1
|
Zheng B, Liu K, Feng J, Ouyang Q, Jia T, Wang Y, Tian S, Chen X, Cai T, Wen L, Zhang X, Li X, Ma X. GAMT facilitates tumor progression via inhibiting p53 in clear cell renal cell carcinoma. Biol Direct 2025; 20:43. [PMID: 40176130 PMCID: PMC11966922 DOI: 10.1186/s13062-025-00641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/23/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most common type of RCC. Even though the targeted drugs for the treatment of ccRCC have a certain therapeutic effect, due to the problem of drug resistance, the search for new targets for targeted therapy of ccRCC remains urgent. GAMT is an enzyme involved in creatine metabolism. However, the precise biological roles and molecular mechanisms of GAMT in ccRCC are not fully understood. RESULTS Here, we found that GAMT was upregulated in ccRCC cells and tissues and associated with poor prognosis. Further, GAMT has pro-oncogenic abilities in promoting ccRCC development and progression. Intriguingly, GAMT exerted biological functions independent of its role in catalyzing creatine synthesis. Mechanistically, GAMT overexpression contributes to the development and progression of ccRCC by inhibiting tumor suppressor p53. Finally, we identified fisetin as a novel GAMT inhibitor and validated its role in suppressing ccRCC progression and sensitizing ccRCC cells to targeted drug axitinib via in vivo and in vitro assays. CONCLUSIONS This study reveals that GAMT has pro-oncogenic abilities in promoting ccRCC development and progression. GAMT exerted its non-enzymatic functions possibly by regulating the expression of p53. Fisetin, the novel GAMT inhibitor identified herein, may serve as a new antitumor drug for ccRCC treatment.
Collapse
Affiliation(s)
- Bin Zheng
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Kan Liu
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Ji Feng
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Qing Ouyang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Tongyu Jia
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Yaohui Wang
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Shuo Tian
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Xinran Chen
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Tianwei Cai
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Lequan Wen
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Xu Zhang
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xiubin Li
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xin Ma
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
2
|
Peng Z, Wu H, Luo Y, Kurgan L. Prediction of Disordered Linkers Using APOD. Methods Mol Biol 2025; 2867:219-231. [PMID: 39576584 DOI: 10.1007/978-1-0716-4196-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Intrinsically disordered linkers (DLs) connect protein domains and structural elements within domains and facilitate allosteric regulation. Computational studies suggest that thousands of proteins have DLs. Since there are only about 250 proteins with manually curated DL annotations (DisProt database ver. 9.3), computational approaches that make accurate predictions of DLs from the protein sequences are essential for reducing this annotation gap. To this end, we recently released the Accurate Predictor Of DLs (APOD) method. Empirical tests show that APOD achieves Area Under the ROC Curve (AUC) of 0.82 and Matthews Correlation Coefficient (MCC) of 0.42 on a low-similarity test dataset. We implement APOD as a freely available and convenient web server at https://yanglab.qd.sdu.edu.cn/APOD/ . This web server takes a protein sequence as the input and outputs an easy-to-parse prediction result, with the entire prediction process done on the server side. We also provide a standalone version of APOD for users who want to process large datasets of sequences. This version must be installed and run locally on the end user's computer. In this chapter, we overview APOD, explain how to locate and use the web server and the standalone implementation, and discuss how to read and interpret APOD's outputs. We also demonstrate utility of APOD based on a case study protein.
Collapse
Affiliation(s)
- Zhenling Peng
- Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, China.
- Frontier Science Center for Nonlinear Expectations, Ministry of Education, Shandong University, Qingdao, China.
| | - Haiyan Wu
- Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, China
| | - Yuxian Luo
- Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, China
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
3
|
Pauzaite T, Nathan JA. A closer look at the role of deubiquitinating enzymes in the Hypoxia Inducible Factor pathway. Biochem Soc Trans 2024; 52:2253-2265. [PMID: 39584532 PMCID: PMC11668284 DOI: 10.1042/bst20230861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024]
Abstract
Hypoxia Inducible transcription Factors (HIFs) are central to the metazoan oxygen-sensing response. Under low oxygen conditions (hypoxia), HIFs are stabilised and govern an adaptive transcriptional programme to cope with prolonged oxygen starvation. However, when oxygen is present, HIFs are continuously degraded by the proteasome in a process involving prolyl hydroxylation and subsequent ubiquitination by the Von Hippel Lindau (VHL) E3 ligase. The essential nature of VHL in the HIF response is well established but the role of other enzymes involved in ubiquitination is less clear. Deubiquitinating enzymes (DUBs) counteract ubiquitination and provide an important regulatory aspect to many signalling pathways involving ubiquitination. In this review, we look at the complex network of ubiquitination and deubiquitination in controlling HIF signalling in normal and low oxygen tensions. We discuss the relative importance of DUBs in opposing VHL, and explore roles of DUBs more broadly in hypoxia, in both VHL and HIF independent contexts. We also consider the catalytic and non-catalytic roles of DUBs, and elaborate on the potential benefits and challenges of inhibiting these enzymes for therapeutic use.
Collapse
Affiliation(s)
- Tekle Pauzaite
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah, Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, U.K
| | - James A. Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah, Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, U.K
| |
Collapse
|
4
|
He Y, Li R, Yu Y, Xu Z, Gao J, Wang C, Huang C, Qi Z. HucMSC extracellular vesicles increasing SATB 1 to activate the Wnt/β-catenin pathway in 6-OHDA-induced Parkinson's disease model. IUBMB Life 2024; 76:1154-1174. [PMID: 39082886 DOI: 10.1002/iub.2893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/20/2024] [Indexed: 11/22/2024]
Abstract
Parkinson's disease (PD) is a degenerative disorder of the nervous system characterized by the loss of dopaminergic neurons and damage of neurons in the substantia nigra (SN) and striatum, resulting in impaired motor functions. This study aims to investigate how extracellular vesicles (EVs) derived from human umbilical cord mesenchymal stem cells (HucMSC) regulate Special AT-rich sequence-binding protein-1 (SATB 1) and influence Wnt/β-catenin pathway and autophagy in PD model. The PD model was induced by damaging SH-SY5Y cells and mice using 6-OHDA. According to the study, administering EVs every other day for 14 days improved the motor behavior of 6-OHDA-induced PD mice and reduced neuronal damage, including dopaminergic neurons. Treatment with EVs for 12 hours increased the viability of 6-OHDA-induced SH-SY5Y cells. The upregulation of SATB 1 expression with EV treatment resulted in the activation of the Wnt/β-catenin pathway in PD model and led to overexpression of β-catenin. Meanwhile, the expression of LC3 II was decreased, indicating alterations in autophagy. In conclusion, EVs could mitigate neuronal damage in the 6-OHDA-induced PD model by upregulating SATB 1 and activating Wnt/β-catenin pathway while also regulating autophagy. Further studies on the potential therapeutic applications of EVs for PD could offer new insights and strategies.
Collapse
Affiliation(s)
- Ying He
- Medical College, Guangxi University, Nanning, China
- Department of Pharmacy, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Ruicheng Li
- Medical College, Guangxi University, Nanning, China
| | - Yuxi Yu
- Medical College, Guangxi University, Nanning, China
| | - Zhiran Xu
- Translational Medicine Research Center, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Jiaxin Gao
- Medical College, Guangxi University, Nanning, China
| | - Cancan Wang
- Medical College, Guangxi University, Nanning, China
| | - Chusheng Huang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning, China
| |
Collapse
|
5
|
Hajisadeghian M, Geiger AM, Briggs C, Smith C, Artavanis-Tsakonas K. Proteasome associated function of UCH37 is evolutionarily conserved in Plasmodium parasites. Sci Rep 2024; 14:29428. [PMID: 39604441 PMCID: PMC11603131 DOI: 10.1038/s41598-024-80433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Ubiquitin C-terminal hydrolase 37 (UCH37 also known as UCHL5) is a conserved deubiquitinating enzyme (DUB) with dual roles in proteasomal degradation and chromatin remodeling in humans. Its Plasmodium falciparum ortholog, PfUCH37, is unusual in that it possesses both DUB and deneddylating activities. While PfUCH37 is enriched in proteasome preparations, its direct interaction and broader functions in Plasmodium remain unclear, particularly given the absence of the chromatin remodeling complex INO80 homologs. This study utilizes transgenic parasites and proteomics to identify PfUCH37-associating proteins. We confirm a direct interaction with the proteasome and demonstrate that the interaction mechanism is evolutionarily conserved. Notably, we discover a divergence in localization compared to the human enzyme and identify novel interacting partners, suggesting alternative functions for PfUCH37 in Plasmodium. These findings provide insights into the unique biology of this enzyme in malaria parasites, potentially opening avenues for targeted therapeutic interventions.
Collapse
Affiliation(s)
| | - Annie M Geiger
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Carla Briggs
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Cameron Smith
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
6
|
Lin SY, Lin YL, Usharani R, Radjacommare R, Fu H. The Structural Role of RPN10 in the 26S Proteasome and an RPN2-Binding Residue on RPN13 Are Functionally Important in Arabidopsis. Int J Mol Sci 2024; 25:11650. [PMID: 39519207 PMCID: PMC11546751 DOI: 10.3390/ijms252111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/17/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
The ubiquitin receptors RPN10 and RPN13 harbor multiple activities including ubiquitin binding; however, solid evidence connecting a particular activity to specific in vivo functions is scarce. Through complementation, the ubiquitin-binding site-truncated Arabidopsis RPN10 (N215) rescued the growth defects of rpn10-2, supporting the idea that the ubiquitin-binding ability of RPN10 is dispensable and N215, which harbors a vWA domain, is fully functional. Instead, a structural role played by RPN10 in the 26S proteasomes is likely vital in vivo. A site-specific variant, RPN10-11A, that likely has a destabilized vWA domain could partially rescue the rpn10-2 growth defects and is not integrated into 26S proteasomes. Native polyacrylamide gel electrophoresis and mass spectrometry with rpn10-2 26S proteasomes showed that the loss of RPN10 reduced the abundance of double-capped proteasomes, induced the integration of specific subunit paralogues, and increased the association of ECM29, a well-known factor critical for quality checkpoints by binding and inhibiting aberrant proteasomes. Extensive Y2H and GST-pulldown analyses identified RPN2-binding residues on RPN13 that overlapped with ubiquitin-binding and UCH2-binding sites in the RPN13 C-terminus (246-254). Interestingly, an analysis of homozygous rpn10-2 segregation in a rpn13-1 background harboring RPN13 variants defective for ubiquitin binding and/or RPN2 binding supports the criticality of the RPN13-RPN2 association in vivo.
Collapse
Affiliation(s)
- Shih-Yun Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan; (S.-Y.L.); (R.U.); (R.R.)
| | - Ya-Ling Lin
- Program in Biological and Sustainable Technology, Academy of Circular Economy, National Chung Hsing University, Nantou 540, Taiwan;
| | - Raju Usharani
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan; (S.-Y.L.); (R.U.); (R.R.)
| | - Ramalingam Radjacommare
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan; (S.-Y.L.); (R.U.); (R.R.)
| | - Hongyong Fu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan; (S.-Y.L.); (R.U.); (R.R.)
| |
Collapse
|
7
|
Xu Z, Zhang N, Shi L. Potential roles of UCH family deubiquitinases in tumorigenesis and chemical inhibitors developed against them. Am J Cancer Res 2024; 14:2666-2694. [PMID: 39005671 PMCID: PMC11236784 DOI: 10.62347/oege2648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/30/2024] [Indexed: 07/16/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) are a large group of proteases that reverse ubiquitination process and maintain protein homeostasis. The DUBs have been classified into seven subfamilies according to their primary sequence and structural similarity. As a small subfamily of DUBs, the ubiquitin C-terminal hydrolases (UCHs) subfamily only contains four members including UCHL1, UCHL3, UCHL5, and BRCA1-associated protein-1 (BAP1). Despite sharing the deubiquitinase activity with a similar catalysis mechanism, the UCHs exhibit distinctive biological functions which are mainly determined by their specific subcellular localization and partner substrates. Besides, growing evidence indicates that the UCH enzymes are involved in human malignancies. In this review, the structural information and biological functions of the UCHs are briefly described. Meanwhile, the roles of these enzymes in tumorigenesis and the discovered inhibitors against them are also summarized to give an insight into the cancer therapy with the potential alternative strategy.
