1
|
Daumke O, van der Laan M. Molecular machineries shaping the mitochondrial inner membrane. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00854-z. [PMID: 40369159 DOI: 10.1038/s41580-025-00854-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2025] [Indexed: 05/16/2025]
Abstract
Mitochondria display intricately shaped deep invaginations of the mitochondrial inner membrane (MIM) termed cristae. This peculiar membrane architecture is essential for diverse mitochondrial functions, such as oxidative phosphorylation or the biosynthesis of cellular building blocks. Conserved protein nano-machineries such as F1Fo-ATP synthase oligomers and the mitochondrial contact site and cristae organizing system (MICOS) act as adaptable protein-lipid scaffolds controlling MIM biogenesis and its dynamic remodelling. Signal-dependent rearrangements of cristae architecture and MIM fusion events are governed by the dynamin-like GTPase optic atrophy 1 (OPA1). Recent groundbreaking structural insights into these nano-machineries have considerably advanced our understanding of the functional architecture of mitochondria. In this Review, we discuss how the MIM-shaping machineries cooperate to control cristae and crista junction dynamics, including MIM fusion, in response to cellular signalling pathways. We also explore how mutations affecting MIM-shaping machineries compromise mitochondrial functions.
Collapse
Affiliation(s)
- Oliver Daumke
- Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| | - Martin van der Laan
- Medical Biochemistry & Molecular Biology, Center for Molecular Signalling (PZMS), Saarland University Medical School, Homburg/Saar, Germany.
| |
Collapse
|
2
|
Vázquez-Carrada M, Vilchis-Landeros MM, Vázquez-Meza H, Uribe-Ramírez D, Matuz-Mares D. A New Perspective on the Role of Alterations in Mitochondrial Proteins Involved in ATP Synthesis and Mobilization in Cardiomyopathies. Int J Mol Sci 2025; 26:2768. [PMID: 40141413 PMCID: PMC11943459 DOI: 10.3390/ijms26062768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
The heart requires a continuous energy supply to sustain its unceasing contraction-relaxation cycle. Mitochondria, a double-membrane organelle, generate approximately 90% of cellular energy as adenosine triphosphate (ATP) through oxidative phosphorylation, utilizing the electrochemical gradient established by the respiratory chain. Mitochondrial function is compromised by damage to mitochondrial DNA, including point mutations, deletions, duplications, or inversions. Additionally, disruptions to proteins associated with mitochondrial membranes regulating metabolic homeostasis can impair the respiratory chain's efficiency. This results in diminished ATP production and increased generation of reactive oxygen species. This review provides an overview of mutations affecting mitochondrial transporters and proteins involved in mitochondrial energy synthesis, particularly those involved in ATP synthesis and mobilization, and it examines their role in the pathogenesis of specific cardiomyopathies.
Collapse
Affiliation(s)
- Melissa Vázquez-Carrada
- Institute of Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - María Magdalena Vilchis-Landeros
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| | - Daniel Uribe-Ramírez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Av, Wilfrido Massieu 399, Nueva Industrial Vallejo, Gustavo A. Madero, Ciudad de México C.P. 07738, Mexico;
| | - Deyamira Matuz-Mares
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| |
Collapse
|
3
|
Pollock L, Georgiou IC, Rusilowicz-Jones EV, Clague MJ, Urbé S. A long-lived pool of PINK1 imparts a molecular memory of depolarization-induced activity. SCIENCE ADVANCES 2025; 11:eadr1938. [PMID: 40020067 PMCID: PMC11870087 DOI: 10.1126/sciadv.adr1938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/24/2025] [Indexed: 03/03/2025]
Abstract
The Parkinson's disease-linked kinase, PINK1, is a short-lived protein that undergoes cleavage upon mitochondrial import leading to its proteasomal degradation. Under depolarizing conditions, it accumulates on mitochondria where it becomes activated, phosphorylating both ubiquitin and the ubiquitin E3 ligase Parkin, at Ser65. Our experiments reveal that in retinal pigment epithelial cells, only a fraction of PINK1 becomes stabilized after depolarization by electron transport chain inhibitors. Furthermore, the observed accrual of PINK1 cannot be completely accounted for without an accompanying increase in biosynthesis. We have used a ubiquitylation inhibitor TAK-243 to accumulate cleaved PINK1. Under these conditions, generation of unconjugated "free" phospho-ubiquitin serves as a proxy readout for PINK1 activity. This has enabled us to find a preconditioning phenomenon, whereby an initial depolarizing treatment leaves a residual pool of active PINK1 that remains competent to seed the activation of nascent cleaved PINK1 following a 16-hour recovery period.
