1
|
Wang X, Chen W, Liu S, Xu Y, Xiong Z, Li Y, Huang L, Jiang L, Zhang J, Sun L, Zhang Y, Liu M. Detection of mitophagy in live cells with indole derived near-infrared fluorogenic probes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 340:126368. [PMID: 40367757 DOI: 10.1016/j.saa.2025.126368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 04/29/2025] [Accepted: 05/08/2025] [Indexed: 05/16/2025]
Abstract
Mitophagy is an indispensable cellular process that plays a crucial role in regulating mitochondrial quality control and cellular metabolism. Therefore, monitoring the changes in the mitochondrial and lysosomal microenvironment during the mitophagy process is extremely important. However, existing mitophagy probes only target changes in a single indicator (viscosity, pH value, or polarity) within the microenvironment, which may reduce the selectivity and accuracy of assessing mitophagy in complex biological settings. To address this, we have developed a dual-channel detection near-infrared (NIR) fluorescent probe (ADMI). In vitro analysis experiments have shown that ADMI not only responds to pH and activates the NIR fluorescence channel but also that the green fluorescence channel exhibits high sensitivity to changes in polarity. This dual-response mechanism probe enables dual fluorescent detection of pH and polarity, providing a highly promising tool for monitoring the microenvironment of mitophagy in living cells. Ultimately, we applied ADMI to real-time monitoring of mitophagy induced by starvation or rapamycin, during which the decrease in pH and polarity resulted in a red shift in wavelength and increased fluorescence. Additionally, ADMI was able to observe changes in mitochondria during ferroptosis. This probe may serve as a useful tool for imaging mitophagy in living cells.
Collapse
Affiliation(s)
- Xuanyuan Wang
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China
| | - Wen Chen
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China.
| | - Shuangling Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 Hunan, PR China
| | - Yihong Xu
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China
| | - Zhimei Xiong
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China
| | - Yingzi Li
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China
| | - Leyuan Huang
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China
| | - Lu Jiang
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China
| | - Jingting Zhang
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China
| | - Leying Sun
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China
| | - Yuan Zhang
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China.
| | - Mengqin Liu
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China
| |
Collapse
|
2
|
Moura JP, Oliveira PJ, Urbano AM. Mitochondria: An overview of their origin, genome, architecture, and dynamics. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167803. [PMID: 40118291 DOI: 10.1016/j.bbadis.2025.167803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/05/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
Mitochondria are traditionally viewed as the powerhouses of eukaryotic cells, i.e., the main providers of the metabolic energy required to maintain their viability and function. However, the role of these ubiquitous intracellular organelles far extends energy generation, encompassing a large suite of functions, which they can adjust to changing physiological conditions. These functions rely on a sophisticated membrane system and complex molecular machineries, most of which imported from the cytosol through intricate transport systems. In turn, mitochondrial plasticity is rooted on mitochondrial biogenesis, mitophagy, fusion, fission, and movement. Dealing with all these aspects and terminology can be daunting for newcomers to the field of mitochondria, even for those with a background in biological sciences. The aim of the present educational article, which is part of a special issue entitled "Mitochondria in aging, cancer and cell death", is to present these organelles in a simple and concise way. Complex molecular mechanisms are deliberately omitted, as their inclusion would defeat the stated purpose of the article. Also, considering the wide scope of the article, coverage of each topic is necessarily limited, with the reader directed to excellent reviews, in which the different topics are discussed in greater depth than is possible here. In addition, the multiple cell type-specific genotypic and phenotypic differences between mitochondria are largely ignored, focusing instead on the characteristics shared by most of them, with an emphasis on mitochondria from higher eukaryotes. Also ignored are highly degenerate mitochondrion-related organelles, found in various anaerobic microbial eukaryotes lacking canonical mitochondria.
Collapse
Affiliation(s)
- João P Moura
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| | - Paulo J Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
| | - Ana M Urbano
- Molecular Physical-Chemistry R&D Unit, Centre for Investigation in Environment, Genetics and Oncobiology (CIMAGO), Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
3
|
Bravo-Arévalo JE. Tracing the evolutionary pathway: on the origin of mitochondria and eukaryogenesis. FEBS J 2025. [PMID: 40271811 DOI: 10.1111/febs.70109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/10/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025]
Abstract
The mito-early hypothesis posits that mitochondrial integration was a key driver in the evolution of defining eukaryotic characteristics (DECs). Building on previous work that identified endosymbiotic selective pressures as central to eukaryotic cell evolution, this study examines how endosymbiotic gene transfer (EGT) and the resulting genomic and bioenergetic constraints shaped mitochondrial protein import systems. These systems were crucial for maintaining cellular function in early eukaryotes and facilitated their subsequent diversification. A primary focus is the co-evolution of mitochondrial import mechanisms and eukaryotic endomembrane complexity. Specifically, I investigate how the necessity for nuclear-encoded mitochondrial protein import drove the adaptation of bacterial secretion components, alongside eukaryotic innovations, to refine translocation pathways. Beyond enabling bioenergetic expansion, mitochondrial endosymbiosis played a fundamental role in the emergence of compartmentalisation and cellular complexity in LECA, driving the evolution of organellar networks. By integrating genomic, structural and phylogenetic evidence, this study aimed to contribute to the mito-early framework, clarifying the mechanisms that linked mitochondrial acquisition to the origin of eukaryotic cells.
Collapse
Affiliation(s)
- J Ernesto Bravo-Arévalo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
4
|
Hossain MK, Chae HJ. Calcium balance through mutual orchestrated inter-organelle communication: A pleiotropic target for combating Alzheimer's disease. Neurochem Int 2025; 182:105905. [PMID: 39566580 DOI: 10.1016/j.neuint.2024.105905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Dysfunctional intraneuronal organelles in Alzheimer's Disease (AD) propel aberrant calcium handling, triggering molecular miscommunication within organelles such as mitochondria, endoplasmic reticulum, and lysosomes. This disruption in organelle function not only impairs cellular homeostasis but also exacerbates neurodegenerative processes involving the accumulation of amyloid-β (Aβ) and hyperphosphorylated tau, amplifying the disease's vicious cycle. In this review, the concept of Mutual Orchestrated Inter-organelle Communication (MOIC) proposes potential therapeutic avenues for restoring Ca2+ homeostasis in AD, offering a theoretical framework for developing disease-modifying treatments. The intricate nature of AD necessitates a shift towards combination therapies targeting MOIC-associated pathways, presenting a more effective approach than monotherapy.
Collapse
Affiliation(s)
| | - Han Jung Chae
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea.
| |
Collapse
|
5
|
Paraskevaidis I, Kourek C, Farmakis D, Tsougos E. Mitochondrial Dysfunction in Cardiac Disease: The Fort Fell. Biomolecules 2024; 14:1534. [PMID: 39766241 PMCID: PMC11673776 DOI: 10.3390/biom14121534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/10/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Myocardial cells and the extracellular matrix achieve their functions through the availability of energy. In fact, the mechanical and electrical properties of the heart are heavily dependent on the balance between energy production and consumption. The energy produced is utilized in various forms, including kinetic, dynamic, and thermal energy. Although total energy remains nearly constant, the contribution of each form changes over time. Thermal energy increases, while dynamic and kinetic energy decrease, ultimately becoming insufficient to adequately support cardiac function. As a result, toxic byproducts, unfolded or misfolded proteins, free radicals, and other harmful substances accumulate within the myocardium. This leads to the failure of crucial processes such as myocardial contraction-relaxation coupling, ion exchange, cell growth, and regulation of apoptosis and necrosis. Consequently, both the micro- and macro-architecture of the heart are altered. Energy production and consumption depend on the heart's metabolic resources and the functional state of the cardiac structure, including cardiomyocytes, non-cardiomyocyte cells, and their metabolic and energetic behavior. Mitochondria, which are intracellular organelles that produce more than 95% of ATP, play a critical role in fulfilling all these requirements. Therefore, it is essential to gain a deeper understanding of their anatomy, function, and homeostatic properties.
Collapse
Affiliation(s)
- Ioannis Paraskevaidis
- Medical School of Athens, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.P.); (D.F.)
- Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece;
| | - Christos Kourek
- Medical School of Athens, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.P.); (D.F.)
| | - Dimitrios Farmakis
- Medical School of Athens, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.P.); (D.F.)
| | - Elias Tsougos
- Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece;
| |
Collapse
|
6
|
Feola K, Venable AH, Broomfield T, Llamas CB, Mishra P, Huen SC. Cell-specific oxidative metabolism of the renal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.24.622516. [PMID: 39651228 PMCID: PMC11623503 DOI: 10.1101/2024.11.24.622516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The metabolic health of the kidney is a primary determinant of the risk of progressive kidney disease. Our understanding of the metabolic processes that fuel kidney functions is limited by the kidney's structural and functional heterogeneity. As the kidney contains many different cell types, we hypothesize that intra-renal mitochondrial heterogeneity contributes to cell-specific metabolism. To interrogate this, we utilized a recently developed mitochondrial tagging technique to isolate kidney cell-type specific mitochondria. Here, we investigate mitochondrial functional capacities and the metabolomes of the early and late proximal tubule (PT) and the distal convoluted tubule (DCT). The conditional MITO-Tag allele was combined with Slc34a1-CreERT2 , Ggt1-Cre , or Pvalb-Cre alleles to generate mouse models capable of cell-specific isolation of hemagglutinin (HA)-tagged mitochondria from the early PT, late PT, or the DCT, respectively. Functional assays measuring mitochondrial respiratory and fatty acid oxidation (FAO) capacities and metabolomics were performed on anti-HA immunoprecipitated mitochondria from kidneys of ad libitum fed and 24-hour fasted male mice. The renal MITO-Tag models targeting the early PT, late PT, and DCT revealed differential mitochondrial respiratory and FAO capacities which dynamically changed during fasting conditions. Changes with mitochondrial metabolomes induced by fasting suggest that the late PT significantly increases FAO during fasting. The renal MITO-Tag model captured differential mitochondrial metabolism and functional capacities across the early PT, late PT, and DCT at baseline and in response to fasting. Translational Statement While the renal cortex is often considered a single metabolic compartment, we discovered significant diversity of mitochondrial metabolomes and functional capacities across the proximal tubule and the distal convoluted tubule. As mitochondrial dysfunction is a major biochemical pathway related to kidney disease progression, understanding the differences in mitochondrial metabolism across distinct kidney cell populations is thus critical in the development of effective and targeted therapeutic therapies for acute and chronic kidney disease.
Collapse
|
7
|
Li H, Gong W, Sun W, Yao Y, Han Y. Role of VPS39, a key tethering protein for endolysosomal trafficking and mitochondria-lysosome crosstalk, in health and disease. J Cell Biochem 2024; 125:e30396. [PMID: 36924104 DOI: 10.1002/jcb.30396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/12/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
The coordinated interaction between mitochondria and lysosomes, mainly manifested by mitophagy, mitochondria-derived vesicles, and direct physical contact, is essential for maintaining cellular life activities. The VPS39 subunit of the homotypic fusion and protein sorting complex could play a key role in the regulation of organelle dynamics, such as endolysosomal trafficking and mitochondria-vacuole/lysosome crosstalk, thus contributing to a variety of physiological functions. The abnormalities of VPS39 and related subunits have been reported to be involved in the pathological process of some diseases. Here, we analyze the potential mechanisms and the existing problems of VPS39 in regulating organelle dynamics, which, in turn, regulate physiological functions and disease pathogenesis, so as to provide new clues for facilitating the discovery of therapeutic targets for mitochondrial and lysosomal diseases.