Collapse
Affiliation(s)
- Zhuo Xu
- State Key Laboratory of Chemical Biology, Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences555 Zu Chong Zhi Road, Shanghai 201203, China
- University of The Chinese Academy of Sciences19A Yuquan Road, Beijing 100049, China
| | - Naixia Zhang
- State Key Laboratory of Chemical Biology, Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences555 Zu Chong Zhi Road, Shanghai 201203, China
- University of The Chinese Academy of Sciences19A Yuquan Road, Beijing 100049, China
| | - Li Shi
- State Key Laboratory of Chemical Biology, Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
8
|
Ma X, Feng L, Tao A, Zenda T, He Y, Zhang D, Duan H, Tao Y. Identification and validation of seed dormancy loci and candidate genes and construction of regulatory networks by WGCNA in maize introgression lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:259. [PMID: 38038768 DOI: 10.1007/s00122-023-04495-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
KEY MESSAGE Seventeen PHS-QTLs and candidate genes were obtained, including eleven major loci, three under multiple environments and two with co-localization by the other mapping methods; The functions of three candidate genes were validated using mutants; nine target proteins and five networks were filtered by joint analysis of GWAS and WGCNA. Seed dormancy (SD) and pre-harvest sprouting (PHS) affect yield, as well as grain and hybrid quality in seed production. Therefore, identification of genetic and regulatory pathways underlying PHS and SD is key to gene function analysis, allelic variation mining and genetic improvement. In this study, 78,360 SNPs by SLAF-seq of 230 maize chromosome segment introgression lines (ILs), PHS under five environments were used to conduct GWAS (genome wide association study) (a threshold of 1/n), and seventeen unreported PHS QTLs were obtained, including eleven QTLs with PVE > 10% and three QTLs under multiple environments. Two QTL loci were co-located between the other two genetic mapping methods. Using differential gene expression analyses at two stages of grain development, gene functional analysis of Arabidopsis mutants, and gene functional analysis in the QTL region, seventeen PHS QTL-linked candidate genes were identified, and their five molecular regulatory networks constructed. Based on the Arabidopsis T-DNA mutations, three candidate genes were shown to regulate for SD and PHS. Meanwhile, using RNA-seq of grain development, the weighted correlation network analysis (WGCNA) was performed, deducing five regulatory pathways and target genes that regulate PHS and SD. Based on the conjoint analysis of GWAS and WGCNA, four pathways, nine target proteins and target genes were revealed, most of which regulate cell wall metabolism, cell proliferation and seed dehydration tolerance. This has important theoretical and practical significance for elucidating the genetic basis of maize PHS and SD, as well as mining of genetic resources and genetic improvement of traits.
Collapse
Affiliation(s)
- Xiaolin Ma
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Liqing Feng
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Anyan Tao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Yuan He
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Daxiao Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.
| | - Yongsheng Tao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
9
|
Zhao Z, O’Dea R, Wendrich K, Kazi N, Gersch M. Native Semisynthesis of Isopeptide-Linked Substrates for Specificity Analysis of Deubiquitinases and Ubl Proteases. J Am Chem Soc 2023; 145:20801-20812. [PMID: 37712884 PMCID: PMC10540217 DOI: 10.1021/jacs.3c04062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 09/16/2023]
Abstract
Post-translational modifications with ubiquitin (Ub) and ubiquitin-like proteins (Ubls) are regulated by isopeptidases termed deubiquitinases (DUBs) and Ubl proteases. Here, we describe a mild chemical method for the preparation of fluorescence polarization substrates for these enzymes that is based on the activation of C-terminal Ub/Ubl hydrazides to acyl azides and their subsequent functionalization to isopeptides. The procedure is complemented by native purification routes and thus circumvents the previous need for desulfurization and refolding. Its broad applicability was demonstrated by the generation of fully cleavable substrates for Ub, SUMO1, SUMO2, NEDD8, ISG15, and Fubi. We employed these reagents for the investigation of substrate specificities of human UCHL3, USPL1, USP2, USP7, USP16, USP18, and USP36. Pronounced selectivity of USPL1 for SUMO2/3 over SUMO1 was observed, which we rationalize with crystal structures and biochemical assays, revealing a SUMO paralogue specificity mechanism distinct from SENP family deSUMOylases. Moreover, we investigated the recently identified Fubi proteases USP16 and USP36 and found both to act as bona fide deFubiylases, harboring catalytic activity against isopeptide-linked Fubi. Surprisingly, we also noticed the activity of both enzymes toward ISG15, previously not identified in chemoproteomics, which makes USP16 and USP36 the first human DUBs with specific isopeptidase activity toward three distinct modifiers. The methods described here for the preparation of isopeptide-linked, fully folded substrates will aid in the characterization of further DUBs/Ubl proteases. More broadly, our findings highlight possible limitations associated with fluorogenic substrates and Ubl activity-based probes and stress the importance of isopeptide-containing reagents for validating isopeptidase activities and quantifying substrate specificities.
Collapse
Affiliation(s)
- Zhou Zhao
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn-Str.
15, 44227 Dortmund, Germany
| | - Rachel O’Dea
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn-Str.
15, 44227 Dortmund, Germany
| | - Kim Wendrich
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn-Str.
15, 44227 Dortmund, Germany
| | - Nafizul Kazi
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn-Str.
15, 44227 Dortmund, Germany
| | - Malte Gersch
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn-Str.
15, 44227 Dortmund, Germany
| |
Collapse
|
10
|
Husain S, Mohamed R, Abd Halim KB, Mohd Mutalip SS. Homology modeling of human BAP1 and analysis of its binding properties through molecular docking and molecular dynamics simulation. J Biomol Struct Dyn 2023; 41:7158-7173. [PMID: 36039769 DOI: 10.1080/07391102.2022.2117244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/19/2022] [Indexed: 10/14/2022]
Abstract
BRCA1-associated protein 1 (BAP1) is a nuclear-localized Ubiquitin C-terminal hydrolase (UCH) that functions as a tumour suppressor, and although BAP1 has been linked to cancer, the molecular mechanism by which BAP1 regulates cancer and its crystal structure have not been elucidated. In this study, computational approaches were used to identify the protein model of BAP1 and its potential inhibitors. The structure of the BAP1 model was constructed through homology modeling and the generated BAP1 model was observed to exhibit good quality protein model as the distribution of its amino acids in the Ramachandran's plot corresponded to 87.7% in the most favoured regions. Docking and simulating of the ubiquitin on the BAP1 model structure revealed the rearrangement of F228, F50, and H169 residues of the BAP1 and switching of BAP1's conformation into a productive state. Our screening results of potential BAP1 inhibitors against the FDA approved drugs shortlisted two potential inhibitors, which are FDA1065 and FDA755. We then performed molecular dynamics simulations and Molecular mechanics Poisson-Boltzmann surface area (MMPBSA) analysis on both inhibitors and found that only the BAP1-FDA755 formed a stable complex and the FDA755 ligand remained its position inside the active site of the BAP1 with a total binding energy of (-51.77 ± 3.49 kcal/mol). We speculate that the presence of methyl group in FDA755 play an important role in stabilizing the BAP1-FDA755 complex.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Syarifuddin Husain
- Bioinformatics Unit, Faculty of Pharmacy, UiTM Cawangan Selangor, Bandar Puncak Alam, Selangor, Malaysia
| | - Ruzianisra Mohamed
- Bioinformatics Unit, Faculty of Pharmacy, UiTM Cawangan Selangor, Bandar Puncak Alam, Selangor, Malaysia
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, UiTM Puncak Alam Campus, Bandar Puncak Alam, Selangor, Malaysia
| | - Khairul Bariyyah Abd Halim
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
- Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Siti Syairah Mohd Mutalip
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, UiTM Puncak Alam Campus, Bandar Puncak Alam, Selangor, Malaysia
| |
Collapse
|
11
|
Thomas JF, Valencia-Sánchez MI, Tamburri S, Gloor SL, Rustichelli S, Godínez-López V, De Ioannes P, Lee R, Abini-Agbomson S, Gretarsson K, Burg JM, Hickman AR, Sun L, Gopinath S, Taylor HF, Sun ZW, Ezell RJ, Vaidya A, Meiners MJ, Cheek MA, Rice WJ, Svetlov V, Nudler E, Lu C, Keogh MC, Pasini D, Armache KJ. Structural basis of histone H2A lysine 119 deubiquitination by Polycomb repressive deubiquitinase BAP1/ASXL1. SCIENCE ADVANCES 2023; 9:eadg9832. [PMID: 37556531 PMCID: PMC10411902 DOI: 10.1126/sciadv.adg9832] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023]
Abstract
Histone H2A lysine 119 (H2AK119Ub) is monoubiquitinated by Polycomb repressive complex 1 and deubiquitinated by Polycomb repressive deubiquitinase complex (PR-DUB). PR-DUB cleaves H2AK119Ub to restrict focal H2AK119Ub at Polycomb target sites and to protect active genes from aberrant silencing. The PR-DUB subunits (BAP1 and ASXL1) are among the most frequently mutated epigenetic factors in human cancers. How PR-DUB establishes specificity for H2AK119Ub over other nucleosomal ubiquitination sites and how disease-associated mutations of the enzyme affect activity are unclear. Here, we determine a cryo-EM structure of human BAP1 and the ASXL1 DEUBAD in complex with a H2AK119Ub nucleosome. Our structural, biochemical, and cellular data reveal the molecular interactions of BAP1 and ASXL1 with histones and DNA that are critical for restructuring the nucleosome and thus establishing specificity for H2AK119Ub. These results further provide a molecular explanation for how >50 mutations in BAP1 and ASXL1 found in cancer can dysregulate H2AK119Ub deubiquitination, providing insight into understanding cancer etiology.
Collapse
Affiliation(s)
- Jonathan F. Thomas
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Marco Igor Valencia-Sánchez
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Simone Tamburri
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Department of Health Sciences, University of Milan, Via A. di Rudini 8, 20142 Milan, Italy
| | | | - Samantha Rustichelli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Victoria Godínez-López
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Pablo De Ioannes
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Rachel Lee
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Stephen Abini-Agbomson
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kristjan Gretarsson
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | | | - Lu Sun
- EpiCypher Inc., Durham, NC 27709, USA
| | | | | | | | | | | | | | | | - William J. Rice
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Vladimir Svetlov
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Chao Lu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Diego Pasini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Department of Health Sciences, University of Milan, Via A. di Rudini 8, 20142 Milan, Italy
| | - Karim-Jean Armache
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
12
|
Patel R, Negrón Terón K, Zhou M, Nakayasu E, Drown B, Das C. Genetically Encoded Crosslinking Enables Identification of Multivalent Ubiquitin-Deubiquitylating Enzyme Interactions. Chembiochem 2023; 24:e202300305. [PMID: 37262077 PMCID: PMC11088939 DOI: 10.1002/cbic.202300305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023]
Abstract
Ubiquitin (Ub) proteoforms control nearly every aspect of eukaryotic cell biology through their diversity. Inspired by the widely used Ub C-terminal electrophiles (Ub-E), here we report the identification of multivalent binding of Ub with deubiquitylating enzymes (Dubs) using genetic code expansion (GCE) and crosslinking mass spectrometry. While the Ub-Es only gather structural information with the S1 Dub sites, we demonstrate that GCE of Ub with p-benzoyl-L-phenylalanine enables identification of interaction modes beyond the S1 site with a panel of Dubs of both eukaryotic and prokaryotic origin. Collectively, this represents the next generation of Ub-based affinity probes with a unique ability to unravel Ub interaction landscapes beyond what is afforded by cysteine-based chemistries.