Collapse
Affiliation(s)
- Liam Pollock
- Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 3BX, UK
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, 69120 Heidelberg, Germany
| | - Ioanna Ch. Georgiou
- Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Emma V. Rusilowicz-Jones
- Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Michael J. Clague
- Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Sylvie Urbé
- Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| |
Collapse
|
4
|
Di Rienzo M, Romagnoli A, Refolo G, Vescovo T, Ciccosanti F, Zuchegna C, Lozzi F, Occhigrossi L, Piacentini M, Fimia GM. Role of AMBRA1 in mitophagy regulation: emerging evidence in aging-related diseases. Autophagy 2024; 20:2602-2615. [PMID: 39113560 PMCID: PMC11587829 DOI: 10.1080/15548627.2024.2389474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Aging is a gradual and irreversible physiological process that significantly increases the risks of developing a variety of pathologies, including neurodegenerative, cardiovascular, metabolic, musculoskeletal, and immune system diseases. Mitochondria are the energy-producing organelles, and their proper functioning is crucial for overall cellular health. Over time, mitochondrial function declines causing an increased release of harmful reactive oxygen species (ROS) and DNA, which leads to oxidative stress, inflammation and cellular damage, common features associated with various age-related pathologies. The impairment of mitophagy, the selective removal of damaged or dysfunctional mitochondria by autophagy, is relevant to the development and progression of age-related diseases. The molecular mechanisms that regulates mitophagy levels in aging remain largely uncharacterized. AMBRA1 is an intrinsically disordered scaffold protein with a unique property of regulating the activity of both proliferation and autophagy core machineries. While the role of AMBRA1 during embryonic development and neoplastic transformation has been extensively investigated, its functions in post-mitotic cells of adult tissues have been limited due to the embryonic lethality caused by AMBRA1 deficiency. Recently, a key role of AMBRA1 in selectively regulating mitophagy in post-mitotic cells has emerged. Here we summarize and discuss these results with the aim of providing a comprehensive view of the mitochondrial roles of AMBRA1, and how defective activity of AMBRA1 has been functionally linked to mitophagy alterations observed in age-related degenerative disorders, including muscular dystrophy/sarcopenia, Parkinson diseases, Alzheimer diseases and age-related macular degeneration.Abbreviations: AD: Alzheimer disease; AMD: age-related macular degeneration; AMBRA1: autophagy and beclin 1 regulator 1; APOE4: apolipoprotein E4; ATAD3A: ATPase family AAA domain containing 3A; ATG: autophagy related; BCL2: BCL2 apoptosis regulator; BH3: BCL2-homology-3; BNIP3L/NIX: BCL2 interacting protein 3 like; CDK: cyclin dependent kinase; CHUK/IKKα: component of inhibitor of nuclear factor kappa B kinase complex; CRL2: CUL2-RING ubiquitin ligase; DDB1: damage specific DNA binding protein 1; ER: endoplasmic reticulum; FOXO: forkhead box O; FUNDC1: FUN14 domain containing 1; GBA/β-glucocerebrosidase: glucosylceramidase beta; HUWE1: HECT, UBA and WWE domain containing E3 ubiquitin protein ligase 1; IDR: intrinsically disordered region; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; MCL1: MCL1 apoptosis regulator, BCL2 family member; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; MSA: multiple system atrophy; MYC: MYC proto-oncogene, bHLH transcription factor; NUMA1: nuclear mitotic apparatus protein 1; OMM; mitochondria outer membrane; PD: Parkinson disease; PHB2: prohibitin 2; PINK1: PTEN induced kinase 1; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PTK2/FAK: protein tyrosine kinase 2; ROS: reactive oxygen species; RPE: retinal pigment epithelium; SAD: sporadic AD; SOCS3: suppressor of cytokine signaling 3; SRC, SRC proto-oncogene, non-receptor tyrosine kinase; STAT3: signal transducer and activator of transcription 3; STING1: stimulator of interferon response cGAMP interactor 1; SQSTM1/p62: sequestosome 1; TBK1: TANK binding kinase 1; TGFB/TGFβ: transforming growth factor beta; TOMM: translocase of outer mitochondrial membrane; TRAF6: TNF receptor associated factor 6; TRIM32: tripartite motif containing 32; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Martina Di Rienzo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Alessandra Romagnoli
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Giulia Refolo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Tiziana Vescovo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Fabiola Ciccosanti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Candida Zuchegna
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Francesca Lozzi
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Luca Occhigrossi
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
- Department of Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy
| | - Mauro Piacentini
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
- Department of Biology, University of Rome ‘Tor Vergata’, Rome, Italy