Collapse
Affiliation(s)
- Hanbing Li
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wenwen Gong
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Weiyun Sun
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yuanfa Yao
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yubing Han
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
8
|
Hinton AO, Vue Z, Scudese E, Neikirk K, Kirabo A, Montano M. Mitochondrial heterogeneity and crosstalk in aging: Time for a paradigm shift? Aging Cell 2024; 23:e14296. [PMID: 39188058 PMCID: PMC11464123 DOI: 10.1111/acel.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/24/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
The hallmarks of aging have been influential in guiding the biology of aging research, with more recent and growing recognition of the interdependence of these hallmarks on age-related health outcomes. However, a current challenge is personalizing aging trajectories to promote healthy aging, given the diversity of genotypes and lived experience. We suggest that incorporating heterogeneity-including intrinsic (e.g., genetic and structural) and extrinsic (e.g., environmental and exposome) factors and their interdependence of hallmarks-may move the dial. This editorial perspective will focus on one hallmark, namely mitochondrial dysfunction, to exemplify how consideration of heterogeneity and interdependence or crosstalk may reveal new perspectives and opportunities for personalizing aging research. To this end, we highlight heterogeneity within mitochondria as a model.
Collapse
Affiliation(s)
- Antentor O. Hinton
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Zer Vue
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Estevão Scudese
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Kit Neikirk
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Annet Kirabo
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Center for ImmunobiologyNashvilleTennesseeUSA
- Immunology and InflammationVanderbilt Institute for InfectionNashvilleTennesseeUSA
- Vanderbilt Institute for Global HealthNashvilleTennesseeUSA
| | - Monty Montano
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
9
|
Guo L. F-ATP synthase inhibitory factor 1 and mitochondria-organelle interactions: New insight and implications. Pharmacol Res 2024; 208:107393. [PMID: 39233058 DOI: 10.1016/j.phrs.2024.107393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Mitochondria are metabolic hub, and act as primary sites for reactive oxygen species (ROS) and metabolites generation. Mitochondrial Ca2+ uptake contributes to Ca2+ storage. Mitochondria-organelle interactions are important for cellular metabolic adaptation, biosynthesis, redox balance, cell fate. Organelle communications are mediated by Ca2+/ROS signals, vesicle transport and membrane contact sites. The permeability transition pore (PTP) is an unselective channel that provides a release pathway for Ca2+/ROS, mtDNA and metabolites. F-ATP synthase inhibitory factor 1 (IF1) participates in regulation of PTP opening and is required for the translocation of transcriptional factors c-Myc/PGC1α to mitochondria to stimulate metabolic switch. IF1, a mitochondrial specific protein, has been suggested to regulate other organelles including nucleus, endoplasmic reticulum and lysosomes. IF1 may be able to mediate mitochondria-organelle interactions and cellular physiology through regulation of PTP activity.
Collapse
Affiliation(s)
- Lishu Guo
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
10
|
Xia Q, Li P, Casas-Martinez JC, Miranda-Vizuete A, McDermott E, Dockery P, Goljanek-Whysall K, McDonagh B. Peroxiredoxin 2 regulates DAF-16/FOXO mediated mitochondrial remodelling in response to exercise that is disrupted in ageing. Mol Metab 2024; 88:102003. [PMID: 39117041 PMCID: PMC11388264 DOI: 10.1016/j.molmet.2024.102003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
OBJECTIVES A decline in mitochondrial function and increased susceptibility to oxidative stress is a hallmark of ageing. Exercise endogenously generates reactive oxygen species (ROS) in skeletal muscle and promotes mitochondrial remodelling resulting in improved mitochondrial function. It is unclear how exercise induced redox signalling results in alterations in mitochondrial dynamics and morphology. METHODS In this study, a Caenorhabditis elegans model of exercise and ageing was used to determine the mechanistic role of Peroxiredoxin 2 (PRDX-2) in regulating mitochondrial morphology. Mitochondrial morphology was analysed using transgenic reporter strains and transmission electron microscopy, complimented with the analysis of the effects of ageing and exercise on physiological activity. RESULTS The redox state of PRDX-2 was altered with exercise and ageing, hyperoxidised peroxiredoxins were detected in old worms along with basally elevated intracellular ROS. Exercise generated intracellular ROS and rapid mitochondrial remodelling, which was disrupted with age. The exercise intervention promoted mitochondrial ER contact sites (MERCS) assembly and increased DAF-16/FOXO nuclear localisation. The prdx-2 mutant strain had a disrupted mitochondrial network as evidenced by increased mitochondrial fragmentation. In the prdx-2 mutant strain, exercise did not activate DAF-16/FOXO, mitophagy or increase MERCS assembly. The results demonstrate that exercise generated ROS increased DAF-16/FOXO transcription factor nuclear localisation required for activation of mitochondrial fusion events that were blunted with age. CONCLUSIONS The data demonstrate the critical role of PRDX-2 in orchestrating mitochondrial remodelling in response to a physiological stress by regulating redox dependent DAF-16/FOXO nuclear localisation.
Collapse
Affiliation(s)
- Qin Xia
- Discipline of Physiology, School of Medicine, Ireland; Apoptosis Research Centre, University of Galway, Ireland
| | - Penglin Li
- Discipline of Physiology, School of Medicine, Ireland; Apoptosis Research Centre, University of Galway, Ireland
| | - José C Casas-Martinez
- Discipline of Physiology, School of Medicine, Ireland; Apoptosis Research Centre, University of Galway, Ireland
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Emma McDermott
- Centre for Microscopy and Imaging, Discipline of Anatomy, School of Medicine, University of Galway, Ireland
| | - Peter Dockery
- Centre for Microscopy and Imaging, Discipline of Anatomy, School of Medicine, University of Galway, Ireland
| | - Katarzyna Goljanek-Whysall
- Discipline of Physiology, School of Medicine, Ireland; Apoptosis Research Centre, University of Galway, Ireland; Institute of Lifecourse and Medical Sciences, University of Liverpool, UK
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, Ireland; Apoptosis Research Centre, University of Galway, Ireland.
| |
Collapse
|
11
|
Wang M, Hou C, Jia F, Zhong C, Xue C, Li J. Aging-associated atrial fibrillation: A comprehensive review focusing on the potential mechanisms. Aging Cell 2024; 23:e14309. [PMID: 39135295 PMCID: PMC11464128 DOI: 10.1111/acel.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 10/11/2024] Open
Abstract
Atrial fibrillation (AF) has been receiving a lot of attention from scientists and clinicians because it is an extremely common clinical condition. Due to its special hemodynamic changes, AF has a high rate of disability and mortality. So far, although AF has some therapeutic means, it is still an incurable disease because of its complex risk factors and pathophysiologic mechanisms, which is a difficult problem for global public health. Age is an important independent risk factor for AF, and the incidence of AF increases with age. To date, there is no comprehensive review on aging-associated AF. In this review, we systematically discuss the pathophysiologic evidence for aging-associated AF, and in particular explore the pathophysiologic mechanisms of mitochondrial dysfunction, telomere attrition, cellular senescence, disabled macroautophagy, and gut dysbiosis involved in recent studies with aging-associated AF. We hope that by exploring the various dimensions of aging-associated AF, we can better understand the specific relationship between age and AF, which may be crucial for innovative treatments of aging-associated AF.
Collapse
Affiliation(s)
- Meng‐Fei Wang
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Can Hou
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Fang Jia
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Cheng‐Hao Zhong
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Cong Xue
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Jian‐Jun Li
- State Key Laboratory of Cardiovascular Diseases, Fu Wai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
12
|
Zuttion S, Senger B, Panja C, Friant S, Kucharczyk R, Becker HD. Monitoring mitochondrial localization of dual localized proteins using a Bi-Genomic Mitochondrial-Split-GFP. Methods Enzymol 2024; 706:75-95. [PMID: 39455235 DOI: 10.1016/bs.mie.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Even if a myriad of approaches has been developed to identify the subcellular localization of a protein, the easiest and fastest way remains to fuse the protein to Green Fluorescent Protein (GFP) and visualize its location using fluorescence microscopy. However, this strategy is not well suited to visualize the organellar pools of proteins that are simultaneously localized both in the cytosol and in organelles because the GFP signal of a cytosolic pool of the protein (cytosolic echoform) will inevitably mask or overlay the GFP signal of the organellar pool of the protein (organellar echoform). To solve this issue, we engineered a dedicated yeast strain expressing a Bi-Genomic Mitochondrial-Split-GFP. This split-GFP is bi-genomic because the first ten ß-strands of GFP (GFPß1-10) are encoded by the mitochondrial genome and translated by mitoribosomes whereas the remaining ß-strand of GFP (GFPß11) is fused to the protein of interest encoded by the nucleus and expressed by cytosolic ribosomes. Consequently, if the GFPß11-tagged protein localizes into mitochondria, GFP will be reconstituted by self-assembly GFPß1-10 and GFPß11 thereby generating a GFP signal restricted to mitochondria and detectable by regular fluorescence microscopy. In addition, because mitochondrial translocases and import mechanisms are evolutionary well conserved, the BiG Mito-Split-GFP yeast strain can be used to probe mitochondrial importability of proteins regardless of their organismal origins and can thus serve to identify unsuspected mitochondrial echoforms readily from any organism.
Collapse
Affiliation(s)
- Solène Zuttion
- Génétique Moléculaire, Génomique, Microbiologie, CNRS, Université de Strasbourg, Strasbourg Cedex, France
| | - Bruno Senger
- Génétique Moléculaire, Génomique, Microbiologie, CNRS, Université de Strasbourg, Strasbourg Cedex, France
| | - Chiranjit Panja
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Sylvie Friant
- Génétique Moléculaire, Génomique, Microbiologie, CNRS, Université de Strasbourg, Strasbourg Cedex, France
| | - Róża Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | - Hubert Dominique Becker
- Génétique Moléculaire, Génomique, Microbiologie, CNRS, Université de Strasbourg, Strasbourg Cedex, France.
| |
Collapse
|
13
|
Özdemir M, Dennerlein S. The TOM complex from an evolutionary perspective and the functions of TOMM70. Biol Chem 2024; 0:hsz-2024-0043. [PMID: 39092472 DOI: 10.1515/hsz-2024-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
In humans, up to 1,500 mitochondrial precursor proteins are synthesized at cytosolic ribosomes and must be imported into the organelle. This is not only essential for mitochondrial but also for many cytosolic functions. The majority of mitochondrial precursor proteins are imported over the translocase of the outer membrane (TOM). In recent years, high-resolution structure analyses from different organisms shed light on the composition and arrangement of the TOM complex. Although significant similarities have been found, differences were also observed, which have been favored during evolution and could reflect the manifold functions of TOM with cellular signaling and its response to altered metabolic situations. A key component within these regulatory mechanisms is TOMM70, which is involved in protein import, forms contacts to the ER and the nucleus, but is also involved in cellular defense mechanisms during infections.