Collapse
Affiliation(s)
- Rishi Patel
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | - Kristos Negrón Terón
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | - Mowei Zhou
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA
| | - Ernesto Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA
| | - Bryon Drown
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| |
Collapse
|
13
|
Gregor JB, Xu D, French ME. Assembly and disassembly of branched ubiquitin chains. Front Mol Biosci 2023; 10:1197272. [PMID: 37325469 PMCID: PMC10267395 DOI: 10.3389/fmolb.2023.1197272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Protein ubiquitylation is an essential post-translational modification that regulates nearly all aspects of eukaryotic cell biology. A diverse collection of ubiquitylation signals, including an extensive repertoire of polymeric ubiquitin chains, leads to a range of different functional outcomes for the target protein. Recent studies have shown that ubiquitin chains can be branched and that branched chains have a direct impact on the stability or the activity of the target proteins they are attached to. In this mini review, we discuss the mechanisms that control the assembly and disassembly of branched chains by the enzymes of the ubiquitylation and deubiquitylation machinery. Existing knowledge regarding the activities of chain branching ubiquitin ligases and the deubiquitylases responsible for cleaving branched chains is summarized. We also highlight new findings concerning the formation of branched chains in response to small molecules that induce the degradation of otherwise stable proteins and examine the selective debranching of heterotypic chains by the proteasome-bound deubiquitylase UCH37.
Collapse
Affiliation(s)
- Justin B. Gregor
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Dantong Xu
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, United States
| | - Michael E. French
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, United States
- Department of Chemistry and Biochemistry, University of Tampa, Tampa, FL, United States
| |
Collapse
|
14
|
Ge W, Yu C, Li J, Yu Z, Li X, Zhang Y, Liu CP, Li Y, Tian C, Zhang X, Li G, Zhu B, Xu RM. Basis of the H2AK119 specificity of the Polycomb repressive deubiquitinase. Nature 2023; 616:176-182. [PMID: 36991118 DOI: 10.1038/s41586-023-05841-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 02/14/2023] [Indexed: 03/31/2023]
Abstract
Repression of gene expression by protein complexes of the Polycomb group is a fundamental mechanism that governs embryonic development and cell-type specification1-3. The Polycomb repressive deubiquitinase (PR-DUB) complex removes the ubiquitin moiety from monoubiquitinated histone H2A K119 (H2AK119ub1) on the nucleosome4, counteracting the ubiquitin E3 ligase activity of Polycomb repressive complex 1 (PRC1)5 to facilitate the correct silencing of genes by Polycomb proteins and safeguard active genes from inadvertent silencing by PRC1 (refs. 6-9). The intricate biological function of PR-DUB requires accurate targeting of H2AK119ub1, but PR-DUB can deubiquitinate monoubiquitinated free histones and peptide substrates indiscriminately; the basis for its exquisite nucleosome-dependent substrate specificity therefore remains unclear. Here we report the cryo-electron microscopy structure of human PR-DUB, composed of BAP1 and ASXL1, in complex with the chromatosome. We find that ASXL1 directs the binding of the positively charged C-terminal extension of BAP1 to nucleosomal DNA and histones H3-H4 near the dyad, an addition to its role in forming the ubiquitin-binding cleft. Furthermore, a conserved loop segment of the catalytic domain of BAP1 is situated near the H2A-H2B acidic patch. This distinct nucleosome-binding mode displaces the C-terminal tail of H2A from the nucleosome surface, and endows PR-DUB with the specificity for H2AK119ub1.
Collapse
Affiliation(s)
- Weiran Ge
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cong Yu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jingjing Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenyu Yu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaorong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chao-Pei Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yingfeng Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Changlin Tian
- Division of Life Sciences and Anhui Provisional Engineering Laboratory of Peptide Drugs, University of Science and Technology of China, Hefei, China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Rui-Ming Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
15
|
Thomas JF, Valencia-Sánchez MI, Tamburri S, Gloor SL, Rustichelli S, Godínez-López V, De Ioannes P, Lee R, Abini-Agbomson S, Gretarsson K, Burg JM, Hickman AR, Sun L, Gopinath S, Taylor H, Meiners MJ, Cheek MA, Rice W, Nudler E, Lu C, Keogh MC, Pasini D, Armache KJ. Structural basis of histone H2A lysine 119 deubiquitination by Polycomb Repressive Deubiquitinase BAP1/ASXL1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529554. [PMID: 36865140 PMCID: PMC9980132 DOI: 10.1101/2023.02.23.529554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The maintenance of gene expression patterns during metazoan development is achieved by the actions of Polycomb group (PcG) complexes. An essential modification marking silenced genes is monoubiquitination of histone H2A lysine 119 (H2AK119Ub) deposited by the E3 ubiquitin ligase activity of the non-canonical Polycomb Repressive Complex 1. The Polycomb Repressive Deubiquitinase (PR-DUB) complex cleaves monoubiquitin from histone H2A lysine 119 (H2AK119Ub) to restrict focal H2AK119Ub at Polycomb target sites and to protect active genes from aberrant silencing. BAP1 and ASXL1, subunits that form active PR-DUB, are among the most frequently mutated epigenetic factors in human cancers, underscoring their biological importance. How PR-DUB achieves specificity for H2AK119Ub to regulate Polycomb silencing is unknown, and the mechanisms of most of the mutations in BAP1 and ASXL1 found in cancer have not been established. Here we determine a cryo-EM structure of human BAP1 bound to the ASXL1 DEUBAD domain in complex with a H2AK119Ub nucleosome. Our structural, biochemical, and cellular data reveal the molecular interactions of BAP1 and ASXL1 with histones and DNA that are critical for remodeling the nucleosome and thus establishing specificity for H2AK119Ub. These results further provide a molecular explanation for how >50 mutations in BAP1 and ASXL1 found in cancer can dysregulate H2AK119Ub deubiquitination, providing new insight into understanding cancer etiology. One Sentence Summary We reveal the molecular mechanism of nucleosomal H2AK119Ub deubiquitination by human BAP1/ASXL1.
Collapse
Affiliation(s)
- Jonathan F. Thomas
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- These authors contributed equally
| | - Marco Igor Valencia-Sánchez
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- These authors contributed equally
| | - Simone Tamburri
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
- University of Milan, Via A. di Rudini 8, Department of Health Sciences, 20142 Milan, Italy
| | | | - Samantha Rustichelli
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Victoria Godínez-López
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Pablo De Ioannes
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Rachel Lee
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Stephen Abini-Agbomson
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Kristjan Gretarsson
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | - Lu Sun
- EpiCypher Inc., Durham, North Carolina, USA
| | | | | | | | | | - William Rice
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Chao Lu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Diego Pasini
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
- University of Milan, Via A. di Rudini 8, Department of Health Sciences, 20142 Milan, Italy
| | - Karim-Jean Armache
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Lead contact
| |
Collapse
|
16
|
The Ubiquitin-26S Proteasome Pathway and Its Role in the Ripening of Fleshy Fruits. Int J Mol Sci 2023; 24:ijms24032750. [PMID: 36769071 PMCID: PMC9917055 DOI: 10.3390/ijms24032750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
The 26S proteasome is an ATP-dependent proteolytic complex in eukaryotes, which is mainly responsible for the degradation of damaged and misfolded proteins and some regulatory proteins in cells, and it is essential to maintain the balance of protein levels in the cell. The ubiquitin-26S proteasome pathway, which targets a wide range of protein substrates in plants, is an important post-translational regulatory mechanism involved in various stages of plant growth and development and in the maturation process of fleshy fruits. Fleshy fruit ripening is a complex biological process, which is the sum of a series of physiological and biochemical reactions, including the biosynthesis and signal transduction of ripening related hormones, pigment metabolism, fruit texture changes and the formation of nutritional quality. This paper reviews the structure of the 26S proteasome and the mechanism of the ubiquitin-26S proteasome pathway, and it summarizes the function of this pathway in the ripening process of fleshy fruits.
Collapse
|
17
|
Osei-Amponsa V, Walters KJ. Proteasome substrate receptors and their therapeutic potential. Trends Biochem Sci 2022; 47:950-964. [PMID: 35817651 PMCID: PMC9588529 DOI: 10.1016/j.tibs.2022.06.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 11/22/2022]
Abstract
The ubiquitin-proteasome system (UPS) is critical for protein quality control and regulating protein lifespans. Following ubiquitination, UPS substrates bind multidomain receptors that, in addition to ubiquitin-binding sites, contain functional domains that bind to deubiquitinating enzymes (DUBs) or the E3 ligase E6AP/UBE3A. We provide an overview of the proteasome, focusing on its receptors and DUBs. We highlight the key role of dynamics and importance of the substrate receptors having domains for both binding and processing ubiquitin chains. The UPS is rich with therapeutic opportunities, with proteasome inhibitors used clinically and ongoing development of small molecule proteolysis targeting chimeras (PROTACs) for the degradation of disease-associated proteins. We discuss the therapeutic potential of proteasome receptors, including hRpn13, for which PROTACs have been developed.
Collapse
Affiliation(s)
- Vasty Osei-Amponsa
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Kylie J Walters
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
18
|
Grethe C, Schmidt M, Kipka GM, O'Dea R, Gallant K, Janning P, Gersch M. Structural basis for specific inhibition of the deubiquitinase UCHL1. Nat Commun 2022; 13:5950. [PMID: 36216817 PMCID: PMC9549030 DOI: 10.1038/s41467-022-33559-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/15/2022] [Indexed: 11/11/2022] Open
Abstract
Ubiquitination regulates protein homeostasis and is tightly controlled by deubiquitinases (DUBs). Loss of the DUB UCHL1 leads to neurodegeneration, and its dysregulation promotes cancer metastasis and invasiveness. Small molecule probes for UCHL1 and DUBs in general could help investigate their function, yet specific inhibitors and structural information are rare. Here we report the potent and non-toxic chemogenomic pair of activity-based probes GK13S and GK16S for UCHL1. Biochemical characterization of GK13S demonstrates its stereoselective inhibition of cellular UCHL1. The crystal structure of UCHL1 in complex with GK13S shows the enzyme locked in a hybrid conformation of apo and Ubiquitin-bound states, which underlies its UCHL1-specificity within the UCH DUB family. Phenocopying a reported inactivating mutation of UCHL1 in mice, GK13S, but not GK16S, leads to reduced levels of monoubiquitin in a human glioblastoma cell line. Collectively, we introduce a set of structurally characterized, chemogenomic probes suitable for the cellular investigation of UCHL1. The deubiquitinase UCHL1 has been linked to cancer invasiveness and neurodegeneration yet its molecular roles have remained poorly defined. Here the authors reveal the structural basis for how UCHL1 can be specifically inhibited and how chemogenomic probes can be used to dissect its functions in living cells.
Collapse
Affiliation(s)
- Christian Grethe
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Otto-Hahn-Str. 15, Dortmund, Germany.,TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 15, Dortmund, Germany
| | - Mirko Schmidt
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Otto-Hahn-Str. 15, Dortmund, Germany.,TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 15, Dortmund, Germany
| | - Gian-Marvin Kipka
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Otto-Hahn-Str. 15, Dortmund, Germany.,TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 15, Dortmund, Germany
| | - Rachel O'Dea
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Otto-Hahn-Str. 15, Dortmund, Germany.,TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 15, Dortmund, Germany
| | - Kai Gallant
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Otto-Hahn-Str. 15, Dortmund, Germany.,TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 15, Dortmund, Germany
| | - Petra Janning
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Str. 11, Dortmund, Germany
| | - Malte Gersch
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Otto-Hahn-Str. 15, Dortmund, Germany. .,TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 15, Dortmund, Germany.
| |
Collapse
|
19
|
Estavoyer B, Messmer C, Echbicheb M, Rudd CE, Milot E, Affar EB. Mechanisms orchestrating the enzymatic activity and cellular functions of deubiquitinases. J Biol Chem 2022; 298:102198. [PMID: 35764170 PMCID: PMC9356280 DOI: 10.1016/j.jbc.2022.102198] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
Deubiquitinases (DUBs) are required for the reverse reaction of ubiquitination and act as major regulators of ubiquitin signaling processes. Emerging evidence suggests that these enzymes are regulated at multiple levels in order to ensure proper and timely substrate targeting and to prevent the adverse consequences of promiscuous deubiquitination. The importance of DUB regulation is highlighted by disease-associated mutations that inhibit or activate DUBs, deregulating their ability to coordinate cellular processes. Here, we describe the diverse mechanisms governing protein stability, enzymatic activity, and function of DUBs. In particular, we outline how DUBs are regulated by their protein domains and interacting partners. Intramolecular interactions can promote protein stability of DUBs, influence their subcellular localization, and/or modulate their enzymatic activity. Remarkably, these intramolecular interactions can induce self-deubiquitination to counteract DUB ubiquitination by cognate E3 ubiquitin ligases. In addition to intramolecular interactions, DUBs can also oligomerize and interact with a wide variety of cellular proteins, thereby forming obligate or facultative complexes that regulate their enzymatic activity and function. The importance of signaling and post-translational modifications in the integrated control of DUB function will also be discussed. While several DUBs are described with respect to the multiple layers of their regulation, the tumor suppressor BAP1 will be outlined as a model enzyme whose localization, stability, enzymatic activity, and substrate recognition are highly orchestrated by interacting partners and post-translational modifications.
