprocal translocations and that oncogenic TFE3 fusions can arise from chrXi:autosomal translocations. Female-specific chrXi:autosomal translocations result in a 2:1 female-to-male ratio of TFE3 fusions involving autosomal partner genes and account for the female predominance of tRCC. Our results highlight how X chromosome genetics constrains somatic chrX alterations and underlies cancer sex differences.
Collapse
Affiliation(s)
- Mingkee Achom
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Ananthan Sadagopan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Chunyang Bao
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Fiona McBride
- Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Jiao Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Prathyusha Konda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Richard W Tourdot
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Qingru Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Maria Nakhoul
- Department of Informatics & Analytics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Daniel S Gallant
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Usman Ali Ahmed
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jillian O'Toole
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Dory Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Gwo-Shu Mary Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jonathan L Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Eric C Kauffman
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - David J Einstein
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Cheng-Zhong Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Srinivas R Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA.
| |
Collapse
|
11
|
Sin TN, Tng N, Dragoli J, Ramesh Kumar S, Villafuerte-Trisolini C, Chung SH, Tu L, Le SM, Shim JH, Pepple KL, Ravindran R, Khan IH, Moshiri A, Thomasy SM, Yiu G. Safety and efficacy of CRISPR-mediated genome ablation of VEGFA as a treatment for choroidal neovascularization in nonhuman primate eyes. Mol Ther 2024:S1525-0016(24)00651-8. [PMID: 39342431 DOI: 10.1016/j.ymthe.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/30/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
CRISPR-based genome editing enables permanent suppression of angiogenic factors such as vascular endothelial growth factor (VEGF) as a potential treatment for choroidal neovascularization (CNV)-a major cause of blindness in age-related macular degeneration. We previously designed adeno-associated viral (AAV) vectors with S. pyogenes Cas 9 (SpCas9) and guide RNAs (gRNAs) to target conserved sequences in VEGFA across mouse, rhesus macaque, and human, with successful suppression of VEGF and laser-induced CNV in mice. Here, we advanced the platform to nonhuman primates and found that subretinal AAV8-SpCas9 with gRNAs targeting VEGFA may reduce VEGF and CNV severity as compared with SpCas9 without gRNAs. However, all eyes that received AAV8-SpCas9 regardless of gRNA presence developed subfoveal deposits, concentric macular rings, and outer retinal disruption that worsened at higher dose. Immunohistochemistry showed subfoveal accumulation of retinal pigment epithelial cells, collagen, and vimentin, disrupted photoreceptor structure, and retinal glial and microglial activation. Subretinal AAV8-SpCas9 triggered aqueous elevations in CCL2, but minimal systemic humoral or cellular responses against AAV8, SpCas9, or GFP reporter. Our findings suggest that CRISPR-mediated VEGFA ablation in nonhuman primate eyes may suppress VEGF and CNV, but can also lead to unexpected subretinal fibrosis, photoreceptor damage, and retinal inflammation despite minimal systemic immune responses.
Collapse
Affiliation(s)
- Tzu-Ni Sin
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA
| | - Nicole Tng
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA
| | - Jack Dragoli
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA
| | - Sruthi Ramesh Kumar
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA
| | | | - Sook Hyun Chung
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA
| | - Lien Tu
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA
| | - Sophie M Le
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA
| | - Jae Ho Shim
- Department of Surgical & Radiological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Kathryn L Pepple
- Department of Ophthalmology, University of Washington, Seattle, WA 98104, USA
| | - Resmi Ravindran
- Department of Pathology, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Imran H Khan
- Department of Pathology, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Ala Moshiri
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA
| | - Sara M Thomasy
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA; Department of Surgical & Radiological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Glenn Yiu
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
12
|
Wu H, Han BW, Liu T, Zhang M, Wu Y, Nie J. Epstein-Barr virus deubiquitinating enzyme BPLF1 is involved in EBV carcinogenesis by affecting cellular genomic stability. Neoplasia 2024; 55:101012. [PMID: 38875930 PMCID: PMC11225014 DOI: 10.1016/j.neo.2024.101012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
Increased mutational burden and EBV load have been revealed from normal tissues to Epstein-Barr virus (EBV)-associated gastric carcinomas (EBVaGCs). BPLF1, encoded by EBV, is a lytic cycle protein with deubiquitinating activity has been found to participate in disrupting repair of DNA damage. We first confirmed that BPLF1 gene in gastric cancer (GC) significantly increased the DNA double strand breaks (DSBs). Ubiquitination mass spectrometry identified histones as BPLF1 interactors and potential substrates, and co-immunoprecipitation and in vitro experiments verified that BPLF1 regulates H2Bub by targeting Rad6. Over-expressing Rad6 restored H2Bub but partially reduced γ-H2AX, suggesting that other downstream DNA repair processes were affected. mRNA expression of BRCA2 were significantly down-regulated by next-generation sequencing after over-expression of BPLF1, and over-expression of p65 facilitated the repair of DSBs. We demonstrated BPLF1 may lead to the accumulation of DSBs by two pathways, reducing H2B ubiquitination (H2Bub) and blocking homologous recombination which may provide new ideas for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Hantao Wu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China; Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Bo-Wei Han
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Tiancai Liu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Min Zhang
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yingsong Wu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Jing Nie
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
13
|
Cisneros-Aguirre M, Lopezcolorado FW, Ping X, Chen R, Stark JM. Distinct functions of PAXX and MRI during chromosomal end joining. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.607864. [PMID: 39229097 PMCID: PMC11370355 DOI: 10.1101/2024.08.21.607864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
A key step of Canonical Nonhomologous End Joining (C-NHEJ) is synapsis of DNA double strand break (DSB) ends for ligation. The DNA-PKcs dimer mediates synapsis in a long-range complex with DSB ends remaining apart, whereas the XLF homodimer can mediate synapsis in both long-range and short-range complexes. Recent structural studies found the PAXX homodimer may also facilitate synapsis in long-range complexes with DNA-PKcs via its interactions with Ku70. Thus, we examined the influence of PAXX in C-NHEJ of chromosomal DSBs, which we compared to another Ku-binding factor, MRI. Using EJ of blunt DSBs with Cas9 reporters as a readout for C-NHEJ, we found that PAXX and/or MRI are dispensable. However, when combined with disruption of DNA-PKcs, particularly with DNA-PKcs kinase inhibition, PAXX becomes important for blunt DSB EJ. In contrast, while DNA-PKcs is also important to suppress short deletion mutations with microhomology, this effect is not magnified with PAXX loss. MRI loss had no effect combined with DNA-PKcs disruption, but becomes important for blunt DSB EJ when combined with disruption of XLF, as is PAXX. Finally, XLF loss causes an increase in larger deletions compared to DNA-PKcs inhibition, which is magnified with combined loss of MRI. Altogether, we suggest that PAXX promotes DSB end synapsis during C-NHEJ in a manner that is partially redundant with DNA-PKcs and XLF, whereas MRI appears to be mainly important in the context of XLF disruption.
Collapse
Affiliation(s)
- Metztli Cisneros-Aguirre
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA 91010 USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA 91010 USA
| | - Felicia Wednesday Lopezcolorado
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA 91010 USA
| | - Xiaoli Ping
- Department of Diabetes Complications & Metabolism, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA 91010 USA
| | - Ruby Chen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA 91010 USA
| | - Jeremy M. Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA 91010 USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA 91010 USA
| |
Collapse
|
14
|
Zhang CZ, Pellman D. Chromosome breakage-replication/fusion enables rapid DNA amplification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.17.608415. [PMID: 39229211 PMCID: PMC11370323 DOI: 10.1101/2024.08.17.608415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
DNA rearrangements are thought to arise from two classes of processes. The first class involves DNA breakage and fusion ("cut-and-paste") without net DNA gain or loss. The second class involves aberrant DNA replication ("copy-and-paste") and can produce either net DNA gain or loss. We previously demonstrated that the partitioning of chromosomes into aberrant structures of the nucleus, micronuclei or chromosome bridges, can generate cut-and-paste rearrangements by chromosome fragmentation and ligation. Surprisingly, in the progeny clones of single cells that have undergone chromosome bridge breakage, we identified large segmental duplications and short sequence insertions that are commonly attributed to copy-and-paste processes. Here, we demonstrate that both large duplications and short insertions are inherent outcomes of the replication and fusion of unligated DNA ends, a process we term breakage-replication/fusion (B-R/F). We propose that B-R/F provides a unifying explanation for complex rearrangement patterns including chromothripsis and chromoanasynthesis and enables rapid DNA amplification after chromosome fragmentation.
Collapse
|
15
|
Hou Z, Yu T, Yi Q, Du Y, Zhou L, Zhao Y, Wu Y, Wu L, Wang T, Bian P. High-complexity of DNA double-strand breaks is key for alternative end-joining choice. Commun Biol 2024; 7:936. [PMID: 39095441 PMCID: PMC11297215 DOI: 10.1038/s42003-024-06640-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
The repair of DNA double-strand breaks (DSBs) through alternative non-homologous end-joining (alt-NHEJ) pathway significantly contributes to genetic instability. However, the mechanism governing alt-NHEJ pathway choice, particularly its association with DSB complexity, remains elusive due to the absence of a suitable reporter system. In this study, we established a unique Escherichia coli reporter system for detecting complex DSB-initiated alternative end-joining (A-EJ), an alt-NHEJ-like pathway. By utilizing various types of ionizing radiation to generate DSBs with varying degrees of complexity, we discovered that high complexity of DSBs might be a determinant for A-EJ choice. To facilitate efficient repair of high-complexity DSBs, A-EJ employs distinct molecular patterns such as longer micro-homologous junctions and non-templated nucleotide addition. Furthermore, the A-EJ choice is modulated by the degree of homology near DSB loci, competing with homologous recombination machinery. These findings further enhance the understanding of A-EJ/alt-NHEJ pathway choice.