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
- Department of Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy
| |
Collapse
|
5
|
Shi J, Piao M, Liu C, Yang J, Guan X, Liu H, Li Q, Zhang Y, Yu J. Electroacupuncture pretreatment maintains mitochondrial quality control via HO-1/MIC60 signaling pathway to alleviate endotoxin-induced acute lung injury. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167480. [PMID: 39209235 DOI: 10.1016/j.bbadis.2024.167480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/04/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Electroacupuncture has been demonstrated to mitigate endotoxin-induced acute lung injury by enhancing mitochondrial function. This study investigates whether electroacupuncture confers lung protection through the regulation of mitochondrial quality control mediated by heme oxygenase-1 (HO-1) and the mitochondrial inner membrane protein MIC60. HO-1, an inducible stress protein, is crucial for maintaining mitochondrial homeostasis and protecting against lung injury. MIC60, a key component of the mitochondrial contact site and cristae organizing system, supports mitochondrial integrity. We employed genetic knockout/silencing and cell transfection techniques to model lipopolysaccharide (LPS)-induced lung injury, assessing changes in mitochondrial structure, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP), and the expression of proteins essential for mitochondrial quality control. Our findings reveal that electroacupuncture alleviates endotoxin-induced acute lung injury and associated mitochondrial dysfunction, as evidenced by reductions in lung injury scores, decreased ROS production, and suppressed expression of proteins involved in mitochondrial fission and mitophagy. Additionally, electroacupuncture enhanced MMP and upregulated proteins that facilitate mitochondrial fusion and biogenesis. Importantly, the protective effects of electroacupuncture were reduced in models with Hmox1 knockout or Mic60 silencing, and in macrophages transfected with Hmox1-siRNA or Mic60-siRNA. Moreover, HO-1 was found to influence MIC60 expression during electroacupuncture preconditioning and LPS challenge, demonstrating that these proteins not only co-localize but also interact directly. In conclusion, electroacupuncture effectively modulates mitochondrial quality control through the HO-1/MIC60 signaling pathway, offering an adjunctive therapeutic strategy to ameliorate endotoxin-induced acute lung injury in both in vivo and in vitro settings.
Collapse
Affiliation(s)
- Jia Shi
- Tianjin Nankai Hospital, Tianjin Medical University; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair
| | - Meiling Piao
- Tianjin Nankai Hospital, Tianjin Medical University; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair
| | - Chuanning Liu
- Tianjin Nankai Hospital, Tianjin Medical University; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair
| | - Jing Yang
- Tianjin Nankai Hospital, Tianjin Medical University; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair
| | - Xin Guan
- Tianjin Nankai Hospital, Tianjin Medical University; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair
| | - Huayang Liu
- Tianjin Nankai Hospital, Tianjin Medical University; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair
| | - Qiujia Li
- Tianjin Nankai Hospital, Tianjin Medical University; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair
| | - Yuan Zhang
- Tianjin Nankai Hospital, Tianjin Medical University; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair
| | - Jianbo Yu
- Tianjin Nankai Hospital, Tianjin Medical University; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair.
| |
Collapse
|
6
|
Gao Y, Sun W, Wang J, Zhao D, Tian H, Qiu Y, Ji S, Wang S, Fu Q, Zhang F, Zhang Z, Wang F, Shao J, Zheng S, Meng J. Oxidative stress induces ferroptosis in tendon stem cells by regulating mitophagy through cGAS-STING pathway. Int Immunopharmacol 2024; 138:112652. [PMID: 38986301 DOI: 10.1016/j.intimp.2024.112652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Tendinopathy is one of the most prevalent sports injury diseases in orthopedics. However, there is no effective treatment or medicine. Recently, the discovery of tendon stem cells (TSCs) provides a new perspective to find new therapeutic methods for Tendinopathy. Studies have shown that oxidative stress will inevitably cause TSCs injury during tendinopathy, but the mechanism has not been fully elucidated. Here, we report the oxidative damage of TSCs induced by H2O2 via ferroptosis, as well, treatment with H2O2 raised the proportion of mitochondria engulfed by autophagosomes in TSCs. The suppression of mitophagy by Mdivi-1 significantly attenuates the H2O2-induced ferroptosis in TSCs. Mechanically, H2O2 actives the cGAS-STING pathway, which can regulate the level of mitophagy. Interfering with cGAS could impair mitophagy and the classical ferroptotic events. In the rat model of tendinopathy, interference of cGAS could relieve tendon injury by inhibiting ferroptosis. Overall, these results provided novel implications to reveal the molecular mechanism of tendinopathy, by which pointed to cGAS as a potential therapeutic target for the treatment of tendinopathy.