Collapse
Affiliation(s)
- Benjamin Estavoyer
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada
| | - Clémence Messmer
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada
| | - Mohamed Echbicheb
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada
| | - Christopher E Rudd
- Laboratory for Cell Signaling in Immunotherapy, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada; Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada
| | - Eric Milot
- Laboratory for Malignant Hematopoiesis and Epigenetic Regulation of Gene Expression, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada; Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada
| | - El Bachir Affar
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada; Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada.
| |
Collapse
|
20
|
Hameed DS, Ovaa H, van der Heden van Noort GJ, Sapmaz A. Inhibiting UCH-L5: Rational Design of a Cyclic Ubiquitin-Based Peptide Inhibitor. Front Mol Biosci 2022; 9:866467. [PMID: 35720124 PMCID: PMC9204298 DOI: 10.3389/fmolb.2022.866467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
The ubiquitin-proteasome system is an essential regulator of many cellular processes including controlling protein homeostasis. The degradation of proteins by the multi-subunit proteasome complex is tightly regulated through a series of checkpoints, amongst which are a set of deubiquitinating proteases (DUBs). The proteasome-associated DUBs, UCH-L5 (Ubiquitin carboxyl-terminal hydrolase isozyme L5) and USP14 (Ubiquitin-specific protease 14), and the integral-DUB in the proteasome, Rpn11, is known to regulate proteasomal degradation by deubiquitination of distinct substrates. Although selective inhibitors for USP14 and Rpn11 have been recently developed, there are no known inhibitors that selectively bind to UCH-L5. The X-ray structure of the Ubiquitin (Ub) bound to UCH-L5 shows a β-sheet hairpin in Ub that contains a crucial hydrophobic patch involved in the interaction with UCH-L5. Herein, we designed and developed both a Ub sequence-based linear- and cyclic- β-sheet hairpin peptide that was found to preferably inhibit UCH-L5. We show that these peptides have low micromolar IC50 values and the cyclic peptide competes with the activity-based UbVME (Ubiquitin-Vinyl-Methyl-Ester) probe for UCH-L5, binding in a concentration-dependent manner. We further establish the selectivity profile of the cyclic peptide for UCH-L5 compared to other members of the UCH-DUB family and other cysteine DUBs in cell lysate. Furthermore, the cyclic peptide infiltrated cells resulting in the accumulation of polyUb chains, and was found to be non-toxic at the concentrations used here. Taken together, our data suggest that the cyclic peptide permeates the cell membrane, inhibits UCH-L5 by possibly blocking its deubiquitinating function, and contributes to the accumulation of polyubiquitinated substrates. The implications of inhibiting UCH-L5 in the context of the 26S proteasome render it an attractive candidate for further development as a potential selective inhibitor for therapeutic purposes.
Collapse
Affiliation(s)
| | | | | | - Aysegul Sapmaz
- *Correspondence: Gerbrand J. van der Heden van Noort, ; Aysegul Sapmaz,
| |
Collapse
|
21
|
Assembly and function of branched ubiquitin chains. Trends Biochem Sci 2022; 47:759-771. [DOI: 10.1016/j.tibs.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 12/11/2022]
|
22
|
van der Wal L, Bezstarosti K, Demmers JAA. A ubiquitinome analysis to study the functional roles of the proteasome associated deubiquitinating enzymes USP14 and UCH37. J Proteomics 2022; 262:104592. [PMID: 35489684 DOI: 10.1016/j.jprot.2022.104592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/05/2022] [Accepted: 04/17/2022] [Indexed: 12/12/2022]
Abstract
The removal of (poly)ubiquitin chains at the proteasome is a key step in the protein degradation pathway that determines which proteins are degraded and ultimately decides cell fate. Three different deubiquitinating enzymes (DUBs) are associated to the human proteasome, PSMD14 (RPN11), USP14 and UCH37 (UCHL5). However, the functional roles and specificities of these proteasomal DUBs remain elusive. To reveal the specificities of proteasome associated DUBs, we used SILAC based quantitative ubiquitinomics to study the effects of CRISPR-Cas9 based knockout of each of these DUBs on the dynamic cellular ubiquitinome. We observed distinct effects on the global ubiquitinome upon removal of either USP14 or UCH37, while the simultaneous removal of both DUBs suggested less functional redundancy than previously anticipated. We also investigated whether the small molecule inhibitor b-AP15 has the potential to specifically target USP14 and UCH37 by comparing treatment of wild-type versus USP14/UCH37 double-knockout cells with this drug. Strikingly, broad and severe off-target effects were observed, questioning the alleged specificity of this inhibitor. In conclusion, this work presents novel insights into the function of proteasome associated DUBs and illustrates the power of in-depth ubiquitinomics for screening the activity of DUBs and of DUB modulating compounds. SIGNIFICANCE Introduction: The removal of (poly)ubiquitin chains at the proteasome is a key step in the protein degradation pathway that determines which proteins are degraded and ultimately decides cell fate. Three different deubiquitinating enzymes (DUBs) are associated to the human proteasome, PSMD14/RPN11, USP14 and UCH37/UCHL5. However, the functional roles and specificities of these proteasomal DUBs remains elusive. MATERIALS & METHODS We have applied a SILAC based quantitative ubiquitinomics to study the effects of CRISPR-Cas9 based knockout of each of these DUBs on the dynamic cellular ubiquitinome. Also, we have studied the function of the small molecule inhibitor b-AP15, which has the potential to specifically target USP14 and UCH37. RESULTS We report distinct effects on the ubiquitinome and the ability of the proteasome to clear proteins upon removal of either USP14 or UCH37, while the simultaneous removal of both DUBs suggests less redundancy than previously anticipated. In addition, broad and severe off-target effects were observed for b-AP15, questioning the alleged specificity of this inhibitor. CONCLUSIONS This work presents novel insights into the function of proteasome associated DUBs and illustrates the power of in-depth ubiquitinomics for screening the activity of DUBs and of DUB modulating compounds.
Collapse
Affiliation(s)
- Lennart van der Wal
- Proteomics Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
23
|
Du J, Babik S, Li Y, Deol KK, Eyles SJ, Fejzo J, Tonelli M, Strieter E. A cryptic K48 ubiquitin chain binding site on UCH37 is required for its role in proteasomal degradation. eLife 2022; 11:e76100. [PMID: 35451368 PMCID: PMC9033301 DOI: 10.7554/elife.76100] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
Degradation by the 26 S proteasome is an intricately regulated process fine tuned by the precise nature of ubiquitin modifications attached to a protein substrate. By debranching ubiquitin chains composed of K48 linkages, the proteasome-associated ubiquitin C-terminal hydrolase UCHL5/UCH37 serves as a positive regulator of protein degradation. How UCH37 achieves specificity for K48 chains is unclear. Here, we use a combination of hydrogen-deuterium mass spectrometry, chemical crosslinking, small-angle X-ray scattering, nuclear magnetic resonance (NMR), molecular docking, and targeted mutagenesis to uncover a cryptic K48 ubiquitin (Ub) chain-specific binding site on the opposite face of UCH37 relative to the canonical S1 (cS1) ubiquitin-binding site. Biochemical assays demonstrate the K48 chain-specific binding site is required for chain debranching and proteasome-mediated degradation of proteins modified with branched chains. Using quantitative proteomics, translation shutoff experiments, and linkage-specific affinity tools, we then identify specific proteins whose degradation depends on the debranching activity of UCH37. Our findings suggest that UCH37 and potentially other DUBs could use more than one S1 site to perform different biochemical functions.
Collapse
Affiliation(s)
- Jiale Du
- Department of Chemistry, University of Massachusetts AmherstAmherstUnited States
| | - Sandor Babik
- Department of Chemistry, University of Massachusetts AmherstAmherstUnited States
| | - Yanfeng Li
- Department of Chemistry, University of Massachusetts AmherstAmherstUnited States
| | - Kirandeep K Deol
- Department of Chemistry, University of Massachusetts AmherstAmherstUnited States
| | - Stephen J Eyles
- Mass Spectrometry Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts AmherstAmherstUnited States
| | - Jasna Fejzo
- Biomolecular NMR Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts AmherstAmherstUnited States
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin-MadisonMadisonUnited States
| | - Eric Strieter
- Department of Chemistry, University of Massachusetts AmherstAmherstUnited States
- Molecular & Cellular Biology Graduate Program, University of Massachusetts AmherstAmherstUnited States
| |
Collapse
|
24
|
Peng Q, Wan D, Zhou R, Luo H, Wang J, Ren L, Zeng Y, Yu C, Zhang S, Huang X, Peng Y. The biological function of metazoan-specific subunit nuclear factor related to kappaB binding protein of INO80 complex. Int J Biol Macromol 2022; 203:176-183. [PMID: 35093437 DOI: 10.1016/j.ijbiomac.2022.01.155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/24/2022]
Abstract
The INO80 chromatin remodeling complex plays an essential role in the regulation of gene transcription, which participate in a variety of important biological processes in cells including DNA repair and DNA replication. Difference from the yeast INO80 complex, metazoan INO80 complex have the specific subunit G, which is known as nuclear factor related to kappaB binding protein (NFRKB). Recently, NFRKB has been received much attention in many aspects, such as DNA repair, cell pluripotency, telomere protection, and protein activity regulation. To dig the new function of metazoan INO80 complex, a better understanding of the role of NFRKB is required. In this review, we provide an overview of the structure and function of NFRKB and discuss its potential role in cancer treatment and telomere regulation. Overall, this review provides an important reference for further research of the INO80 complex and NFRKB.
Collapse
Affiliation(s)
- Qiyao Peng
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Institute of Chinese Medicine, Hunan Academy of Traditional Chinese Medicine&Hunan University of Chinese Medicine, Changsha 410208, China
| | - Dan Wan
- Institute of Chinese Medicine, Hunan Academy of Traditional Chinese Medicine&Hunan University of Chinese Medicine, Changsha 410208, China
| | - Rongrong Zhou
- Institute of Chinese Medicine, Hunan Academy of Traditional Chinese Medicine&Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hongyu Luo
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 410016, China
| | - Junyi Wang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Lingyan Ren
- School of Safety Engineering, Chongqing University of Science & Technology, Chongqing 401331, China
| | - Yajun Zeng
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Department of Pharmacy, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Chao Yu
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Shuihan Zhang
- Institute of Chinese Medicine, Hunan Academy of Traditional Chinese Medicine&Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xuekuan Huang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 410016, China.
| | - Yongbo Peng
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Institute of Chinese Medicine, Hunan Academy of Traditional Chinese Medicine&Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
25
|
Lange SM, Armstrong LA, Kulathu Y. Deubiquitinases: From mechanisms to their inhibition by small molecules. Mol Cell 2021; 82:15-29. [PMID: 34813758 DOI: 10.1016/j.molcel.2021.10.027] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022]
Abstract
Deubiquitinases (DUBs) are specialized proteases that remove ubiquitin from substrates or cleave within ubiquitin chains to regulate ubiquitylation and therefore play important roles in eukaryotic biology. Dysregulation of DUBs is implicated in several human diseases, highlighting the importance of DUB function. In addition, many pathogenic bacteria and viruses encode and deploy DUBs to manipulate host immune responses and establish infectious diseases in humans and animals. Hence, therapeutic targeting of DUBs is an increasingly explored area that requires an in-depth mechanistic understanding of human and pathogenic DUBs. In this review, we summarize the multiple layers of regulation that control autoinhibition, activation, and substrate specificity of DUBs. We discuss different strategies to inhibit DUBs and the progress in developing selective small-molecule DUB inhibitors. Finally, we propose a classification system of DUB inhibitors based on their mode of action.
