1
|
Rodemoyer B, Kariyawasam G, Subramanian V, Schmidt K. Condensin II interacts with BLM helicase in S phase to maintain genome stability. Commun Biol 2025; 8:492. [PMID: 40133469 PMCID: PMC11937517 DOI: 10.1038/s42003-025-07916-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Vertebrates possess two condensins, I and II, that are essential for chromosome condensation and segregation. Condensin II has also been implicated in maintaining genome integrity outside of mitosis, though the underlying mechanisms are unclear. Here, we found that condensin II interacts with a short linear motif in the disordered N-terminal tail of the Bloom syndrome helicase BLM, contributing to BLM association with nascent DNA and genome stability. Disrupting the BLM-condensin II interaction reduced replication speed, increased fork stalling and sister-chromatid exchanges, delayed repair of DNA double-strand breaks, and led to micronuclei. In S phase, interactions of SMC2 with other condensin II subunits and with BLM weakened temporarily, suggesting a conformational change followed by phosphorylation-induced disruption of BLM interactions with TOP2A and RPA. Our findings suggest a new way by which BLM contributes to genome integrity and implicates condensin II in interphase functions linked to genome stability.
Collapse
Affiliation(s)
- Brian Rodemoyer
- Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA
| | - Ganesha Kariyawasam
- Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA
| | - Veena Subramanian
- Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA
| | - Kristina Schmidt
- Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA.
- Cancer Biology & Evolution Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
2
|
Ma S, Wang Z, Xiong Z, Ge Y, Xu MY, Zhang J, Peng Y, Zhang Q, Sun J, Xi Z, Peng H, Xu W, Wang Y, Li L, Zhang C, Chao Z, Wang B, Gao X, Zhang X, Wei GH, Wang Z. Enhancer transcription profiling reveals an enhancer RNA-driven ferroptosis and new therapeutic opportunities in prostate cancer. Signal Transduct Target Ther 2025; 10:87. [PMID: 40082405 PMCID: PMC11906896 DOI: 10.1038/s41392-025-02170-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
Enhancer RNAs (eRNAs), a subclass of non-coding RNAs transcribed from enhancer regions, have emerged as critical regulators of gene expression; however, their functional roles in prostate cancer remain largely unexplored. In this study, we performed integrated chromatin accessibility and transcriptomic analyses using ATAC-seq and RNA-seq on twenty pairs of prostate cancer and matched benign tissues. By incorporating chromatin immunoprecipitation sequencing data, we identified a subset of differentially expressed eRNAs significantly associated with genes involved in prostate development and oncogenic signaling pathways. Among these, lactotransferrin-eRNA (LTFe) was markedly downregulated in prostate cancer tissues, with functional analyses revealing its tumor-suppressive role. Mechanistically, LTFe promotes the transcription of its target gene, lactotransferrin (LTF), by interacting with heterogeneous nuclear ribonucleoprotein F (HNRNPF) and facilitating enhancer-promoter chromatin interactions. Furthermore, we demonstrate that the LTFe-LTF axis facilitates ferroptosis by modulating iron transport. Notably, androgen receptor (AR) signaling disrupts LTFe-associated chromatin looping, leading to ferroptosis resistance. Therapeutically, co- administration of the AR inhibitor enzalutamide and the ferroptosis inducer RSL3 significantly suppressed tumor growth, offering a promising strategy for castration-resistant prostate cancer. Collectively, this study provides novel insights into the mechanistic role of eRNAs in prostate cancer, highlighting the LTFe-LTF axis as a critical epigenetic regulator and potential therapeutic target for improved treatment outcomes.
Collapse
Affiliation(s)
- Sheng Ma
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Zixian Wang
- MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences & Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zezhong Xiong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Yue Ge
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Meng-Yao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Junbiao Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Yuzheng Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Qin Zhang
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Jiaxue Sun
- MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences & Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zirui Xi
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Hao Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Wenjie Xu
- MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences & Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yanan Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Le Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Chunyu Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Zheng Chao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Baojun Wang
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Xu Gao
- Department of Urology, Changhai Hospital, Shanghai, China
| | - Xu Zhang
- Department of Urology, Chinese PLA General Hospital, Beijing, China.
| | - Gong-Hong Wei
- MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences & Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China.
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 215123, Suzhou, Jiangsu, China.
| | - Zhihua Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China.
- Taikang Tongji (Wuhan) Hospital, 420060, Wuhan, China.
| |
Collapse
|
3
|
Zerafati-Jahromi G, Oxman E, Hoang HD, Charng WL, Kotla T, Yuan W, Ishibashi K, Sebaoui S, Luedtke K, Winrow B, Ganetzky RD, Ruiz A, Manso-Basúz C, Spataro N, Kannu P, Athey T, Peroutka C, Barnes C, Sidlow R, Anadiotis G, Magnussen K, Valenzuela I, Moles-Fernandez A, Berger S, Grant CL, Vilain E, Arnadottir GA, Sulem P, Sulem TS, Stefansson K, Massey S, Ginn N, Poduri A, D'Gama AM, Valentine R, Trowbridge SK, Murali CN, Franciskovich R, Tran Y, Webb BD, Keppler-Noreuil KM, Hall AL, McGivern B, Monaghan KG, Guillen Sacoto MJ, Baldridge D, Silverman GA, Dahiya S, Turner TN, Schedl T, Corbin JG, Pak SC, Zohn IE, Gurnett CA. Sequence variants in HECTD1 result in a variable neurodevelopmental disorder. Am J Hum Genet 2025; 112:537-553. [PMID: 39879987 PMCID: PMC11947180 DOI: 10.1016/j.ajhg.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/31/2025] Open
Abstract
Dysregulation of genes encoding the homologous to E6AP C-terminus (HECT) E3 ubiquitin ligases has been linked to cancer and structural birth defects. One member of this family, the HECT-domain-containing protein 1 (HECTD1), mediates developmental pathways, including cell signaling, gene expression, and embryogenesis. Through GeneMatcher, we identified 14 unrelated individuals with 15 different variants in HECTD1 (10 missense, 3 frameshift, 1 nonsense, and 1 splicing variant) with neurodevelopmental disorders (NDDs), including autism, attention-deficit/hyperactivity disorder, and epilepsy. Of these 15 HECTD1 variants, 10 occurred de novo, 3 had unknown inheritance, and 2 were compound heterozygous. While all individuals in this cohort displayed NDDs, no genotype-phenotype correlation was apparent. Conditional knockout of Hectd1 in the neural lineage in mice resulted in microcephaly, severe hippocampal malformations, and complete agenesis of the corpus callosum, supporting a role for Hectd1 in embryonic brain development. Functional studies of select variants in C. elegans revealed dominant effects, including either change-of-function or loss-of-function/haploinsufficient mechanisms, which may explain phenotypic heterogeneity. Significant enrichment of de novo variants in HECTD1 was also shown in an independent cohort of 53,305 published trios with NDDs or congenital heart disease. Thus, our clinical and functional data support a critical requirement of HECTD1 for human brain development.
Collapse
Affiliation(s)
| | - Elias Oxman
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | - Hieu D Hoang
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Wu-Lin Charng
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Tanvitha Kotla
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Weimin Yuan
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Keito Ishibashi
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | - Sonia Sebaoui
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA
| | - Kathryn Luedtke
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | - Bryce Winrow
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | - Rebecca D Ganetzky
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Center for Computational Genomics Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anna Ruiz
- Center for Genomic Medicine, Parc Taulí Hospital University, Parc Taulí Institute of Research and Innovation (I3PT-CERCA), Autonomous University of Barcelona, Sabadell, Spain
| | - Carmen Manso-Basúz
- Center for Genomic Medicine, Parc Taulí Hospital University, Parc Taulí Institute of Research and Innovation (I3PT-CERCA), Autonomous University of Barcelona, Sabadell, Spain
| | - Nino Spataro
- Center for Genomic Medicine, Parc Taulí Hospital University, Parc Taulí Institute of Research and Innovation (I3PT-CERCA), Autonomous University of Barcelona, Sabadell, Spain
| | - Peter Kannu
- Department of Medical Genetics, Alberta Health Services, Edmonton, AB, Canada
| | - Taryn Athey
- Department of Medical Genetics, Alberta Health Services, Edmonton, AB, Canada
| | - Christina Peroutka
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - Caitlin Barnes
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - Richard Sidlow
- Department of Medical Genetics and Metabolism, Valley Children's Hospital, Madera, CA, USA
| | - George Anadiotis
- Department of Genetics and Metabolism, Randall Children's Hospital at Legacy Emanuel, Portland, OR, USA
| | - Kari Magnussen
- Department of Genetics and Metabolism, Randall Children's Hospital at Legacy Emanuel, Portland, OR, USA
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics, University Hospital Vall d'Hebron and Medicine Genetics Group, Valle Hebron Research Institute, Barcelona, Spain
| | - Alejandro Moles-Fernandez
- Department of Clinical and Molecular Genetics, University Hospital Vall d'Hebron and Medicine Genetics Group, Valle Hebron Research Institute, Barcelona, Spain
| | - Seth Berger
- Rare Disease Institute, Children's National Hospital, Washington, DC, USA
| | - Christina L Grant
- Rare Disease Institute, Children's National Hospital, Washington, DC, USA
| | - Eric Vilain
- Institute for Clinical and Translational Science, University of California, Irvine, Irvine, CA, USA
| | | | | | | | | | - Shavonne Massey
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Natalie Ginn
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Annapurna Poduri
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Alissa M D'Gama
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA; Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Rozalia Valentine
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Sara K Trowbridge
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Chaya N Murali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Rachel Franciskovich
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yen Tran
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Bryn D Webb
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kim M Keppler-Noreuil
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - April L Hall
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | | | - Dustin Baldridge
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Gary A Silverman
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Sonika Dahiya
- Department of Pathology, Washington University in St. Louis, St. Louis, MO, USA
| | - Tychele N Turner
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Tim Schedl
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Joshua G Corbin
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA
| | - Stephen C Pak
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Irene E Zohn
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA.
| | - Christina A Gurnett
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
4
|
Martinez-Seidel F, Suwanchaikasem P, Gentry-Torfer D, Rajarathinam Y, Ebert A, Erban A, Firmino A, Nie S, Leeming M, Williamson N, Roessner U, Kopka J, Boughton BA. Remodelled ribosomal populations synthesize a specific proteome in proliferating plant tissue during cold. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230384. [PMID: 40045790 PMCID: PMC11883437 DOI: 10.1098/rstb.2023.0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/21/2024] [Accepted: 09/11/2024] [Indexed: 03/09/2025] Open
Abstract
Plant acclimation occurs through system-wide mechanisms that include proteome shifts, some of which occur at the level of protein synthesis. All proteins are synthesized by ribosomes. Rather than being monolithic, transcript-to-protein translation machines, ribosomes can be selective and cause proteome shifts. In this study, we use apical root meristems of germinating seedlings of the monocotyledonous plant barley as a model to examine changes in protein abundance and synthesis during cold acclimation. We measured metabolic and physiological parameters that allowed us to compare protein synthesis in the cold to optimal rearing temperatures. We demonstrated that the synthesis and assembly of ribosomal proteins are independent processes in root proliferative tissue. We report the synthesis and accumulation of various macromolecular complexes and propose how ribosome compositional shifts may be associated with functional proteome changes that are part of successful cold acclimation. Our study indicates that translation initiation is limiting during cold acclimation while the ribosome population is remodelled. The distribution of the triggered ribosomal protein heterogeneity suggests that altered compositions may confer 60S subunits selective association capabilities towards translation initiation complexes. To what extent selective translation depends on heterogeneous ribo-proteome compositions in barley proliferative root tissue remains a yet unresolved question.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Federico Martinez-Seidel
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pipob Suwanchaikasem
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Dione Gentry-Torfer
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Yogeswari Rajarathinam
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Alina Ebert
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Alexander Erban
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Alexandre Firmino
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Shuai Nie
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Leeming
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
- School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas Williamson
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Research School of Biology, The Australian National University, Acton, Australia
| | - Joachim Kopka
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Berin A. Boughton
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- La Trobe Institute of Sustainable Agriculture and Food, La Trobe University, Bundoora, Victoria3083, Australia
| |
Collapse
|
5
|
Selivanovskiy AV, Molodova MN, Khrameeva EE, Ulianov SV, Razin SV. Liquid condensates: a new barrier to loop extrusion? Cell Mol Life Sci 2025; 82:80. [PMID: 39976773 PMCID: PMC11842697 DOI: 10.1007/s00018-024-05559-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/04/2024] [Accepted: 12/20/2024] [Indexed: 02/23/2025]
Abstract
Liquid-liquid phase separation (LLPS), driven by dynamic, low-affinity multivalent interactions of proteins and RNA, results in the formation of macromolecular condensates on chromatin. These structures are likely to provide high local concentrations of effector factors responsible for various processes including transcriptional regulation and DNA repair. In particular, enhancers, super-enhancers, and promoters serve as platforms for condensate assembly. In the current paradigm, enhancer-promoter (EP) interaction could be interpreted as a result of enhancer- and promoter-based condensate contact/fusion. There is increasing evidence that the spatial juxtaposition of enhancers and promoters could be provided by loop extrusion (LE) by SMC complexes. Here, we propose that condensates may act as barriers to LE, thereby contributing to various nuclear processes including spatial contacts between regulatory genomic elements.