Collapse
Affiliation(s)
- Yuanyuan Gao
- Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenshuang Sun
- Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Junrui Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Danli Zhao
- NanTong Health College of Jiangsu Province, Nantong 226000, China
| | - Haoyuan Tian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yangling Qiu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shufan Ji
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shuqi Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiuyu Fu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feixia Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jia Meng
- Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China.
| |
Collapse
|
7
|
Maitra S, Baek M, Choe YJ, Kim NC. FDA-approved PDE4 inhibitors alleviate the dominant toxicity of ALS-FTD-associated CHCHD10S59L by reducing the PINK1/Parkin pathway. RESEARCH SQUARE 2024:rs.3.rs-4870330. [PMID: 39315251 PMCID: PMC11419164 DOI: 10.21203/rs.3.rs-4870330/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Background Mutations in coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10) have been identified as a genetic cause of amyotrophic lateral sclerosis and/or frontotemporal dementia(ALS-FTD). In our previous studies using in vivo Drosophila model expressing CHCHD10S59L, and human cell models expressing CHCHD10S59L, we have identified that the PINK1/Parkin pathway is activated and causes cellular toxicity. Furthermore, we demonstrated that pseudo-substrate inhibitors for PINK1 and mitofusin2 agonists mitigated the cellular toxicity of CHCHD10S59L. Evidences using in vitro, in vivo genetic, and chemical tools indicate that inhibiting PINK1 would be the most promising treatment for CHCHD10S59L-induced diseases. Methods An in vivo human cell culture and in vivo Drosophila models expressing CHCHD10S59L mutant were utilized in this study to evaluate the effect of PDE4 inhibitors in PINK-parkin mediated cytotoxicity through immunohistochemical and seahorse assays. Data were analysed using one-way ANOVA and post-hoc Dunnett's test for statistical significance. Results We investigated cellular pathways that can modulate the PINK1/Parkin pathway and reduce CHCHD10S59L-induced cytotoxicity. Here, we report that FDA-approved PDE4 inhibitors reduced CHCHD10S59L-induced morphological and functional mitochondrial defects in human cells and an in vivo Drosophila model expressing C2C10HS81L. Multiple PDE4 inhibitors decreased PINK1 accumulation and downstream mitophagy induced by CHCHD10S59L. Conclusion These findings suggest that PDE4 inhibitors currently available in the market may be repositioned to treat CHCHD10S59L-induced ALS-FTD and possibly other related diseases, and that disease treatment with PDE4 inhibitors should include careful consideration of the PINK1/Parkin pathway, as it is generally recognized as a protective pathway.
Collapse
Affiliation(s)
- Swati Maitra
- University of Minnesota College of Pharmacy: University of Minnesota Twin Cities College of Pharmacy
| | - Minwoo Baek
- University of Minnesota College of Pharmacy: University of Minnesota Twin Cities College of Pharmacy
| | - Yun-Jeong Choe
- University of Minnesota College of Pharmacy: University of Minnesota Twin Cities College of Pharmacy
| | | |
Collapse
|
8
|
Forte M, D'Ambrosio L, Schiattarella GG, Salerno N, Perrone MA, Loffredo FS, Bertero E, Pilichou K, Manno G, Valenti V, Spadafora L, Bernardi M, Simeone B, Sarto G, Frati G, Perrino C, Sciarretta S. Mitophagy modulation for the treatment of cardiovascular diseases. Eur J Clin Invest 2024; 54:e14199. [PMID: 38530070 DOI: 10.1111/eci.14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Defects of mitophagy, the selective form of autophagy for mitochondria, are commonly observed in several cardiovascular diseases and represent the main cause of mitochondrial dysfunction. For this reason, mitophagy has emerged as a novel and potential therapeutic target. METHODS In this review, we discuss current evidence about the biological significance of mitophagy in relevant preclinical models of cardiac and vascular diseases, such as heart failure, ischemia/reperfusion injury, metabolic cardiomyopathy and atherosclerosis. RESULTS Multiple studies have shown that cardiac and vascular mitophagy is an adaptive mechanism in response to stress, contributing to cardiovascular homeostasis. Mitophagy defects lead to cell death, ultimately impairing cardiac and vascular function, whereas restoration of mitophagy by specific compounds delays disease progression. CONCLUSIONS Despite previous efforts, the molecular mechanisms underlying mitophagy activation in response to stress are not fully characterized. A comprehensive understanding of different forms of mitophagy active in the cardiovascular system is extremely important for the development of new drugs targeting this process. Human studies evaluating mitophagy abnormalities in patients at high cardiovascular risk also represent a future challenge.