Collapse
Affiliation(s)
- Zhiyang Hou
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Tianxiang Yu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Qiyi Yi
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yan Du
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Libin Zhou
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Ye Zhao
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yuejin Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Lijun Wu
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Ting Wang
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Po Bian
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
16
|
Yi H, Yun Y, Choi WH, Hwang HY, Cha JH, Seok H, Song JJ, Lee JH, Lee SY, Kim D. CRISPR-based editing strategies to rectify EYA1 complex genomic rearrangement linked to haploinsufficiency. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102199. [PMID: 38766525 PMCID: PMC11101721 DOI: 10.1016/j.omtn.2024.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/21/2024] [Indexed: 05/22/2024]
Abstract
Pathogenic structure variations (SVs) are associated with various types of cancer and rare genetic diseases. Recent studies have used Cas9 nuclease with paired guide RNAs (gRNAs) to generate targeted chromosomal rearrangements, focusing on producing fusion proteins that cause cancer, whereas research on precision genome editing for rectifying SVs is limited. In this study, we identified a novel complex genomic rearrangement (CGR), specifically an EYA1 inversion with a deletion, implicated in branchio-oto-renal/branchio-oto syndrome. To address this, two CRISPR-based approaches were tested. First, we used Cas9 nuclease and paired gRNAs tailored to the patient's genome. The dual CRISPR-Cas9 system induced efficient correction of paracentric inversion in patient-derived fibroblast, and effectively restored the expression of EYA1 mRNA and protein, along with its transcriptional activity required to regulate the target gene expression. Additionally, we used CRISPR activation (CRISPRa), which leads to the upregulation of EYA1 mRNA expression in patient-derived fibroblasts. Moreover, CRISPRa significantly improved EYA1 protein expression and transcriptional activity essential for target gene expression. This suggests that CRISPRa-based gene therapies could offer substantial translational potential for approximately 70% of disease-causing EYA1 variants responsible for haploinsufficiency. Our findings demonstrate the potential of CRISPR-guided genome editing for correcting SVs, including those with EYA1 CGR linked to haploinsufficiency.
Collapse
Affiliation(s)
- Hwalin Yi
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Yejin Yun
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, South Korea
| | - Won Hoon Choi
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, South Korea
| | - Hye-Yeon Hwang
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Ju Hyuen Cha
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, South Korea
| | - Heeyoung Seok
- Department of Transdisciplinary Research and Collaboration, Genomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, South Korea
| | - Jae-Jin Song
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, South Korea
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, South Korea
- Department of Genomic Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| | - Daesik Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| |
Collapse
|
17
|
Wang J, Sadeghi CA, Frock RL. DNA-PKcs suppresses illegitimate chromosome rearrangements. Nucleic Acids Res 2024; 52:5048-5066. [PMID: 38412274 PMCID: PMC11109964 DOI: 10.1093/nar/gkae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/29/2024] Open
Abstract
Two DNA repair pathways, non-homologous end joining (NHEJ) and alternative end joining (A-EJ), are involved in V(D)J recombination and chromosome translocation. Previous studies reported distinct repair mechanisms for chromosome translocation, with NHEJ involved in humans and A-EJ in mice predominantly. NHEJ depends on DNA-PKcs, a critical partner in synapsis formation and downstream component activation. While DNA-PKcs inhibition promotes chromosome translocations harboring microhomologies in mice, its synonymous effect in humans is not known. We find partial DNA-PKcs inhibition in human cells leads to increased translocations and the continued involvement of a dampened NHEJ. In contrast, complete DNA-PKcs inhibition substantially increased microhomology-mediated end joining (MMEJ), thus bridging the two different translocation mechanisms between human and mice. Similar to a previous study on Ku70 deletion, DNA-PKcs deletion in G1/G0-phase mouse progenitor B cell lines, significantly impairs V(D)J recombination and generated higher rates of translocations as a consequence of dysregulated coding and signal end joining. Genetic DNA-PKcs inhibition suppresses NHEJ entirely, with repair phenotypically resembling Ku70-deficient A-EJ. In contrast, we find DNA-PKcs necessary in generating the near-exclusive MMEJ associated with Lig4 deficiency. Our study underscores DNA-PKcs in suppressing illegitimate chromosome rearrangement while also contributing to MMEJ in both species.
Collapse
Affiliation(s)
- Jinglong Wang
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cheyenne A Sadeghi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Richard L Frock
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
18
|
Sánchez Rivera FJ, Dow LE. How CRISPR Is Revolutionizing the Generation of New Models for Cancer Research. Cold Spring Harb Perspect Med 2024; 14:a041384. [PMID: 37487630 PMCID: PMC11065179 DOI: 10.1101/cshperspect.a041384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Cancers arise through acquisition of mutations in genes that regulate core biological processes like cell proliferation and cell death. Decades of cancer research have led to the identification of genes and mutations causally involved in disease development and evolution, yet defining their precise function across different cancer types and how they influence therapy responses has been challenging. Mouse models have helped define the in vivo function of cancer-associated alterations, and genome-editing approaches using CRISPR have dramatically accelerated the pace at which these models are developed and studied. Here, we highlight how CRISPR technologies have impacted the development and use of mouse models for cancer research and discuss the many ways in which these rapidly evolving platforms will continue to transform our understanding of this disease.
Collapse
Affiliation(s)
- Francisco J Sánchez Rivera
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10065, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, New York 10065, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York 10065, USA
| |
Collapse
|
19
|
Wang Y, Chen J, Huang X, Wu B, Dai P, Zhang F, Li J, Wang L. Gene-knockout by iSTOP enables rapid reproductive disease modeling and phenotyping in germ cells of the founder generation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1035-1050. [PMID: 38332217 DOI: 10.1007/s11427-023-2408-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/29/2023] [Indexed: 02/10/2024]
Abstract
Cytosine base editing achieves C•G-to-T•A substitutions and can convert four codons (CAA/CAG/CGA/TGG) into STOP-codons (induction of STOP-codons, iSTOP) to knock out genes with reduced mosaicism. iSTOP enables direct phenotyping in founders' somatic cells, but it remains unknown whether this works in founders' germ cells so as to rapidly reveal novel genes for fertility. Here, we initially establish that iSTOP in mouse zygotes enables functional characterization of known genes in founders' germ cells: Cfap43-iSTOP male founders manifest expected sperm features resembling human "multiple morphological abnormalities of the flagella" syndrome (i.e., MMAF-like features), while oocytes of Zp3-iSTOP female founders have no zona pellucida. We further illustrate iSTOP's utility for dissecting the functions of unknown genes with Ccdc183, observing MMAF-like features and male infertility in Ccdc183-iSTOP founders, phenotypes concordant with those of Ccdc183-KO offspring. We ultimately establish that CCDC183 is essential for sperm morphogenesis through regulating the assembly of outer dynein arms and participating in the intra-flagellar transport. Our study demonstrates iSTOP as an efficient tool for direct reproductive disease modeling and phenotyping in germ cells of the founder generation, and rapidly reveals the essentiality of Ccdc183 in fertility, thus providing a time-saving approach for validating genetic defects (like nonsense mutations) for human infertility.
Collapse
Affiliation(s)
- Yaling Wang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
| | - Jingwen Chen
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, 200433, China
| | - Xueying Huang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bangguo Wu
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, 200433, China
| | - Peng Dai
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Feng Zhang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lingbo Wang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China.
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
20
|
Klermund J, Rhiel M, Kocher T, Chmielewski KO, Bischof J, Andrieux G, El Gaz M, Hainzl S, Boerries M, Cornu TI, Koller U, Cathomen T. On- and off-target effects of paired CRISPR-Cas nickase in primary human cells. Mol Ther 2024; 32:1298-1310. [PMID: 38459694 PMCID: PMC11081867 DOI: 10.1016/j.ymthe.2024.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/28/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024] Open
Abstract
Undesired on- and off-target effects of CRISPR-Cas nucleases remain a challenge in genome editing. While the use of Cas9 nickases has been shown to minimize off-target mutagenesis, their use in therapeutic genome editing has been hampered by a lack of efficacy. To overcome this limitation, we and others have developed double-nickase-based strategies to generate staggered DNA double-strand breaks to mediate gene disruption or gene correction with high efficiency. However, the impact of paired single-strand nicks on genome integrity has remained largely unexplored. Here, we developed a novel CAST-seq pipeline, dual CAST, to characterize chromosomal aberrations induced by paired CRISPR-Cas9 nickases at three different loci in primary keratinocytes derived from patients with epidermolysis bullosa. While targeting COL7A1, COL17A1, or LAMA3 with Cas9 nucleases caused previously undescribed chromosomal rearrangements, no chromosomal translocations were detected following paired-nickase editing. While the double-nicking strategy induced large deletions/inversions within a 10 kb region surrounding the target sites at all three loci, similar to the nucleases, the chromosomal on-target aberrations were qualitatively different and included a high proportion of insertions. Taken together, our data indicate that double-nickase approaches combine efficient editing with greatly reduced off-target effects but still leave substantial chromosomal aberrations at on-target sites.