Collapse
Affiliation(s)
- Arseniy V Selivanovskiy
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Maria N Molodova
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
| | | | - Sergey V Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia.
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234, Moscow, Russia.
| |
Collapse
|
6
|
Skrzypczak M, Wolinska E, Adaszek Ł, Ortmann O, Treeck O. Epigenetic Modulation of Estrogen Receptor Signaling in Ovarian Cancer. Int J Mol Sci 2024; 26:166. [PMID: 39796024 PMCID: PMC11720219 DOI: 10.3390/ijms26010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Ovarian cancer remains one of the leading causes of cancer-related deaths in women. There are several processes that are described to have a causal relationship in ovarian cancer development, progression, and metastasis formation, that occur both at the genetic and epigenetic level. One of the mechanisms involved in its pathogenesis and progression is estrogen signaling. Estrogen receptors (ER) α, ERβ, and G-protein coupled estrogen receptor 1 (GPER1), in concert with various coregulators and pioneer transcription factors, mediate the effects of estrogens primarily by the transcriptional regulation of estrogen responsive genes, thereby exerting pleiotropic effects including the regulation of cellular proliferation and apoptosis. The expression and activity of estrogen receptors and their coregulators have been demonstrated to be regulated by epigenetic mechanisms like histone modifications and DNA methylation. Here, we intend to summarize and to provide an update on the current understanding of epigenetic mechanisms regulating estrogen signaling and their role in ovarian cancer. For this purpose, we reviewed publications on this topic listed in the PubMed database. Finally, we assess to which extent drugs acting on the epigenetic level might be suitable for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Maciej Skrzypczak
- Chair and Department of Gynecology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Ewa Wolinska
- Department of Pathology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Łukasz Adaszek
- Clinic of Infectious Diseases, University of Life Sciences Lublin, 20-950 Lublin, Poland;
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93935 Regensburg, Germany;
| | - Oliver Treeck
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93935 Regensburg, Germany;
| |
Collapse
|
7
|
Sun G, Zhao C, Han J, Wu S, Chen Y, Yao J, Li L. Regulatory mechanisms of steroid hormone receptors on gene transcription through chromatin interaction and enhancer reprogramming. Cell Oncol (Dordr) 2024; 47:2073-2090. [PMID: 39543064 DOI: 10.1007/s13402-024-01011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
Regulation of steroid hormone receptors (SHRs) on transcriptional reprogramming is crucial for breast cancer progression. SHRs, including estrogen receptor (ER), androgen receptor (AR), progesterone receptor (PR), and glucocorticoid receptor (GR) play key roles in remodeling the transcriptome of breast cancer cells. However, the molecular mechanisms by which SHRs regulate chromatin landscape in enhancer regions and transcription factor interactions remain largely unknown. In this review, we summarized the regulatory effects of 3 types of SHRs (AR, PR, and GR) on gene transcription through chromatin interactions and enhancer reprogramming. Specifically, AR and PR exhibit bi-directional regulatory effects (both inhibitory and promoting) on ER-mediated gene transcription, while GR modulates the transcription of pro-proliferation genes in ER-positive breast cancer cells. In addition, we have presented four enhancer reprogramming mechanisms (transcription factor cooperation, pioneer factor binding, dynamic assisted loading, and tethering) and the multiple enhancer-promoter contact models. Based on these mechanisms and models, this review proposes that the combination of multiple therapy strategies such as agonists/antagonists of SHRs plus endocrine therapy and the adoption of the latest sequencing technologies are expected to improve the efficacy of ER positive breast cancer treatment.
Collapse
Affiliation(s)
- Ge Sun
- Gene Regulation and Diseases Lab, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Chunguang Zhao
- Department of Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Jing Han
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Shaoya Wu
- Gene Regulation and Diseases Lab, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yan Chen
- Gene Regulation and Diseases Lab, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jing Yao
- Cancer Center, Institute of Radiation Oncology, Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
| | - Li Li
- Gene Regulation and Diseases Lab, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
8
|
Tabe-Bordbar S, Song YJ, Lunt BJ, Alavi Z, Prasanth KV, Sinha S. Mechanistic analysis of enhancer sequences in the estrogen receptor transcriptional program. Commun Biol 2024; 7:719. [PMID: 38862711 PMCID: PMC11167054 DOI: 10.1038/s42003-024-06400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 05/30/2024] [Indexed: 06/13/2024] Open
Abstract
Estrogen Receptor α (ERα) is a major lineage determining transcription factor (TF) in mammary gland development. Dysregulation of ERα-mediated transcriptional program results in cancer. Transcriptomic and epigenomic profiling of breast cancer cell lines has revealed large numbers of enhancers involved in this regulatory program, but how these enhancers encode function in their sequence remains poorly understood. A subset of ERα-bound enhancers are transcribed into short bidirectional RNA (enhancer RNA or eRNA), and this property is believed to be a reliable marker of active enhancers. We therefore analyze thousands of ERα-bound enhancers and build quantitative, mechanism-aware models to discriminate eRNAs from non-transcribing enhancers based on their sequence. Our thermodynamics-based models provide insights into the roles of specific TFs in ERα-mediated transcriptional program, many of which are supported by the literature. We use in silico perturbations to predict TF-enhancer regulatory relationships and integrate these findings with experimentally determined enhancer-promoter interactions to construct a gene regulatory network. We also demonstrate that the model can prioritize breast cancer-related sequence variants while providing mechanistic explanations for their function. Finally, we experimentally validate the model-proposed mechanisms underlying three such variants.
Collapse
Affiliation(s)
- Shayan Tabe-Bordbar
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - You Jin Song
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bryan J Lunt
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zahra Alavi
- Department of Physics, Loyola Marymount University, Los Angeles, CA, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Saurabh Sinha
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
9
|
Oxman E, Li H, Wang HY, Zohn IE. Identification and functional analysis of rare HECTD1 missense variants in human neural tube defects. Hum Genet 2024; 143:263-277. [PMID: 38451291 PMCID: PMC11043113 DOI: 10.1007/s00439-024-02647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/20/2024] [Indexed: 03/08/2024]
Abstract
Neural tube defects (NTDs) are severe malformations of the central nervous system that arise from failure of neural tube closure. HECTD1 is an E3 ubiquitin ligase required for cranial neural tube closure in mouse models. NTDs in the Hectd1 mutant mouse model are due to the failure of cranial mesenchyme morphogenesis during neural fold elevation. Our earlier research has linked increased extracellular heat shock protein 90 (eHSP90) secretion to aberrant cranial mesenchyme morphogenesis in the Hectd1 model. Furthermore, overexpression of HECTD1 suppresses stress-induced eHSP90 secretion in cell lines. In this study, we report the identification of five rare HECTD1 missense sequence variants in NTD cases. The variants were found through targeted next-generation sequencing in a Chinese cohort of 352 NTD cases and 224 ethnically matched controls. We present data showing that HECTD1 is a highly conserved gene, extremely intolerant to loss-of-function mutations and missense changes. To evaluate the functional consequences of NTD-associated missense variants, functional assays in HEK293T cells were performed to examine protein expression and the ability of HECTD1 sequence variants to suppress eHSP90 secretion. One NTD-associated variant (A1084T) had significantly reduced expression in HEK293T cells. All five NTD-associated variants (p.M392V, p.T801I, p.I906V, p.A1084T, and p.P1835L) reduced regulation of eHSP90 secretion by HECTD1, while a putative benign variant (p.P2474L) did not. These findings are the first association of HECTD1 sequence variation with NTDs in humans.
Collapse
Affiliation(s)
- Elias Oxman
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Research and Innovation Campus, Children's National Hospital, Washington, DC, 20012, USA
| | - Huili Li
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Hong-Yan Wang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, State Key Laboratory of Genetic, Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China
| | - Irene E Zohn
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Research and Innovation Campus, Children's National Hospital, Washington, DC, 20012, USA.
| |
Collapse
|
10
|
Mendiburu‐Eliçabe M, García‐Sancha N, Corchado‐Cobos R, Martínez‐López A, Chang H, Hua Mao J, Blanco‐Gómez A, García‐Casas A, Castellanos‐Martín A, Salvador N, Jiménez‐Navas A, Pérez‐Baena MJ, Sánchez‐Martín MA, Abad‐Hernández MDM, Carmen SD, Claros‐Ampuero J, Cruz‐Hernández JJ, Rodríguez‐Sánchez CA, García‐Cenador MB, García‐Criado FJ, Vicente RS, Castillo‐Lluva S, Pérez‐Losada J. NCAPH drives breast cancer progression and identifies a gene signature that predicts luminal a tumour recurrence. Clin Transl Med 2024; 14:e1554. [PMID: 38344872 PMCID: PMC10859882 DOI: 10.1002/ctm2.1554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/01/2024] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Luminal A tumours generally have a favourable prognosis but possess the highest 10-year recurrence risk among breast cancers. Additionally, a quarter of the recurrence cases occur within 5 years post-diagnosis. Identifying such patients is crucial as long-term relapsers could benefit from extended hormone therapy, while early relapsers might require more aggressive treatment. METHODS We conducted a study to explore non-structural chromosome maintenance condensin I complex subunit H's (NCAPH) role in luminal A breast cancer pathogenesis, both in vitro and in vivo, aiming to identify an intratumoural gene expression signature, with a focus on elevated NCAPH levels, as a potential marker for unfavourable progression. Our analysis included transgenic mouse models overexpressing NCAPH and a genetically diverse mouse cohort generated by backcrossing. A least absolute shrinkage and selection operator (LASSO) multivariate regression analysis was performed on transcripts associated with elevated intratumoural NCAPH levels. RESULTS We found that NCAPH contributes to adverse luminal A breast cancer progression. The intratumoural gene expression signature associated with elevated NCAPH levels emerged as a potential risk identifier. Transgenic mice overexpressing NCAPH developed breast tumours with extended latency, and in Mouse Mammary Tumor Virus (MMTV)-NCAPHErbB2 double-transgenic mice, luminal tumours showed increased aggressiveness. High intratumoural Ncaph levels correlated with worse breast cancer outcome and subpar chemotherapy response. A 10-gene risk score, termed Gene Signature for Luminal A 10 (GSLA10), was derived from the LASSO analysis, correlating with adverse luminal A breast cancer progression. CONCLUSIONS The GSLA10 signature outperformed the Oncotype DX signature in discerning tumours with unfavourable outcomes, previously categorised as luminal A by Prediction Analysis of Microarray 50 (PAM50) across three independent human cohorts. This new signature holds promise for identifying luminal A tumour patients with adverse prognosis, aiding in the development of personalised treatment strategies to significantly improve patient outcomes.