Collapse
Affiliation(s)
- Metin Özdemir
- Institute for Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Sven Dennerlein
- Institute for Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| |
Collapse
|
14
|
Ma C, Liu Y, Fu Z. Implications of endoplasmic reticulum stress and autophagy in aging and cardiovascular diseases. Front Pharmacol 2024; 15:1413853. [PMID: 39119608 PMCID: PMC11306071 DOI: 10.3389/fphar.2024.1413853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
The average lifespan of humans has been increasing, resulting in a rapidly rising percentage of older individuals and high morbidity of aging-associated diseases, especially cardiovascular diseases (CVDs). Diverse intracellular and extracellular factors that interrupt homeostatic functions in the endoplasmic reticulum (ER) induce ER stress. Cells employ a dynamic signaling pathway of unfolded protein response (UPR) to buffer ER stress. Recent studies have demonstrated that ER stress triggers various cellular processes associated with aging and many aging-associated diseases, including CVDs. Autophagy is a conserved process involving lysosomal degradation and recycling of cytoplasmic components, proteins, organelles, and pathogens that invade the cytoplasm. Autophagy is vital for combating the adverse influence of aging on the heart. The present report summarizes recent studies on the mechanism of ER stress and autophagy and their overlap in aging and on CVD pathogenesis in the context of aging. It also discusses possible therapeutic interventions targeting ER stress and autophagy that might delay aging and prevent or treat CVDs.
Collapse
Affiliation(s)
- Chenguang Ma
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- 32295 Troops of P.L.A, Liaoyang, China
| | - Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Casas-Martinez JC, Samali A, McDonagh B. Redox regulation of UPR signalling and mitochondrial ER contact sites. Cell Mol Life Sci 2024; 81:250. [PMID: 38847861 PMCID: PMC11335286 DOI: 10.1007/s00018-024-05286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/11/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
Mitochondria and the endoplasmic reticulum (ER) have a synergistic relationship and are key regulatory hubs in maintaining cell homeostasis. Communication between these organelles is mediated by mitochondria ER contact sites (MERCS), allowing the exchange of material and information, modulating calcium homeostasis, redox signalling, lipid transfer and the regulation of mitochondrial dynamics. MERCS are dynamic structures that allow cells to respond to changes in the intracellular environment under normal homeostatic conditions, while their assembly/disassembly are affected by pathophysiological conditions such as ageing and disease. Disruption of protein folding in the ER lumen can activate the Unfolded Protein Response (UPR), promoting the remodelling of ER membranes and MERCS formation. The UPR stress receptor kinases PERK and IRE1, are located at or close to MERCS. UPR signalling can be adaptive or maladaptive, depending on whether the disruption in protein folding or ER stress is transient or sustained. Adaptive UPR signalling via MERCS can increase mitochondrial calcium import, metabolism and dynamics, while maladaptive UPR signalling can result in excessive calcium import and activation of apoptotic pathways. Targeting UPR signalling and the assembly of MERCS is an attractive therapeutic approach for a range of age-related conditions such as neurodegeneration and sarcopenia. This review highlights the emerging evidence related to the role of redox mediated UPR activation in orchestrating inter-organelle communication between the ER and mitochondria, and ultimately the determination of cell function and fate.
Collapse
Affiliation(s)
- Jose C Casas-Martinez
- Discipline of Physiology, School of Medicine, University of Galway, Galway, Ireland
- Apoptosis Research Centre, University of Galway, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, University of Galway, Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, University of Galway, Galway, Ireland.
- Apoptosis Research Centre, University of Galway, Galway, Ireland.
| |
Collapse
|
16
|
Bamidele AO, Mishra SK, Piovezani Ramos G, Hirsova P, Klatt EE, Abdelrahman LM, Sagstetter MR, Davidson HM, Fehrenbach PJ, Valenzuela-Pérez L, Kim Lee HS, Zhang S, Aguirre Lopez A, Kurdi AT, Westphal MS, Gonzalez MM, Gaballa JM, Kosinsky RL, Lee HE, Smyrk TC, Bantug G, Gades NM, Faubion WA. Interleukin 21 Drives a Hypermetabolic State and CD4 + T-Cell-Associated Pathogenicity in Chronic Intestinal Inflammation. Gastroenterology 2024; 166:826-841.e19. [PMID: 38266738 PMCID: PMC11034723 DOI: 10.1053/j.gastro.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/23/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND & AIMS Incapacitated regulatory T cells (Tregs) contribute to immune-mediated diseases. Inflammatory Tregs are evident during human inflammatory bowel disease; however, mechanisms driving the development of these cells and their function are not well understood. Therefore, we investigated the role of cellular metabolism in Tregs relevant to gut homeostasis. METHODS Using human Tregs, we performed mitochondrial ultrastructural studies via electron microscopy and confocal imaging, biochemical and protein analyses using proximity ligation assay, immunoblotting, mass cytometry and fluorescence-activated cell sorting, metabolomics, gene expression analysis, and real-time metabolic profiling utilizing the Seahorse XF analyzer. We used a Crohn's disease single-cell RNA sequencing dataset to infer the therapeutic relevance of targeting metabolic pathways in inflammatory Tregs. We examined the superior functionality of genetically modified Tregs in CD4+ T-cell-induced murine colitis models. RESULTS Mitochondria-endoplasmic reticulum appositions, known to mediate pyruvate entry into mitochondria via voltage-dependent anion channel 1 (VDAC1), are abundant in Tregs. VDAC1 inhibition perturbed pyruvate metabolism, eliciting sensitization to other inflammatory signals reversible by membrane-permeable methyl pyruvate supplementation. Notably, interleukin (IL) 21 diminished mitochondria-endoplasmic reticulum appositions, resulting in enhanced enzymatic function of glycogen synthase kinase 3 β, a putative negative regulator of VDAC1, and a hypermetabolic state that amplified Treg inflammatory response. Methyl pyruvate and glycogen synthase kinase 3 β pharmacologic inhibitor (LY2090314) reversed IL21-induced metabolic rewiring and inflammatory state. Moreover, IL21-induced metabolic genes in Tregs in vitro were enriched in human Crohn's disease intestinal Tregs. Adoptively transferred Il21r-/- Tregs efficiently rescued murine colitis in contrast to wild-type Tregs. CONCLUSIONS IL21 triggers metabolic dysfunction associated with Treg inflammatory response. Inhibiting IL21-induced metabolism in Tregs may mitigate CD4+ T-cell-driven chronic intestinal inflammation.
Collapse
Affiliation(s)
- Adebowale O Bamidele
- Immunometabolism and Mucosal Immunity Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Department of Immunology, Mayo Clinic, Rochester, Minnesota.
| | - Shravan K Mishra
- Immunometabolism and Mucosal Immunity Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Emily E Klatt
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | - Leena M Abdelrahman
- Immunometabolism and Mucosal Immunity Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Mary R Sagstetter
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Heidi M Davidson
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Patrick J Fehrenbach
- Immunometabolism and Mucosal Immunity Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - Hyun Se Kim Lee
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Song Zhang
- Mayo Clinic Metabolomics Core, Mayo Clinic, Rochester, Minnesota; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Abner Aguirre Lopez
- Immunometabolism and Mucosal Immunity Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Ahmed T Kurdi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Maria S Westphal
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Michelle M Gonzalez
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Joseph M Gaballa
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - Hee Eun Lee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Thomas C Smyrk
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Glenn Bantug
- Immunobiology Laboratory, Department of Biomedicine, University Hospital of Basel, Basel, Switzerland
| | - Naomi M Gades
- Department of Comparative Medicine, Mayo Clinic, Scottsdale, Arizona
| | - William A Faubion
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
17
|
Zhang YF, Yuan LL, Wang ZC, Zhuang WB, Zhang WJ, Liu HT, Li M, Fan LH. DHEA down-regulates mitochondrial dynamics and promotes apoptosis of lung adenocarcinoma cells through FASTKD2. J Cancer 2024; 15:2110-2122. [PMID: 38495508 PMCID: PMC10937269 DOI: 10.7150/jca.93373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/20/2024] [Indexed: 03/19/2024] Open
Abstract
Background: DHEA is a steroid hormone produced by the gonads, adrenal cortex, brain, and gastrointestinal tract. While the anti-obesity, anti-atherosclerosis, anti-cancer, and memory-enhancing effects of DHEA have been substantiated through cell experiments, animal studies, and human trials, the precise mechanisms underlying these effects remain unclear. Altered mitochondrial dynamics can lead to mitochondrial dysfunction, which is closely related to many human diseases, especially cancer and aging. This study was to investigate whether DHEA inhibits lung adenocarcinoma through the mitochondrial pathway and its molecular mechanism. Methods: Through animal experiments and cell experiments, the effect of DHEA on tumor inhibition was determined. The correlation between FASTKD2 expression and DHEA was analyzed by Western blot, Reverse transcription-quantitative PCR, Immunohistochemistry, and TCGA database. Results: In this study, DHEA supplementation in the diet can inhibit the tumor size of mice, and the effect of adding DHEA one week before the experiment is the best. DHEA limits the glycolysis process by inhibiting G6PDH activity, increases the accumulation of reactive oxygen species, and initiates apoptosis in the mitochondrial pathway of cancer cells. Conclusion: DHEA suppresses mitochondrial fission and promotes mitochondrial fusion by downregulating the expression of FASTKD2, thereby inhibiting tumor growth and prolonging the overall survival of lung adenocarcinoma patients, which also provides a new target for the prevention and treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
| | - Liu-Liu Yuan
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | | | - Wen-Bin Zhuang
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen-Jia Zhang
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hai-Tao Liu
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ming Li
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li-Hong Fan
- Nanjing Medical University, Nanjing, China
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Risbud M, Madhu V, Hernandez-Meadows M, Coleman A, Sao K, Inguito K, Haslam O, Boneski P, Sesaki H, Collins J. The loss of OPA1 accelerates intervertebral disc degeneration and osteoarthritis in aged mice. RESEARCH SQUARE 2024:rs.3.rs-3950044. [PMID: 38464287 PMCID: PMC10925423 DOI: 10.21203/rs.3.rs-3950044/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
NP cells of the intervertebral disc and articular chondrocytes reside in avascular and hypoxic tissue niches. As a consequence of these environmental constraints the cells are primarily glycolytic in nature and were long thought to have a minimal reliance on mitochondrial function. Recent studies have challenged this long-held view and highlighted the increasingly important role of mitochondria in the physiology of these tissues. However, the foundational understanding of mechanisms governing mitochondrial dynamics and function in these tissues is lacking. We investigated the role of mitochondrial fusion protein OPA1 in maintaining the spine and knee joint health in mice. OPA1 knockdown in NP cells altered mitochondrial size and cristae shape and increased the oxygen consumption rate without affecting ATP synthesis. OPA1 governed the morphology of multiple organelles, including peroxisomes, early endosomes and cis-Golgi and its loss resulted in the dysregulation of NP cell autophagy. Metabolic profiling and 13C-flux analyses revealed TCA cycle anaplerosis and altered metabolism in OPA1-deficient NP cells. Noteworthy, Opa1AcanCreERT2 mice with Opa1 deletion in disc and cartilage showed age-dependent disc degeneration, osteoarthritis, and vertebral osteopenia. Our findings underscore that OPA1 regulation of mitochondrial dynamics and multi-organelle interactions is critical in preserving metabolic homeostasis of disc and cartilage.