Collapse
Affiliation(s)
- Sven M Lange
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Lee A Armstrong
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Yogesh Kulathu
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
26
|
Song A, Hazlett Z, Abeykoon D, Dortch J, Dillon A, Curtiss J, Martinez SB, Hill CP, Yu C, Huang L, Fushman D, Cohen RE, Yao T. Branched ubiquitin chain binding and deubiquitination by UCH37 facilitate proteasome clearance of stress-induced inclusions. eLife 2021; 10:72798. [PMID: 34761751 PMCID: PMC8635973 DOI: 10.7554/elife.72798] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
UCH37, also known as UCHL5, is a highly conserved deubiquitinating enzyme (DUB) that associates with the 26S proteasome. Recently, it was reported that UCH37 activity is stimulated by branched ubiquitin (Ub) chain architectures. To understand how UCH37 achieves its unique debranching specificity, we performed biochemical and Nuclear Magnetic Resonance (NMR) structural analyses and found that UCH37 is activated by contacts with the hydrophobic patches of both distal Ubs that emanate from a branched Ub. In addition, RPN13, which recruits UCH37 to the proteasome, further enhances branched-chain specificity by restricting linear Ub chains from having access to the UCH37 active site. In cultured human cells under conditions of proteolytic stress, we show that substrate clearance by the proteasome is promoted by both binding and deubiquitination of branched polyubiquitin by UCH37. Proteasomes containing UCH37(C88A), which is catalytically inactive, aberrantly retain polyubiquitinated species as well as the RAD23B substrate shuttle factor, suggesting a defect in recycling of the proteasome for the next round of substrate processing. These findings provide a foundation to understand how proteasome degradation of substrates modified by a unique Ub chain architecture is aided by a DUB.
Collapse
Affiliation(s)
- Aixin Song
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Zachary Hazlett
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Dulith Abeykoon
- Department of Chemistry and Biochemistry, University of Maryland, College Park, United States
| | - Jeremy Dortch
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Andrew Dillon
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Justin Curtiss
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Sarah Bollinger Martinez
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Christopher P Hill
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Clinton Yu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, United States
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, United States
| | - David Fushman
- Department of Chemistry and Biochemistry, University of Maryland, College Park, United States
| | - Robert E Cohen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Tingting Yao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| |
Collapse
|
27
|
Peng Q, Zhou M, Zuo S, Liu Y, Li X, Yang Y, He Q, Yu X, Zhou J, He Z, He Q. Nuclear Factor Related to KappaB Binding Protein ( NFRKB) Is a Telomere-Associated Protein and Involved in Liver Cancer Development. DNA Cell Biol 2021; 40:1298-1307. [PMID: 34591601 DOI: 10.1089/dna.2021.0486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Alternative lengthening of telomeres (ALT) is a homologous recombination-based telomere maintenance mechanism activated in 10-15% of human cancers. Although significant progress has been made, the key regulators of the ALT pathway and its role in cancer development remain elusive. Bioinformatics methods were used to predict novel telomere-associated proteins (TAPs) by analysis of large-scale ChIP-Seq data. Immunostaining and fluorescence in situ hybridization experiments were applied to detect the subcellular location of target genes and telomeres. Western blot and reverse transcription-polymerase chain reaction (RT-PCR) were used to examine the expression of targeting genes. Overall survival (OS) analyses were used to evaluate the relationship between gene expression and survival time; immunohistochemistry was used to detect the distribution of target genes in liver cancer tissues. We found that nuclear factor related to kappaB binding protein (NFRKB), a metazoan-specific subunit of the INO80 complex, can associate with telomeres in human ALT cells. Loss of NFRKB induces dysfunction of telomeres and less PML bodies in U2OS cells. In addition, NFRKB is low/moderately expressed in cytoplasm of normal hepatocytes but heavily accumulating in the nucleus of liver cancer cells. Finally, the high expression of NFRKB is associated with short OS time and poor prognosis. NFRKB is a TAP and protects telomeres from DNA damage in ALT cells. It is highly expressed in hepatocellular carcinoma (HCC) cells and predicts a poor prognosis. NFRKB may be a promising prognostic biomarker for the treatment of HCC in the future.
Collapse
Affiliation(s)
- Qiyao Peng
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Mingqing Zhou
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Shanru Zuo
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Yucong Liu
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Xueguang Li
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Yide Yang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Quanze He
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xing Yu
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Junhua Zhou
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Zuping He
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Quanyuan He
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| |
Collapse
|
28
|
Shorkey SA, Du J, Pham R, Strieter ER, Chen M. Real-Time and Label-Free Measurement of Deubiquitinase Activity with a MspA Nanopore. Chembiochem 2021; 22:2688-2692. [PMID: 34060221 PMCID: PMC8416795 DOI: 10.1002/cbic.202100092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/10/2021] [Indexed: 02/06/2023]
Abstract
Covalently attaching ubiquitin (Ub) to cellular proteins as a post-translational modification can result in altered function of modified proteins. Enzymes regulating Ub as a post-translational modification, such as ligases and deubiquitinases, are challenging to characterize in part due to the low throughput of in-vitro assays. Single-molecule nanopore based assays have the advantage of detecting proteins with high specificity and resolution, and in a label-free, real-time fashion. Here we demonstrate the use of a MspA nanopore for discriminating and quantifying Ub proteins. We further applied the MspA pore to measure the Ub-chain disassembly activity of UCH37, a proteasome associated deubiquitinase. The implementation of this MspA system into nanopore arrays could enable high throughput characterizations of unknown deubiquitinases as well as drug screening against disease related enzymes.
Collapse
Affiliation(s)
- Spencer A Shorkey
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Jiale Du
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Ryan Pham
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Eric R Strieter
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Min Chen
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
29
|
Chen X, Htet ZM, López-Alfonzo E, Martin A, Walters KJ. Proteasome interaction with ubiquitinated substrates: from mechanisms to therapies. FEBS J 2021; 288:5231-5251. [PMID: 33211406 PMCID: PMC8131406 DOI: 10.1111/febs.15638] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
The 26S proteasome is responsible for regulated proteolysis in eukaryotic cells. Its substrates are diverse in structure, function, sequence length, and amino acid composition, and are targeted to the proteasome by post-translational modification with ubiquitin. Ubiquitination occurs through a complex enzymatic cascade and can also signal for other cellular events, unrelated to proteasome-catalyzed degradation. Like other post-translational protein modifications, ubiquitination is reversible, with ubiquitin chain hydrolysis catalyzed by the action of deubiquitinating enzymes (DUBs), ~ 90 of which exist in humans and allow for temporal events and dynamic ubiquitin-chain remodeling. DUBs have been known for decades to be an integral part of the proteasome, as deubiquitination is coupled to substrate unfolding and translocation into the internal degradation chamber. Moreover, the proteasome also binds several ubiquitinating enzymes and shuttle factors that recruit ubiquitinated substrates. The role of this intricate machinery and how ubiquitinated substrates interact with proteasomes remains an area of active investigation. Here, we review what has been learned about the mechanisms used by the proteasome to bind ubiquitinated substrates, substrate shuttle factors, ubiquitination machinery, and DUBs. We also discuss many open questions that require further study or the development of innovative approaches to be answered. Finally, we address the promise of expanded therapeutic targeting that could benefit from such new discoveries.
Collapse
Affiliation(s)
- Xiang Chen
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Zaw Min Htet
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California at Berkeley, CA, USA
| | - Erika López-Alfonzo
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California at Berkeley, CA, USA
| | - Andreas Martin
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California at Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California at Berkeley, CA, USA
| | - Kylie J Walters
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
30
|
Davies CW, Vidal SE, Phu L, Sudhamsu J, Hinkle TB, Chan Rosenberg S, Schumacher FR, Zeng YJ, Schwerdtfeger C, Peterson AS, Lill JR, Rose CM, Shaw AS, Wertz IE, Kirkpatrick DS, Koerber JT. Antibody toolkit reveals N-terminally ubiquitinated substrates of UBE2W. Nat Commun 2021; 12:4608. [PMID: 34326324 PMCID: PMC8322077 DOI: 10.1038/s41467-021-24669-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin conjugating enzyme UBE2W catalyzes non-canonical ubiquitination on the N-termini of proteins, although its substrate repertoire remains unclear. To identify endogenous N-terminally-ubiquitinated substrates, we discover four monoclonal antibodies that selectively recognize tryptic peptides with an N-terminal diglycine remnant, corresponding to sites of N-terminal ubiquitination. Importantly, these antibodies do not recognize isopeptide-linked diglycine (ubiquitin) modifications on lysine. We solve the structure of one such antibody bound to a Gly-Gly-Met peptide to reveal the molecular basis for its selective recognition. We use these antibodies in conjunction with mass spectrometry proteomics to map N-terminal ubiquitination sites on endogenous substrates of UBE2W. These substrates include UCHL1 and UCHL5, where N-terminal ubiquitination distinctly alters deubiquitinase (DUB) activity. This work describes an antibody toolkit for enrichment and global profiling of endogenous N-terminal ubiquitination sites, while revealing functionally relevant substrates of UBE2W.
Collapse
Affiliation(s)
- Christopher W. Davies
- grid.418158.10000 0004 0534 4718Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA USA
| | - Simon E. Vidal
- grid.418158.10000 0004 0534 4718Departments of Molecular Oncology and Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA USA
| | - Lilian Phu
- grid.418158.10000 0004 0534 4718Department of Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA USA
| | - Jawahar Sudhamsu
- grid.418158.10000 0004 0534 4718Department of Structural Biology, Genentech, Inc., South San Francisco, CA USA
| | - Trent B. Hinkle
- grid.418158.10000 0004 0534 4718Department of Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA USA
| | - Scott Chan Rosenberg
- grid.418158.10000 0004 0534 4718Departments of Molecular Oncology and Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA USA
| | - Frances-Rose Schumacher
- grid.418158.10000 0004 0534 4718Department of Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA USA
| | - Yi Jimmy Zeng
- grid.418158.10000 0004 0534 4718Department of Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA USA
| | | | - Andrew S. Peterson
- grid.418158.10000 0004 0534 4718Department of Molecular Biology, Genentech, Inc., South San Francisco, CA USA
| | - Jennie R. Lill
- grid.418158.10000 0004 0534 4718Department of Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA USA
| | - Christopher M. Rose
- grid.418158.10000 0004 0534 4718Department of Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA USA
| | - Andrey S. Shaw
- grid.418158.10000 0004 0534 4718Research Biology, Genentech, Inc., South San Francisco, CA USA
| | - Ingrid E. Wertz
- grid.418158.10000 0004 0534 4718Departments of Molecular Oncology and Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA USA ,grid.419971.3Present Address: Bristol Myers Squibb, 1000 Sierra Point Parkway, Brisbane, CA USA
| | - Donald S. Kirkpatrick
- grid.418158.10000 0004 0534 4718Department of Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA USA ,Present Address: Interline Therapeutics, South San Francisco, CA USA
| | - James T. Koerber
- grid.418158.10000 0004 0534 4718Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA USA
| |
Collapse
|
31
|
Small-Molecule Inhibitors Targeting Proteasome-Associated Deubiquitinases. Int J Mol Sci 2021; 22:ijms22126213. [PMID: 34207520 PMCID: PMC8226605 DOI: 10.3390/ijms22126213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 02/06/2023] Open
Abstract
The 26S proteasome is the principal protease for regulated intracellular proteolysis. This multi-subunit complex is also pivotal for clearance of harmful proteins that are produced throughout the lifetime of eukaryotes. Recent structural and kinetic studies have revealed a multitude of conformational states of the proteasome in substrate-free and substrate-engaged forms. These conformational transitions demonstrate that proteasome is a highly dynamic machinery during substrate processing that can be also controlled by a number of proteasome-associated factors. Essentially, three distinct family of deubiquitinases–USP14, RPN11, and UCH37–are associated with the 19S regulatory particle of human proteasome. USP14 and UCH37 are capable of editing ubiquitin conjugates during the process of their dynamic engagement into the proteasome prior to the catalytic commitment. In contrast, RPN11-mediated deubiquitination is directly coupled to substrate degradation by sensing the proteasome’s conformational switch into the commitment steps. Therefore, proteasome-bound deubiquitinases are likely to tailor the degradation events in accordance with substrate processing steps and for dynamic proteolysis outcomes. Recent chemical screening efforts have yielded highly selective small-molecule inhibitors for targeting proteasomal deubiquitinases, such as USP14 and RPN11. USP14 inhibitors, IU1 and its progeny, were found to promote the degradation of a subset of substrates probably by overriding USP14-imposed checkpoint on the proteasome. On the other hand, capzimin, a RPN11 inhibitor, stabilized the proteasome substrates and showed the anti-proliferative effects on cancer cells. It is highly conceivable that these specific inhibitors will aid to dissect the role of each deubiquitinase on the proteasome. Moreover, customized targeting of proteasome-associated deubiquitinases may also provide versatile therapeutic strategies for induced or repressed protein degradation depending on proteolytic demand and cellular context.