Collapse
Affiliation(s)
- Julia Klermund
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106 Freiburg, Germany
| | - Manuel Rhiel
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106 Freiburg, Germany
| | - Thomas Kocher
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Kay Ole Chmielewski
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106 Freiburg, Germany; PhD Program, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Johannes Bischof
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Melina El Gaz
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106 Freiburg, Germany
| | - Stefan Hainzl
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany
| | - Tatjana I Cornu
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany.
| |
Collapse
|
21
|
Chatterjee S, Starrett GJ. Microhomology-mediated repair machinery and its relationship with HPV-mediated oncogenesis. J Med Virol 2024; 96:e29674. [PMID: 38757834 DOI: 10.1002/jmv.29674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Human Papillomaviruses (HPV) are a diverse family of non-enveloped dsDNA viruses that infect the skin and mucosal epithelia. Persistent HPV infections can lead to cancer frequently involving integration of the virus into the host genome, leading to sustained oncogene expression and loss of capsid and genome maintenance proteins. Microhomology-mediated double-strand break repair, a DNA double-stranded breaks repair pathway present in many organisms, was initially thought to be a backup but it's now seen as vital, especially in homologous recombination-deficient contexts. Increasing evidence has identified microhomology (MH) near HPV integration junctions, suggesting MH-mediated repair pathways drive integration. In this comprehensive review, we present a detailed summary of both the mechanisms underlying MH-mediated repair and the evidence for its involvement in HPV integration in cancer. Lastly, we highlight the involvement of these processes in the integration of other DNA viruses and the broader implications on virus lifecycles and host innate immune response.
Collapse
Affiliation(s)
- Subhajit Chatterjee
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gabriel J Starrett
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
22
|
Feng P, Wang Y, Liu N, Chen Y, Hu Y, Huang Z, Liu Y, Zheng S, Jiang T, Xiao X, Dai W, Huang P, Xia Y. High expression of PPP1CC promotes NHEJ-mediated DNA repair leading to radioresistance and poor prognosis in nasopharyngeal carcinoma. Cell Death Differ 2024; 31:683-696. [PMID: 38589496 PMCID: PMC11094031 DOI: 10.1038/s41418-024-01287-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Protein phosphatase 1 catalytic subunit gamma (PPP1CC) promotes DNA repair and tumor development and progression, however, its underlying mechanisms remain unclear. This study investigated the molecular mechanism of PPP1CC's involvement in DNA repair and the potential clinical implications. High expression of PPP1CC was significantly correlated with radioresistance and poor prognosis in human nasopharyngeal carcinoma (NPC) patients. The mechanistic study revealed that PPP1CC bound to Ku70/Ku80 heterodimers and activated DNA-PKcs by promoting DNA-PK holoenzyme formation, which enhanced nonhomologous end junction (NHEJ) -mediated DNA repair and led to radioresistance. Importantly, BRCA1-BRCA2-containing complex subunit 3 (BRCC3) interacted with PPP1CC to enhance its stability by removing the K48-linked polyubiquitin chain at Lys234 to prevent PPP1CC degradation. Therefore, BRCC3 helped the overexpressed PPP1CC to maintain its high protein level, thereby sustaining the elevation of DNA repair capacity and radioresistance. Our study identified the molecular mechanism by which PPP1CC promotes NHEJ-mediated DNA repair and radioresistance, suggesting that the BRCC3-PPP1CC-Ku70 axis is a potential therapeutic target to improve the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Ping Feng
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ying Wang
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Na Liu
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yanming Chen
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yujun Hu
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zilu Huang
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ya Liu
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Shuohan Zheng
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Tongchao Jiang
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiang Xiao
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wei Dai
- Department of Clinical Oncology, University of Hong Kong, Hong Kong (SAR), China
- University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Peng Huang
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- Metabolic Innovation Center, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Yunfei Xia
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
23
|
Poot M. The Legacy of George M. Martin: From Segmental Progeroid Syndromes to Antigeroid Syndromes. Cytogenet Genome Res 2024; 163:231-235. [PMID: 38522422 DOI: 10.1159/000537967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/26/2024] Open
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Würzburg, Biozentrum, Am Hubland, Würzburg, Germany
| |
Collapse
|
24
|
Bruter AV, Varlamova EA, Okulova YD, Tatarskiy VV, Silaeva YY, Filatov MA. Genetically modified mice as a tool for the study of human diseases. Mol Biol Rep 2024; 51:135. [PMID: 38236499 DOI: 10.1007/s11033-023-09066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/23/2023] [Indexed: 01/19/2024]
Abstract
Modeling a human disease is an essential part of biomedical research. The recent advances in the field of molecular genetics made it possible to obtain genetically modified animals for the study of various diseases. Not only monogenic disorders but also chromosomal and multifactorial disorders can be mimicked in lab animals due to genetic modification. Even human infectious diseases can be studied in genetically modified animals. An animal model of a disease enables the tracking of its pathogenesis and, more importantly, to test new therapies. In the first part of this paper, we review the most common DNA modification technologies and provide key ideas on specific technology choices according to the task at hand. In the second part, we focus on the application of genetically modified mice in studying human diseases.
Collapse
Affiliation(s)
- Alexandra V Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
- Federal State Budgetary Institution "National Medical Research Center of Oncology Named After N.N. Blokhin" of the Ministry of Health of the Russian Federation, Research Institute of Carcinogenesis, Moscow, Russia, 115478
| | - Ekaterina A Varlamova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
- Federal State Budgetary Institution "National Medical Research Center of Oncology Named After N.N. Blokhin" of the Ministry of Health of the Russian Federation, Research Institute of Carcinogenesis, Moscow, Russia, 115478
| | - Yulia D Okulova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
| | - Victor V Tatarskiy
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
| | - Yulia Y Silaeva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
| | - Maxim A Filatov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334.
| |
Collapse
|
25
|
Netsrithong R, Garcia-Perez L, Themeli M. Engineered T cells from induced pluripotent stem cells: from research towards clinical implementation. Front Immunol 2024; 14:1325209. [PMID: 38283344 PMCID: PMC10811463 DOI: 10.3389/fimmu.2023.1325209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024] Open
Abstract
Induced pluripotent stem cell (iPSC)-derived T (iT) cells represent a groundbreaking frontier in adoptive cell therapies with engineered T cells, poised to overcome pivotal limitations associated with conventional manufacturing methods. iPSCs offer an off-the-shelf source of therapeutic T cells with the potential for infinite expansion and straightforward genetic manipulation to ensure hypo-immunogenicity and introduce specific therapeutic functions, such as antigen specificity through a chimeric antigen receptor (CAR). Importantly, genetic engineering of iPSC offers the benefit of generating fully modified clonal lines that are amenable to rigorous safety assessments. Critical to harnessing the potential of iT cells is the development of a robust and clinically compatible production process. Current protocols for genetic engineering as well as differentiation protocols designed to mirror human hematopoiesis and T cell development, vary in efficiency and often contain non-compliant components, thereby rendering them unsuitable for clinical implementation. This comprehensive review centers on the remarkable progress made over the last decade in generating functional engineered T cells from iPSCs. Emphasis is placed on alignment with good manufacturing practice (GMP) standards, scalability, safety measures and quality controls, which constitute the fundamental prerequisites for clinical application. In conclusion, the focus on iPSC as a source promises standardized, scalable, clinically relevant, and potentially safer production of engineered T cells. This groundbreaking approach holds the potential to extend hope to a broader spectrum of patients and diseases, leading in a new era in adoptive T cell therapy.
Collapse
Affiliation(s)
- Ratchapong Netsrithong
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Laura Garcia-Perez
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Maria Themeli
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
26
|
Becker HJ, Yamazaki S. Understanding genetic heterogeneity in gene-edited hematopoietic stem cell products. Exp Hematol 2024; 129:104133. [PMID: 38036097 DOI: 10.1016/j.exphem.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023]
Abstract
CRISPR/Cas gene editing has transformed genetic research and is poised to drive the next generation of gene therapies targeting hematopoietic stem cells (HSCs). However, the installation of the "desired" edit is most often only achieved in a minor subset of alleles. The array of cellular pathways triggered by gene editing tools produces a broad spectrum of "undesired" editing outcomes, including short insertions and deletions (indels) and chromosome rearrangements, leading to considerable genetic heterogeneity in gene-edited HSC populations. This heterogeneity may undermine the effect of the genetic intervention since only a subset of cells will carry the intended modification. Also, undesired mutations represent a potential safety concern as gene editing advances toward broader clinical use. Here, we will review the different sources of "undesired" edits and will discuss strategies for their mitigation and control.