Collapse
|
19
|
Peggion C, Calì T, Brini M. Mitochondria Dysfunction and Neuroinflammation in Neurodegeneration: Who Comes First? Antioxidants (Basel) 2024; 13:240. [PMID: 38397838 PMCID: PMC10885966 DOI: 10.3390/antiox13020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Neurodegenerative diseases (NDs) encompass an assorted array of disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, each characterised by distinct clinical manifestations and underlying pathological mechanisms. While some cases have a genetic basis, many NDs occur sporadically. Despite their differences, these diseases commonly feature chronic neuroinflammation as a hallmark. Consensus has recently been reached on the possibility that mitochondria dysfunction and protein aggregation can mutually contribute to the activation of neuroinflammatory response and thus to the onset and progression of these disorders. In the present review, we discuss the contribution of mitochondria dysfunction and neuroinflammation to the aetiology and progression of NDs, highlighting the possibility that new potential therapeutic targets can be identified to tackle neurodegenerative processes and alleviate the progression of these pathologies.
Collapse
Affiliation(s)
- Caterina Peggion
- Department of Biology, University of Padova, 35131 Padova, Italy;
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
| | - Marisa Brini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
20
|
Madhu V, Hernandaz-Meadows M, Coleman A, Sao K, Inguito K, Haslam O, Boneski PK, Sesaki H, Collins JA, Risbud MV. OPA1 protects intervertebral disc and knee joint health in aged mice by maintaining the structure and metabolic functions of mitochondria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576115. [PMID: 38293153 PMCID: PMC10827164 DOI: 10.1101/2024.01.17.576115] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Due to their glycolytic nature and limited vascularity, nucleus pulposus (NP) cells of the intervertebral disc and articular chondrocytes were long thought to have minimal reliance on mitochondrial function. Recent studies have challenged this long-held view and highlighted the increasingly important role of mitochondria in the physiology of these tissues. We investigated the role of mitochondrial fusion protein OPA1 in maintaining the spine and knee joint health in aging mice. OPA1 knockdown in NP cells altered mitochondrial size and cristae shape and increased the oxygen consumption rate without affecting ATP synthesis. OPA1 governed the morphology of multiple organelles, and its loss resulted in the dysregulation of NP cell autophagy. Metabolic profiling and 13 C-flux analyses revealed TCA cycle anaplerosis and altered metabolism in OPA1-deficient NP cells. Noteworthy, Opa1 AcanCreERT2 mice showed age- dependent disc, and cartilage degeneration and vertebral osteopenia. Our findings suggest that OPA1 regulation of mitochondrial dynamics and multi-organelle interactions is critical in preserving metabolic homeostasis of disc and cartilage. Teaser OPA1 is necessary for the maintenance of intervertebral disc and knee joint health in aging mice.
Collapse
|
21
|
Lee RG, Rudler DL, Raven SA, Peng L, Chopin A, Moh ESX, McCubbin T, Siira SJ, Fagan SV, DeBono NJ, Stentenbach M, Browne J, Rackham FF, Li J, Simpson KJ, Marcellin E, Packer NH, Reid GE, Padman BS, Rackham O, Filipovska A. Quantitative subcellular reconstruction reveals a lipid mediated inter-organelle biogenesis network. Nat Cell Biol 2024; 26:57-71. [PMID: 38129691 DOI: 10.1038/s41556-023-01297-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/18/2023] [Indexed: 12/23/2023]
Abstract
The structures and functions of organelles in cells depend on each other but have not been systematically explored. We established stable knockout cell lines of peroxisomal, Golgi and endoplasmic reticulum genes identified in a whole-genome CRISPR knockout screen for inducers of mitochondrial biogenesis stress, showing that defects in peroxisome, Golgi and endoplasmic reticulum metabolism disrupt mitochondrial structure and function. Our quantitative total-organelle profiling approach for focussed ion beam scanning electron microscopy revealed in unprecedented detail that specific organelle dysfunctions precipitate multi-organelle biogenesis defects, impair mitochondrial morphology and reduce respiration. Multi-omics profiling showed a unified proteome response and global shifts in lipid and glycoprotein homeostasis that are elicited when organelle biogenesis is compromised, and that the resulting mitochondrial dysfunction can be rescued with precursors for ether-glycerophospholipid metabolic pathways. This work defines metabolic and morphological interactions between organelles and how their perturbation can cause disease.
Collapse
Affiliation(s)
- Richard G Lee
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Danielle L Rudler
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Samuel A Raven
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Liuyu Peng
- School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
| | - Anaëlle Chopin
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Edward S X Moh
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Tim McCubbin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland, Australia
- ARC Centre of Excellence in Synthetic Biology, The University of Queensland, Queensland, Australia
| | - Stefan J Siira
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Samuel V Fagan
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Nicholas J DeBono
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Maike Stentenbach
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Jasmin Browne
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Filip F Rackham
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Ji Li
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Kaylene J Simpson
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland, Australia
- ARC Centre of Excellence in Synthetic Biology, The University of Queensland, Queensland, Australia
| | - Nicolle H Packer
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Gavin E Reid
- School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Benjamin S Padman
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Aleksandra Filipovska
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia.
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia.
| |
Collapse
|
22
|
Liu X, Zhang X, Zhao L, Long J, Feng Z, Su J, Gao F, Liu J. Mitochondria as a sensor, a central hub and a biological clock in psychological stress-accelerated aging. Ageing Res Rev 2024; 93:102145. [PMID: 38030089 DOI: 10.1016/j.arr.2023.102145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
The theory that oxidative damage caused by mitochondrial free radicals leads to aging has brought mitochondria into the forefront of aging research. Psychological stress that encompasses many different experiences and exposures across the lifespan has been identified as a catalyst for accelerated aging. Mitochondria, known for their dynamic nature and adaptability, function as a highly sensitive stress sensor and central hub in the process of accelerated aging. In this review, we explore how mitochondria as sensors respond to psychological stress and contribute to the molecular processes in accelerated aging by viewing mitochondria as hormonal, mechanosensitive and immune suborganelles. This understanding of the key role played by mitochondria and their close association with accelerated aging helps us to distinguish normal aging from accelerated aging, correct misconceptions in aging studies, and develop strategies such as exercise and mitochondria-targeted nutrients and drugs for slowing down accelerated aging, and also hold promise for prevention and treatment of age-related diseases.
Collapse
Affiliation(s)
- Xuyun Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Lin Zhao
- Cardiometabolic Innovation Center, Ministry of Education, Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China.
| |
Collapse
|
23
|
Anjum S, Srivastava S, Panigrahi L, Ansari UA, Trivedi AK, Ahmed S. TORC1 mediated regulation of mitochondrial integrity and calcium ion homeostasis by Wat1/mLst8 in S. pombe. Int J Biol Macromol 2023; 253:126907. [PMID: 37717872 DOI: 10.1016/j.ijbiomac.2023.126907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/18/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
The mTOR complexes play a fundamental role in mitochondrial biogenesis and cellular homeostasis. Wat1, an ortholog of mammalian Lst8 is an important component of TOR complex and is essential for the regulation of downstream signaling. Earlier we reported the role of Wat1 in oxidative stress response. Here, we have shown that the abrogation of wat1 causes respiratory defects and mitochondrial depolarization that leads to a decrease in ATP production. The confocal and electron microscopy in wat1Δ cells revealed the fragmented mitochondrial morphology implying its role in mitochondrial fission. Furthermore, we also showed its role in autophagy and the maintenance of calcium ion homeostasis. Additionally, tor2-287 mutant cells also exhibit defects in mitochondrial integrity indicating the TORC1-dependent involvement of Wat1 in the maintenance of mitochondrial homeostasis. The interaction studies of Wat1 and Tor2 with Por1 and Mmm1 proteins revealed a plausible cross-talk between mitochondria and endoplasmic reticulum through the Mitochondria-associated membranes (MAM) and endoplasmic reticulum-mitochondria encounter structure (ERMES) complex, involving TORC1. Taken together, this study demonstrates the involvement of Wat1/mLst8 in harmonizing various mitochondrial functions, redox status, and Ca2+ homeostasis.
Collapse
Affiliation(s)
- Simmi Anjum
- Biochemistry and Structural Biology Division, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Swati Srivastava
- Division of Cancer Biology, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Lalita Panigrahi
- Biochemistry and Structural Biology Division, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Uzair Ahmad Ansari
- System Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicological Research, Vishvigyan Bhawan, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arun Kumar Trivedi
- Division of Cancer Biology, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shakil Ahmed
- Biochemistry and Structural Biology Division, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
24
|
Neikirk K, Lopez EG, Marshall AG, Alghanem A, Krystofiak E, Kula B, Smith N, Shao J, Katti P, Hinton A. Call to action to properly utilize electron microscopy to measure organelles to monitor disease. Eur J Cell Biol 2023; 102:151365. [PMID: 37864884 DOI: 10.1016/j.ejcb.2023.151365] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023] Open
Abstract
This review provides an overview of the current methods for quantifying mitochondrial ultrastructure, including cristae morphology, mitochondrial contact sites, and recycling machinery and a guide to utilizing electron microscopy to effectively measure these organelles. Quantitative analysis of mitochondrial ultrastructure is essential for understanding mitochondrial biology and developing therapeutic strategies for mitochondrial-related diseases. Techniques such as transmission electron microscopy (TEM) and serial block face-scanning electron microscopy, as well as how they can be combined with other techniques including confocal microscopy, super-resolution microscopy, and correlative light and electron microscopy are discussed. Beyond their limitations and challenges, we also offer specific magnifications that may be best suited for TEM analysis of mitochondrial, endoplasmic reticulum, and recycling machinery. Finally, perspectives on future quantification methods are offered.
Collapse
Affiliation(s)
- Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Edgar-Garza Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Ahmad Alghanem
- King Abdullah International Medical Research Center (KAIMRC), Ali Al Arini, Ar Rimayah, Riyadh 11481, Saudi Arabia
| | - Evan Krystofiak
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Bartosz Kula
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester 14642, USA
| | - Nathan Smith
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester 14642, USA
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, USA
| | - Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
25
|
Yagi M, Do Y, Hirai H, Miki K, Toshima T, Fukahori Y, Setoyama D, Abe C, Nabeshima YI, Kang D, Uchiumi T. Improving lysosomal ferroptosis with NMN administration protects against heart failure. Life Sci Alliance 2023; 6:e202302116. [PMID: 37793777 PMCID: PMC10551641 DOI: 10.26508/lsa.202302116] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
Myocardial mitochondria are primary sites of myocardial energy metabolism. Mitochondrial disorders are associated with various cardiac diseases. We previously showed that mice with cardiomyocyte-specific knockout of the mitochondrial translation factor p32 developed heart failure from dilated cardiomyopathy. Mitochondrial translation defects cause not only mitochondrial dysfunction but also decreased nicotinamide adenine dinucleotide (NAD+) levels, leading to impaired lysosomal acidification and autophagy. In this study, we investigated whether nicotinamide mononucleotide (NMN) administration, which compensates for decreased NAD+ levels, improves heart failure because of mitochondrial dysfunction. NMN administration reduced damaged lysosomes and improved autophagy, thereby reducing heart failure and extending the lifespan in p32cKO mice. We found that lysosomal damage due to mitochondrial dysfunction induced ferroptosis, involving the accumulation of iron in lysosomes and lipid peroxide. The ameliorative effects of NMN supplementation were found to strongly affect lysosomal function rather than mitochondrial function, particularly lysosome-mediated ferroptosis. NMN supplementation can improve lysosomal, rather than mitochondrial, function and prevent chronic heart failure.