Collapse
|
32
|
Abstract
The 26S proteasome is the most complex ATP-dependent protease machinery, of ~2.5 MDa mass, ubiquitously found in all eukaryotes. It selectively degrades ubiquitin-conjugated proteins and plays fundamentally indispensable roles in regulating almost all major aspects of cellular activities. To serve as the sole terminal "processor" for myriad ubiquitylation pathways, the proteasome evolved exceptional adaptability in dynamically organizing a large network of proteins, including ubiquitin receptors, shuttle factors, deubiquitinases, AAA-ATPase unfoldases, and ubiquitin ligases, to enable substrate selectivity and processing efficiency and to achieve regulation precision of a vast diversity of substrates. The inner working of the 26S proteasome is among the most sophisticated, enigmatic mechanisms of enzyme machinery in eukaryotic cells. Recent breakthroughs in three-dimensional atomic-level visualization of the 26S proteasome dynamics during polyubiquitylated substrate degradation elucidated an extensively detailed picture of its functional mechanisms, owing to progressive methodological advances associated with cryogenic electron microscopy (cryo-EM). Multiple sites of ubiquitin binding in the proteasome revealed a canonical mode of ubiquitin-dependent substrate engagement. The proteasome conformation in the act of substrate deubiquitylation provided insights into how the deubiquitylating activity of RPN11 is enhanced in the holoenzyme and is coupled to substrate translocation. Intriguingly, three principal modes of coordinated ATP hydrolysis in the heterohexameric AAA-ATPase motor were discovered to regulate intermediate functional steps of the proteasome, including ubiquitin-substrate engagement, deubiquitylation, initiation of substrate translocation and processive substrate degradation. The atomic dissection of the innermost working of the 26S proteasome opens up a new era in our understanding of the ubiquitin-proteasome system and has far-reaching implications in health and disease.
Collapse
Affiliation(s)
- Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, Massachusetts, USA. .,School of Physics, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
33
|
Neve B, Jonckheere N, Vincent A, Van Seuningen I. Long non-coding RNAs: the tentacles of chromatin remodeler complexes. Cell Mol Life Sci 2021; 78:1139-1161. [PMID: 33001247 PMCID: PMC11072783 DOI: 10.1007/s00018-020-03646-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/01/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023]
Abstract
Chromatin remodeler complexes regulate gene transcription, DNA replication and DNA repair by changing both nucleosome position and post-translational modifications. The chromatin remodeler complexes are categorized into four families: the SWI/SNF, INO80/SWR1, ISWI and CHD family. In this review, we describe the subunits of these chromatin remodeler complexes, in particular, the recently identified members of the ISWI family and novelties of the CHD family. Long non-coding (lnc) RNAs regulate gene expression through different epigenetic mechanisms, including interaction with chromatin remodelers. For example, interaction of lncBRM with BRM inhibits the SWI/SNF complex associated with a differentiated phenotype and favors assembly of a stem cell-related SWI/SNF complex. Today, over 50 lncRNAs have been shown to affect chromatin remodeler complexes and we here discuss the mechanisms involved.
Collapse
Affiliation(s)
- Bernadette Neve
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Univ. Lille, CNRS, Inserm, CHU Lille, 59000, Lille, France.
| | - Nicolas Jonckheere
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Univ. Lille, CNRS, Inserm, CHU Lille, 59000, Lille, France
| | - Audrey Vincent
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Univ. Lille, CNRS, Inserm, CHU Lille, 59000, Lille, France
| | - Isabelle Van Seuningen
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Univ. Lille, CNRS, Inserm, CHU Lille, 59000, Lille, France
| |
Collapse
|
34
|
Rong C, Zhou R, Wan S, Su D, Wang SL, Hess J. Ubiquitin Carboxyl-Terminal Hydrolases and Human Malignancies: The Novel Prognostic and Therapeutic Implications for Head and Neck Cancer. Front Oncol 2021; 10:592501. [PMID: 33585209 PMCID: PMC7878561 DOI: 10.3389/fonc.2020.592501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022] Open
Abstract
Ubiquitin C-terminal hydrolases (UCHs), a subfamily of deubiquitinating enzymes (DUBs), have been found in a variety of tumor entities and play distinct roles in the pathogenesis and development of various cancers including head and neck cancer (HNC). HNC is a heterogeneous disease arising from the mucosal epithelia of the upper aerodigestive tract, including different anatomic sites, distinct histopathologic types, as well as human papillomavirus (HPV)-positive and negative subgroups. Despite advances in multi-disciplinary treatment for HNC, the long-term survival rate of patients with HNC remains low. Emerging evidence has revealed the members of UCHs are associated with the pathogenesis and clinical prognosis of HNC, which highlights the prognostic and therapeutic implications of UCHs for patients with HNC. In this review, we summarize the physiological and pathological functions of the UCHs family, which provides enlightenment of potential mechanisms of UCHs family in HNC pathogenesis and highlights the potential consideration of UCHs as attractive drug targets.
Collapse
Affiliation(s)
- Chao Rong
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Ran Zhou
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shan Wan
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Dan Su
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shou-Li Wang
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Jochen Hess
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany
- Research Group Molecular Mechanisms of Head and Neck Tumors, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
35
|
Synthesis and evaluation of tiaprofenic acid-derived UCHL5 deubiquitinase inhibitors. Bioorg Med Chem 2020; 30:115931. [PMID: 33341501 DOI: 10.1016/j.bmc.2020.115931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/31/2022]
Abstract
The ubiquitin-proteasome system (UPS) plays an important role in maintaining protein homeostasis by degrading intracellular proteins. In the proteasome, poly-ubiquitinated proteins are deubiquitinated by three deubiquitinases (DUBs) associated with 19S regulatory particle before degradation via 20S core particle. Ubiquitin carboxyl-terminal hydrolase L5 (UCHL5) is one of three proteasome-associated DUBs that control the fate of ubiquitinated substrates implicated in cancer survival and progression. In this study, we have performed virtual screening of an FDA approved drug library with UCHL5 and discovered tiaprofenic acid (TA) as a potential binder. With molecular docking analysis and in-vitro DUB assay, we have designed, synthesized, and evaluated a series of TA derivatives for inhibition of UCHL5 activity. We demonstrate that one TA derivative, TAB2, acts as an inhibitor of UCHL5.
Collapse
|
36
|
Deol KK, Crowe SO, Du J, Bisbee HA, Guenette RG, Strieter ER. Proteasome-Bound UCH37/UCHL5 Debranches Ubiquitin Chains to Promote Degradation. Mol Cell 2020; 80:796-809.e9. [PMID: 33156996 PMCID: PMC7718437 DOI: 10.1016/j.molcel.2020.10.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 09/13/2020] [Accepted: 10/13/2020] [Indexed: 01/10/2023]
Abstract
The linkage, length, and architecture of ubiquitin (Ub) chains are all important variables in providing tight control over many biological paradigms. There are clear roles for branched architectures in regulating proteasome-mediated degradation, but the proteins that selectively recognize and process these atypical chains are unknown. Here, using synthetic and enzyme-derived ubiquitin chains along with intact mass spectrometry, we report that UCH37/UCHL5, a proteasome-associated deubiquitinase, cleaves K48 branched chains. The activity and selectivity toward branched chains is markedly enhanced by the proteasomal Ub receptor RPN13/ADRM1. Using reconstituted proteasome complexes, we find that chain debranching promotes degradation of substrates modified with branched chains under multi-turnover conditions. These results are further supported by proteome-wide pulse-chase experiments, which show that the loss of UCH37 activity impairs global protein turnover. Our work therefore defines UCH37 as a debranching deubiquitinase important for promoting proteasomal degradation.
Collapse
Affiliation(s)
- Kirandeep K Deol
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sean O Crowe
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jiale Du
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Heather A Bisbee
- Molecular & Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Robert G Guenette
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Eric R Strieter
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA; Molecular & Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
37
|
Characterization of PMI-5011 on the Regulation of Deubiquitinating Enzyme Activity in Multiple Myeloma Cell Extracts. Biochem Eng J 2020; 166. [PMID: 33716550 DOI: 10.1016/j.bej.2020.107834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Deubiquitinating enzyme (DUB)-targeted therapeutics have shown promise in recent years as alternative cancer therapeutics, especially when coupled with proteasome-based inhibitors. While a majority of DUB-based therapeutics function by inhibiting DUB enzymes, studies show that positive regulation of these enzymes can stabilize levels of protein degradation. Unfortunately, there are currently no clinically available therapeutics for this purpose. The goal of this work was to understand the effect of a botanical extract from Artemisia dracunculus L called PMI-5011 on DUB activity in cancer cells. Through a series of kinetic analyses and mathematical modeling, it was found that PMI-5011 positively regulated DUB activity in two model multiple myeloma cells line (OPM2 and MM.1S). This suggests that PMI-5011 interacts with the active domains of DUBs to enhance their activity directly or indirectly, without apparently affecting cellular viability. Similar kinetic profiles of DUB activity were observed with three bioactive compounds in PMI-5011 (DMC-1, DMC-2, davidigenin). Interestingly, a differential cell line-independent trend was observed at higher concentrations which suggested variances in inherent gene expressions of UCHL1, UCHL5, USP7, USP15, USP14, and Rpn11 in OPM2 and MM.1S cell lines. These findings highlight the therapeutic potential of PMI-5011 and its selected bioactive compounds in cancer.
Collapse
|
38
|
Chen X, Dorris Z, Shi D, Huang RK, Khant H, Fox T, de Val N, Williams D, Zhang P, Walters KJ. Cryo-EM Reveals Unanchored M1-Ubiquitin Chain Binding at hRpn11 of the 26S Proteasome. Structure 2020; 28:1206-1217.e4. [PMID: 32783951 PMCID: PMC7642156 DOI: 10.1016/j.str.2020.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/06/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022]
Abstract
The 26S proteasome is specialized for regulated protein degradation and formed by a dynamic regulatory particle (RP) that caps a hollow cylindrical core particle (CP) where substrates are proteolyzed. Its diverse substrates unify as proteasome targets by ubiquitination. We used cryogenic electron microscopy (cryo-EM) to study how human 26S proteasome interacts with M1-linked hexaubiquitin (M1-Ub6) unanchored to a substrate and E3 ubiquitin ligase E6AP/UBE3A. Proteasome structures are available with model substrates extending through the RP ATPase ring and substrate-conjugated K63-linked ubiquitin chains present at inhibited deubiquitinating enzyme hRpn11 and the nearby ATPase hRpt4/hRpt5 coiled coil. In this study, we find M1-Ub6 at the hRpn11 site despite the absence of conjugated substrate, indicating that ubiquitin binding at this location does not require substrate interaction with the RP. Moreover, unanchored M1-Ub6 binds to this hRpn11 site of the proteasome with the CP gating residues in both the closed and opened conformational states.