Collapse
Affiliation(s)
- Hans Jiro Becker
- Laboratory for Stem Cell Therapy, Faculty of Medicine, Tsukuba University, Tsukuba, Japan; Division of Cell Regulation, Center of Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Satoshi Yamazaki
- Laboratory for Stem Cell Therapy, Faculty of Medicine, Tsukuba University, Tsukuba, Japan; Division of Cell Regulation, Center of Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
27
|
Poot M. Methods of Detection and Mechanisms of Origin of Complex Structural Genome Variations. Methods Mol Biol 2024; 2825:39-65. [PMID: 38913302 DOI: 10.1007/978-1-0716-3946-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Based on classical karyotyping, structural genome variations (SVs) have generally been considered to be either "simple" (with one or two breakpoints) or "complex" (with more than two breakpoints). Studying the breakpoints of SVs at nucleotide resolution revealed additional, subtle structural variations, such that even "simple" SVs turned out to be "complex." Genome-wide sequencing methods, such as fosmid and paired-end mapping, short-read and long-read whole genome sequencing, and single-molecule optical mapping, also indicated that the number of SVs per individual was considerably larger than expected from karyotyping and high-resolution chromosomal array-based studies. Interestingly, SVs were detected in studies of cohorts of individuals without clinical phenotypes. The common denominator of all SVs appears to be a failure to accurately repair DNA double-strand breaks (DSBs) or to halt cell cycle progression if DSBs persist. This review discusses the various DSB response mechanisms during the mitotic cell cycle and during meiosis and their regulation. Emphasis is given to the molecular mechanisms involved in the formation of translocations, deletions, duplications, and inversions during or shortly after meiosis I. Recently, CRISPR-Cas9 studies have provided unexpected insights into the formation of translocations and chromothripsis by both breakage-fusion-bridge and micronucleus-dependent mechanisms.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
28
|
Li X, Xie J, Dong C, Zheng Z, Shen R, Cao X, Chen X, Wang M, Zhu JK, Tian Y. Efficient and heritable A-to-K base editing in rice and tomato. HORTICULTURE RESEARCH 2024; 11:uhad250. [PMID: 38269296 PMCID: PMC10807703 DOI: 10.1093/hr/uhad250] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/15/2023] [Indexed: 01/26/2024]
Abstract
Cytosine and adenosine base editors (CBE and ABE) have been widely used in plants, greatly accelerating gene function research and crop breeding. Current base editors can achieve efficient A-to-G and C-to-T/G/A editing. However, efficient and heritable A-to-Y (A-to-T/C) editing remains to be developed in plants. In this study, a series of A-to-K base editor (AKBE) systems were constructed for monocot and dicot plants. Furthermore, nSpCas9 was replaced with the PAM-less Cas9 variant (nSpRY) to expand the target range of the AKBEs. Analysis of 228 T0 rice plants and 121 T0 tomato plants edited using AKBEs at 18 endogenous loci revealed that, in addition to highly efficient A-to-G substitution (41.0% on average), the plant AKBEs can achieve A-to-T conversion with efficiencies of up to 25.9 and 10.5% in rice and tomato, respectively. Moreover, the rice-optimized AKBE generates A-to-C conversion in rice, with an average efficiency of 1.8%, revealing the significant value of plant-optimized AKBE in creating genetic diversity. Although most of the A-to-T and A-to-C edits were chimeric, desired editing types could be transmitted to the T1 offspring, similar to the edits generated by the traditional ABE8e. Besides, using AKBEs to target tyrosine (Y, TAT) or cysteine (C, TGT) achieved the introduction of an early stop codon (TAG/TAA/TGA) of target genes, demonstrating its potential use in gene disruption.
Collapse
Affiliation(s)
- Xinbo Li
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies (Hainan), Institute of Crop Sciences and National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan 572024, China
| | - Jiyong Xie
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Dong
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies (Hainan), Institute of Crop Sciences and National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan 572024, China
| | - Zai Zheng
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies (Hainan), Institute of Crop Sciences and National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan 572024, China
| | - Rundong Shen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies (Hainan), Institute of Crop Sciences and National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan 572024, China
| | - Xuesong Cao
- Institute of Advanced Biotechnology, and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoyan Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies (Hainan), Institute of Crop Sciences and National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
| | - Mugui Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies (Hainan), Institute of Crop Sciences and National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
| | - Jian-Kang Zhu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies (Hainan), Institute of Crop Sciences and National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
- Institute of Advanced Biotechnology, and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yifu Tian
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies (Hainan), Institute of Crop Sciences and National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan 572024, China
| |
Collapse
|
29
|
Bader AS, Bushell M. iMUT-seq: high-resolution DSB-induced mutation profiling reveals prevalent homologous-recombination dependent mutagenesis. Nat Commun 2023; 14:8419. [PMID: 38110444 PMCID: PMC10728174 DOI: 10.1038/s41467-023-44167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
DNA double-strand breaks (DSBs) are the most mutagenic form of DNA damage, and play a significant role in cancer biology, neurodegeneration and aging. However, studying DSB-induced mutagenesis is limited by our current approaches. Here, we describe iMUT-seq, a technique that profiles DSB-induced mutations at high-sensitivity and single-nucleotide resolution around endogenous DSBs. By depleting or inhibiting 20 DSB-repair factors we define their mutational signatures in detail, revealing insights into the mechanisms of DSB-induced mutagenesis. Notably, we find that homologous-recombination (HR) is more mutagenic than previously thought, inducing prevalent base substitutions and mononucleotide deletions at distance from the break due to DNA-polymerase errors. Simultaneously, HR reduces translocations, suggesting a primary role of HR is specifically the prevention of genomic rearrangements. The results presented here offer fundamental insights into DSB-induced mutagenesis and have significant implications for our understanding of cancer biology and the development of DDR-targeting chemotherapeutics.
Collapse
Affiliation(s)
- Aldo S Bader
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK.
- Cancer Research UK/CI, University of Cambridge, Li Ka Shing Centre, Cambridge, CB2 0RE, UK.
- The Gurdon Institute, University of Cambridge, Biochemistry, Cambridge, UK.
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
30
|
Barghouth PG, Melemenidis S, Montay-Gruel P, Ollivier J, Viswanathan V, Jorge PG, Soto LA, Lau BC, Sadeghi C, Edlabadkar A, Zhang R, Ru N, Baulch JE, Manjappa R, Wang J, Le Bouteiller M, Surucu M, Yu A, Bush K, Skinner L, Maxim PG, Loo BW, Limoli CL, Vozenin MC, Frock RL. FLASH-RT does not affect chromosome translocations and junction structures beyond that of CONV-RT dose-rates. Radiother Oncol 2023; 188:109906. [PMID: 37690668 PMCID: PMC10591966 DOI: 10.1016/j.radonc.2023.109906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND AND PURPOSE The impact of radiotherapy (RT) at ultra high vs conventional dose rate (FLASH vs CONV) on the generation and repair of DNA double strand breaks (DSBs) is an important question that remains to be investigated. Here, we tested the hypothesis as to whether FLASH-RT generates decreased chromosomal translocations compared to CONV-RT. MATERIALS AND METHODS We used two FLASH validated electron beams and high-throughput rejoin and genome-wide translocation sequencing (HTGTS-JoinT-seq), employing S. aureus and S. pyogenes Cas9 "bait" DNA double strand breaks (DSBs) in HEK239T cells, to measure differences in bait-proximal repair and their genome-wide translocations to "prey" DSBs generated after various irradiation doses, dose rates and oxygen tensions (normoxic, 21% O2; physiological, 4% O2; hypoxic, 2% and 0.5% O2). Electron irradiation was delivered using a FLASH capable Varian Trilogy and the eRT6/Oriatron at CONV (0.08-0.13 Gy/s) and FLASH (1x102-5x106 Gy/s) dose rates. Related experiments using clonogenic survival and γH2AX foci in the 293T and the U87 glioblastoma lines were also performed to discern FLASH-RT vs CONV-RT DSB effects. RESULTS Normoxic and physioxic irradiation of HEK293T cells increased translocations at the cost of decreasing bait-proximal repair but were indistinguishable between CONV-RT and FLASH-RT. Although no apparent increase in chromosome translocations was observed with hypoxia-induced apoptosis, the combined decrease in oxygen tension with IR dose-rate modulation did not reveal significant differences in the level of translocations nor in their junction structures. Furthermore, RT dose rate modality on U87 cells did not change γH2AX foci numbers at 1- and 24-hours post-irradiation nor did this affect 293T clonogenic survival. CONCLUSION Irrespective of oxygen tension, FLASH-RT produces translocations and junction structures at levels and proportions that are indistinguishable from CONV-RT.
Collapse
Affiliation(s)
- Paul G Barghouth
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stavros Melemenidis
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pierre Montay-Gruel
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland; Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Jonathan Ollivier
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Vignesh Viswanathan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Patrik G Jorge
- Institute of Radiation Physics/CHUV, Lausanne University Hospital, Switzerland
| | - Luis A Soto
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brianna C Lau
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cheyenne Sadeghi
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anushka Edlabadkar
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Richard Zhang
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Ning Ru
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Janet E Baulch
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Rakesh Manjappa
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jinghui Wang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marie Le Bouteiller
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amy Yu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karl Bush
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lawrie Skinner
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peter G Maxim
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Richard L Frock
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
31
|
Hunt MS, Yang SJ, Mortensen E, Boukhris A, Buckner J, Cook PJ, Rawlings DJ. Dual-locus, dual-HDR editing permits efficient generation of antigen-specific regulatory T cells with robust suppressive activity. Mol Ther 2023; 31:2872-2886. [PMID: 37481700 PMCID: PMC10556186 DOI: 10.1016/j.ymthe.2023.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/23/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023] Open
Abstract
Adoptive regulatory T (Treg) cell therapy is predicted to modulate immune tolerance in autoimmune diseases, including type 1 diabetes (T1D). However, the requirement for antigen (ag) specificity to optimally orchestrate tissue-specific, Treg cell-mediated tolerance limits effective clinical application. To address this challenge, we present a single-step, combinatorial gene editing strategy utilizing dual-locus, dual-homology-directed repair (HDR) to generate and specifically expand ag-specific engineered Treg (EngTreg) cells derived from donor CD4+ T cells. Concurrent delivery of CRISPR nucleases and recombinant (r)AAV homology donor templates targeting FOXP3 and TRAC was used to achieve three parallel goals: enforced, stable expression of FOXP3; replacement of the endogenous T cell receptor (TCR) with an islet-specific TCR; and selective enrichment of dual-edited cells. Each HDR donor template contained an alternative component of a heterodimeric chemically inducible signaling complex (CISC), designed to activate interleukin-2 (IL-2) signaling in response to rapamycin, promoting expansion of only dual-edited EngTreg cells. Using this approach, we generated purified, islet-specific EngTreg cells that mediated robust direct and bystander suppression of effector T (Teff) cells recognizing the same or a different islet antigen peptide, respectively. This platform is broadly adaptable for use with alternative TCRs or other targeting moieties for application in tissue-specific autoimmune or inflammatory diseases.