Collapse
Affiliation(s)
- Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yura Do
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Haruka Hirai
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenji Miki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Toshima
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukina Fukahori
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chiaki Abe
- Department of Aging Science and Medicine, Graduate School of Medicine Kyoto University Medical Innovation Center, Kyoto, Japan
| | - Yo-Ichi Nabeshima
- Department of Aging Science and Medicine, Graduate School of Medicine Kyoto University Medical Innovation Center, Kyoto, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
26
|
Wang J, Yan JT, Zeng ST, Shao W, Tang GX, Chen SB, Huang ZS, Tan JH, Chen XC. Revealing Mitochondrion-Lysosome Dynamic Interactions and pH Variations in Live Cells with a pH-Sensitive Fluorescent Probe. Anal Chem 2023; 95:16609-16617. [PMID: 37917789 DOI: 10.1021/acs.analchem.3c02878] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Mitochondrion-lysosome interactions have garnered significant attention in recent research. Numerous studies have shown that mitochondrion-lysosome interactions, including mitochondrion-lysosome contact (MLC) and mitophagy, are involved in various biological processes and pathological conditions. Single fluorescent probes are termed a pivotal chemical tool in unraveling the intricate spatiotemporal interorganelle interplay in live cells. However, current chemical tools are insufficient to deeply understand mitochondrion-lysosome dynamic interactions and related diseases, Moreover, the rational design of mitochondrion-lysosome dual-targeting fluorescent probes is intractable. Herein, we designed and synthesized a pH-sensitive fluorescent probe called INSA, which could simultaneously light up mitochondria (red emission) and lysosomes (green emission) for their internal pH differences. Employing INSA, we successfully recorded long-term dynamic interactions between lysosomes and mitochondria. More importantly, the increasing mitochondrion-lysosome interactions in ferroptotic cells were also revealed by INSA. Further, we observed pH variations in mitochondria and lysosomes during ferroptosis for the first time. In brief, this work not only introduced a pH-sensitive fluorescent probe INSA for the disclosure of the mitochondrion-lysosome dynamic interplays but also pioneered the visualization of the organellar pH alternation in a specific disease model.
Collapse
Affiliation(s)
- Jian Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Tong Yan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shu-Tang Zeng
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wen Shao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Gui-Xue Tang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuo-Bin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jia-Heng Tan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiu-Cai Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
27
|
Peggion C, Barazzuol L, Poggio E, Calì T, Brini M. Ca 2+ signalling: A common language for organelles crosstalk in Parkinson's disease. Cell Calcium 2023; 115:102783. [PMID: 37597300 DOI: 10.1016/j.ceca.2023.102783] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease caused by multifactorial pathogenic mechanisms. Familial PD is linked with genetic mutations in genes whose products are either associated with mitochondrial function or endo-lysosomal pathways. Of note, mitochondria are essential to sustain high energy demanding synaptic activity of neurons and alterations in mitochondrial Ca2+ signaling have been proposed as causal events for neurodegenerative process, although the mechanisms responsible for the selective loss of specific neuronal populations in the different neurodegenerative diseases is still not clear. Here, we specifically discuss the importance of a correct mitochondrial communication with the other organelles occurring at regions where their membranes become in close contact. We discuss the nature and the role of contact sites that mitochondria establish with ER, lysosomes, and peroxisomes, and how PD related proteins participate in the regulation/dysregulation of the tethering complexes. Unravelling molecular details of mitochondria tethering could contribute to identify specific therapeutic targets and develop new strategies to counteract the progression of the disease.
Collapse
Affiliation(s)
| | | | - Elena Poggio
- Department of Biology (DIBIO), University of Padova, Italy
| | - Tito Calì
- Department of Biomedical Sciences (DSB), University of Padova, Italy; Study Center for Neurodegeneration (CESNE), University of Padova, Italy; Padova Neuroscience Center (PNC), University of Padova, Padova, Italy.
| | - Marisa Brini
- Department of Biology (DIBIO), University of Padova, Italy; Study Center for Neurodegeneration (CESNE), University of Padova, Italy.
| |
Collapse
|
28
|
Yang JF, Xing X, Luo L, Zhou XW, Feng JX, Huang KB, Liu H, Jin S, Liu YN, Zhang SH, Pan YH, Yu B, Yang JY, Cao YL, Cao Y, Yang CY, Wang Y, Zhang Y, Li J, Xia X, Kang T, Xu RH, Lan P, Luo JH, Han H, Bai F, Gao S. Mitochondria-ER contact mediated by MFN2-SERCA2 interaction supports CD8 + T cell metabolic fitness and function in tumors. Sci Immunol 2023; 8:eabq2424. [PMID: 37738362 DOI: 10.1126/sciimmunol.abq2424] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/09/2023] [Indexed: 09/24/2023]
Abstract
Metabolic fitness of T cells is essential for their vitality, which is largely dependent on the behavior of the mitochondria. The nature of mitochondrial behavior in tumor-infiltrating T cells remains poorly understood. In this study, we show that mitofusin-2 (MFN2) expression is positively correlated with the prognosis of multiple cancers. Genetic ablation of Mfn2 in CD8+ T cells dampens mitochondrial metabolism and function and promotes tumor progression. In tumor-infiltrating CD8+ T cells, MFN2 enhances mitochondria-endoplasmic reticulum (ER) contact by interacting with ER-embedded Ca2+-ATPase SERCA2, facilitating the mitochondrial Ca2+ influx required for efficient mitochondrial metabolism. MFN2 stimulates the ER Ca2+ retrieval activity of SERCA2, thereby preventing excessive mitochondrial Ca2+ accumulation and apoptosis. Elevating mitochondria-ER contact by increasing MFN2 in CD8+ T cells improves the efficacy of cancer immunotherapy. Thus, we reveal a tethering-and-buffering mechanism of organelle cross-talk that regulates the metabolic fitness of tumor-infiltrating CD8+ T cells and highlights the therapeutic potential of enhancing MFN2 expression to optimize T cell function.
Collapse
Affiliation(s)
- Jie-Feng Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xudong Xing
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, Beijing 100871, China
| | - Li Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xin-Wei Zhou
- Department of Urology, First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan Road II, Guangzhou 510080, China
| | - Jian-Xiong Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Kang-Bo Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Huashan Liu
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Shanzhao Jin
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, Beijing 100871, China
| | - Yi-Na Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shi-Hui Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yi-Hui Pan
- Department of Urology, First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan Road II, Guangzhou 510080, China
| | - Bing Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jin-Yu Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yu-Lu Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yun Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Cliff Y Yang
- Department of Immunology, Sun Yat-sen University, Zhongshan School of Medicine, Guangzhou 510080, China
| | - Yuan Wang
- Department of Animal Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
| | - Yuxia Zhang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jiang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ping Lan
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Jun-Hang Luo
- Department of Urology, First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan Road II, Guangzhou 510080, China
| | - Hui Han
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, Beijing 100871, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
29
|
Su É, Villard C, Manneville JB. Mitochondria: At the crossroads between mechanobiology and cell metabolism. Biol Cell 2023; 115:e2300010. [PMID: 37326132 DOI: 10.1111/boc.202300010] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023]
Abstract
Metabolism and mechanics are two key facets of structural and functional processes in cells, such as growth, proliferation, homeostasis and regeneration. Their reciprocal regulation has been increasingly acknowledged in recent years: external physical and mechanical cues entail metabolic changes, which in return regulate cell mechanosensing and mechanotransduction. Since mitochondria are pivotal regulators of metabolism, we review here the reciprocal links between mitochondrial morphodynamics, mechanics and metabolism. Mitochondria are highly dynamic organelles which sense and integrate mechanical, physical and metabolic cues to adapt their morphology, the organization of their network and their metabolic functions. While some of the links between mitochondrial morphodynamics, mechanics and metabolism are already well established, others are still poorly documented and open new fields of research. First, cell metabolism is known to correlate with mitochondrial morphodynamics. For instance, mitochondrial fission, fusion and cristae remodeling allow the cell to fine-tune its energy production through the contribution of mitochondrial oxidative phosphorylation and cytosolic glycolysis. Second, mechanical cues and alterations in mitochondrial mechanical properties reshape and reorganize the mitochondrial network. Mitochondrial membrane tension emerges as a decisive physical property which regulates mitochondrial morphodynamics. However, the converse link hypothesizing a contribution of morphodynamics to mitochondria mechanics and/or mechanosensitivity has not yet been demonstrated. Third, we highlight that mitochondrial mechanics and metabolism are reciprocally regulated, although little is known about the mechanical adaptation of mitochondria in response to metabolic cues. Deciphering the links between mitochondrial morphodynamics, mechanics and metabolism still presents significant technical and conceptual challenges but is crucial both for a better understanding of mechanobiology and for potential novel therapeutic approaches in diseases such as cancer.
Collapse
Affiliation(s)
- Émilie Su
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Cité - CNRS, UMR 7057, Paris, France
- Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Université Paris Cité - CNRS, UMR 8236, Paris, France
| | - Catherine Villard
- Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Université Paris Cité - CNRS, UMR 8236, Paris, France
| | - Jean-Baptiste Manneville
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Cité - CNRS, UMR 7057, Paris, France
| |
Collapse
|
30
|
Bamidele AO, Mishra SK, Hirsova P, Fehrenbach PJ, Valenzuela-Pérez L, Lee HSK. Interleukin-21 Drives a Hypermetabolic State and CD4 + T Cell-associated Pathogenicity in Chronic Intestinal Inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543518. [PMID: 37333332 PMCID: PMC10274654 DOI: 10.1101/2023.06.02.543518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
BACKGROUND & AIMS Incapacitated regulatory T cells (Tregs) contribute to immune-mediated diseases. Inflammatory Tregs are evident during human inflammatory bowel disease (IBD); however, mechanisms driving the development of these cells and their function are not well understood. Therefore, we investigated the role of cellular metabolism in Tregs relevant to gut homeostasis. METHODS Using human Tregs, we performed mitochondrial ultrastructural studies via electron microscopy and confocal imaging, biochemical and protein analyses using proximity ligation assay, immunoblotting, mass cytometry and fluorescence-activated cell sorting, metabolomics, gene expression analysis, and real-time metabolic profiling utilizing Seahorse XF analyzer. We utilized Crohn's disease single-cell RNA sequencing dataset to infer therapeutic relevance of targeting metabolic pathways in inflammatory Tregs. We examined the superior functionality of genetically-modified Tregs in CD4+ T cell-induced murine colitis models. RESULTS Mitochondria-endoplasmic reticulum (ER) appositions, known to mediate pyruvate entry into mitochondria via VDAC1, are abundant in Tregs. VDAC1 inhibition perturbed pyruvate metabolism, eliciting sensitization to other inflammatory signals reversible by membrane-permeable methyl pyruvate (MePyr) supplementation. Notably, IL-21 diminished mitochondria-ER appositions, resulting in enhanced enzymatic function of glycogen synthase kinase 3 β (GSK3β), a putative negative regulator of VDAC1, and a hypermetabolic state that amplified Treg inflammatory response. MePyr and GSK3β pharmacologic inhibitor (LY2090314) reversed IL-21-induced metabolic rewiring and inflammatory state. Moreover, IL-21-induced metabolic genes in Tregs in vitro were enriched in human Crohn's disease intestinal Tregs. Adoptively transferred Il21r-/- Tregs efficiently rescued murine colitis in contrast to wild-type Tregs. CONCLUSIONS IL-21 triggers metabolic dysfunction associated with Treg inflammatory response. Inhibiting IL-21-induced metabolism in Tregs may mitigate CD4+ T cell-driven chronic intestinal inflammation.