Collapse
|
11
|
Oxman E, Li H, Wang HY, Zohn I. Identification and Functional Analysis of Rare HECTD1 Missense Variants in Human Neural Tube Defects. RESEARCH SQUARE 2024:rs.3.rs-3794712. [PMID: 38260607 PMCID: PMC10802691 DOI: 10.21203/rs.3.rs-3794712/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Neural tube defects (NTDs) are severe malformations of the central nervous system that arise from failure of neural tube closure. HECTD1 is an E3 ubiquitin ligase required for cranial neural tube closure in mouse models. NTDs in the Hectd1 mutant mouse model are due to the failure of cranial mesenchyme morphogenesis during neural fold elevation. Our earlier research has linked increased secretion of extracellular heat shock protein 90 (eHSP90) to aberrant cranial mesenchyme morphogenesis in the Hectd1 model. Furthermore, overexpression of HECTD1 suppresses stress-induced eHSP90 secretion in cell lines. In this study, we report the identification of five rare HECTD1 missense sequence variants in NTD cases. The variants were found through targeted next-generation sequencing in a Chinese cohort of 352 NTD cases and 224 ethnically matched controls. We present data showing that HECTD1 is a highly conserved gene, extremely intolerant to loss-of-function mutations and missense changes. To evaluate the functional consequences of NTD-associated missense variants, functional assays in HEK293T cells were performed to examine protein expression and the ability of HECTD1 sequence variants to suppress eHSP90 secretion. One NTD-associated variant (A1084T) had significantly reduced expression in HEK293T cells. All five NTD-associated variants (p.M392V, p.T801I, p.I906V, p.A1084T, and p.P1835L) reduced regulation of eHSP90 secretion by HECTD1, while a putative benign variant (p.P2474L) did not. These findings are the first association of HECTD1 sequence variation with human disease and suggest that sequence variation in HECTD1 may play a role in the etiology of human NTDs.
Collapse
Affiliation(s)
| | - Huili Li
- University of Colorado at Boulder
| | | | | |
Collapse
|
12
|
Hou J, Huang P, Xu M, Wang H, Shao Y, Weng X, Liu Y, Chang H, Zhang L, Cui H. Nonstructural maintenance of chromatin condensin I complex subunit G promotes the progression of glioblastoma by facilitating Poly (ADP-ribose) polymerase 1-mediated E2F1 transactivation. Neuro Oncol 2023; 25:2015-2027. [PMID: 37422706 PMCID: PMC10628937 DOI: 10.1093/neuonc/noad111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND Nonstructural maintenance of chromatin condensin I complex subunit G (NCAPG), also known as non-structural maintenance of chromosomes condensin I complex subunit G, is mitosis-related protein that widely existed in eukaryotic cells. Increasing evidence has demonstrated that aberrant NCAPG expression was strongly associated with various tumors. However, little is known about the function and mechanism of NCAPG in glioblastoma (GBM). METHODS The expression and prognostic value of NCAPG were detected in the clinical databases and tumor samples. The function effects of NCAPG downregulation or overexpression were evaluated in GBM cell proliferation, migration, invasion, and self-renewal in vitro and in tumor growth in vivo. The molecular mechanism of NCAPG was researched. RESULTS We identified that NCAPG was upregulated in GBM and associated with poor prognosis. Loss of NCAPG suppressed the progression of GBM cells in vitro and prolonged survival in mouse models of GBM in vivo. Mechanistically, we revealed that NCAPG positively regulated E2F transcription factor 1 (E2F1) pathway activity. By directly interacting with Poly (ADP-ribose) polymerase 1, a co-activator of E2F1, and facilitating the PARP1-E2F1 interaction to activate E2F1 target gene expression. Intriguingly, we also discovered that NCAPG functioned as a downstream target of E2F1, which was proved by the ChIP and Dual-Luciferase results. Comprehensive data mining and immunocytochemistry analysis revealed that NCAPG expression was positively associated with the PARP1/E2F1 signaling axis. CONCLUSIONS Our findings indicate that NCAPG promotes GBM progression by facilitating PARP1-mediated E2F1 transactivation, suggesting that NCAPG is a potential target for anticancer therapy.
Collapse
Affiliation(s)
- Jianbing Hou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Advanced Research Center in Brain Diseases, Jinfeng Laboratory, Chongqing, China
| | - Pan Huang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Minghao Xu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Hao Wang
- Department of Neurosurgery, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Yaqian Shao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Xuelian Weng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Yudong Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Hongbo Chang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Advanced Research Center in Brain Diseases, Jinfeng Laboratory, Chongqing, China
| | - Li Zhang
- Department of Radiology and Nuclear Medicine, The First Hospital of HeBei Medical University, Hebei Province, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Advanced Research Center in Brain Diseases, Jinfeng Laboratory, Chongqing, China
| |
Collapse
|
13
|
Zhou H, Hao X, Zhang P, He S. Noncoding RNA mutations in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1812. [PMID: 37544928 DOI: 10.1002/wrna.1812] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023]
Abstract
Cancer is driven by both germline and somatic genetic changes. Efforts have been devoted to characterizing essential genetic variations in cancer initiation and development. Most attention has been given to mutations in protein-coding genes and associated regulatory elements such as promoters and enhancers. The development of sequencing technologies and in silico and experimental methods has allowed further exploration of cancer predisposition variants and important somatic mutations in noncoding RNAs, mainly for long noncoding RNAs and microRNAs. Association studies including GWAS have revealed hereditary variations including SNPs and indels in lncRNA or miRNA genes and regulatory regions. These mutations altered RNA secondary structures, expression levels, and target recognition and then conferred cancer predisposition to carriers. Whole-exome/genome sequencing comparing cancer and normal tissues has revealed important somatic mutations in noncoding RNA genes. Mutation hotspots and somatic copy number alterations have been identified in various tumor-associated noncoding RNAs. Increasing focus and effort have been devoted to studying the noncoding region of the genome. The complex genetic network of cancer initiation is being unveiled. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Honghong Zhou
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xinpei Hao
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shunmin He
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Mendiburu-Eliçabe M, García-Sancha N, Corchado-Cobos R, Martínez-López A, Chang H, Mao JH, Blanco-Gómez A, García-Casas A, Castellanos-Martín A, Salvador N, Jiménez-Navas A, Pérez-Baena MJ, Sánchez-Martín MA, Abad-Hernández MDM, Del Carmen S, Claros-Ampuero J, Cruz-Hernández JJ, Rodríguez-Sánchez CA, García-Cenador MB, García-Criado FJ, Vicente RS, Castillo-Lluva S, Pérez-Losada J. NCAPH Drives Breast Cancer Progression and Identifies a Gene Signature that Predicts Luminal A Tumor Recurrence. RESEARCH SQUARE 2023:rs.3.rs-3231230. [PMID: 37886490 PMCID: PMC10602143 DOI: 10.21203/rs.3.rs-3231230/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Despite their generally favorable prognosis, luminal A tumors paradoxically pose the highest ten-year recurrence risk among breast cancers. From those that relapse, a quarter of them do it within five years after diagnosis. Identifying such patients is crucial, as long-term relapsers could benefit from extended hormone therapy, whereas early relapsers may require aggressive treatment. In this study, we demonstrate that NCAPH plays a role in the pathogenesis of luminal A breast cancer, contributing to its adverse progression in vitro and in vivo. Furthermore, we reveal that a signature of intratumoral gene expression, associated with elevated levels of NCAPH, serves as a potential marker to identify patients facing unfavorable progression of luminal A breast cancer. Indeed, transgenic mice overexpressing NCAPH generated breast tumors with long latency, and in MMTV-NCAPH/ErbB2+ double-transgenic mice, the luminal tumors formed were more aggressive. In addition, high intratumoral levels of Ncaph were associated with worse breast cancer evolution and poor response to chemotherapy in a cohort of genetically heterogeneous transgenic mice generated by backcrossing. In this cohort of mice, we identified a series of transcripts associated with elevated intratumoral levels of NCAPH, which were linked to adverse progression of breast cancer in both mice and humans. Utilizing the Least Absolute Shrinkage and Selection Operator (LASSO) multivariate regression analysis on this series of transcripts, we derived a ten-gene risk score. This score is defined by a gene signature (termed Gene Signature for Luminal A 10 or GSLA10) that correlates with unfavorable progression of luminal A breast cancer. The GSLA10 signature surpassed the Oncotype DX signature in discerning tumors with unfavorable outcomes (previously categorized as Luminal A by PAM50) across three independent human cohorts. This GSLA10 signature aids in identifying patients with Luminal A tumors displaying adverse prognosis, who could potentially benefit from personalized treatment strategies.
Collapse
Affiliation(s)
- Marina Mendiburu-Eliçabe
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, Spain
| | - Natalia García-Sancha
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, Spain
| | - Roberto Corchado-Cobos
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, Spain
| | - Angélica Martínez-López
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jian Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Adrián Blanco-Gómez
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, Spain
| | - Ana García-Casas
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Andrés Castellanos-Martín
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, Spain
| | - Nélida Salvador
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Alejandro Jiménez-Navas
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, Spain
| | - Manuel Jesús Pérez-Baena
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, Spain
| | - Manuel Adolfo Sánchez-Martín
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
- Servicio de Transgénesis, Plataforma Nucleus, Universidad de Salamanca, Salamanca, Spain
| | - María Del Mar Abad-Hernández
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Anatomía Patológica, Universidad de Salamanca, Salamanca, Spain
- Servicio de Anatomía Patológica, Hospital Universitario de Salamanca, Spain
| | - Sofía Del Carmen
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Anatomía Patológica, Universidad de Salamanca, Salamanca, Spain
- Servicio de Anatomía Patológica, Hospital Universitario de Salamanca, Spain
| | - Juncal Claros-Ampuero
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, Spain
- Servicio de Oncología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Juan Jesús Cruz-Hernández
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
- Servicio de Oncología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - César Augusto Rodríguez-Sánchez
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
- Servicio de Oncología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - María Begoña García-Cenador
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Cirugía, Universidad de Salamanca, Salamanca, Spain
| | - Francisco Javier García-Criado
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Cirugía, Universidad de Salamanca, Salamanca, Spain
| | | | - Sonia Castillo-Lluva
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Jesús Pérez-Losada
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
15
|
Abstract
The human genome is organized into multiple structural layers, ranging from chromosome territories to progressively smaller substructures, such as topologically associating domains (TADs) and chromatin loops. These substructures, collectively referred to as long-range chromatin interactions (LRIs), have a significant role in regulating gene expression. TADs are regions of the genome that harbour groups of genes and regulatory elements that frequently interact with each other and are insulated from other regions, thereby preventing widespread uncontrolled DNA contacts. Chromatin loops formed within TADs through enhancer and promoter interactions are elastic, allowing transcriptional heterogeneity and stochasticity. Over the past decade, it has become evident that the 3D genome structure, also referred to as the chromatin architecture, is central to many transcriptional cellular decisions. In this Review, we delve into the intricate relationship between steroid receptors and LRIs, discussing how steroid receptors interact with and modulate these chromatin interactions. Genetic alterations in the many processes involved in organizing the nuclear architecture are often associated with the development of hormone-dependent cancers. A better understanding of the interplay between architectural proteins and hormone regulatory networks can ultimately be exploited to develop improved approaches for cancer treatment.
Collapse
Affiliation(s)
- Theophilus T Tettey
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Lorenzo Rinaldi
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
16
|
Abstract
Many cellular processes require large-scale rearrangements of chromatin structure. Structural maintenance of chromosomes (SMC) protein complexes are molecular machines that can provide structure to chromatin. These complexes can connect DNA elements in cis, walk along DNA, build and processively enlarge DNA loops and connect DNA molecules in trans to hold together the sister chromatids. These DNA-shaping abilities place SMC complexes at the heart of many DNA-based processes, including chromosome segregation in mitosis, transcription control and DNA replication, repair and recombination. In this Review, we discuss the latest insights into how SMC complexes such as cohesin, condensin and the SMC5-SMC6 complex shape DNA to direct these fundamental chromosomal processes. We also consider how SMC complexes, by building chromatin loops, can counteract the natural tendency of alike chromatin regions to cluster. SMC complexes thus control nuclear organization by participating in a molecular tug of war that determines the architecture of our genome.