Collapse
Affiliation(s)
- Xiang Chen
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Zachary Dorris
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Frederick High School, Frederick, MD 21702, USA
| | - Dan Shi
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Rick K Huang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Htet Khant
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD 21701, USA
| | - Tara Fox
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD 21701, USA
| | - Natalia de Val
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD 21701, USA
| | - Dewight Williams
- John M. Cowley Center for High Resolution Electron Microscopy, Arizona State University, Tempe, AZ 85287, USA
| | - Ping Zhang
- Kinase Complexes Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Kylie J Walters
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
39
|
Reddington CJ, Fellner M, Burgess AE, Mace PD. Molecular Regulation of the Polycomb Repressive-Deubiquitinase. Int J Mol Sci 2020; 21:ijms21217837. [PMID: 33105797 PMCID: PMC7660087 DOI: 10.3390/ijms21217837] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Post-translational modification of histone proteins plays a major role in histone–DNA packaging and ultimately gene expression. Attachment of ubiquitin to the C-terminal tail of histone H2A (H2AK119Ub in mammals) is particularly relevant to the repression of gene transcription, and is removed by the Polycomb Repressive-Deubiquitinase (PR-DUB) complex. Here, we outline recent advances in the understanding of PR-DUB regulation, which have come through structural studies of the Drosophila melanogaster PR-DUB, biochemical investigation of the human PR-DUB, and functional studies of proteins that associate with the PR-DUB. In humans, mutations in components of the PR-DUB frequently give rise to malignant mesothelioma, melanomas, and renal cell carcinoma, and increase disease risk from carcinogens. Diverse mechanisms may underlie disruption of the PR-DUB across this spectrum of disease. Comparing and contrasting the PR-DUB in mammals and Drosophila reiterates the importance of H2AK119Ub through evolution, provides clues as to how the PR-DUB is dysregulated in disease, and may enable new treatment approaches in cancers where the PR-DUB is disrupted.
Collapse
|
40
|
Zhang J, Xu H, Yang X, Zhao Y, Xu X, Zhang L, Xuan X, Ma C, Qian W, Li D. Deubiquitinase UCHL5 is elevated and associated with a poor clinical outcome in lung adenocarcinoma (LUAD). J Cancer 2020; 11:6675-6685. [PMID: 33046988 PMCID: PMC7545677 DOI: 10.7150/jca.46146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 09/06/2020] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is one of the most common malignant tumors in the world, with a high rate of malignancy and mortality. Seeking new biomarkers and potential drug targets is urgent for effective treatment of the disease. Deubiquitinase UCHL5/UCH37, as an important component of the 26S proteasome, plays critical roles in ubiquitinated substrate degradation. Although previous studies have shown that UCHL5 promotes tumorigenesis, its role in lung cancer remains largely unknown. In this study, we evaluated the expression and clinical significance of UCHL5 in non-small cell lung cancer (NSCLC). The results demonstrated that the UCHL5 expression level was significantly upregulated in NSCLC tissues compared with the adjacent noncancerous tissues. The level of UCHL5 was associated with tumor size, lymph node invasion, TNM stage and malignant tumor history in patients with lung adenocarcinoma (LUAD). Importantly, high UCHL5 expression predicted a poor overall survival (OS) and a poor disease-free survival (DFS) in patients with LUAD. Univariate regression analysis showed that tumor size, lymph node invasion, TNM stage and UCHL5 expression were associated with OS and DFS in patients with LUAD. The multivariate analysis indicated that the UCHL5 expression level was an independent prognostic factor for OS (HR=1.171, 95% CI=1.052-1.303) and DFS (HR=1.143, 95% CI=1.031-1.267) in these patients. UCHL5 knockdown in LUAD cells significantly inhibited cell proliferation and reduced the expression of key cell cycle proteins. These findings indicate that UCHL5 may serve as a potential prognostic marker and a new therapeutic target for patients with LUAD.
Collapse
Affiliation(s)
- Jieru Zhang
- Department of Respiratory & Critical Care Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Hui Xu
- Department of Thoracic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Xiaomei Yang
- Department of Emergency, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Yuanjie Zhao
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Xinchun Xu
- Department of Ultrasound, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Ling Zhang
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Xiaofeng Xuan
- Department of Respiratory & Critical Care Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Chunping Ma
- Department of Thoracic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Wenxia Qian
- Department of Respiratory & Critical Care Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Dawei Li
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| |
Collapse
|
41
|
Sui X, Wang Y, Du YX, Liang LJ, Zheng Q, Li YM, Liu L. Development and application of ubiquitin-based chemical probes. Chem Sci 2020; 11:12633-12646. [PMID: 34123237 PMCID: PMC8163311 DOI: 10.1039/d0sc03295f] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein ubiquitination regulates almost every process in eukaryotic cells. The study of the many enzymes involved in the ubiquitination system and the development of ubiquitination-associated therapeutics are important areas of current research. Synthetic tools such as ubiquitin-based chemical probes have been making an increasing contribution to deciphering various biochemical components involved in ubiquitin conjugation, recruitment, signaling, and deconjugation. In the present minireview, we summarize the progress of ubiquitin-based chemical probes with an emphasis on their various structures and chemical synthesis. We discuss the utility of the ubiquitin-based chemical probes for discovering and profiling ubiquitin-dependent signaling systems, as well as the monitoring and visualization of ubiquitin-related enzymatic machinery. We also show how the probes can serve to elucidate the molecular mechanism of recognition and catalysis. Collectively, the development and application of ubiquitin-based chemical probes emphasizes the importance and utility of chemical protein synthesis in modern chemical biology. This article reviews the design, synthesis, and application of different classes of Ub-based chemical probes.![]()
Collapse
Affiliation(s)
- Xin Sui
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology Hefei 230009 China .,Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Yu Wang
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology Hefei 230009 China
| | - Yun-Xiang Du
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Lu-Jun Liang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Qingyun Zheng
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Yi-Ming Li
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology Hefei 230009 China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University Beijing 100084 China
| |
Collapse
|
42
|
Shin JY, Muniyappan S, Tran NN, Park H, Lee SB, Lee BH. Deubiquitination Reactions on the Proteasome for Proteasome Versatility. Int J Mol Sci 2020; 21:E5312. [PMID: 32726943 PMCID: PMC7432943 DOI: 10.3390/ijms21155312] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022] Open
Abstract
The 26S proteasome, a master player in proteolysis, is the most complex and meticulously contextured protease in eukaryotic cells. While capable of hosting thousands of discrete substrates due to the selective recognition of ubiquitin tags, this protease complex is also dynamically checked through diverse regulatory mechanisms. The proteasome's versatility ensures precise control over active proteolysis, yet prevents runaway or futile degradation of many essential cellular proteins. Among the multi-layered processes regulating the proteasome's proteolysis, deubiquitination reactions are prominent because they not only recycle ubiquitins, but also impose a critical checkpoint for substrate degradation on the proteasome. Of note, three distinct classes of deubiquitinating enzymes-USP14, RPN11, and UCH37-are associated with the 19S subunits of the human proteasome. Recent biochemical and structural studies suggest that these enzymes exert dynamic influence over proteasome output with limited redundancy, and at times act in opposition. Such distinct activities occur spatially on the proteasome, temporally through substrate processing, and differentially for ubiquitin topology. Therefore, deubiquitinating enzymes on the proteasome may fine-tune the degradation depending on various cellular contexts and for dynamic proteolysis outcomes. Given that the proteasome is among the most important drug targets, the biology of proteasome-associated deubiquitination should be further elucidated for its potential targeting in human diseases.
Collapse
Affiliation(s)
- Ji Yeong Shin
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Center for Cell Fate Reprogramming & Control, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Srinivasan Muniyappan
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
| | - Non-Nuoc Tran
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Center for Cell Fate Reprogramming & Control, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Hyeonjeong Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
| | - Sung Bae Lee
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Byung-Hoon Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Center for Cell Fate Reprogramming & Control, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
43
|
Postic G, Marcoux J, Reys V, Andreani J, Vandenbrouck Y, Bousquet MP, Mouton-Barbosa E, Cianférani S, Burlet-Schiltz O, Guerois R, Labesse G, Tufféry P. Probing Protein Interaction Networks by Combining MS-Based Proteomics and Structural Data Integration. J Proteome Res 2020; 19:2807-2820. [PMID: 32338910 DOI: 10.1021/acs.jproteome.0c00066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein-protein interactions play a major role in the molecular machinery of life, and various techniques such as AP-MS are dedicated to their identification. However, those techniques return lists of proteins devoid of organizational structure, not detailing which proteins interact with which others. Proposing a hierarchical view of the interactions between the members of the flat list becomes highly tedious for large data sets when done by hand. To help hierarchize this data, we introduce a new bioinformatics protocol that integrates information of the multimeric protein 3D structures available in the Protein Data Bank using remote homology detection, as well as information related to Short Linear Motifs and interaction data from the BioGRID. We illustrate on two unrelated use-cases of different complexity how our approach can be useful to decipher the network of interactions hidden in the list of input proteins, and how it provides added value compared to state-of-the-art resources such as Interactome3D or STRING. Particularly, we show the added value of using homology detection to distinguish between orthologs and paralogs, and to distinguish between core obligate and more facultative interactions. We also demonstrate the potential of considering interactions occurring through Short Linear Motifs.