Collapse
Affiliation(s)
- Adebowale O Bamidele
- Immunometabolism and Mucosal Immunity Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Shravan K Mishra
- Immunometabolism and Mucosal Immunity Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Patrick J Fehrenbach
- Immunometabolism and Mucosal Immunity Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Lucia Valenzuela-Pérez
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Hyun Se Kim Lee
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
31
|
Tanwar J, Ahuja K, Sharma A, Sehgal P, Ranjan G, Sultan F, Priya A, Venkatesan M, Yenamandra VK, Singh A, Madesh M, Sivasubbu S, Motiani RK. Mitochondrial calcium signaling mediated transcriptional regulation of keratin filaments is a critical determinant of melanogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542250. [PMID: 37292659 PMCID: PMC10245956 DOI: 10.1101/2023.05.26.542250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mitochondria are versatile organelles that regulate several physiological functions. Many mitochondria-controlled processes are driven by mitochondrial Ca2+ signaling. However, role of mitochondrial Ca2+ signaling in melanosome biology remains unknown. Here, we show that pigmentation requires mitochondrial Ca2+ uptake. In vitro gain and loss of function studies demonstrated that Mitochondrial Ca2+ Uniporter (MCU) is crucial for melanogenesis while the MCU rheostats, MCUb and MICU1 negatively control melanogenesis. Zebrafish and mouse models showed that MCU plays a vital role in pigmentation in vivo. Mechanistically, MCU controls activation of transcription factor NFAT2 to induce expression of three keratins (keratin 5, 7 and 8), which we report as positive regulators of melanogenesis. Interestingly, keratin 5 in turn modulates mitochondrial Ca2+ uptake thereby this signaling module acts as a negative feedback loop that fine-tunes both mitochondrial Ca2+ signaling and melanogenesis. Mitoxantrone, an FDA approved drug that inhibits MCU, decreases physiological melanogenesis. Collectively, our data demonstrates a critical role for mitochondrial Ca2+ signaling in vertebrate pigmentation and reveal the therapeutic potential of targeting MCU for clinical management of pigmentary disorders. Given the centrality of mitochondrial Ca2+ signaling and keratin filaments in cellular physiology, this feedback loop may be functional in a variety of other pathophysiological conditions.
Collapse
Affiliation(s)
- Jyoti Tanwar
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Kriti Ahuja
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Akshay Sharma
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Paras Sehgal
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Gyan Ranjan
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Farina Sultan
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Anshu Priya
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Manigandan Venkatesan
- Department of Medicine, Center for Mitochondrial Medicine, Cardiology Division, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Vamsi K Yenamandra
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Archana Singh
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Muniswamy Madesh
- Department of Medicine, Center for Mitochondrial Medicine, Cardiology Division, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Sridhar Sivasubbu
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| |
Collapse
|
32
|
Mahley RW. Apolipoprotein E4 targets mitochondria and the mitochondria-associated membrane complex in neuropathology, including Alzheimer's disease. Curr Opin Neurobiol 2023; 79:102684. [PMID: 36753858 DOI: 10.1016/j.conb.2023.102684] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 02/08/2023]
Abstract
Apolipoprotein (apo) E4 sets the stage for neuropathology in Alzheimer's disease (AD) by causing mitochondrial dysfunction and altering mitochondria-associated membranes. Contact and apposition of mitochondrial-endoplasmic reticulum membranes are enhanced in brain cells in AD and associated with increases in tethering and spacing proteins that modulate many cellular processes. Contact site protein levels are higher in apoE4 cells. In apoE4 neurons, the NAD+/NADH ratio is lowered, reactive oxygen species are increased, and NAD/NADH pathway components and redox proteins are decreased. Oxidative phosphorylation is impaired and reserve ATP generation capacity is lacking. ApoE4 neurons have ∼50% fewer respiratory complex subunits (e.g., ATP synthase) and may increase translocase levels of the outer and inner mitochondrial membranes to facilitate delivery of nucleus-encoded complex subunits. Respiratory complex assembly relies on mitochondrial cristae organizing system subunits that are altered in apoE4 cells, and apoE4 increases mitochondrial proteases that control respiratory subunit composition for complex assembly.
Collapse
Affiliation(s)
- Robert W Mahley
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158, USA; Departments of Pathology and Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
33
|
Cagnin S, Knedlik T, Vianello C, Magalhães Rebelo AP, De Mario A, Giacomello M. Comparison among Neuroblastoma Stages Suggests the Involvement of Mitochondria in Tumor Progression. Biomedicines 2023; 11:biomedicines11020596. [PMID: 36831133 PMCID: PMC9953471 DOI: 10.3390/biomedicines11020596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Neuroblastoma (NB) is the most common extracranial tumor of early childhood and accounts for 15% of all pediatric cancer mortalities. However, the precise pathways and genes underlying its progression are unknown. Therefore, we performed a differential gene expression analysis of neuroblastoma stage 1 and stage 4 + 4S to discover biological processes associated with NB progression. From this preliminary analysis, we found that NB samples (stage 4 + 4S) are characterized by altered expression of some proteins involved in mitochondria function and mitochondria-ER contact sites (MERCS). Although further analyses remain necessary, this review may provide new hints to better understand NB molecular etiopathogenesis, by suggesting that MERCS alterations could be involved in the progression of NB.
Collapse
Affiliation(s)
- Stefano Cagnin
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy
- CIR-Myo Myology Center, University of Padova, 35121 Padua, Italy
| | - Tomas Knedlik
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy
| | - Caterina Vianello
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy
| | | | - Agnese De Mario
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy
- Correspondence: (A.D.M.); (M.G.)
| | - Marta Giacomello
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy
- Correspondence: (A.D.M.); (M.G.)
| |
Collapse
|
34
|
Hong J, Zhang J, Li Q, Feng G. One Stone, Three Birds: A Smart Single Fluorescent Probe for Simultaneous and Discriminative Imaging of Lysosomes, Lipid Droplets, and Mitochondria. Anal Chem 2023; 95:2671-2679. [PMID: 36692199 DOI: 10.1021/acs.analchem.2c03073] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Complex intracellular life processes are usually completed through the cooperation of multiple organelles. Real-time tracking of the interplays between multiple organelles with a single fluorescent probe (SFP) is very helpful to deepen our understanding of complex biological processes. So far, SFP for simultaneously differentiating and visualizing of more than two different organelles has not been reported. Herein, we report an SFP (named ICM) that can be used for simultaneously differentiating and visualizing three important organelles: mitochondria, lysosomes, and lipid droplets (LDs). The probe can simultaneously light up mitochondria/lysosomes (∼700 nm) and LDs (∼480 nm) at significantly different emission wavelengths with high fidelity, and mitochondria and lysosomes can be effectively distinguished by their different shapes and fluorescence intensities. With this smart probe, real-time and simultaneous tracking of the interplays of these three organelles was successfully achieved for the first time.
Collapse
Affiliation(s)
- Jiaxin Hong
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Jinzheng Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Qianhua Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Guoqiang Feng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| |
Collapse
|
35
|
Collier JJ, Oláhová M, McWilliams TG, Taylor RW. Mitochondrial signalling and homeostasis: from cell biology to neurological disease. Trends Neurosci 2023; 46:137-152. [PMID: 36635110 DOI: 10.1016/j.tins.2022.12.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023]
Abstract
Efforts to understand how mitochondrial dysfunction contributes to neurodegeneration have primarily focussed on the role of mitochondria in neuronal energy metabolism. However, progress in understanding the etiological nature of emerging mitochondrial functions has yielded new ideas about the mitochondrial basis of neurological disease. Studies aimed at deciphering how mitochondria signal through interorganellar contacts, vesicular trafficking, and metabolic transmission have revealed that mitochondrial regulation of immunometabolism, cell death, organelle dynamics, and neuroimmune interplay are critical determinants of neural health. Moreover, the homeostatic mechanisms that exist to protect mitochondrial health through turnover via nanoscale proteostasis and lysosomal degradation have become integrated within mitochondrial signalling pathways to support metabolic plasticity and stress responses in the nervous system. This review highlights how these distinct mitochondrial pathways converge to influence neurological health and contribute to disease pathology.
Collapse
Affiliation(s)
- Jack J Collier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Monika Oláhová
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Thomas G McWilliams
- Translational Stem Cell Biology & Metabolism Program, Research Programs Unit, University of Helsinki, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
36
|
Zeng ST, Shao W, Yu ZY, Fang L, Tang GX, Fang YY, Chen SB, Huang ZS, Tan JH, Chen XC. Construction of a TICT-AIE-Integrated Unimolecular Platform for Imaging Lipid Droplet-Mitochondrion Interactions in Live Cells and In Vivo. ACS Sens 2023; 8:40-50. [PMID: 36533530 DOI: 10.1021/acssensors.2c01361] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inter-organelle interactions play a vital role in diverse biological processes. Thus, chemical tools are highly desirable for understanding the spatiotemporal dynamic interplay among organelles in live cells and in vivo. However, designing such tools is still a great challenge due to the lack of universal design strategies. To break this bottleneck, herein, a novel unimolecular platform integrating the twisted intramolecular charge transfer (TICT) and aggregation-induced emission (AIE) dual mechanisms was proposed. As a proof of concept, two organelles, lipid droplets (LDs) and mitochondria, were selected as models. Also, the first TICT-AIE integration molecule, BETA-1, was designed for simultaneous and dual-color imaging of LDs and mitochondria. BETA-1 can simultaneously target LDs and mitochondria due to its lipophilicity and cationic structure and emit cyan fluorescence in LDs and red fluorescence in mitochondria. Using BETA-1, for the first time, we obtained long-term tracking of dynamic LD-mitochondrion interactions and identified several impressive types of dynamic interactions between these two organelles. More importantly, the increase in LD-mitochondrion interactions during ferroptosis was revealed with BETA-1, suggesting that intervening in the LD-mitochondrion interactions may modulate this cell death. BETA-1 was also successfully applied for in vivo imaging of LD-mitochondrion interactions in C. elegans. This study not only provides an effective tool for uncovering LD-mitochondrion interactions and deciphering related biological processes but also sheds light on the design of new probes with an integrated TICT-AIE mechanism for imaging of inter-organelle interactions.
Collapse
Affiliation(s)
- Shu-Tang Zeng
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wen Shao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ze-Yi Yu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lan Fang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Gui-Xue Tang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yu-Ying Fang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuo-Bin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Heng Tan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiu-Cai Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
37
|
Wu W, Luo S, Fan C, Yang T, Zhang S, Meng W, Xu T, Ji W, Gu L. Tetra-color superresolution microscopy based on excitation spectral demixing. LIGHT, SCIENCE & APPLICATIONS 2023; 12:9. [PMID: 36588110 PMCID: PMC9806106 DOI: 10.1038/s41377-022-01054-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 05/09/2023]
Abstract
Multicolor imaging allows protein colocalizations and organelle interactions to be studied in biological research, which is especially important for single-molecule localization microscopy (SMLM). Here, we propose a multicolor method called excitation-resolved stochastic optical reconstruction microscopy (ExR-STORM). The method, which is based on the excitation spectrum of fluorescent dyes, successfully separated four spectrally very close far-red organic fluorophores utilizing three excitation lasers with cross-talk of less than 3%. Dyes that are only 5 nm apart in the emission spectrum were resolved, resulting in negligible chromatic aberrations. This method was extended to three-dimensional (3D) imaging by combining the astigmatic method, providing a powerful tool for resolving 3D morphologies at the nanoscale.