Collapse
Affiliation(s)
- Claire Hoencamp
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Benjamin D Rowland
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Guo C, Meza-Sosa KF, Valle-Garcia D, Zhao G, Gao K, Yu L, Zhang H, Chen Y, Sun L, Rockowitz S, Wang S, Jiang S, Lieberman J. The SET oncoprotein promotes estrogen-induced transcription by facilitating establishment of active chromatin. Proc Natl Acad Sci U S A 2023; 120:e2206878120. [PMID: 36791099 PMCID: PMC9974495 DOI: 10.1073/pnas.2206878120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 01/10/2023] [Indexed: 02/16/2023] Open
Abstract
SET is a multifunctional histone-binding oncoprotein that regulates transcription by an unclear mechanism. Here we show that SET enhances estrogen-dependent transcription. SET knockdown abrogates transcription of estrogen-responsive genes and their enhancer RNAs. In response to 17β-estradiol (E2), SET binds to the estrogen receptor α (ERα) and is recruited to ERα-bound enhancers and promoters at estrogen response elements (EREs). SET functions as a histone H2 chaperone that dynamically associates with H2A.Z via its acidic C-terminal domain and promotes H2A.Z incorporation, ERα, MLL1, and KDM3A loading and modulates histone methylation at EREs. SET depletion diminishes recruitment of condensin complexes to EREs and impairs E2-dependent enhancer-promoter looping. Thus, SET boosts E2-induced gene expression by establishing an active chromatin structure at ERα-bound enhancers and promoters, which is essential for transcriptional activation.
Collapse
Affiliation(s)
- Changying Guo
- College of Life Science and Technology, Xinjiang University, Urumqi830000, China
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
| | - Karla F. Meza-Sosa
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
| | - David Valle-Garcia
- Division of Newborn Medicine and Epigenetics Program, Boston Children's Hospital, Boston, MA02115
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
| | - Guomeng Zhao
- China Pharmaceutical University, Nanjing211198, China
| | - Kun Gao
- China Pharmaceutical University, Nanjing211198, China
| | - Liting Yu
- China Pharmaceutical University, Nanjing211198, China
| | | | - Yeqing Chen
- Ying Wu College of Computing, New Jersey Institute of Technology, Newark, NJ07102
| | - Liang Sun
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, MA02115
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
| | - Shira Rockowitz
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, MA02115
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
| | - Shouyu Wang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing210093, China
| | - Sheng Jiang
- China Pharmaceutical University, Nanjing211198, China
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
| |
Collapse
|
18
|
Ahmed I, Yang SH, Ogden S, Zhang W, Li Y, Sharrocks AD. eRNA profiling uncovers the enhancer landscape of oesophageal adenocarcinoma and reveals new deregulated pathways. eLife 2023; 12:e80840. [PMID: 36803948 PMCID: PMC9998086 DOI: 10.7554/elife.80840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 02/20/2023] [Indexed: 02/22/2023] Open
Abstract
Cancer is driven by both genetic and epigenetic changes that impact on gene expression profiles and the resulting tumourigenic phenotype. Enhancers are transcriptional regulatory elements that are key to our understanding of how this rewiring of gene expression is achieved in cancer cells. Here, we have harnessed the power of RNA-seq data from hundreds of patients with oesophageal adenocarcinoma (OAC) or its precursor state Barrett's oesophagus coupled with open chromatin maps to identify potential enhancer RNAs and their associated enhancer regions in this cancer. We identify ~1000 OAC-specific enhancers and use these data to uncover new cellular pathways that are operational in OAC. Among these are enhancers for JUP, MYBL2, and CCNE1, and we show that their activity is required for cancer cell viability. We also demonstrate the clinical utility of our dataset for identifying disease stage and patient prognosis. Our data therefore identify an important set of regulatory elements that enhance our molecular understanding of OAC and point to potential new therapeutic directions.
Collapse
Affiliation(s)
- Ibrahim Ahmed
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Shen-Hsi Yang
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Samuel Ogden
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Wei Zhang
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Yaoyong Li
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | | | - Andrew D Sharrocks
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| |
Collapse
|
19
|
Balaji AK, Saha S, Deshpande S, Poola D, Sengupta K. Nuclear envelope, chromatin organizers, histones, and DNA: The many achilles heels exploited across cancers. Front Cell Dev Biol 2022; 10:1068347. [PMID: 36589746 PMCID: PMC9800887 DOI: 10.3389/fcell.2022.1068347] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
In eukaryotic cells, the genome is organized in the form of chromatin composed of DNA and histones that organize and regulate gene expression. The dysregulation of chromatin remodeling, including the aberrant incorporation of histone variants and their consequent post-translational modifications, is prevalent across cancers. Additionally, nuclear envelope proteins are often deregulated in cancers, which impacts the 3D organization of the genome. Altered nuclear morphology, genome organization, and gene expression are defining features of cancers. With advances in single-cell sequencing, imaging technologies, and high-end data mining approaches, we are now at the forefront of designing appropriate small molecules to selectively inhibit the growth and proliferation of cancer cells in a genome- and epigenome-specific manner. Here, we review recent advances and the emerging significance of aberrations in nuclear envelope proteins, histone variants, and oncohistones in deregulating chromatin organization and gene expression in oncogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Kundan Sengupta
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research, Pune, Maharashtra, India
| |
Collapse
|
20
|
Estrogen-Inducible LncRNA BNAT1 Functions as a Modulator for Estrogen Receptor Signaling in Endocrine-Resistant Breast Cancer Cells. Cells 2022; 11:cells11223610. [PMID: 36429038 PMCID: PMC9688125 DOI: 10.3390/cells11223610] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Recent advances in RNA studies have revealed that functional long noncoding RNAs (lncRNAs) contribute to the biology of cancers. In breast cancer, estrogen receptor α (ERα) is an essential transcription factor that primarily promotes the growth of luminal-type cancer, although only a small number of lncRNAs are identified as direct ERα targets and modulators for ERα signaling. In this study, we performed RNA-sequencing for ER-positive breast cancer cells and identified a novel estrogen-inducible antisense RNA in the COL18A1 promoter region, named breast cancer natural antisense transcript 1 (BNAT1). In clinicopathological study, BNAT1 may have clinical relevance as a potential diagnostic factor for prognoses of ER-positive breast cancer patients based on an in situ hybridization study for breast cancer specimens. siRNA-mediated BNAT1 silencing significantly inhibited the in vitro and in vivo growth of tamoxifen-resistant ER-positive breast cancer cells. Notably, BNAT1 silencing repressed cell cycle progression whereas it promoted apoptosis. Microarray analysis revealed that BNAT1 silencing in estrogen-sensitive breast cancer cells repressed estrogen signaling. We showed that BNAT1 knockdown decreased ERα expression and repressed ERα transactivation. RNA immunoprecipitation showed that BNAT1 physically binds to ERα protein. In summary, BNAT1 would play a critical role in the biology of ER-positive breast cancer by modulating ERα-dependent transcription regulation. We consider that BNAT1 could be a potential molecular target for diagnostic and therapeutic options targeting luminal-type and endocrine-resistant breast cancer.
Collapse
|
21
|
Ward JR, Khan A, Torres S, Crawford B, Nock S, Frisbie T, Moran J, Longworth M. Condensin I and condensin II proteins form a LINE-1 dependent super condensin complex and cooperate to repress LINE-1. Nucleic Acids Res 2022; 50:10680-10694. [PMID: 36169232 PMCID: PMC9561375 DOI: 10.1093/nar/gkac802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Condensin I and condensin II are multi-subunit complexes that are known for their individual roles in genome organization and preventing genomic instability. However, interactions between condensin I and condensin II subunits and cooperative roles for condensin I and condensin II, outside of their genome organizing functions, have not been reported. We previously discovered that condensin II cooperates with Gamma Interferon Activated Inhibitor of Translation (GAIT) proteins to associate with Long INterspersed Element-1 (LINE-1 or L1) RNA and repress L1 protein expression and the retrotransposition of engineered L1 retrotransposition in cultured human cells. Here, we report that the L1 3'UTR is required for condensin II and GAIT association with L1 RNA, and deletion of the L1 RNA 3'UTR results in increased L1 protein expression and retrotransposition. Interestingly, like condensin II, we report that condensin I also binds GAIT proteins, associates with the L1 RNA 3'UTR, and represses L1 retrotransposition. We provide evidence that the condensin I protein, NCAPD2, is required for condensin II and GAIT protein association with L1 RNA. Furthermore, condensin I and condensin II subunits interact to form a L1-dependent super condensin complex (SCC) which is located primarily within the cytoplasm of both transformed and primary epithelial cells. These data suggest that increases in L1 expression in epithelial cells promote cytoplasmic condensin protein associations that facilitate a feedback loop in which condensins may cooperate to mediate L1 repression.
Collapse
Affiliation(s)
- Jacqueline R Ward
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Afshin Khan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Sabrina Torres
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Bert Crawford
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Sarah Nock
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Trenton Frisbie
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - John V Moran
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
- Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Michelle S Longworth
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44195, USA
| |
Collapse
|
22
|
Gao L, Rong H. Potential mechanisms and prognostic model of eRNAs-regulated genes in stomach adenocarcinoma. Sci Rep 2022; 12:16545. [PMID: 36192427 PMCID: PMC9529949 DOI: 10.1038/s41598-022-20824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/19/2022] [Indexed: 11/09/2022] Open
Abstract
Gastric Carcinoma is the fourth leading cause of cancer deaths worldwide, in which stomach adenocarcinoma (STAD) is the most common histological type. A growing amount of evidence has suggested the importance of enhancer RNAs (eRNAs) in the cancer. However, the potential mechanism of eRNAs in STAD remains unclear. The eRNAs-regulated genes (eRRGs) were identified through four different enhancer resources. The differentially expressed eRRGs were obtained by ‘DESeq2’ R package. The prognosis prediction model was constructed by Cox and Lasso regression analysis. The ‘ChAMP’ R package and ‘maftools’ R package were used to investigate the multi-omics characters. In this study, combining the concept of contact domain, a total of 9014 eRRGs including 4926 PCGs and 4088 lncRNAs were identified and these eRRGs showed higher and more stable expression. Besides, the functions of these genes were mainly associated with tumor-related biological processes. Then, a prognostic prediction model was constructed and the AUC values of the 1-, 3- and 5-year survival prediction reached 0.76, 0.84 and 0.84, respectively, indicating that this model has a high accuracy. Finally, the difference between high-risk group and low-risk group were investigated using multi-omics data including gene expression, DNA methylation and somatic mutations. Our study provides significant clues for the elucidation of eRNAs in STAD and may help improve the overall survival for STAD patients.
Collapse
Affiliation(s)
- Liuying Gao
- The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China. .,Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo, 315211, China.
| | - Hao Rong
- The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.,Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo, 315211, China
| |
Collapse
|
23
|
Nair SJ, Suter T, Wang S, Yang L, Yang F, Rosenfeld MG. Transcriptional enhancers at 40: evolution of a viral DNA element to nuclear architectural structures. Trends Genet 2022; 38:1019-1047. [PMID: 35811173 PMCID: PMC9474616 DOI: 10.1016/j.tig.2022.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 02/08/2023]
Abstract
Gene regulation by transcriptional enhancers is the dominant mechanism driving cell type- and signal-specific transcriptional diversity in metazoans. However, over four decades since the original discovery, how enhancers operate in the nuclear space remains largely enigmatic. Recent multidisciplinary efforts combining real-time imaging, genome sequencing, and biophysical strategies provide insightful but conflicting models of enhancer-mediated gene control. Here, we review the discovery and progress in enhancer biology, emphasizing the recent findings that acutely activated enhancers assemble regulatory machinery as mesoscale architectural structures with distinct physical properties. These findings help formulate novel models that explain several mysterious features of the assembly of transcriptional enhancers and the mechanisms of spatial control of gene expression.
Collapse
Affiliation(s)
- Sreejith J Nair
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | - Tom Suter
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan Wang
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Cellular and Molecular Medicine Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lu Yang
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Feng Yang
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
24
|
The E3 ubiquitin ligase HECTD1 contributes to cell proliferation through an effect on mitosis. Sci Rep 2022; 12:13160. [PMID: 35915203 PMCID: PMC9343455 DOI: 10.1038/s41598-022-16965-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022] Open
Abstract
The cell cycle is tightly regulated by protein phosphorylation and ubiquitylation events. During mitosis, the multi-subunit cullin-RING E3 ubiquitin ligase APC/c functions as a molecular switch which signals for one cell to divide into two daughter cells, through the ubiquitylation and proteasomal degradation of mitotic cyclins. The contributions of other E3 ligase families during cell cycle progression remain less well understood. Similarly, the roles of ubiquitin chain types beyond homotypic K48 chains in S-phase or branched K11/K48 chains during mitosis, also remain to be fully determined. Our recent findings that HECTD1 ubiquitin ligase activity assembles branched K29/K48 ubiquitin linkages prompted us to evaluate HECTD1 function during the cell cycle. We used transient knockdown and genetic knockout to show that HECTD1 depletion in HEK293T and HeLa cells decreases cell number and we established that this is mediated through loss of ubiquitin ligase activity. Interestingly, we found that HECTD1 depletion increases the proportion of cells with aligned chromosomes (Prometa/Metaphase) and we confirmed this molecularly using phospho-Histone H3 (Ser28) as a marker of mitosis. Time-lapse microscopy of NEBD to anaphase onset established that HECTD1-depleted cells take on average longer to go through mitosis. In line with this data, HECTD1 depletion reduced the activity of the Spindle Assembly Checkpoint, and BUB3, a component of the Mitosis Checkpoint Complex, was identified as novel HECTD1 interactor. BUB3, BUBR1 or MAD2 protein levels remained unchanged in HECTD1-depleted cells. Overall, this study reveals a novel putative role for HECTD1 during mitosis and warrants further work to elucidate the mechanisms involved.