Collapse
MESH Headings
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Gene Editing/methods
- Humans
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Forkhead Transcription Factors/metabolism
- Forkhead Transcription Factors/genetics
- CRISPR-Cas Systems
- Diabetes Mellitus, Type 1/therapy
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/genetics
- Recombinational DNA Repair
- Genetic Vectors/genetics
- Interleukin-2/genetics
- Interleukin-2/metabolism
- Animals
- Immune Tolerance
Collapse
Affiliation(s)
- Martina S Hunt
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA
| | - Soo Jung Yang
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle WA 98101, USA
| | - Emma Mortensen
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle WA 98101, USA
| | - Ahmad Boukhris
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA
| | - Jane Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle WA 98101, USA
| | - Peter J Cook
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA.
| | - David J Rawlings
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Department of Immunology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
32
|
Loparo JJ. Holding it together: DNA end synapsis during non-homologous end joining. DNA Repair (Amst) 2023; 130:103553. [PMID: 37572577 PMCID: PMC10530278 DOI: 10.1016/j.dnarep.2023.103553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/14/2023]
Abstract
DNA double strand breaks (DSBs) are common lesions whose misrepair are drivers of oncogenic transformations. The non-homologous end joining (NHEJ) pathway repairs the majority of these breaks in vertebrates by directly ligating DNA ends back together. Upon formation of a DSB, a multiprotein complex is assembled on DNA ends which tethers them together within a synaptic complex. Synapsis is a critical step of the NHEJ pathway as loss of synapsis can result in mispairing of DNA ends and chromosome translocations. As DNA ends are commonly incompatible for ligation, the NHEJ machinery must also process ends to enable rejoining. This review describes how recent progress in single-molecule approaches and cryo-EM have advanced our molecular understanding of DNA end synapsis during NHEJ and how synapsis is coordinated with end processing to determine the fidelity of repair.
Collapse
Affiliation(s)
- Joseph J Loparo
- Dept. of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Ayala-Zambrano C, Yuste M, Frias S, Garcia-de-Teresa B, Mendoza L, Azpeitia E, Rodríguez A, Torres L. A Boolean network model of the double-strand break repair pathway choice. J Theor Biol 2023; 573:111608. [PMID: 37595867 DOI: 10.1016/j.jtbi.2023.111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023]
Abstract
Double strand break (DSB) repair is critical to maintaining the integrity of the genome. DSB repair deficiency underlies multiple pathologies, including cancer, chromosome instability syndromes, and, potentially, neurodevelopmental defects. DSB repair is mainly handled by two pathways: highly accurate homologous recombination (HR), which requires a sister chromatid for template-based repair, limited to S/G2 phases of the cell cycle, and canonical non-homologous end joining (c-NHEJ), available throughout the cell cycle in which minimum homology is sufficient for highly efficient yet error-prone repair. Some circumstances, such as cancer, require alternative highly mutagenic DSB repair pathways like microhomology-mediated end-joining (MMEJ) and single-strand annealing (SSA), which are triggered to attend to DNA damage. These non-canonical repair alternatives are emerging as prominent drivers of resistance in drug-based tumor therapies. Multiple DSB repair options require tight inter-pathway regulation to prevent unscheduled activities. In addition to this complexity, epigenetic modifications of the histones surrounding the DSB region are emerging as critical regulators of the DSB repair pathway choice. Modeling approaches to understanding DSBs repair pathway choice are advantageous to perform simulations and generate predictions on previously uncharacterized aspects of DSBs response. In this work, we present a Boolean network model of the DSB repair pathway choice that incorporates the knowledge, into a dynamic system, of the inter-pathways regulation involved in DSB repair, i.e., HR, c-NHEJ, SSA, and MMEJ. Our model recapitulates the well-characterized HR activity observed in wild-type cells in response to DSBs. It also recovers clinically relevant behaviors of BRCA1/FANCS mutants, and their corresponding drug resistance mechanisms ascribed to DNA repair gain-of-function pathogenic variants. Since epigenetic modifiers are dynamic and possible druggable targets, we incorporated them into our model to better characterize their involvement in DSB repair. Our model predicted that loss of the TIP60 complex and its corresponding histone acetylation activity leads to activation of SSA in response to DSBs. Our experimental validation showed that TIP60 effectively prevents activation of RAD52, a key SSA executor, and confirms the suitable use of Boolean network modeling for understanding DNA DSB repair.
Collapse
Affiliation(s)
- Cecilia Ayala-Zambrano
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Mariana Yuste
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, Morelia, Mexico
| | - Sara Frias
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, Ciudad de México 04510, Mexico
| | | | - Luis Mendoza
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, Ciudad de México 04510, Mexico
| | - Eugenio Azpeitia
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, Morelia, Mexico
| | - Alfredo Rodríguez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, Ciudad de México 04510, Mexico; Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico.
| | - Leda Torres
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico.
| |
Collapse
|
34
|
Vanoli F, Antonescu CR. Modeling sarcoma relevant translocations using CRISPR-Cas9 in human embryonic stem derived mesenchymal precursors. Genes Chromosomes Cancer 2023; 62:501-509. [PMID: 36965130 PMCID: PMC10725040 DOI: 10.1002/gcc.23141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 03/27/2023] Open
Abstract
The role of cancer relevant translocations in tumorigenesis has been historically hampered by the lack of faithful in vitro and in vivo models. The development of the latest genome editing tools (e.g., CRISPR-Cas9) allowed modeling of various chromosomal translocations with different effects on proliferation and transformation capacity depending on the cell line used and secondary genetic alterations. The cellular context is particularly relevant in the case of oncogenic fusions expressed in sarcomas whose histogenesis remain uncertain. Moreover, recent studies have emphasized the increased frequency of gene fusion promiscuity across different mesenchymal tumor entities, which are clinicopathologically unrelated. This review provides a summary of different strategies utilized to generate cancer models with a focus on fusion-driven mesenchymal neoplasia.
Collapse
Affiliation(s)
- Fabio Vanoli
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
35
|
Canoy RJ, Shmakova A, Karpukhina A, Lomov N, Tiukacheva E, Kozhevnikova Y, André F, Germini D, Vassetzky Y. Specificity of cancer-related chromosomal translocations is linked to proximity after the DNA double-strand break and subsequent selection. NAR Cancer 2023; 5:zcad049. [PMID: 37750169 PMCID: PMC10518054 DOI: 10.1093/narcan/zcad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/01/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
Most cancer-related chromosomal translocations appear to be cell type specific. It is currently unknown why different chromosomal translocations occur in different cells. This can be due to either the occurrence of particular translocations in specific cell types or adaptive survival advantage conferred by translocations only in specific cells. We experimentally addressed this question by double-strand break (DSB) induction at MYC, IGH, AML and ETO loci in the same cell to generate chromosomal translocations in different cell lineages. Our results show that any translocation can potentially arise in any cell type. We have analyzed different factors that could affect the frequency of the translocations, and only the spatial proximity between gene loci after the DSB induction correlated with the resulting translocation frequency, supporting the 'breakage-first' model. Furthermore, upon long-term culture of cells with the generated chromosomal translocations, only oncogenic MYC-IGH and AML-ETO translocations persisted over a 60-day period. Overall, the results suggest that chromosomal translocation can be generated after DSB induction in any type of cell, but whether the cell with the translocation would persist in a cell population depends on the cell type-specific selective survival advantage that the chromosomal translocation confers to the cell.
Collapse
Affiliation(s)
- Reynand Jay Canoy
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
- Institute of Human Genetics, National Institutes of Health, University of the Philippines Manila, 1000 Manila, The Philippines
| | - Anna Shmakova
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
- Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization ‘National Cardiology Research Center’ of the Ministry of Health of the Russian Federation, 127994 Moscow, Russia
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| | - Anna Karpukhina
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| | - Nikolai Lomov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Eugenia Tiukacheva
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| | - Yana Kozhevnikova
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
| | - Franck André
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
| | - Diego Germini
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
| | - Yegor Vassetzky
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| |
Collapse
|
36
|
Achom M, Sadagopan A, Bao C, McBride F, Xu Q, Konda P, Tourdot RW, Li J, Nakhoul M, Gallant DS, Ahmed UA, O’Toole J, Freeman D, Mary Lee GS, Hecht JL, Kauffman EC, Einstein DJ, Choueiri TK, Zhang CZ, Viswanathan SR. A genetic basis for cancer sex differences revealed in Xp11 translocation renal cell carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552029. [PMID: 37577497 PMCID: PMC10418269 DOI: 10.1101/2023.08.04.552029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Xp11 translocation renal cell carcinoma (tRCC) is a female-predominant kidney cancer driven by translocations between the TFE3 gene on chromosome Xp11.2 and partner genes located on either chrX or on autosomes. The rearrangement processes that underlie TFE3 fusions, and whether they are linked to the female sex bias of this cancer, are largely unexplored. Moreover, whether oncogenic TFE3 fusions arise from both the active and inactive X chromosomes in females remains unknown. Here we address these questions by haplotype-specific analyses of whole-genome sequences of 29 tRCC samples from 15 patients and by re-analysis of 145 published tRCC whole-exome sequences. We show that TFE3 fusions universally arise as reciprocal translocations with minimal DNA loss or insertion at paired break ends. Strikingly, we observe a near exact 2:1 female:male ratio in TFE3 fusions arising via X:autosomal translocation (but not via X inversion), which accounts for the female predominance of tRCC. This 2:1 ratio is at least partially attributable to oncogenic fusions involving the inactive X chromosome and is accompanied by partial re-activation of silenced chrX genes on the rearranged chromosome. Our results highlight how somatic alterations involving the X chromosome place unique constraints on tumor initiation and exemplify how genetic rearrangements of the sex chromosomes can underlie cancer sex differences.