Collapse
Affiliation(s)
- Wanyan Wu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shihang Luo
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyan Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tianjie Yang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuwen Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenxiang Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Xu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Bioland Laboratory, Guangzhou, 510005, China.
- Guangzhou Laboratory, Guangzhou, 510030, China.
| | - Wei Ji
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Bioland Laboratory, Guangzhou, 510005, China.
| | - Lusheng Gu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Bioland Laboratory, Guangzhou, 510005, China.
| |
Collapse
|
38
|
Mohareer K, Banerjee S. Mycobacterial infection alters host mitochondrial activity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023. [DOI: 10.1016/bs.ircmb.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
39
|
Mao P, Huang C, Li Y, Zhao Y, Zhou S, Zhao Z, Mu Y, Wang L, Li F, Zhao AZ. Pharmacological targeting of type phosphodiesterase 4 inhibits the development of acute myeloid leukemia by impairing mitochondrial function through the Wnt/β-catenin pathway. Biomed Pharmacother 2023; 157:114027. [PMID: 36436494 DOI: 10.1016/j.biopha.2022.114027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Acute myeloid leukemia (AML) is prone to drug-resistant relapse with a low 5-year survival rate. New therapeutic modalities are sorely needed to provide hope for AML relapse patients. Herein, we demonstrated a specific inhibitor of type 4 phosphodiesterase (PDE4), Zl-n-91, could significantly reduce the proliferation of AML cells, block DNA replication process, and increase AML cell death. Zl-n-91 also impeded the growth of subcutaneous xenograft and prolonged the survival of the MLL-AF9-driven AML model. Bioinformatic analysis revealed that elevated mitochondrial gene signatures inversely correlate with the survival of AML patients; and importantly, Zl-n-91 strongly suppressed the function of mitochondria. In addition, this PDE4 inhibitor induced alterations in multiple signaling pathways, including the reduction of β-catenin activity. Stimulation of the Wnt/β-catenin pathway could attenuate the inhibitory effect of Zl-n-91 on AML cell proliferation as well as mitochondrial function. Taken together, we revealed for the first time that targeting PDE4 activity could attenuate mitochondrial function through a Wnt/β-catenin pathway, which in turn would block the growth of AML cells. Specific PDE4 inhibitors can potentially serve as a new treatment modality for AML patients.
Collapse
Affiliation(s)
- Ping Mao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China
| | - Changhao Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China
| | - Yuyu Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China
| | - Yuanyi Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China
| | - Sujin Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China
| | - Zhenggang Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China
| | - Yunping Mu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China
| | - Lina Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China
| | - Fanghong Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China.
| | - Allan Z Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
40
|
Advances in Human Mitochondria-Based Therapies. Int J Mol Sci 2022; 24:ijms24010608. [PMID: 36614050 PMCID: PMC9820658 DOI: 10.3390/ijms24010608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Mitochondria are the key biological generators of eukaryotic cells, controlling the energy supply while providing many important biosynthetic intermediates. Mitochondria act as a dynamic, functionally and structurally interconnected network hub closely integrated with other cellular compartments via biomembrane systems, transmitting biological information by shuttling between cells and tissues. Defects and dysregulation of mitochondrial functions are critically involved in pathological mechanisms contributing to aging, cancer, inflammation, neurodegenerative diseases, and other severe human diseases. Mediating and rejuvenating the mitochondria may therefore be of significant benefit to prevent, reverse, and even treat such pathological conditions in patients. The goal of this review is to present the most advanced strategies using mitochondria to manage such disorders and to further explore innovative approaches in the field of human mitochondria-based therapies.
Collapse
|
41
|
Abstract
Cellular homeostasis requires the swift and specific removal of damaged material. Selective autophagy represents a major pathway for the degradation of such cargo material. This is achieved by the sequestration of the cargo within double-membrane vesicles termed autophagosomes, which form de novo around the cargo and subsequently deliver their content to lysosomes for degradation. The importance of selective autophagy is exemplified by the various neurodegenerative diseases associated with defects in this pathway, including Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal dementia. It has become evident that cargo receptors are acting as Swiss army knives in selective autophagy by recognizing the cargo, orchestrating the recruitment of the machinery for autophagosome biogenesis, and closely aligning the membrane with the cargo. Furthermore, cargo receptors sequester ubiquitinated proteins into larger condensates upstream of autophagy induction. Here, we review recent insights into the mechanisms of action of cargo receptors in selective autophagy by focusing on the roles of sequestosome-like cargo receptors in the degradation of misfolded, ubiquitinated proteins and damaged mitochondria. We also highlight at which steps defects in their function result in the accumulation of harmful material and how this knowledge may guide the design of future therapies.
Collapse
Affiliation(s)
- Elias Adriaenssens
- Max Perutz Labs, Vienna BioCenter, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - Luca Ferrari
- Max Perutz Labs, Vienna BioCenter, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
| | - Sascha Martens
- Max Perutz Labs, Vienna BioCenter, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
42
|
Katona M, Bartók Á, Nichtova Z, Csordás G, Berezhnaya E, Weaver D, Ghosh A, Várnai P, Yule DI, Hajnóczky G. Capture at the ER-mitochondrial contacts licenses IP 3 receptors to stimulate local Ca 2+ transfer and oxidative metabolism. Nat Commun 2022; 13:6779. [PMID: 36351901 PMCID: PMC9646835 DOI: 10.1038/s41467-022-34365-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2022] Open
Abstract
Endoplasmic reticulum-mitochondria contacts (ERMCs) are restructured in response to changes in cell state. While this restructuring has been implicated as a cause or consequence of pathology in numerous systems, the underlying molecular dynamics are poorly understood. Here, we show means to visualize the capture of motile IP3 receptors (IP3Rs) at ERMCs and document the immediate consequences for calcium signaling and metabolism. IP3Rs are of particular interest because their presence provides a scaffold for ERMCs that mediate local calcium signaling, and their function outside of ERMCs depends on their motility. Unexpectedly, in a cell model with little ERMC Ca2+ coupling, IP3Rs captured at mitochondria promptly mediate Ca2+ transfer, stimulating mitochondrial oxidative metabolism. The Ca2+ transfer does not require linkage with a pore-forming protein in the outer mitochondrial membrane. Thus, motile IP3Rs can traffic in and out of ERMCs, and, when 'parked', mediate calcium signal propagation to the mitochondria, creating a dynamic arrangement that supports local communication.
Collapse
Affiliation(s)
- Máté Katona
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ádám Bartók
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zuzana Nichtova
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - György Csordás
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Elena Berezhnaya
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - David Weaver
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Arijita Ghosh
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Péter Várnai
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - David I Yule
- Department of Physiology and Pharmacology, University of Rochester, Rochester, NY, USA
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
43
|
Kakimoto-Takeda Y, Kojima R, Shiino H, Shinmyo M, Kurokawa K, Nakano A, Endo T, Tamura Y. Dissociation of ERMES clusters plays a key role in attenuating the endoplasmic reticulum stress. iScience 2022; 25:105362. [PMID: 36339260 PMCID: PMC9626684 DOI: 10.1016/j.isci.2022.105362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/24/2022] [Accepted: 10/12/2022] [Indexed: 11/27/2022] Open
Abstract
In yeast, ERMES, which mediates phospholipid transport between the ER and mitochondria, forms a limited number of oligomeric clusters at ER-mitochondria contact sites in a cell. Although the number of the ERMES clusters appears to be regulated to maintain proper inter-organelle phospholipid trafficking, its underlying mechanism and physiological relevance remain poorly understood. Here, we show that mitochondrial dynamics control the number of ERMES clusters. Moreover, we find that ER stress causes dissociation of the ERMES clusters independently of Ire1 and Hac1, canonical ER-stress response pathway components, leading to a delay in the phospholipid transport from the ER to mitochondria. Our biochemical and genetic analyses strongly suggest that the impaired phospholipid transport contributes to phospholipid accumulation in the ER, expanding the ER for ER stress attenuation. We thus propose that the ERMES dissociation constitutes an overlooked pathway of the ER stress response that operates in addition to the canonical Ire1/Hac1-dependent pathway. Mitochondrial fusion and division regulate the clustering of the ERMES complex ER stress leads to dissociation of the ERMES clusters independently of Ire1 and Hac1 The dissociated ERMES complexes have less activity in transporting phospholipids The defective phospholipid transport may cause the ER expansion to relieve ER stress
Collapse
Affiliation(s)
- Yuriko Kakimoto-Takeda
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Rieko Kojima
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
| | - Hiroya Shiino
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
| | - Manatsu Shinmyo
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
- Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Yasushi Tamura
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
- Corresponding author
| |
Collapse
|
44
|
Abstract
The analogy of mitochondria as powerhouses has expired. Mitochondria are living, dynamic, maternally inherited, energy-transforming, biosynthetic, and signaling organelles that actively transduce biological information. We argue that mitochondria are the processor of the cell, and together with the nucleus and other organelles they constitute the mitochondrial information processing system (MIPS). In a three-step process, mitochondria (1) sense and respond to both endogenous and environmental inputs through morphological and functional remodeling; (2) integrate information through dynamic, network-based physical interactions and diffusion mechanisms; and (3) produce output signals that tune the functions of other organelles and systemically regulate physiology. This input-to-output transformation allows mitochondria to transduce metabolic, biochemical, neuroendocrine, and other local or systemic signals that enhance organismal adaptation. An explicit focus on mitochondrial signal transduction emphasizes the role of communication in mitochondrial biology. This framework also opens new avenues to understand how mitochondria mediate inter-organ processes underlying human health.
Collapse
Affiliation(s)
- Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA.
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
45
|
Tan LX, Li J, Germer CJ, Lakkaraju A. Analysis of mitochondrial dynamics and function in the retinal pigment epithelium by high-speed high-resolution live imaging. Front Cell Dev Biol 2022; 10:1044672. [PMID: 36393836 PMCID: PMC9651161 DOI: 10.3389/fcell.2022.1044672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial dysfunction is strongly implicated in neurodegenerative diseases including age-related macular degeneration (AMD), which causes irreversible blindness in over 50 million older adults worldwide. A key site of insult in AMD is the retinal pigment epithelium (RPE), a monolayer of postmitotic polarized cells that performs essential functions for photoreceptor health and vision. Recent studies from our group and others have identified several features of mitochondrial dysfunction in AMD including mitochondrial fragmentation and bioenergetic defects. While these studies provide valuable insight at fixed points in time, high-resolution, high-speed live imaging is essential for following mitochondrial injury in real time and identifying disease mechanisms. Here, we demonstrate the advantages of live imaging to investigate RPE mitochondrial dynamics in cell-based and mouse models. We show that mitochondria in the RPE form extensive networks that are destroyed by fixation and discuss important live imaging considerations that can interfere with accurate evaluation of mitochondrial integrity such as RPE differentiation status and acquisition parameters. Our data demonstrate that RPE mitochondria show localized heterogeneities in membrane potential and ATP production that could reflect focal changes in metabolism and oxidative stress. Contacts between the mitochondria and organelles such as the ER and lysosomes mediate calcium flux and mitochondrial fission. Live imaging of mouse RPE flatmounts revealed a striking loss of mitochondrial integrity in albino mouse RPE compared to pigmented mice that could have significant functional consequences for cellular metabolism. Our studies lay a framework to guide experimental design and selection of model systems for evaluating mitochondrial health and function in the RPE.