Collapse
|
25
|
Zhang Y, Tang M, Huang M, Xie J, Cheng J, Fu Y, Jiang D, Yu X, Li B. Dynamic enhancer transcription associates with reprogramming of immune genes during pattern triggered immunity in Arabidopsis. BMC Biol 2022; 20:165. [PMID: 35864475 PMCID: PMC9301868 DOI: 10.1186/s12915-022-01362-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Enhancers are cis-regulatory elements present in eukaryote genomes, which constitute indispensable determinants of gene regulation by governing the spatiotemporal and quantitative expression dynamics of target genes, and are involved in multiple life processes, for instance during development and disease states. The importance of enhancer activity has additionally been highlighted for immune responses in animals and plants; however, the dynamics of enhancer activities and molecular functions in plant innate immunity are largely unknown. Here, we investigated the involvement of distal enhancers in early innate immunity in Arabidopsis thaliana. RESULTS A group of putative distal enhancers producing low-abundance transcripts either unidirectionally or bidirectionally are identified. We show that enhancer transcripts are dynamically modulated in plant immunity triggered by microbe-associated molecular patterns and are strongly correlated with open chromatin, low levels of methylated DNA, and increases in RNA polymerase II targeting and acetylated histone marks. Dynamic enhancer transcription is correlated with target early immune gene expression patterns. Cis motifs that are bound by immune-related transcription factors, such as WRKYs and SARD1, are highly enriched within upregulated enhancers. Moreover, a subset of core pattern-induced enhancers are upregulated by multiple patterns from diverse pathogens. The expression dynamics of putative immunity-related enhancers and the importance of WRKY binding motifs for enhancer function were also validated. CONCLUSIONS Our study demonstrates the general occurrence of enhancer transcription in plants and provides novel information on the distal regulatory landscape during early plant innate immunity, providing new insights into immune gene regulation and ultimately improving the mechanistic understanding of the plant immune system.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Meng Tang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Mengling Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yanping Fu
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China.
| |
Collapse
|
26
|
Liu J, Jia J, Wang S, Zhang J, Xian S, Zheng Z, Deng L, Feng Y, Zhang Y, Zhang J. Prognostic Ability of Enhancer RNAs in Metastasis of Non-Small Cell Lung Cancer. Molecules 2022; 27:molecules27134108. [PMID: 35807355 PMCID: PMC9268450 DOI: 10.3390/molecules27134108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
(1) Background: Non-small cell lung cancer (NSCLC) is the most common lung cancer. Enhancer RNA (eRNA) has potential utility in the diagnosis, prognosis and treatment of cancer, but the role of eRNAs in NSCLC metastasis is not clear; (2) Methods: Differentially expressed transcription factors (DETFs), enhancer RNAs (DEEs), and target genes (DETGs) between primary NSCLC and metastatic NSCLC were identified. Prognostic DEEs (PDEEs) were screened by Cox regression analyses and a predicting model for metastatic NSCLC was constructed. We identified DEE interactions with DETFs, DETGs, reverse phase protein arrays (RPPA) protein chips, immunocytes, and pathways to construct a regulation network using Pearson correlation. Finally, the mechanisms and clinical significance were explained using multi-dimensional validation unambiguously; (3) Results: A total of 255 DEEs were identified, and 24 PDEEs were selected into the multivariate Cox regression model (AUC = 0.699). Additionally, the NSCLC metastasis-specific regulation network was constructed, and six key PDEEs were defined (ANXA8L1, CASTOR2, CYP4B1, GTF2H2C, PSMF1 and TNS4); (4) Conclusions: This study focused on the exploration of the prognostic value of eRNAs in the metastasis of NSCLC. Finally, six eRNAs were identified as potential markers for the prediction of metastasis of NSCLC.
Collapse
Affiliation(s)
- Jun Liu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; (J.L.); (J.J.)
- School of Medicine, Tongji University, Shanghai 200092, China; (S.W.); (J.Z.); (S.X.); (Z.Z.)
| | - Jingyi Jia
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; (J.L.); (J.J.)
- School of Medicine, Tongji University, Shanghai 200092, China; (S.W.); (J.Z.); (S.X.); (Z.Z.)
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Shanghai Clinical Research Center for Infectious Diseases (Tuberculosis), Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Siqiao Wang
- School of Medicine, Tongji University, Shanghai 200092, China; (S.W.); (J.Z.); (S.X.); (Z.Z.)
| | - Junfang Zhang
- School of Medicine, Tongji University, Shanghai 200092, China; (S.W.); (J.Z.); (S.X.); (Z.Z.)
| | - Shuyuan Xian
- School of Medicine, Tongji University, Shanghai 200092, China; (S.W.); (J.Z.); (S.X.); (Z.Z.)
| | - Zixuan Zheng
- School of Medicine, Tongji University, Shanghai 200092, China; (S.W.); (J.Z.); (S.X.); (Z.Z.)
| | - Lin Deng
- Normal College, Qingdao University, Qingdao 266071, China;
| | - Yonghong Feng
- School of Medicine, Tongji University, Shanghai 200092, China; (S.W.); (J.Z.); (S.X.); (Z.Z.)
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Shanghai Clinical Research Center for Infectious Diseases (Tuberculosis), Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Correspondence: (Y.F.); (Y.Z.); (J.Z.)
| | - Yuan Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Correspondence: (Y.F.); (Y.Z.); (J.Z.)
| | - Jie Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; (J.L.); (J.J.)
- School of Medicine, Tongji University, Shanghai 200092, China; (S.W.); (J.Z.); (S.X.); (Z.Z.)
- Correspondence: (Y.F.); (Y.Z.); (J.Z.)
| |
Collapse
|
27
|
Abstract
The tumor microenvironment (TME) is a well-recognized system that plays an essential role in tumor initiation, development, and progression. Intense intercellular communication between tumor cells and other cells (especially macrophages) occurs in the TME and is mediated by cell-to-cell contact and/or soluble messengers. Emerging evidence indicates that noncoding RNAs (ncRNAs) are critical regulators of the relationship between cells within the TME. In this review, we provide an update on the regulation of ncRNAs (primarily micro RNAs [miRNAs], long ncRNAs [lncRNAs], and circular RNAs [circRNAs]) in the crosstalk between macrophages and tumor cells in hepatocellular carcinoma (HCC). These ncRNAs are derived from macrophages or tumor cells and act as oncogenes or tumor suppressors, contributing to tumor progression not only by regulating the physiological and pathological processes of tumor cells but also by controlling macrophage infiltration, activation, polarization, and function. Herein, we also explore the options available for clinical therapeutic strategies targeting crosstalk-related ncRNAs to treat HCC. A better understanding of the relationship between macrophages and tumor cells mediated by ncRNAs will uncover new diagnostic biomarkers and pharmacological targets in cancer.
Collapse
|
28
|
Zhang W, Chen K, Tian W, Zhang Q, Sun L, Wang Y, Liu M, Zhang Q. A Novel and Robust Prognostic Model for Hepatocellular Carcinoma Based on Enhancer RNAs-Regulated Genes. Front Oncol 2022; 12:849242. [PMID: 35646665 PMCID: PMC9133429 DOI: 10.3389/fonc.2022.849242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Evidence has demonstrated that enhancer RNAs (eRNAs) play a vital role in the progression and prognosis of cancers, but few studies have focused on the prognostic ability of eRNA-regulated genes (eRGs) for hepatocellular carcinoma (HCC). Using gene expression profiles of HCC patients from the TCGA-LIHC and eRNA expression profiles from the enhancer RNA in cancers (eRic) data portal, we developed a novel and robust prognostic signature composed of 10 eRGs based on Lasso-penalized Cox regression analysis. According to the signature, HCC patients were stratified into high- and low-risk groups, which have been shown to have significant differences in tumor immune microenvironment, immune checkpoints, HLA-related genes, DNA damage repair-related genes, Gene-set variation analysis (GSVA), and the lower half-maximal inhibitory concentration (IC50) of Sorafenib. The prognostic nomogram combining the signature, age, and TNM stage had good predictive ability in the training set (TCGA-LIHC) with the concordance index (C-index) of 0.73 and the AUCs for 1-, 3-, and 5-year OS of 0.82, 0.77, 0.74, respectively. In external validation set (GSE14520), the nomogram also performed well with the C-index of 0.71 and the AUCs for 1-, 3-, and 5-year OS of 0.74, 0.77, 0.74, respectively. In addition, an important eRG (AKR1C3) was validated using two HCC cell lines (Huh7 and MHCC-LM3) in vitro, and the results demonstrated the overexpression of AKR1C3 is related to cell proliferation, migration, and invasion in HCC. Altogether, our eRGs signature and nomogram can predict prognosis accurately and conveniently, facilitate individualized treatment, and improve prognosis for HCC patients.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Kegong Chen
- Department of Cardio-Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Ultrasound, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Tian
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Qi Zhang
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Lin Sun
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Yupeng Wang
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Meina Liu
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Qiuju Zhang
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| |
Collapse
|
29
|
Bick G, Zhang J, Lower EE, Zhang X. Transcriptional coactivator MED1 in the interface of anti-estrogen and anti-HER2 therapeutic resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:498-510. [PMID: 35800368 PMCID: PMC9255246 DOI: 10.20517/cdr.2022.33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 11/18/2022]
Abstract
Breast cancer is one of the most common cancer and leading causes of death in women in the United States and Worldwide. About 90% of breast cancers belong to ER+ or HER2+ subtypes and are driven by key breast cancer genes Estrogen Receptor and HER2, respectively. Despite the advances in anti-estrogen (endocrine) and anti-HER2 therapies for the treatment of these breast cancer subtypes, unwanted side effects, frequent recurrence and resistance to these treatments remain major clinical challenges. Recent studies have identified ER coactivator MED1 as a key mediator of ER functions and anti-estrogen treatment resistance. Interestingly, MED1 is also coamplified with HER2 and activated by the HER2 signaling cascade, and plays critical roles in HER2-mediated tumorigenesis and response to anti-HER2 treatment as well. Thus, MED1 represents a novel crosstalk point of the HER2 and ER pathways and a highly promising new therapeutic target for ER+ and HER2+ breast cancer treatment. In this review, we will discuss the recent progress on the role of this key ER/HER2 downstream effector MED1 in breast cancer therapy resistance and our development of an innovative RNA nanotechnology-based approach to target MED1 for potential future breast cancer therapy to overcome treatment resistance.
Collapse
Affiliation(s)
- Gregory Bick
- Department of Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jasmine Zhang
- Department of Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Elyse E. Lower
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA. ,University of Cincinnati Cancer Center, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xiaoting Zhang
- Department of Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.,Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA. ,University of Cincinnati Cancer Center, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.,Correspondence to: Prof. Xiaoting Zhang, Professor and Thomas Boat Endowed Chair, Department of Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267, USA. E-mail:
| |
Collapse
|
30
|
Zhang S, Shang P, Gao K, Zhao G, Zhou J, Chen R, Ning X, Guo C. Dynamics of estrogen-induced ROS and DNA strand break generation in estrogen receptor α-positive breast cancer. Biochem Biophys Res Commun 2022; 602:170-178. [PMID: 35278890 DOI: 10.1016/j.bbrc.2022.02.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/17/2022]
Abstract
DNA repair machinery is involved in estrogen-dependent transactivation. Mounting evidence suggests that mechanisms underlying estrogen-induced DNA damage are complicated. To date estrogen-induced DNA oxidation and its impact on ERα-mediated transaction remains ambiguous. Herein, we found that the process of 17β-estradiol (E2)-induced ROS production can be approximately divided into two phases according to responding time and generation mechanisms. The intracellular Ca2+ fluctuation and ERα-dependent transcription lead to temporospatially different oxidative DNA damage. Further, we demonstrate that DNA oxidation is dispensable for estrogen-responsive gene expression. Dynamics of estrogen-induced DNA strand break generation also show two-phase pattern and topoisomerase-mediated DNA stand breaks are essential in estrogen signaling. Collectively, our findings have provided new insights into oxidative DNA damage in estrogen signaling.