Collapse
Affiliation(s)
- Mingkee Achom
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Medicine, Harvard Medical School; Boston, MA, USA
| | - Ananthan Sadagopan
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Chunyang Bao
- Department of Data Science, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital; Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - Fiona McBride
- Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School; Boston, MA, USA
| | - Qingru Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Prathyusha Konda
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Medicine, Harvard Medical School; Boston, MA, USA
| | - Richard W. Tourdot
- Department of Data Science, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School; Boston, MA, USA
| | - Jiao Li
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Medicine, Harvard Medical School; Boston, MA, USA
| | - Maria Nakhoul
- Department of Informatics & Analytics, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Daniel S. Gallant
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Usman Ali Ahmed
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Jillian O’Toole
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Dory Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Gwo-Shu Mary Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Jonathan L. Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center; Boston, MA, USA
| | - Eric C Kauffman
- Department of Urology, Roswell Park Comprehensive Cancer Center; Buffalo, New York, USA
| | - David J Einstein
- Division of Medical Oncology, Beth Israel Deaconess Medical Center; Boston, MA, USA
| | - Toni K. Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Medicine, Harvard Medical School; Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital; Boston, MA, USA
| | - Cheng-Zhong Zhang
- Department of Data Science, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital; Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - Srinivas R. Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Medicine, Harvard Medical School; Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard; Cambridge, MA, USA
- Department of Medicine, Brigham and Women’s Hospital; Boston, MA, USA
| |
Collapse
|
37
|
Montero-Montoya R, Suárez-Larios K, Serrano-García L. Paraoxon and glyphosate induce DNA double-strand breaks but are not type II topoisomerase poisons. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 890:503657. [PMID: 37567644 DOI: 10.1016/j.mrgentox.2023.503657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/13/2023]
Abstract
We tested the hypothesis that the pesticides paraoxon and glyphosate cause DNA double-strand breaks (DSB) by poisoning the enzyme Type II topoisomerase (topo II). Peripheral lymphocytes in G0 phase, treated with the pesticides, plus or minus ICRF-187, an inhibitor of Topo II, were stimulated to proliferate; induced cytogenetic damage was measured. Micronuclei, chromatin buds, nucleoplasmic bridges, and extranuclear fragments were induced by treatments with the pesticides, irrespective of the pre-treatment with ICRF-187. These results indicate that the pesticides do not act as topo II poisons. The induction of DSB may occur by other mechanisms, such as effects on other proteins involved in recombination repair.
Collapse
Affiliation(s)
- Regina Montero-Montoya
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, 04510 Ciudad de México, Mexico.
| | - Karen Suárez-Larios
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, 04510 Ciudad de México, Mexico
| | - Luis Serrano-García
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, 04510 Ciudad de México, Mexico
| |
Collapse
|
38
|
Liu X, Du Y, Xu C, Wang F, Li X, Liu L, Ma X, Wang Y, Ge L, Ren W, Jin L, Zhou L. Comparative analysis of the molecular response characteristics in Platycodon grandiflorus irradiated with heavy ion beams and X-rays. LIFE SCIENCES IN SPACE RESEARCH 2023; 38:87-100. [PMID: 37481313 DOI: 10.1016/j.lssr.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/24/2023]
Abstract
The response of plants to radiation is an essential topic in both space plant cultivation and mutation breeding by radiation. In this study, heavy ion beams (HIB) generated by the ground accelerator and X-rays (XR) were used as models of high linear energy transfer (LET) and low LET radiation to study the molecular response mechanism of Platycodon grandiflorus (P. grandiflorus) seedlings after irradiation. The gene and protein expression profiles of P. grandiflorus after 15 Gy HIB and 20 Gy XR radiation were analyzed by transcriptome and proteome. The results showed that the number of differentially expressed genes (DEGs) induced by HIB radiation was less than that of XR group, but HIB radiation induced more differentially expressed proteins (DEPs). Both HIB and XR radiation activated genes of RNA silencing, double-strand break repair and cell catabolic process. DNA replication and cell cycle related genes were down-regulated. The genes of cell wall and external encapsulating structure were up-regulated after HIB radiation. The gene expression of protein folding and glucan biosynthesis increased after XR radiation. Protein enrichment analysis indicated that HIB radiation resulted in differential protein enriched in photosynthesis and secondary metabolite biosynthesis pathways, while XR radiation induced differential protein of glyoxylate and dicarboxylate metabolism and carbon metabolism. After HIB and XR radiation, the genes of antioxidant system and terpenoid and polyketide metabolic pathways presented different expression patterns. HIB radiation led to the enrichment of non-homologous end-joining pathway. The results will contribute to understanding the biological effects of plants under space radiation.
Collapse
Affiliation(s)
- Xiao Liu
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Du
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoli Xu
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Fusheng Wang
- Dingxi Academy of Agricultural Sciences, Dingxi 743000, China
| | - Xuehu Li
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luxiang Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaohui Ma
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yuanmeng Wang
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Linghui Ge
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Weibin Ren
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| | - Libin Zhou
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; Kejin Innovation Institute of Heavy Ion Beam Biological Industry, Baiyin 730900, China.
| |
Collapse
|
39
|
Li M, Sun J, Shi G. Application of CRISPR screen in mechanistic studies of tumor development, tumor drug resistance, and tumor immunotherapy. Front Cell Dev Biol 2023; 11:1220376. [PMID: 37427373 PMCID: PMC10326906 DOI: 10.3389/fcell.2023.1220376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Tumor is one of the biggest threats to human health. Though tumor therapy has been dramatically advanced by the progress of technology and research in recent decades, it is still far from expectations. Thus, it is of great significance to explore the mechanisms of tumor growth, metastasis, and resistance. Screen based on Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated protein (Cas) 9 gene editing technology are powerful tools for exploring the abovementioned facets. This review summarizes the recent screen performed in cancer cells and immune cells in the tumor microenvironment. The screens in cancer cells mainly focus on exploring the mechanisms underlying cancer cells' growth, metastasis, and how cancer cells escape from the FDA approved drugs or immunotherapy. And the studies in tumor-associated immune cells are primarily aimed at identifying signaling pathways that can enhance the anti-tumor function of cytotoxic T lymphocytes (CTLs), CAR-T cells, and macrophages. Moreover, we discuss the limitations, merits of the CRISPR screen, and further its future application in tumor studies. Importantly, recent advances in high throughput tumor related CRISPR screen have deeply contributed to new concepts and mechanisms underlying tumor development, tumor drug resistance, and tumor immune therapy, all of which will eventually potentiate the clinical therapy for tumor patients.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of Chinese Academy of Sciences, Shanghai, China
| | - Jin Sun
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of Chinese Academy of Sciences, Shanghai, China
| | - Guohai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Shanghai, China
| |
Collapse
|
40
|
Streb P, Kowarz E, Benz T, Reis J, Marschalek R. How chromosomal translocations arise to cause cancer: Gene proximity, trans-splicing, and DNA end joining. iScience 2023; 26:106900. [PMID: 37378346 PMCID: PMC10291325 DOI: 10.1016/j.isci.2023.106900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/01/2023] [Accepted: 05/12/2023] [Indexed: 06/29/2023] Open
Abstract
Chromosomal translocations (CTs) are a genetic hallmark of cancer. They could be identified as recurrent genetic aberrations in hemato-malignancies and solid tumors. More than 40% of all "cancer genes" were identified in recurrent CTs. Most of these CTs result in the production of oncofusion proteins of which many have been studied over the past decades. They influence signaling pathways and/or alter gene expression. However, a precise mechanism for how these CTs arise and occur in a nearly identical fashion in individuals remains to be elucidated. Here, we performed experiments that explain the onset of CTs: (1) proximity of genes able to produce prematurely terminated transcripts, which lead to the production of (2) trans-spliced fusion RNAs, and finally, the induction of (3) DNA double-strand breaks which are subsequently repaired via EJ repair pathways. Under these conditions, balanced chromosomal translocations could be specifically induced. The implications of these findings will be discussed.