Collapse
Affiliation(s)
- Guillaume Postic
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, RPBS, 75013 Paris, France.,Institut Français de Bioinformatique (IFB), UMS 3601-CNRS, Universite Paris-Saclay, 91400 Orsay, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Victor Reys
- CBS, Univ. Montpellier, CNRS, INSERM, 34095 Montpellier, France
| | - Jessica Andreani
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Yves Vandenbrouck
- Univ. Grenoble Alpes, INSERM, CEA, IRIG-BGE, U1038, 38000 Grenoble, France
| | - Marie-Pierre Bousquet
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Emmanuelle Mouton-Barbosa
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Raphael Guerois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Gilles Labesse
- CBS, Univ. Montpellier, CNRS, INSERM, 34095 Montpellier, France
| | - Pierre Tufféry
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, RPBS, 75013 Paris, France
| |
Collapse
|
44
|
Zhang Z, Hu X, Kuang J, Liao J, Yuan Q. LncRNA DRAIC inhibits proliferation and metastasis of gastric cancer cells through interfering with NFRKB deubiquitination mediated by UCHL5. Cell Mol Biol Lett 2020; 25:29. [PMID: 32351584 PMCID: PMC7183705 DOI: 10.1186/s11658-020-00221-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/13/2020] [Indexed: 12/24/2022] Open
Abstract
Background Long non-coding RNA (lncRNA) as a widespread and pivotal epigenetic molecule participates in the occurrence and progression of malignant tumors. DRAIC, a kind of lncRNA whose coding gene location is on 15q23 chromatin, has been found to be weakly expressed in a variety of malignant tumors and acts as a suppressor, but its characteristics and role in gastric cancer (GC) remain to be elucidated. Methods Sixty-seven primary GC tissues and paired paracancerous normal tissues were collected. Bioinformatics is used to predict the interaction molecules of DRAIC. DRAIC and NFRKB were overexpressed or interfered exogenously in GC cells by lentivirus or transient transfection. Quantitative real-time PCR (qPCR) and western blotting were used to evaluate the expression of DRAIC, UCHL5 and NFRKB. The combinations of DRAIC and NFRKB or UCHL5 and NFRKB were verified by RNA-IP and Co-IP assays. Ubiquitination-IP and the treatment of MG132 and CHX were used to detect the ubiquitylation level of NFRKB. The CCK-8 and transwell invasion and migration assays measured the proliferation, migration and invasion of GC cells. Results DRAIC is down-regulated in GC tissues and cell lines while its potential interacting molecules UCHL5 and NFRKB are up-regulated, and DRAIC is positively correlated with NFRKB protein instead of mRNA. Lower DRAIC and higher UCHL5 and NFRKB indicated advanced progression of GC patients. DRAIC could increase NFRKB protein significantly instead of NFRKB mRNA and UCHL5, and bind to UCHL5. DRAIC combined with UCHL5 and attenuated binding of UCHL5 and NFRKB, meanwhile promoting the degradation of NFRKB via ubiquitination, and then inhibited the proliferation and metastasis of GC cells, which can be rescued by oeNFRKB. Conclusion DRAIC suppresses GC proliferation and metastasis via interfering with the combination of UCHL5 and NFRKB and mediating ubiquitination degradation.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Hepatopathy, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000 Hunan Province China
| | - Xiaoxuan Hu
- Department of Hepatopathy, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000 Hunan Province China
| | - Jia Kuang
- Department of Hepatopathy, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000 Hunan Province China
| | - Jinmao Liao
- Department of Hepatopathy, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000 Hunan Province China
| | - Qi Yuan
- Department of Hepatopathy, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000 Hunan Province China
| |
Collapse
|
45
|
Gupta I, Khan S. The recognition of proteasomal receptors by Plasmodium falciparum DSK2. Mol Biochem Parasitol 2020; 236:111266. [PMID: 32057831 DOI: 10.1016/j.molbiopara.2020.111266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 11/26/2022]
Abstract
One of the pathways by which proteins are targeted for degradation by the proteasome involve transport by shuttle proteins to proteasomal receptors. The malaria parasite Plasmodium falciparum has recently been found to possess a similar pathway, with the shuttle protein PfDsk2 being the major player. In this study, we have demonstrated how PfDsk2 and its recognition by proteasomal receptors differ from the mammalian system. Our crystal structure of unbound PfDsk2 UBL domain at 1.30 Å revealed an additional 310-helix compared to the human homolog, as well as a few significant differences in its putative binding interface with the proteasome receptors, PfRpn10 and PfRpn13. Moreover, the non-binding face of UBL showed a reversal of surface charge compared to HsDsk2 shuttle protein, instead resembling HOIL-like E3 ligase UBL domain. The affinity of the interaction with the proteasomal receptors remained similar to the human system, and dissociation constants of the same order of magnitude. On the other hand, we have found evidence of a novel interaction between PfRpn13DEUBAD with the PfDsk2UBL suggesting that PfDsk2 may work in cooperation with deubiquitinating enzymes for proofreading ubiquitinated substrates. Our study provides the first molecular look at shuttle proteins in Apicomplexan parasites and hints at how their interaction landscape might be broader than what we may expect.
Collapse
Affiliation(s)
- Ishita Gupta
- Structural Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, Delhi, India; Drug Discovery Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Expressway, Faridabad, Haryana, 121001, India
| | - Sameena Khan
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Expressway, Faridabad, Haryana, 121001, India.
| |
Collapse
|
46
|
Finley D, Prado MA. The Proteasome and Its Network: Engineering for Adaptability. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a033985. [PMID: 30833452 DOI: 10.1101/cshperspect.a033985] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The proteasome, the most complex protease known, degrades proteins that have been conjugated to ubiquitin. It faces the unique challenge of acting enzymatically on hundreds and perhaps thousands of structurally diverse substrates, mechanically unfolding them from their native state and translocating them vectorially from one specialized compartment of the enzyme to another. Moreover, substrates are modified by ubiquitin in myriad configurations of chains. The many unusual design features of the proteasome may have evolved in part to endow this enzyme with a robust ability to process substrates regardless of their identity. The proteasome plays a major role in preserving protein homeostasis in the cell, which requires adaptation to a wide variety of stress conditions. Modulation of proteasome function is achieved through a large network of proteins that interact with it dynamically, modify it enzymatically, or fine-tune its levels. The resulting adaptability of the proteasome, which is unique among proteases, enables cells to control the output of the ubiquitin-proteasome pathway on a global scale.
Collapse
Affiliation(s)
- Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
47
|
Greene ER, Dong KC, Martin A. Understanding the 26S proteasome molecular machine from a structural and conformational dynamics perspective. Curr Opin Struct Biol 2019; 61:33-41. [PMID: 31783300 DOI: 10.1016/j.sbi.2019.10.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/30/2022]
Abstract
The 26S proteasome is the essential compartmental protease in eukaryotic cells required for the ubiquitin-dependent clearance of damaged polypeptides and obsolete regulatory proteins. Recently, a combination of high-resolution structural, biochemical, and biophysical studies has provided crucial new insights into the mechanisms of this fascinating molecular machine. A multitude of new cryo-electron microscopy structures provided snapshots of the proteasome during ATP-hydrolysis-driven substrate translocation, and detailed biochemical studies revealed the timing of individual degradation steps, elucidating the mechanisms for substrate selection and the commitment to degradation through conformational transitions. It was uncovered how ubiquitin removal from substrates is mechanically coupled to degradation, and cryo-electron tomography studies gave a glimpse of active proteasomes inside the cell, their subcellular localization, and interactions with protein aggregates. Here, we summarize these advances in our mechanistic understanding of the proteasome, with a particular focus on how its structural features and conformational transitions enable the multi-step degradation process.
Collapse
Affiliation(s)
- Eric R Greene
- Department of Molecular Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720, USA
| | - Ken C Dong
- Department of Molecular Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Andreas Martin
- Department of Molecular Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
48
|
Chadchankar J, Korboukh V, Conway LC, Wobst HJ, Walker CA, Doig P, Jacobsen SJ, Brandon NJ, Moss SJ, Wang Q. Inactive USP14 and inactive UCHL5 cause accumulation of distinct ubiquitinated proteins in mammalian cells. PLoS One 2019; 14:e0225145. [PMID: 31703099 PMCID: PMC6839854 DOI: 10.1371/journal.pone.0225145] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022] Open
Abstract
USP14 is a cysteine protease deubiquitinase associated with the proteasome and plays important catalytic and allosteric roles in proteasomal degradation. USP14 inhibition has been considered a therapeutic strategy for accelerating degradation of aggregation-prone proteins in neurodegenerative diseases and for inhibiting proteasome function to induce apoptotic cell death in cancers. Here we studied the effects of USP14 inhibition in mammalian cells using small molecule inhibitors and an inactive USP14 mutant C114A. Neither the inhibitors nor USP14 C114A showed consistent or significant effects on the level of TDP-43, tau or α-synuclein in HEK293T cells. However, USP14 C114A led to a robust accumulation of ubiquitinated proteins, which were isolated by ubiquitin immunoprecipitation and identified by mass spectrometry. Among these proteins we confirmed that ubiquitinated β-catenin accumulated in the cells expressing USP14 C114A with immunoblotting and immunoprecipitation experiments. The proteasome binding domain of USP14 C114A is required for its effect on ubiquitinated proteins. UCHL5 is the other cysteine protease deubiquitinase associated with the proteasome. Interestingly, the inactive mutant of UCHL5 C88A also caused an accumulation of ubiquitinated proteins in HEK293T cells but did not affect β-catenin, demonstrating USP14 but not UCHL5 has a specific effect on β-catenin. We used ubiquitin immunoprecipitation and mass spectrometry to identify the accumulated ubiquitinated proteins in UCHL5 C88A expressing cells which are mostly distinct from those identified in USP14 C114A expressing cells. Among the identified proteins are well established proteasome substrates and proteasome subunits. Besides β-catenin, we also verified with immunoblotting that UCHL5 C88A inhibits its own deubiquitination and USP14 C114A inhibits deubiquitination of two proteasomal subunits PSMC1 and PSMD4. Together our data suggest that USP14 and UCHL5 can deubiquitinate distinct substrates at the proteasome and regulate the ubiquitination of the proteasome itself which is tightly linked to its function.
Collapse
Affiliation(s)
- Jayashree Chadchankar
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University, Boston, MA, United States of America
| | - Victoria Korboukh
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, United States of America
| | - Leslie C. Conway
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University, Boston, MA, United States of America
| | - Heike J. Wobst
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, United States of America
| | - Chandler A. Walker
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, United States of America
| | - Peter Doig
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, United States of America
| | - Steve J. Jacobsen
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, United States of America
| | - Nicholas J. Brandon
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, United States of America
| | - Stephen J. Moss
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, United States of America
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States of America
- Department of Neuroscience, Physiology and Pharmacology, University College, London, United Kingdom
| | - Qi Wang
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, United States of America
- * E-mail:
| |
Collapse
|
49
|
Abstract
Active-site directed probes are powerful tools for studying the ubiquitin conjugation and deconjugation machinery. Branched ubiquitin chains have emerged as important proteasome-targeting signals for aggregation-prone proteins and cell cycle regulators. By implementing a new synthetic strategy for the electrophilic warhead, we herein report on the generation and reactivity of a series of branched triubiquitin active-site directed probes. These new tools can be used to dissect the molecular basis of branched chain assembly and disassembly.
Collapse
Affiliation(s)
- Jiaan Liu
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Yanfeng Li
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Kirandeep K. Deol
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Eric R. Strieter
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
50
|
Rabl J, Bunker RD, Schenk AD, Cavadini S, Gill ME, Abdulrahman W, Andrés-Pons A, Luijsterburg MS, Ibrahim AFM, Branigan E, Aguirre JD, Marceau AH, Guérillon C, Bouwmeester T, Hassiepen U, Peters AHFM, Renatus M, Gelman L, Rubin SM, Mailand N, van Attikum H, Hay RT, Thomä NH. Structural Basis of BRCC36 Function in DNA Repair and Immune Regulation. Mol Cell 2019; 75:483-497.e9. [PMID: 31253574 PMCID: PMC6695476 DOI: 10.1016/j.molcel.2019.06.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/30/2019] [Accepted: 05/31/2019] [Indexed: 01/03/2023]
Abstract
In mammals, ∼100 deubiquitinases act on ∼20,000 intracellular ubiquitination sites. Deubiquitinases are commonly regarded as constitutively active, with limited regulatory and targeting capacity. The BRCA1-A and BRISC complexes serve in DNA double-strand break repair and immune signaling and contain the lysine-63 linkage-specific BRCC36 subunit that is functionalized by scaffold subunits ABRAXAS and ABRO1, respectively. The molecular basis underlying BRCA1-A and BRISC function is currently unknown. Here we show that in the BRCA1-A complex structure, ABRAXAS integrates the DNA repair protein RAP80 and provides a high-affinity binding site that sequesters the tumor suppressor BRCA1 away from the break site. In the BRISC structure, ABRO1 binds SHMT2α, a metabolic enzyme enabling cancer growth in hypoxic environments, which we find prevents BRCC36 from binding and cleaving ubiquitin chains. Our work explains modularity in the BRCC36 DUB family, with different adaptor subunits conferring diversified targeting and regulatory functions.
Collapse
Affiliation(s)
- Julius Rabl
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Richard D Bunker
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Andreas D Schenk
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Mark E Gill
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Wassim Abdulrahman
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Amparo Andrés-Pons
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Martijn S Luijsterburg
- Leiden University Medical Center, Department of Human Genetics, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Adel F M Ibrahim
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Emma Branigan
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Jacob D Aguirre
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Aimee H Marceau
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Claire Guérillon
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen N, Denmark
| | - Tewis Bouwmeester
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Ulrich Hassiepen
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Martin Renatus
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Laurent Gelman
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Niels Mailand
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen N, Denmark
| | - Haico van Attikum
- Leiden University Medical Center, Department of Human Genetics, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland.
| |
Collapse
|