Collapse
Affiliation(s)
- Shaolong Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Pengzhao Shang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Kun Gao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Guomeng Zhao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Jingping Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Rong Chen
- School of Science, China Pharmaceutical University, Nanjing, PR China
| | - Xiaoju Ning
- Ningxia Traditional Chinese Medicine hospital and Research Institute of Traditional Chinese Medicine, Yinchuan, PR China
| | - Changying Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China.
| |
Collapse
|
31
|
Hasegawa K, Fujii S, Kurppa KJ, Maehara T, Oobu K, Nakamura S, Kiyoshima T. Clear Cell Squamous Cell Carcinoma of the Tongue Exhibits Characteristics as an Undifferentiated Squamous Cell Carcinoma. Pathol Res Pract 2022; 235:153909. [DOI: 10.1016/j.prp.2022.153909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/23/2022]
|
32
|
Roles of enhancer RNAs in sex hormone-dependent cancers. J Cancer Res Clin Oncol 2022; 148:293-307. [DOI: 10.1007/s00432-021-03886-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022]
|
33
|
Wang Q, Liu Q, Qi S, Zhang J, Liu X, Li X, Li C. Comprehensive Pan-Cancer Analyses of Pyroptosis-Related Genes to Predict Survival and Immunotherapeutic Outcome. Cancers (Basel) 2022; 14:cancers14010237. [PMID: 35008400 PMCID: PMC8750048 DOI: 10.3390/cancers14010237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Pyroptosis is a type of programmed cell death accompanied by inflammation. Although the dysregulation of pyroptosis has been reported to be involved in carcinogenesis, its function in cancer progression and therapy remains largely unknown and controversial because of the inconsistency across different cancer types. This study provides the most complete gene set of pyroptosis-related genes (PRGs), depicts their expression changes across 31 cancer types for the first time, and constructs a novel prognostic risk model to predict cancer patient survival. In addition, the effects of pyroptosis on immune cell infiltration and immunotherapy were dissected at the pan-cancer level. Small-molecule compounds, which may be beneficial to immunotherapy, were screened on the basis of differentially expressed PRGs. These results lay the foundation for the study of pyroptosis in cancer. Abstract Pyroptosis is a newly characterized type of programmed cell death. However, its function in cancer progression and its response to treatments remain controversial. Here, we extensively and systematically compiled genes associated with pyroptosis, integrated multiomics data and clinical data across 31 cancer types from The Cancer Genome Atlas, and delineated the global alterations in PRGs at the transcriptional level. The underlying transcriptional regulations by copy number variation, miRNAs, and enhancers were elucidated by integrating data from the Genotype-Tissue Expression and International Cancer Genome Consortium. A prognostic risk model, based on the expression of PRGs across 31 cancer types, was constructed. To investigate the role of pyroptosis in immunotherapy, we found five PRGs associated with effectiveness by exploring the RNA-Seq data of patients with immunotherapy, and further identified two small-molecule compounds that are potentially beneficial for immunotherapy. For the first time, from a pyroptosis standpoint, this study establishes a novel strategy to predict cancer patient survival and immunotherapeutic outcomes.
Collapse
Affiliation(s)
- Qilin Wang
- School of Engineering Medicine, Beihang University, Beijing 100191, China; (Q.W.); (Q.L.); (S.Q.); (J.Z.)
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Qian Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China; (Q.W.); (Q.L.); (S.Q.); (J.Z.)
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Sihan Qi
- School of Engineering Medicine, Beihang University, Beijing 100191, China; (Q.W.); (Q.L.); (S.Q.); (J.Z.)
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Junyou Zhang
- School of Engineering Medicine, Beihang University, Beijing 100191, China; (Q.W.); (Q.L.); (S.Q.); (J.Z.)
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Xian Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (X.L.); (X.L.)
| | - Xin Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (X.L.); (X.L.)
| | - Chunyan Li
- School of Engineering Medicine, Beihang University, Beijing 100191, China; (Q.W.); (Q.L.); (S.Q.); (J.Z.)
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, China
- Correspondence:
| |
Collapse
|
34
|
Piryaei Z, Salehi Z, Tahsili MR, Ebrahimie E, Ebrahimi M, Kavousi K. Agonist/antagonist compounds' mechanism of action on estrogen receptor-positive breast cancer: A system-level investigation assisted by meta-analysis. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
35
|
Wu D, Tan H, Su W, Cheng D, Wang G, Wang J, Ma DA, Dong GM, Sun P. MZF1 mediates oncogene-induced senescence by promoting the transcription of p16 INK4A. Oncogene 2022; 41:414-426. [PMID: 34773072 PMCID: PMC8758531 DOI: 10.1038/s41388-021-02110-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 01/27/2023]
Abstract
Oncogene induced senescence is a tumor suppressing defense mechanism, in which the cell cycle-dependent protein kinase (CDK) inhibitor p16INK4A (encoded by the CDKN2A gene) plays a key role. We previously reported that a transcriptional co-activator chromodomain helicase DNA binding protein 7 (CHD7) mediates oncogenic ras-induced senescence by inducing transcription of the p16INK4A gene. In the current study, we identified myeloid zinc finger 1 (MZF1) as the transcriptional factor that recruits CHD7 to the p16INK4A promoter, where it mediates oncogenic ras-induced p16INK4A transcription and senescence through CHD7, in primary human cells from multiple origins. Moreover, the expression of MZF1 is induced by oncogenic ras in senescent cells through the c-Jun and Ets1 transcriptional factors upon their activation by the Ras-Raf-1-MEK-ERK signaling pathway. In non-small cell lung cancer (NSCLC) and pancreatic adenocarcinoma (PAAD) where activating ras mutations occur frequently, reduced MZF1 expression is observed in tumors, as compared to corresponding normal tissues, and correlates with poor patient survival. Analysis of single cell RNA-sequencing data from PAAD patients revealed that among the tumor cells with normal RB expression levels, those with reduced levels of MZF1 are more likely to express lower p16INK4A levels. These findings have identified novel signaling components in the pathway that mediates induction of the p16INK4A tumor suppressor and the senescence response, and suggested that MZF1 is a potential tumor suppressor in at least some cancer types, the loss of which contributes to the inactivation of the p16INK4A/RB pathway and disruption of senescence in tumor cells with intact RB.
Collapse
Affiliation(s)
- Dan Wu
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-, Salem, NC, 27157, USA
| | - Hua Tan
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Weijun Su
- Nankai University School of Medicine, Tianjin, China
| | - Dongmei Cheng
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-, Salem, NC, 27157, USA
| | - Guanwen Wang
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-, Salem, NC, 27157, USA
- Nankai University School of Medicine, Tianjin, China
| | - Juan Wang
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-, Salem, NC, 27157, USA
- Nankai University School of Medicine, Tianjin, China
| | - Ding A Ma
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-, Salem, NC, 27157, USA
| | - George M Dong
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-, Salem, NC, 27157, USA
| | - Peiqing Sun
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-, Salem, NC, 27157, USA.
| |
Collapse
|
36
|
Huang R, Wang S, Zhu R, Xian S, Huang Z, Cheng L, Zhang J. Identification of Key eRNAs for Spinal Cord Injury by Integrated Multinomial Bioinformatics Analysis. Front Cell Dev Biol 2021; 9:728242. [PMID: 34708039 PMCID: PMC8542800 DOI: 10.3389/fcell.2021.728242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/25/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Spinal cord injury (SCI) is a severe neurological deficit affecting both young and older people worldwide. The potential role of key enhancer RNAs (eRNAs) in SCI remains elusive, which is a prominent challenge in the trauma repair process. This study aims to investigate the roles of key eRNAs, transcription factors (TFs), signaling pathways, and small-molecule inhibitors in SCI using multi-omics bioinformatics analysis. Methods: Microarray data of peripheral blood mononuclear cell (PBMC) samples from 27 healthy volunteers and 25 chronic-phase SCI patients were retrieved from the Gene Expression Omnibus database. Differentially expressed transcription factors (DETFs), differentially expressed enhancer RNAs (DEeRNAs), and differentially expressed target genes (DETGs) were identified using the Linear Models for Microarray Data (limma) package. Fraction of immune cells was estimated using CIBERSORT algorithm. Gene Set Variation Analysis (GSVA) was applied to identify the downstream signaling pathways. The eRNA regulatory network was constructed based on the correlation results. Connectivity Map (CMap) database was used to find potential drugs for SCI patients. The cellular communication analysis was performed to explore the molecular regulation mechanism of SCI based on single-cell RNA sequencing (scRNA-seq) data. Chromatin immunoprecipitation sequencing (ChIP-seq) and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) data were used to validate the key regulatory mechanisms. scRNA-seq dataset was used to validate the cell subtype localization of the key eRNAs. Results: In total, 21 DETFs, 24 DEeRNAs, and 829 DETGs were identified. A regulatory network of 13 DETFs, six DEeRNAs, seven DETGs, two hallmark pathways, two immune cells, and six immune pathways was constructed. The link of Splicing factor proline and glutamine rich (SFPQ) (TF) and vesicular overexpressed in cancer prosurvival protein 1 (VOPP1) (eRNA) (R = 0.990, p < 0.001, positive), VOPP1 (eRNA) and epidermal growth factor receptor (EGFR) (target gene) (R = 0.974, p < 0.001, positive), VOPP1, and T helper (Th) cells (R = -0.987, p < 0.001, negative), and VOPP1 and hallmark coagulation (R = 0.937, p < 0.001, positive) was selected. Trichostatin A was considered the best compound target to SCI-related eRNAs (specificity = 0.471, p < 0.001). Conclusion: VOPP1, upregulated by SFPQ, strengthened the transient expression of EGFR. Th cells and coagulation were the potential downstream pathways of VOPP1. This regulatory network and potential inhibitors provide novel diagnostic biomarkers and therapeutic targets for SCI.
Collapse
Affiliation(s)
- Runzhi Huang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China.,Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Siqiao Wang
- Tongji University School of Medicine, Shanghai, China
| | - Rui Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China.,Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Shuyuan Xian
- Tongji University School of Medicine, Shanghai, China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China.,Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China.,Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Heterogeneity among enhancer RNAs: origins, consequences and perspectives. Essays Biochem 2021; 65:709-721. [PMID: 34414426 DOI: 10.1042/ebc20200064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/28/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
Enhancer RNAs (eRNAs) are non-coding RNAs transcribed from distal cis-regulatory elements (i.e. enhancers), which are stereotyped as short, rarely spliced and unstable. In fact, a non-negligible fraction of eRNAs seems to be longer, spliced and more stable, and their cognate enhancers are epigenomically and functionally distinguishable from typical enhancers. In this review, we first summarized the genomic and molecular origins underlying the observed heterogeneity among eRNAs. Then, we discussed how their heterogeneous properties (e.g. stability) affect the modes of interaction with their regulatory partners, from promiscuous cis-interactions to specific trans-interactions. Finally, we highlighted the existence of a seemingly continuous spectrum of eRNA properties and its implications in the genomic origins of non-coding RNA genes from an evolutionary perspective.