Collapse
Affiliation(s)
- Patrick Streb
- Goethe-University, Department Biochemistry, Chemistry & Pharmacy, Institute of Pharmaceutical Biology, Max-von-Laue-Street 9, 60438 Frankfurt am Main, Germany
| | - Eric Kowarz
- Goethe-University, Department Biochemistry, Chemistry & Pharmacy, Institute of Pharmaceutical Biology, Max-von-Laue-Street 9, 60438 Frankfurt am Main, Germany
| | - Tamara Benz
- Goethe-University, Department Biochemistry, Chemistry & Pharmacy, Institute of Pharmaceutical Biology, Max-von-Laue-Street 9, 60438 Frankfurt am Main, Germany
| | - Jennifer Reis
- Goethe-University, Department Biochemistry, Chemistry & Pharmacy, Institute of Pharmaceutical Biology, Max-von-Laue-Street 9, 60438 Frankfurt am Main, Germany
| | - Rolf Marschalek
- Goethe-University, Department Biochemistry, Chemistry & Pharmacy, Institute of Pharmaceutical Biology, Max-von-Laue-Street 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
41
|
Terrones M, de Beeck KO, Van Camp G, Vandeweyer G. Pre-clinical modelling of ROS1+ non-small cell lung cancer. Lung Cancer 2023; 180:107192. [PMID: 37068393 DOI: 10.1016/j.lungcan.2023.107192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/19/2023]
Abstract
Non-small cell lung cancer (NSCLC) is a heterogeneous group of diseases which accounts for 80% of newly diagnosed lung cancers. In the previous decade, a new molecular subset of NSCLC patients (around 2%) harboring rearrangements of the c-ros oncogene 1 was defined. ROS1+ NSCLC is typically diagnosed in young, nonsmoker individuals presenting an adenocarcinoma histology. Patients can benefit from tyrosine kinase inhibitors (TKIs) such as crizotinib and entrectinib, compounds initially approved to treat ALK-, MET- or NTRK- rearranged malignancies respectively. Given the low prevalence of ROS1-rearranged tumors, the use of TKIs was authorized based on pre-clinical evidence using limited experimental models, followed by basket clinical trials. After initiating targeted therapy, disease relapse is reported in approximately 50% of cases as a result of the appearance of resistance mechanisms. The restricted availability of TKIs active against resistance events critically reduces the overall survival. In this review we discuss the pre-clinical ROS1+ NSCLC models developed up to date, highlighting their strengths and limitations with respect to the unmet clinical needs. By combining gene-editing tools and novel cell culture approaches, newly developed pre-clinical models will enhance the development of next-generation tyrosine kinase inhibitors that overcome resistant tumor cell subpopulations.
Collapse
Affiliation(s)
- Marc Terrones
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43/6, 2650 Edegem, Belgium; Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Ken Op de Beeck
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43/6, 2650 Edegem, Belgium; Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43/6, 2650 Edegem, Belgium; Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Geert Vandeweyer
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43/6, 2650 Edegem, Belgium
| |
Collapse
|
42
|
Yang J, Xu P, Chen Z, Zhang X, Xia Y, Fang L, Xie L, Li B, Xu Z. N6-methyadenosine modified SUV39H2 regulates homologous recombination through epigenetic repression of DUSP6 in gastric cancer. Cancer Lett 2023; 558:216092. [PMID: 36806557 DOI: 10.1016/j.canlet.2023.216092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
Despite many advances in treatment over the past few years, the poor 5-year survival rate and high recurrence rate of gastric cancer (GC) remain unsatisfactory. As the most abundant epigenetic modification in the eukaryotic mRNA, N6-methyladenosine (m6A) methylation participates in tumor progression and tissue development. During tumor progression, DNA damage repair mechanisms can be reprogrammed to give new growth advantages on tumor clones whose genomic integrity is disturbed. Here we detected the elevated SUV39H2 expression in GC tissues and cell lines. Functionally, SUV39H2 promoted GC proliferation and inhibited apoptosis in vitro and in vivo. Mechanistically, METTL3-mediated m6A modification promotes mRNA stability of SUV39H2 in an IGF2BP2 dependent manner, resulting in upregulated mRNA expression of SUV39H2. As a histone methyltransferase, SUV39H2 was verified to increase the phosphorylation level of ATM through transcriptional repression of DUSP6, thereby promoting HRR and ultimately inhibiting GC chemosensitivity to cisplatin. Collectively, these results indicate the specific mechanism of m6A-modified SUV39H2 as a histone methyltransferase promoting HRR to inhibit the chemosensitivity of GC. SUV39H2 is expected to become a key target in the precision targeted therapy of GC.
Collapse
Affiliation(s)
- Jing Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Penghui Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Zetian Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Xing Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Yiwen Xia
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Lang Fang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Li Xie
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China.
| |
Collapse
|
43
|
Barghouth PG, Melemenidis S, Montay-Gruel P, Ollivier J, Viswanathan V, Jorge PG, Soto LA, Lau BC, Sadeghi C, Edlabadkar A, Manjappa R, Wang J, Le Bouteiller M, Surucu M, Yu A, Bush K, Skinner L, Maxim PG, Loo BW, Limoli CL, Vozenin MC, Frock RL. FLASH-RT does not affect chromosome translocations and junction structures beyond that of CONV-RT dose-rates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534408. [PMID: 37034651 PMCID: PMC10081175 DOI: 10.1101/2023.03.27.534408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The molecular and cellular mechanisms driving the enhanced therapeutic ratio of ultra-high dose-rate radiotherapy (FLASH-RT) over slower conventional (CONV-RT) radiotherapy dose-rate remain to be elucidated. However, attenuated DNA damage and transient oxygen depletion are among several proposed models. Here, we tested whether FLASH-RT under physioxic (4% O 2 ) and hypoxic conditions (≤2% O 2 ) reduces genome-wide translocations relative to CONV-RT and whether any differences identified revert under normoxic (21% O 2 ) conditions. We employed high-throughput rejoin and genome-wide translocation sequencing ( HTGTS-JoinT-seq ), using S. aureus and S. pyogenes Cas9 "bait" DNA double strand breaks (DSBs), to measure differences in bait-proximal repair and their genome-wide translocations to "prey" DSBs generated by electron beam CONV-RT (0.08-0.13Gy/s) and FLASH-RT (1×10 2 -5×10 6 Gy/s), under varying ionizing radiation (IR) doses and oxygen tensions. Normoxic and physioxic irradiation of HEK293T cells increased translocations at the cost of decreasing bait-proximal repair but were indistinguishable between CONV-RT and FLASH-RT. Although no apparent increase in chromosome translocations was observed with hypoxia-induced apoptosis, the combined decrease in oxygen tension with IR dose-rate modulation did not reveal significant differences in the level of translocations nor in their junction structures. Thus, Irrespective of oxygen tension, FLASH-RT produces translocations and junction structures at levels and proportions that are indistinguishable from CONV-RT.
Collapse
Affiliation(s)
- Paul G. Barghouth
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stavros Melemenidis
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pierre Montay-Gruel
- Laboratory of Radiation Oncology, Department of Radiation Oncology. Lausanne University Hospital and University of Lausanne, Switzerland
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Jonathan Ollivier
- Laboratory of Radiation Oncology, Department of Radiation Oncology. Lausanne University Hospital and University of Lausanne, Switzerland
| | - Vignesh Viswanathan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Patrik G. Jorge
- Institute of Radiation Physics/CHUV, Lausanne University Hospital, Switzerland
| | - Luis A. Soto
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brianna C. Lau
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cheyenne Sadeghi
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anushka Edlabadkar
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rakesh Manjappa
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jinghui Wang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marie Le Bouteiller
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amy Yu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karl Bush
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lawrie Skinner
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peter G. Maxim
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Billy W. Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Charles L. Limoli
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Department of Radiation Oncology. Lausanne University Hospital and University of Lausanne, Switzerland
| | - Richard L. Frock
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
44
|
Refaat AM, Nakata M, Husain A, Kosako H, Honjo T, Begum NA. HNRNPU facilitates antibody class-switch recombination through C-NHEJ promotion and R-loop suppression. Cell Rep 2023; 42:112284. [PMID: 36943867 DOI: 10.1016/j.celrep.2023.112284] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/23/2022] [Accepted: 03/03/2023] [Indexed: 03/22/2023] Open
Abstract
B cells generate functionally different classes of antibodies through class-switch recombination (CSR), which requires classical non-homologous end joining (C-NHEJ) to join the DNA breaks at the donor and acceptor switch (S) regions. We show that the RNA-binding protein HNRNPU promotes C-NHEJ-mediated S-S joining through the 53BP1-shieldin DNA-repair complex. Notably, HNRNPU binds to the S region RNA/DNA G-quadruplexes, contributing to regulating R-loop and single-stranded DNA (ssDNA) accumulation. HNRNPU is an intrinsically disordered protein that interacts with both C-NHEJ and R-loop complexes in an RNA-dependent manner. Strikingly, recruitment of HNRNPU and the C-NHEJ factors is highly sensitive to liquid-liquid phase separation inhibitors, suggestive of DNA-repair condensate formation. We propose that HNRNPU facilitates CSR by forming and stabilizing the C-NHEJ ribonucleoprotein complex and preventing excessive R-loop accumulation, which otherwise would cause persistent DNA breaks and aberrant DNA repair, leading to genomic instability.
Collapse
Affiliation(s)
- Ahmed M Refaat
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Mikiyo Nakata
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Afzal Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Hidetaka Kosako
- Division of Cell Signaling, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.
| | - Nasim A Begum
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
45
|
Kweon J, Hwang HY, Ryu H, Jang AH, Kim D, Kim Y. Targeted genomic translocations and inversions generated using a paired prime editing strategy. Mol Ther 2023; 31:249-259. [PMID: 36114670 PMCID: PMC9840113 DOI: 10.1016/j.ymthe.2022.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 01/26/2023] Open
Abstract
A variety of cancers have been found to have chromosomal rearrangements, and the genomic abnormalities often induced expression of fusion oncogenes. To date, a pair of engineered nucleases including ZFNs, TALENs, and CRISPR-Cas9 nucleases have been used to generate chromosomal rearrangement in living cells and organisms for disease modeling. However, these methods induce unwanted indel mutations at the DNA break junctions, resulting in incomplete disease modeling. Here, we developed prime editor nuclease-mediated translocation and inversion (PETI), a method for programmable chromosomal translocation and inversion using prime editor 2 nuclease (PE2 nuclease) and paired pegRNA. Using PETI method, we successfully introduced DNA recombination in episomal fluorescence reporters as well as precise chromosomal translocations in human cells. We applied PETI to create cancer-associated translocations and inversions such as NPM1-ALK and EML4-ALK in human cells. Our findings show that PETI generated chromosomal translocation and inversion in a programmable manner with efficiencies comparable of Cas9. PETI methods, we believe, could be used to create disease models or for gene therapy.