Collapse
Affiliation(s)
- Li Xuan Tan
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, United States
| | - Jianlong Li
- Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, CA, United States
| | - Colin J. Germer
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, United States
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, United States
| | - Aparna Lakkaraju
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, United States
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, United States
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA, United States
| |
Collapse
|
46
|
Zheng J, Cao Y, Yang J, Jiang H. UBXD8 mediates mitochondria-associated degradation to restrain apoptosis and mitophagy. EMBO Rep 2022; 23:e54859. [PMID: 35979733 PMCID: PMC9535754 DOI: 10.15252/embr.202254859] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/20/2022] [Accepted: 08/04/2022] [Indexed: 08/08/2023] Open
Abstract
The hexameric AAA-ATPase valosin-containing protein (VCP) is essential for mitochondrial protein quality control. How VCP is recruited to mammalian mitochondria remains obscure. Here we report that UBXD8, an ER- and lipid droplet-localized VCP adaptor, also localizes to mitochondria and locally recruits VCP. UBXD8 associates with mitochondrial and ER ubiquitin E3 ligases and targets their substrates for degradation. Remarkably, both mitochondria- and ER-localized UBXD8 can degrade mitochondrial and ER substrates in cis and in trans. UBXD8 also associates with the TOM complex but is dispensable for translocation-associated degradation. UBXD8 knockout impairs the degradation of the pro-survival protein Mcl1 but surprisingly sensitizes cells to apoptosis and mitochondrial stresses. UBXD8 knockout also hyperactivates mitophagy. We identify pro-apoptotic BH3-only proteins Noxa, Bik, and Bnip3 as novel UBXD8 substrates and determine that UBXD8 inhibits apoptosis via degrading Noxa and restrains mitophagy via degrading Bnip3. Collectively, our characterizations reveal UBXD8 as the major mitochondrial adaptor of VCP and unveil its role in apoptosis and mitophagy regulation.
Collapse
Affiliation(s)
- Jing Zheng
- School of Life SciencesPeking UniversityBeijingChina
- National Institute of Biological SciencesBeijingChina
- Beijing Key Laboratory of Cell Biology for Animal AgingBeijingChina
| | - Yu Cao
- National Institute of Biological SciencesBeijingChina
- Beijing Key Laboratory of Cell Biology for Animal AgingBeijingChina
- College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Jun Yang
- National Institute of Biological SciencesBeijingChina
- Beijing Key Laboratory of Cell Biology for Animal AgingBeijingChina
- School of Life SciencesTsinghua UniversityBeijingChina
| | - Hui Jiang
- School of Life SciencesPeking UniversityBeijingChina
- National Institute of Biological SciencesBeijingChina
- Beijing Key Laboratory of Cell Biology for Animal AgingBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical ResearchTsinghua UniversityBeijingChina
| |
Collapse
|
47
|
Morgado-Cáceres P, Liabeuf G, Calle X, Briones L, Riquelme JA, Bravo-Sagua R, Parra V. The aging of ER-mitochondria communication: A journey from undifferentiated to aged cells. Front Cell Dev Biol 2022; 10:946678. [PMID: 36060801 PMCID: PMC9437272 DOI: 10.3389/fcell.2022.946678] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/20/2022] [Indexed: 01/10/2023] Open
Abstract
The complex physiology of eukaryotic cells requires that a variety of subcellular organelles perform unique tasks, even though they form highly dynamic communication networks. In the case of the endoplasmic reticulum (ER) and mitochondria, their functional coupling relies on the physical interaction between their membranes, mediated by domains known as mitochondria-ER contacts (MERCs). MERCs act as shuttles for calcium and lipid transfer between organelles, and for the nucleation of other subcellular processes. Of note, mounting evidence shows that they are heterogeneous structures, which display divergent behaviors depending on the cell type. Furthermore, MERCs are plastic structures that remodel according to intra- and extracellular cues, thereby adjusting the function of both organelles to the cellular needs. In consonance with this notion, the malfunction of MERCs reportedly contributes to the development of several age-related disorders. Here, we integrate current literature to describe how MERCs change, starting from undifferentiated cells, and their transit through specialization, malignant transformation (i.e., dedifferentiation), and aging/senescence. Along this journey, we will review the function of MERCs and their relevance for pivotal cell types, such as stem and cancer cells, cardiac, skeletal, and smooth myocytes, neurons, leukocytes, and hepatocytes, which intervene in the progression of chronic diseases related to age.
Collapse
Affiliation(s)
- Pablo Morgado-Cáceres
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular y Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Gianella Liabeuf
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Laboratorio de Obesidad y Metabolismo Energético (OMEGA), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Facultad de Salud y Ciencias Sociales, Escuela de Nutrición y Dietética, Universidad de las Américas, Santiago, Chile
| | - Ximena Calle
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular y Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Lautaro Briones
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Laboratorio de Obesidad y Metabolismo Energético (OMEGA), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Departamento de Nutrición y Salud Pública, Facultad de Ciencias de la Salud y de los Alimentos, Universidad del Bío-Bío, Chillán, Chile
| | - Jaime A. Riquelme
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular y Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Roberto Bravo-Sagua
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Laboratorio de Obesidad y Metabolismo Energético (OMEGA), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Red de Investigación en Envejecimiento Saludable, Consorcio de Universidades del Estado de Chile, Santiago, Chile
- *Correspondence: Roberto Bravo-Sagua, ; Valentina Parra,
| | - Valentina Parra
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular y Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Red para el Estudio de Enfermedades Cardiopulmonares de alta letalidad (REECPAL), Universidad de Chile, Santiago, Chile
- *Correspondence: Roberto Bravo-Sagua, ; Valentina Parra,
| |
Collapse
|
48
|
Xie Y, E J, Cai H, Zhong F, Xiao W, Gordon RE, Wang L, Zheng YL, Zhang A, Lee K, He JC. Reticulon-1A mediates diabetic kidney disease progression through endoplasmic reticulum-mitochondrial contacts in tubular epithelial cells. Kidney Int 2022; 102:293-306. [PMID: 35469894 PMCID: PMC9329239 DOI: 10.1016/j.kint.2022.02.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 11/29/2022]
Abstract
Recent epidemiological studies suggest that some patients with diabetes progress to kidney failure without significant albuminuria and glomerular injury, suggesting a critical role of kidney tubular epithelial cell (TEC) injury in diabetic kidney disease (DKD) progression. However, the major risk factors contributing to TEC injury and progression in DKD remain unclear. We previously showed that expression of endoplasmic reticulum-resident protein Reticulon-1A (RTN1A) increased in human DKD, and the increased RTN1A expression promoted TEC injury through endoplasmic reticulum (ER) stress response. Here, we show that TEC-specific RTN1A overexpression worsened DKD in mice, evidenced by enhanced tubular injury, tubulointerstitial fibrosis, and kidney function decline. But RTN1A overexpression did not exacerbate diabetes-induced glomerular injury or albuminuria. Notably, RTN1A overexpression worsened both ER stress and mitochondrial dysfunction in TECs under diabetic conditions by regulation of ER-mitochondria contacts. Mechanistically, ER-bound RTN1A interacted with mitochondrial hexokinase-1 and the voltage-dependent anion channel-1 (VDAC1), interfering with their association. This disengagement of VDAC1 from hexokinase-1 resulted in activation of apoptotic and inflammasome pathways, leading to TEC injury and loss. Thus, our observations highlight the importance of ER-mitochondrial crosstalk in TEC injury and the salient role of RTN1A-mediated ER-mitochondrial contact regulation in DKD progression.
Collapse
Affiliation(s)
- Yifan Xie
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jing E
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Nephrology, Ningxia People's Hospital, Ningxia, China
| | - Hong Cai
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Zhong
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Wenzhen Xiao
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ronald E Gordon
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lois Wang
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ya-Li Zheng
- Department of Nephrology, Ningxia People's Hospital, Ningxia, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Kyung Lee
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - John Cijiang He
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Renal Section, James J. Peters Veterans Affair Medical Center, Bronx, New York, USA.
| |
Collapse
|
49
|
Fan X, Yan T, Hou T, Xiong X, Feng L, Li S, Wang Z. Mitochondrial changes in fish cells in vitro in response to serum deprivation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:869-881. [PMID: 35652993 DOI: 10.1007/s10695-022-01088-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria are critical to cellular activity that implicated in expansive networks to maintain organismal homeostasis under external stimuli of nutrient variability, a common and severe stress to fish performance during the intensive culture conditions. In the present study, zebrafish embryonic fibroblast cells were used to investigate the fish mitochondrial changes upon serum deprivation. Results showed that mitochondrial content and membrane potential were significantly reduced with increased intracellular ROS level in the serum deprivation treated fish cells. And the impaired mitochondria were characterized by rough and fracted outer membrane, and more fused mitochondria were frequently observed with the upregulated mRNA expressions of mitochondrial fusion genes (mfn1b, mfn2, and opa1). Besides, the mitochondrial DNA (mtDNA) copy numbers of mtatp6, mtcox1, mtcytb, mtnd4, and mtnd6 were overall showing the highly significant reduction, together with the mRNA expressions of these genes significantly increased, exhibiting the compensatory effects in mitochondria. Furthermore, the methyl-cytosine of whole mtDNA was compared and the methyl-reads numbers were distinctly increased in the treatment group, reflecting the instability of fish mtDNA with mitochondrial dysfunction under nutrient fluctuations. Collectively, current findings could facilitate the integrated research between fish mitochondrial response and external variables that indicates the potentially profound and durative deficits in fish health during the aquaculture processes.
Collapse
Affiliation(s)
- Xiaoteng Fan
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Tao Yan
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Tingting Hou
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Xiaofan Xiong
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Leilei Feng
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Shiyi Li
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
50
|
Kim H, Lee S, Jun Y, Lee C. Structural basis for mitoguardin-2 mediated lipid transport at ER-mitochondrial membrane contact sites. Nat Commun 2022; 13:3702. [PMID: 35764626 PMCID: PMC9239997 DOI: 10.1038/s41467-022-31462-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/17/2022] [Indexed: 11/10/2022] Open
Abstract
The endoplasmic reticulum (ER)-mitochondria contact site (ERMCS) is crucial for exchanging biological molecules such as phospholipids and Ca2+ ions between these organelles. Mitoguardin-2 (MIGA2), a mitochondrial outer membrane protein, forms the ERMCS in higher eukaryotic cells. Here, we report the crystal structures of the MIGA2 Lipid Droplet (LD) targeting domain and the ER membrane protein VAPB bound to the phosphorylated FFAT motif of MIGA2. These structures reveal that the MIGA2 LD targeting domain has a large internal hydrophobic pocket that accommodates phospholipids and that two phosphorylations of the FFAT motif are required for tight interaction of MIGA2 with VAPB, which enhances the rate of lipid transport. Further biochemical studies show that MIGA2 transports phospholipids between membranes with a strong preference for binding and trafficking phosphatidylserine (PS). These results provide a structural and molecular basis for understanding how MIGA2 mediates the formation of ERMCS and facilitates lipid trafficking at the ERMCS. The ER-mitochondria contact sites are crucial for exchanging phospholipids. Here, Kim et al. present crystal structures of mitoguardin-2 (MIGA2) which reveal that MIGA2 directly binds phospholipids and transfers them between the ER and mitochondria.
Collapse
Affiliation(s)
- Hyunwoo Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea.,Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Seowhang Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Youngsoo Jun
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea.,School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Changwook Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea. .,Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea.
| |
Collapse
|