Collapse
|
38
|
Li P, Lin Z, Liu Q, Chen S, Gao X, Guo W, Gong F, Wei J, Lin H. Enhancer RNA SLIT2 Inhibits Bone Metastasis of Breast Cancer Through Regulating P38 MAPK/c-Fos Signaling Pathway. Front Oncol 2021; 11:743840. [PMID: 34722297 PMCID: PMC8554345 DOI: 10.3389/fonc.2021.743840] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/23/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Breast cancer (BRCA) is the most common cancer in women, while the bones are one of the most common sites of metastasis. Although new diagnostic methods or radiation or chemotherapies and targeted therapies have made huge advances, the occurrence of bone metastasis is also linked with poorer survival. Enhancer RNAs (eRNAs) have been demonstrated to participate in the progression of tumorigenesis and metastasis. However, the role of eRNAs in BRCA bone metastasis remains largely unclear. METHOD Gene expression profiling of 1,211 primary BRCA and 17 bone metastases samples were retrieved from The Cancer Genome Atlas (TCGA) database, and the significant prognostic eRNAs were identified by Cox regression and least absolute shrinkage and selection operator (LASSO) regression. The acceptable accuracy and discrimination of the nomogram were indicated by the receiver operating characteristic (ROC) and the calibration curves. Then target genes of eRNA, immune cell percentage by CIBERSORT analysis, immune genes by single-sample gene set enrichment analysis (ssGSEA), hallmark of cancer signaling pathway by gene set variation analysis (GSVA), and reverse phase protein array (RPPA) protein chip were used to build a co-expression regulation network and identified the key eRNAs in bone metastasis of BRCA. Finally, Cell Counting Kit-8 (CCK8) assay, cell cycle assay, and transwell assay were used to study changes in cell proliferation, migration, and invasiveness. Immunoprecipitation assay and Western blotting were used to test the interaction and the regulation signaling pathways. RESULTS The 27 hub eRNAs were selected, and a survival-related linear risk assessment model with a relatively high accuracy (area under curve (AUC): 0.726) was constructed. In addition, seven immune-related eRNAs (SLIT2, CLEC3B, LBPL1, FRY, RASGEF1B, DST, and ITIH5) as prognostic signatures for bone metastasis of BRCA were further confirmed by LASSO and multivariate Cox regression and CIBERSORT analysis. Finally, in vitro assay demonstrated that overexpression of SLIT2 reduced proliferation and metastasis in BRCA cells. Using high-throughput co-expression regulation network, we identified that SLIT2 may regulating P38 MAPK/c-Fos signaling pathway to promote the effects of metastasis. CONCLUSION Based on the co-expression network for bone metastasis of BRCA, we screened key eRNAs to explore a prognostic model in predicting the bone metastasis by bioinformatics analysis. Besides, we identified the potential regulatory signaling pathway of SLIT2 in BRCA bone metastasis, which provides a promising therapeutic strategy for metastasis of BRCA.
Collapse
Affiliation(s)
- Peng Li
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhiping Lin
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Orthopedic Center, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qianzheng Liu
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Siyuan Chen
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiang Gao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Weixiong Guo
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fan Gong
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jinsong Wei
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hao Lin
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
39
|
Rong H, Li Y, Hu S, Gao L, Yi T, Xie Y, Cai P, Li J, Dai X, Ye M, Liao Q. Prognostic signatures and potential pathogenesis of eRNAs-related genes in colon adenocarcinoma. Mol Carcinog 2021; 61:59-72. [PMID: 34622496 DOI: 10.1002/mc.23359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 12/23/2022]
Abstract
Enhancer RNAs (eRNAs) are a subclass of long noncoding RNAs (lncRNAs) that have a wide effect in human tumors. However, the systematic analysis of potential functions of eRNAs-related genes (eRGs) in colon cancer (CC) remains unexplored. In this study, a total of 8231 eRGs including 6236 protein-coding genes and 1995 lncRNAs were identified in CC based on the multiple resources. These eRGs showed higher expression level and stability compared to other genes. What's more, the functions of these eRGs were closely related to cancer. Then a prognostic prediction model with 12 eRGs signatures were obtained for colon adenocarcinoma (COAD) patients. ROC curves showed the AUCs were 0.81, 0.77, and 0.78 for 1-, 3-, and 5-year survival prediction, respectively. And the prognostic model also manifested good performance in the validation datasets. Besides, the expression levels of two prognostic signatures, TMEM220 and LRRN2, were verified to be significantly lower in CC tissues than in adjacent noncancerous tissues (p < .05). Finally, the distinct molecular features were characterized between the high- and low-risk group through multiomics analysis including DNA mutation and methylation. Our results show eRGs signatures based prognostic model has high accuracy and may provide innovative biomarkers in COAD.
Collapse
Affiliation(s)
- Hao Rong
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China.,Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo, China
| | - Yanguo Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Shiyun Hu
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Liuying Gao
- The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Tianfei Yi
- Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo, China
| | - Yangyang Xie
- Hua Mei Hospital, University of Chinese Academy of Science, Ningbo, China
| | - Ping Cai
- Hua Mei Hospital, University of Chinese Academy of Science, Ningbo, China
| | - Jianjiong Li
- Hua Mei Hospital, University of Chinese Academy of Science, Ningbo, China
| | - Xiaoyu Dai
- Hua Mei Hospital, University of Chinese Academy of Science, Ningbo, China
| | - Meng Ye
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Qi Liao
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China.,Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo, China
| |
Collapse
|
40
|
Wu H, Zhang J, Bai Y, Zhang S, Zhang Z, Tong W, Han P, Fu B, Zhang Y, Shen Z. DCP1A is an unfavorable prognostic-related enhancer RNA in hepatocellular carcinoma. Aging (Albany NY) 2021; 13:23020-23035. [PMID: 34609335 PMCID: PMC8544297 DOI: 10.18632/aging.203593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/20/2021] [Indexed: 01/31/2023]
Abstract
Long non-coding RNAs (lncRNAs) are associated with occurrence and development of tumors. Enhancer RNA (eRNA) is a special type of lncRNAs produced from transcription of enhancer elements. The function of eRNAs in tumors have elicited significant attention recently. However, the clinical significance and role of eRNAs in hepatocellular carcinoma (HCC) has not been fully explored. The current study sought to explore the expression level and prognostic value of key eRNAs in HCC. Bioinformatics analyses were used to explore expression levels of key prognostic eRNAs in HCC and their correlation with target genes. A total of 1580 enhancer RNAs (eRNAs) and 1791 target genes were initially retrieved from TCGA-LIHC gene expression database. Further analysis through survival and correlation analysis led to identification of 12 eRNAs and 13 target genes. The findings showed that DCP1A was the most prognosis-related eRNA. This eRNA showed the highest correlation with the target gene, PRKCD. Analysis showed that poor overall survival (OS) in HCC patients was correlated with high expression level of DCP1A (eRNA) and PRKCD (target gene). The up-regulation of DCP1A was associated with advanced tumor stage, larger tumor size and higher histological grade. The results of pan-cancer analysis showed that the expression of DCP1A was differentially expressed in 13 other types of tumor tissues and their corresponding normal tissues. This eRNA was highly expressed in digestive system tumors. Functional analysis showed that high expression level of DCP1A was implicated in multiple tumor-related signaling pathways. The findings of the current study indicated DCP1A is a novel biomarker that can be used as a potential therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Hao Wu
- First Central Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Jinrui Zhang
- First Central Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Yi Bai
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Sai Zhang
- Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Zhixin Zhang
- First Central Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Wen Tong
- First Central Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Pinsheng Han
- First Central Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Bing Fu
- First Central Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Zhongyang Shen
- Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
41
|
Lancaster L, Patel H, Kelly G, Uhlmann F. A role for condensin in mediating transcriptional adaptation to environmental stimuli. Life Sci Alliance 2021; 4:e202000961. [PMID: 34083394 PMCID: PMC8200293 DOI: 10.26508/lsa.202000961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 01/04/2023] Open
Abstract
Nuclear organisation shapes gene regulation; however, the principles by which three-dimensional genome architecture influences gene transcription are incompletely understood. Condensin is a key architectural chromatin constituent, best known for its role in mitotic chromosome condensation. Yet at least a subset of condensin is bound to DNA throughout the cell cycle. Studies in various organisms have reported roles for condensin in transcriptional regulation, but no unifying mechanism has emerged. Here, we use rapid conditional condensin depletion in the budding yeast Saccharomyces cerevisiae to study its role in transcriptional regulation. We observe a large number of small gene expression changes, enriched at genes located close to condensin-binding sites, consistent with a possible local effect of condensin on gene expression. Furthermore, nascent RNA sequencing reveals that transcriptional down-regulation in response to environmental stimuli, in particular to heat shock, is subdued without condensin. Our results underscore the multitude by which an architectural chromosome constituent can affect gene regulation and suggest that condensin facilitates transcriptional reprogramming as part of adaptation to environmental changes.
Collapse
Affiliation(s)
- Lucy Lancaster
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Harshil Patel
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Gavin Kelly
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
42
|
Oh S, Shao J, Mitra J, Xiong F, D'Antonio M, Wang R, Garcia-Bassets I, Ma Q, Zhu X, Lee JH, Nair SJ, Yang F, Ohgi K, Frazer KA, Zhang ZD, Li W, Rosenfeld MG. Enhancer release and retargeting activates disease-susceptibility genes. Nature 2021; 595:735-740. [PMID: 34040254 PMCID: PMC11171441 DOI: 10.1038/s41586-021-03577-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 04/23/2021] [Indexed: 02/04/2023]
Abstract
The functional engagement between an enhancer and its target promoter ensures precise gene transcription1. Understanding the basis of promoter choice by enhancers has important implications for health and disease. Here we report that functional loss of a preferred promoter can release its partner enhancer to loop to and activate an alternative promoter (or alternative promoters) in the neighbourhood. We refer to this target-switching process as 'enhancer release and retargeting'. Genetic deletion, motif perturbation or mutation, and dCas9-mediated CTCF tethering reveal that promoter choice by an enhancer can be determined by the binding of CTCF at promoters, in a cohesin-dependent manner-consistent with a model of 'enhancer scanning' inside the contact domain. Promoter-associated CTCF shows a lower affinity than that at chromatin domain boundaries and often lacks a preferred motif orientation or a partnering CTCF at the cognate enhancer, suggesting properties distinct from boundary CTCF. Analyses of cancer mutations, data from the GTEx project and risk loci from genome-wide association studies, together with a focused CRISPR interference screen, reveal that enhancer release and retargeting represents an overlooked mechanism that underlies the activation of disease-susceptibility genes, as exemplified by a risk locus for Parkinson's disease (NUCKS1-RAB7L1) and three loci associated with cancer (CLPTM1L-TERT, ZCCHC7-PAX5 and PVT1-MYC).
Collapse
Affiliation(s)
- Soohwan Oh
- Howard Hughes Medical Institute, Department and School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jiaofang Shao
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Joydeep Mitra
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Feng Xiong
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Matteo D'Antonio
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ruoyu Wang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA
| | - Ivan Garcia-Bassets
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Qi Ma
- Howard Hughes Medical Institute, Department and School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Xiaoyu Zhu
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Joo-Hyung Lee
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Sreejith J Nair
- Howard Hughes Medical Institute, Department and School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Feng Yang
- Howard Hughes Medical Institute, Department and School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kenneth Ohgi
- Howard Hughes Medical Institute, Department and School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kelly A Frazer
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Zhengdong D Zhang
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA.
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department and School of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
43
|
Cai S, Hu X, Chen R, Zhang Y. Identification and Validation of an Immune-Related eRNA Prognostic Signature for Hepatocellular Carcinoma. Front Genet 2021; 12:657051. [PMID: 34178028 PMCID: PMC8226176 DOI: 10.3389/fgene.2021.657051] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/17/2021] [Indexed: 12/29/2022] Open
Abstract
Background Enhancer RNAs (eRNAs) are intergenic long non-coding RNAs (lncRNAs) that participate in the progression of malignancies by targeting tumor-related genes and immune checkpoints. However, the potential role of eRNAs in hepatocellular carcinoma (HCC) is unclear. In this study, we aimed to construct an immune-related eRNA prognostic model that could be used to prospectively assess the prognosis of patients with HCC. Methods Gene expression profiles of patients with HCC were downloaded from The Cancer Genome Atlas (TCGA). The eRNAs co-expressed from immune genes were identified as immune-related eRNAs. Cox regression analyses were applied in a training cohort to construct an immune-related eRNA signature (IReRS), that was subsequently used to analyze a testing cohort and combination of the two cohorts. Kaplan-Meier and receiver operating characteristic (ROC) curves were used to validate the predictive effect in the three cohorts. Gene Set Enrishment Analysis (GSEA) computation was used to identify an IReRS-related signaling pathway. A web-based cell type identification by estimating relative subsets of RNA transcripts (CIBERSORT) computation was used to evaluate the relationship between the IReRS and infiltrating immune cells. Results A total of sixty-four immune-related eRNAs (IReRNAs) was identified in HCC, and 14 IReRNAs were associated with overall survival (OS). Five IReRNAs were used for constructing an immune-related eRNA signature (IReRS), which was shown to correlate with poor survival and to be an independent prognostic biomarker for HCC. The GSEA results showed that the IReRS was correlated to cancer-related and immune-related pathways. Moreover, we found that IReRS was correlated to infiltrating immune cells, including CD8+ T cells and M0 macrophages. Finally, differential expressions of the five risk IReRNAs in tumor tissues vs. adjacent normal tissues and their prognostic values were verified, in which the AL445524.1 may function as an oncogene that affects prognosis partly by regulating CD4-CLTA4 related genes. Conclusion Our results suggest that the IReRS could serve as a biomarker for predicting prognosis in patients with HCC. Additionally, it may be correlated to the tumor immune microenvironment and could also be used as a biomarker in immunotherapy for HCC.