Collapse
Affiliation(s)
- Jiyeon Kweon
- Department of Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hye-Yeon Hwang
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Haesun Ryu
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - An-Hee Jang
- Department of Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Daesik Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea.
| | - Yongsub Kim
- Department of Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.
| |
Collapse
|
46
|
Tamai M, Fujisawa S, Nguyen TTT, Komatsu C, Kagami K, Kamimoto K, Omachi K, Kasai S, Harama D, Watanabe A, Akahane K, Goi K, Naka K, Kaname T, Teshima T, Inukai T. Creation of Philadelphia chromosome by CRISPR/Cas9-mediated double cleavages on BCR and ABL1 genes as a model for initial event in leukemogenesis. Cancer Gene Ther 2023; 30:38-50. [PMID: 35999358 PMCID: PMC9842507 DOI: 10.1038/s41417-022-00522-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 01/21/2023]
Abstract
The Philadelphia (Ph) chromosome was the first translocation identified in leukemia. It is supposed to be generated by aberrant ligation between two DNA double-strand breaks (DSBs) at the BCR gene located on chromosome 9q34 and the ABL1 gene located on chromosome 22q11. Thus, mimicking the initiation process of translocation, we induced CRISPR/Cas9-mediated DSBs simultaneously at the breakpoints of the BCR and ABL1 genes in a granulocyte-macrophage colony-stimulating factor (GM-CSF) dependent human leukemia cell line. After transfection of two single guide RNAs (sgRNAs) targeting intron 13 of the BCR gene and intron 1 of the ABL1 gene, a factor-independent subline was obtained. In the subline, p210 BCR::ABL1 and its reciprocal ABL1::BCR fusions were generated as a result of balanced translocation corresponding to the Ph chromosome. Another set of sgRNAs targeting intron 1 of the BCR gene and intron 1 of the ABL1 gene induced a factor-independent subline expressing p190 BCR::ABL1. Both p210 and p190 BCR::ABL1 induced factor-independent growth by constitutively activating intracellular signaling pathways for transcriptional regulation of cell cycle progression and cell survival that are usually regulated by GM-CSF. These observations suggested that simultaneous DSBs at the BCR and ABL1 gene breakpoints are initiation events for oncogenesis in Ph+ leukemia. (200/200 words).
Collapse
Affiliation(s)
- Minori Tamai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Shinichi Fujisawa
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Hokkaido, Japan
| | - Thao T T Nguyen
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Chiaki Komatsu
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Keiko Kagami
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kenji Kamimoto
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St Louis, MO, USA
| | - Kohei Omachi
- Division of Nephrology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Shin Kasai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Daisuke Harama
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Atsushi Watanabe
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Koshi Akahane
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kumiko Goi
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kazuhito Naka
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Takanori Teshima
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Hokkaido, Japan
| | - Takeshi Inukai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
47
|
Abstract
DNA polymerase θ (Pol θ) is a DNA repair enzyme widely conserved in animals and plants. Pol θ uses short DNA sequence homologies to initiate repair of double-strand breaks by theta-mediated end joining. The DNA polymerase domain of Pol θ is at the C terminus and is connected to an N-terminal DNA helicase-like domain by a central linker. Pol θ is crucial for maintenance of damaged genomes during development, protects DNA against extensive deletions, and limits loss of heterozygosity. The cost of using Pol θ for genome protection is that a few nucleotides are usually deleted or added at the repair site. Inactivation of Pol θ often enhances the sensitivity of cells to DNA strand-breaking chemicals and radiation. Since some homologous recombination-defective cancers depend on Pol θ for growth, inhibitors of Pol θ may be useful in treating such tumors.
Collapse
Affiliation(s)
- Richard D Wood
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, Texas, USA;
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA;
| |
Collapse
|
48
|
Nedorezova DD, Dubovichenko MV, Belyaeva EP, Grigorieva ED, Peresadina AV, Kolpashchikov DM. Specificity of oligonucleotide gene therapy (OGT) agents. Theranostics 2022; 12:7132-7157. [PMID: 36276652 PMCID: PMC9576606 DOI: 10.7150/thno.77830] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/11/2022] [Indexed: 11/24/2022] Open
Abstract
Oligonucleotide gene therapy (OGT) agents (e. g. antisense, deoxyribozymes, siRNA and CRISPR/Cas) are promising therapeutic tools. Despite extensive efforts, only few OGT drugs have been approved for clinical use. Besides the problem of efficient delivery to targeted cells, hybridization specificity is a potential limitation of OGT agents. To ensure tight binding, a typical OGT agent hybridizes to the stretch of 15-25 nucleotides of a unique targeted sequence. However, hybrids of such lengths tolerate one or more mismatches under physiological conditions, the problem known as the affinity/specificity dilemma. Here, we assess the scale of this problem by analyzing OGT hybridization-dependent off-target effects (HD OTE) in vitro, in animal models and clinical studies. All OGT agents except deoxyribozymes exhibit HD OTE in vitro, with most thorough evidence of poor specificity reported for siRNA and CRISPR/Cas9. Notably, siRNA suppress non-targeted genes due to (1) the partial complementarity to mRNA 3'-untranslated regions (3'-UTR), and (2) the antisense activity of the sense strand. CRISPR/Cas9 system can cause hundreds of non-intended dsDNA breaks due to low specificity of the guide RNA, which can limit therapeutic applications of CRISPR/Cas9 by ex-vivo formats. Contribution of this effects to the observed in vivo toxicity of OGT agents is unclear and requires further investigation. Locked or peptide nucleic acids improve OGT nuclease resistance but not specificity. Approaches that use RNA marker dependent (conditional) activation of OGT agents may improve specificity but require additional validation in cell culture and in vivo.
Collapse
Affiliation(s)
- Daria D. Nedorezova
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Mikhail V. Dubovichenko
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Ekaterina P. Belyaeva
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Ekaterina D. Grigorieva
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Arina V. Peresadina
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Dmitry M. Kolpashchikov
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
- Chemistry Department, University of Central Florida, Orlando, FL 32816-2366, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
49
|
López-Muñoz AD, Rastrojo A, Martín R, Alcami A. High-throughput engineering of cytoplasmic- and nuclear-replicating large dsDNA viruses by CRISPR/Cas9. J Gen Virol 2022; 103:001797. [PMID: 36260063 PMCID: PMC10019086 DOI: 10.1099/jgv.0.001797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The application of CRISPR/Cas9 to improve genome engineering efficiency for large dsDNA viruses has been extensively described, but a robust and versatile method for high-throughput generation of marker-free recombinants for a desired locus has not yet been reported. Cytoplasmic-replicating viruses use their own repair enzymes for homologous recombination, while nuclear-replicating viruses use the host repair machinery. This is translated into a wide range of Cas9-induced homologous recombination efficiencies, depending on the virus replication compartment and viral/host repair machinery characteristics and accessibility. However, the use of Cas9 as a selection agent to target parental virus genomes robustly improves the selection of desired recombinants across large dsDNA viruses. We used ectromelia virus (ECTV) and herpes simplex virus (HSV) type 1 and 2 to optimize a CRISPR/Cas9 method that can be used versatilely for efficient genome editing and selection of both cytoplasmic- and nuclear-replicating viruses. We performed a genome-wide genetic variant analysis of mutations located at predicted off-target sequences for 20 different recombinants, showing off-target-free accuracy by deep sequencing. Our results support this optimized method as an efficient, accurate and versatile approach to enhance the two critical factors of high-throughput viral genome engineering: generation and colour-based selection of recombinants. This application of CRISPR/Cas9 reduces the time and labour for screening of desired recombinants, allowing for high-throughput generation of large collections of mutant dsDNA viruses for a desired locus, optimally in less than 2 weeks.
Collapse
Affiliation(s)
- Alberto Domingo López-Muñoz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.,Present address: Cellular Biology Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Alberto Rastrojo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.,Present address: Genetic Unit, Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rocío Martín
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio Alcami
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
50
|
Shademan B, Masjedi S, Karamad V, Isazadeh A, Sogutlu F, Rad MHS, Nourazarian A. CRISPR Technology in Cancer Diagnosis and Treatment: Opportunities and Challenges. Biochem Genet 2022; 60:1446-1470. [PMID: 35092559 DOI: 10.1007/s10528-022-10193-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022]
Abstract
A novel gene editing tool, the Cas system, associated with the CRISPR system, is emerging as a potential method for genome modification. This simple method, based on the adaptive immune defense system of prokaryotes, has been developed and used in human cancer research. These technologies have tremendous therapeutic potential, especially in gene therapy, where a patient-specific mutation is genetically corrected to cure diseases that cannot be cured with conventional treatments. However, translating CRISPR/Cas9 into the clinic will be challenging, as we still need to improve the efficiency, specificity, and application of the technology. In this review, we will explain how CRISPR-Cas9 technology can treat cancer at the molecular level, focusing on ordination and the epigenome. We will also focus on the promise and shortcomings of this system to ensure its application in the treatment and prevention of cancer.
Collapse
Affiliation(s)
- Behrouz Shademan
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Sepideh Masjedi
- Department of Cellular and Molecular Biology Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Vahidreza Karamad
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatma Sogutlu
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | | | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran.
| |
Collapse
|