Collapse
Affiliation(s)
- Shenglan Cai
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China.,Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Xingwang Hu
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China.,Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ruochan Chen
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China.,Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Yiya Zhang
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
44
|
Adhikary S, Roy S, Chacon J, Gadad SS, Das C. Implications of Enhancer Transcription and eRNAs in Cancer. Cancer Res 2021; 81:4174-4182. [PMID: 34016622 DOI: 10.1158/0008-5472.can-20-4010] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/03/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022]
Abstract
Despite extensive progress in developing anticancer therapies, therapy resistance remains a major challenge that promotes disease relapse. The changes that lead to therapy resistance can be intrinsically present or may be initiated during treatment. Genetic and epigenetic heterogeneity in tumors make it more challenging to deal with therapy resistance. Recent advances in genome-wide analyses have revealed that the deregulation of distal gene regulatory elements, such as enhancers, appears in several pathophysiological conditions, including cancer. Beyond the conventional function of enhancers in recruiting transcription factors to gene promoters, enhancer elements are also transcribed into noncoding RNAs known as enhancer RNAs (eRNA). Accumulating evidence suggests that uncontrolled enhancer activity with aberrant eRNA expression promotes oncogenesis. Interestingly, tissue-specific, transcribed eRNAs from active enhancers can serve as potential therapeutic targets or biomarkers in several cancer types. This review provides a comprehensive overview of the mechanisms of enhancer transcription and eRNAs as well as their potential roles in cancer and drug resistance.
Collapse
Affiliation(s)
- Santanu Adhikary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India.,Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Jessica Chacon
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas
| | - Shrikanth S Gadad
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas. .,Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas.,Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, Texas.,Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynaecology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India. .,Homi Bhaba National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
45
|
FOXP4-AS1 is a favorable prognostic-related enhancer RNA in ovarian cancer. Biosci Rep 2021; 41:228414. [PMID: 33870423 PMCID: PMC8150160 DOI: 10.1042/bsr20204008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/22/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Ovarian cancer (OV) is the main cause of deaths worldwide in female reproductive system malignancies. Enhancer RNAs (eRNAs) are derived from the transcription of enhancers and has attracted increasing attention in cancers recently. However, the biological functions and clinical significance of eRNAs in OV have not been well described presently. We used an integrated data analysis to identify prognostic-related eRNAs in OV. Tissue-specific enhancer-derived RNAs and their regulating genes were considered as putative eRNA–target pairs using the computational pipeline PreSTIGE. Gene expression profiles and clinical data of OV and 32 other cancer types were obtained from the UCSC Xena platform. Altogether, 71 eRNAs candidates showed significant correlation with overall survival (OS) of OV samples (Kaplan–Meier log-rank test, P<0.05). Among which, 23 were determined to be correlated with their potential target genes (Spearman’s r > 0.3, P<0.001). It was found that among the 23 prognostic-related eRNAs, the expression of forkhead box P4 antisense RNA 1 (FOXP4-AS1) had the highest positive correlation with its predicted target gene FOXP4 (Spearman’s r = 0.61). Moreover, the results were further validated by RT-qPCR analysis in an independent OV cohort. Our results suggested the eRNA FOXP4-AS1 expression index may be a favorable independent prognostic biomarker candidate in OV.
Collapse
|
46
|
Ma J, Lin X, Wang X, Min Q, Wang T, Tang C. Reconstruction and Analysis of the Immune-Related LINC00987/A2M Axis in Lung Adenocarcinoma. Front Mol Biosci 2021; 8:644557. [PMID: 33987201 PMCID: PMC8111304 DOI: 10.3389/fmolb.2021.644557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/07/2021] [Indexed: 01/10/2023] Open
Abstract
Enhancer RNAs (eRNAs) participate in tumor growth and immune regulation through complex signaling pathways. However, the immune-related function of the eRNA-mRNA axis in lung adenocarcinoma (LUAD) is unclear. Data on the expression of eRNAs and mRNAs were downloaded from The Cancer Genome Atlas, GEO, and UCSC Xena, including LUAD, and pan-cancer clinical data and mutational information. Immune gene files were obtained from ImmLnc and ImmPort databases. Survival indices, including relapse-free and overall survival, were analyzed using the Kaplan–Meier and log-rank methods. The level of immune cell infiltration, degree of tumor hypoxia, and tumor cell stemness characteristics were quantified using the single-sample gene set enrichment analysis algorithm. The immune infiltration score and infiltration degree were evaluated using the ESTIMATE and CIBERSORT algorithms. The tumor mutation burden and microsatellite instability were examined using the Spearman test. The LUAD-associated immune-related LINC00987/A2M axis was down-regulated in most cancer types, indicating poor survival and cancer progression. Immune cell infiltration was closely related to abnormal expression of the LINC00987/A2M axis, linking its expression to a possible evaluation of sensitivity to checkpoint inhibitors and response to chemotherapy. Abnormal expression of the LINC00987/A2M axis was characterized by heterogeneity in the degree of tumor hypoxia and stemness characteristics. The abnormal distribution of immune cells in LUAD was also verified through pan-cancer analysis. Comprehensive bioinformatic analysis showed that the LINC00987/A2M axis is a functional and effective tumor suppressor and biomarker for assessing the immune microenvironment and prognostic and therapeutic evaluations of LUAD.
Collapse
Affiliation(s)
- Jiakang Ma
- Department of Oncology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Lin
- Department of Oncology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueting Wang
- Department of Ophthalmology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Qingqing Min
- Department of Endodontics, Stomatological Hospital of China Medical University, Shenyang, China
| | - Tonglian Wang
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Chaozhi Tang
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
47
|
Panigrahi A, O'Malley BW. Mechanisms of enhancer action: the known and the unknown. Genome Biol 2021; 22:108. [PMID: 33858480 PMCID: PMC8051032 DOI: 10.1186/s13059-021-02322-1] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Differential gene expression mechanisms ensure cellular differentiation and plasticity to shape ontogenetic and phylogenetic diversity of cell types. A key regulator of differential gene expression programs are the enhancers, the gene-distal cis-regulatory sequences that govern spatiotemporal and quantitative expression dynamics of target genes. Enhancers are widely believed to physically contact the target promoters to effect transcriptional activation. However, our understanding of the full complement of regulatory proteins and the definitive mechanics of enhancer action is incomplete. Here, we review recent findings to present some emerging concepts on enhancer action and also outline a set of outstanding questions.
Collapse
Affiliation(s)
- Anil Panigrahi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
48
|
Lv K, Gong C, Antony C, Han X, Ren JG, Donaghy R, Cheng Y, Pellegrino S, Warren AJ, Paralkar VR, Tong W. HectD1 controls hematopoietic stem cell regeneration by coordinating ribosome assembly and protein synthesis. Cell Stem Cell 2021; 28:1275-1290.e9. [PMID: 33711283 DOI: 10.1016/j.stem.2021.02.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/28/2020] [Accepted: 02/05/2021] [Indexed: 01/28/2023]
Abstract
Impaired ribosome function is the underlying etiology in a group of bone marrow failure syndromes called ribosomopathies. However, how ribosomes are regulated remains poorly understood, as are approaches to restore hematopoietic stem cell (HSC) function loss because of defective ribosome biogenesis. Here we reveal a role of the E3 ubiquitin ligase HectD1 in regulating HSC function via ribosome assembly and protein translation. Hectd1-deficient HSCs exhibit a striking defect in transplantation ability and ex vivo maintenance concomitant with reduced protein synthesis and growth rate under stress conditions. Mechanistically, HectD1 ubiquitinates and degrades ZNF622, an assembly factor for the ribosomal 60S subunit. Hectd1 loss leads to accumulation of ZNF622 and the anti-association factor eIF6 on 60S, resulting in 60S/40S joining defects. Importantly, Znf622 depletion in Hectd1-deficient HSCs restored ribosomal subunit joining, protein synthesis, and HSC reconstitution capacity. These findings highlight the importance of ubiquitin-coordinated ribosome assembly in HSC regeneration.
Collapse
Affiliation(s)
- Kaosheng Lv
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chujie Gong
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles Antony
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xu Han
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jian-Gang Ren
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan Donaghy
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ying Cheng
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simone Pellegrino
- Cambridge Institute for Medical Research, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Alan J Warren
- Cambridge Institute for Medical Research, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Vikram R Paralkar
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Tong
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
49
|
Odame E, Chen Y, Zheng S, Dai D, Kyei B, Zhan S, Cao J, Guo J, Zhong T, Wang L, Li L, Zhang H. Enhancer RNAs: transcriptional regulators and workmates of NamiRNAs in myogenesis. Cell Mol Biol Lett 2021; 26:4. [PMID: 33568070 PMCID: PMC7877072 DOI: 10.1186/s11658-021-00248-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
miRNAs are well known to be gene repressors. A newly identified class of miRNAs termed nuclear activating miRNAs (NamiRNAs), transcribed from miRNA loci that exhibit enhancer features, promote gene expression via binding to the promoter and enhancer marker regions of the target genes. Meanwhile, activated enhancers produce endogenous non-coding RNAs (named enhancer RNAs, eRNAs) to activate gene expression. During chromatin looping, transcribed eRNAs interact with NamiRNAs through enhancer-promoter interaction to perform similar functions. Here, we review the functional differences and similarities between eRNAs and NamiRNAs in myogenesis and disease. We also propose models demonstrating their mutual mechanism and function. We conclude that eRNAs are active molecules, transcriptional regulators, and partners of NamiRNAs, rather than mere RNAs produced during enhancer activation.
Collapse
Affiliation(s)
- Emmanuel Odame
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuan Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuailong Zheng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dinghui Dai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bismark Kyei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
50
|
Cutts EE, Taylor GC, Pardo M, Yu L, Wills JC, Choudhary JS, Vannini A, Wood AJ. A commercial antibody to the human condensin II subunit NCAPH2 cross-reacts with a SWI/SNF complex component. Wellcome Open Res 2021; 6:3. [PMID: 33604454 PMCID: PMC7863998 DOI: 10.12688/wellcomeopenres.16482.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2020] [Indexed: 01/24/2023] Open
Abstract
Condensin complexes compact and disentangle chromosomes in preparation for cell division. Commercially available antibodies raised against condensin subunits have been widely used to characterise their cellular interactome. Here we have assessed the specificity of a polyclonal antibody (Bethyl A302-276A) that is commonly used as a probe for NCAPH2, the kleisin subunit of condensin II, in mammalian cells. We find that, in addition to its intended target, this antibody cross-reacts with one or more components of the SWI/SNF family of chromatin remodelling complexes in an NCAPH2-independent manner. This cross-reactivity, with an abundant chromatin-associated factor, is likely to affect the interpretation of protein and chromatin immunoprecipitation experiments that make use of this antibody probe.
Collapse
Affiliation(s)
- Erin E. Cutts
- Cancer Biology Division, Institute of Cancer Research, London, SW7 3RP, UK
| | - Gillian C. Taylor
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Mercedes Pardo
- Cancer Biology Division, Institute of Cancer Research, London, SW7 3RP, UK
| | - Lu Yu
- Cancer Biology Division, Institute of Cancer Research, London, SW7 3RP, UK
| | - Jimi C. Wills
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Jyoti S. Choudhary
- Cancer Biology Division, Institute of Cancer Research, London, SW7 3RP, UK
| | - Alessandro Vannini
- Cancer Biology Division, Institute of Cancer Research, London, SW7 3RP, UK
| | - Andrew J. Wood
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| |
Collapse
|