Collapse
Affiliation(s)
| | - Luca D'Ambrosio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Gabriele G Schiattarella
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Nadia Salerno
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Marco Alfonso Perrone
- Division of Cardiology and CardioLab, Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
- Clinical Pathways and Epidemiology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Francesco S Loffredo
- Division of Cardiology, Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Edoardo Bertero
- Department of Internal Medicine, University of Genova, Genoa, Italy
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino-Italian IRCCS Cardiology Network, Genoa, Italy
| | - Kalliopi Pilichou
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Girolamo Manno
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE) "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Valentina Valenti
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- ICOT Istituto Marco Pasquali, Latina, Italy
| | | | - Marco Bernardi
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | | | | | - Giacomo Frati
- IRCCS Neuromed, Pozzilli, Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Cinzia Perrino
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Sebastiano Sciarretta
- IRCCS Neuromed, Pozzilli, Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
9
|
Benaroya H. Mitochondria and MICOS - function and modeling. Rev Neurosci 2024; 35:503-531. [PMID: 38369708 DOI: 10.1515/revneuro-2024-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 02/20/2024]
Abstract
An extensive review is presented on mitochondrial structure and function, mitochondrial proteins, the outer and inner membranes, cristae, the role of F1FO-ATP synthase, the mitochondrial contact site and cristae organizing system (MICOS), the sorting and assembly machinery morphology and function, and phospholipids, in particular cardiolipin. Aspects of mitochondrial regulation under physiological and pathological conditions are outlined, in particular the role of dysregulated MICOS protein subunit Mic60 in Parkinson's disease, the relations between mitochondrial quality control and proteins, and mitochondria as signaling organelles. A mathematical modeling approach of cristae and MICOS using mechanical beam theory is introduced and outlined. The proposed modeling is based on the premise that an optimization framework can be used for a better understanding of critical mitochondrial function and also to better map certain experiments and clinical interventions.
Collapse
Affiliation(s)
- Haym Benaroya
- Department of Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA
| |
Collapse
|
10
|
Maitra S, Baek M, Choe YJ, Kim NC. FDA-approved PDE4 inhibitors reduce the dominant toxicity of ALS-FTD-associated CHCHD10 S59L. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597429. [PMID: 38895204 PMCID: PMC11185730 DOI: 10.1101/2024.06.04.597429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Mutations in coiled-coil-helix-coiled-coil-helix domain containing 10( CHCHD10 ) have been identified as a genetic cause of amyotrophic lateral sclerosis and/or frontotemporal dementia(ALS-FTD). In our previous studies using in vivo Drosophila model expressing C2C10H S81L , and human cell models expressing CHCHD10 S59L , we have identified that the PINK1/Parkin pathway is activated and causes cellular toxicity. Furthermore, we demonstrated that pseudo-substrate inhibitors for PINK1 and mitofusin2 agonists mitigated the cellular toxicity of CHCHD10 S59L . Evidences using in vitro/ in vivo genetic and chemical tools indicate that inhibiting PINK1 would be the most promising treatment for CHCHD10 S59L -induced diseases. Therefore, we have investigated cellular pathways that can modulate the PINK1/Parkin pathway and reduce CHCHD10 S59L -induced cytotoxicity. Here, we report that FDA-approved PDE4 inhibitors reduced CHCHD10 S59L -induced morphological and functional mitochondrial defects in human cells and an in vivo Drosophila model expressing C2C10H S81L . Multiple PDE4 inhibitors decreased PINK1 accumulation and downstream mitophagy induced by CHCHD10 S59L . These findings suggest that PDE4 inhibitors currently available in the market may be repositioned to treat CHCHD10 S59L -induced ALS-FTD and possibly other related diseases.
Collapse
|
11
|
Zhu Z, He M, Zhang T, Zhao T, Qin S, Gao M, Wang W, Zheng W, Chen Z, Liu L, Hao M, Zhou B, Zhang H, Wang J, Wang F, Xia G, Wang C. LSD1 promotes the FSH responsive follicle formation by regulating autophagy and repressing Wt1 in the granulosa cells. Sci Bull (Beijing) 2024; 69:1122-1136. [PMID: 38302330 DOI: 10.1016/j.scib.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024]
Abstract
In a growing follicle, the survival and maturation of the oocyte largely depend on support from somatic cells to facilitate FSH-induced mutual signaling and chemical communication. Although apoptosis and autophagy in somatic cells are involved in the process of FSH-induced follicular development, the underlying mechanisms require substantial study. According to our study, along with FSH-induced antral follicles (AFs) formation, both lysine-specific demethylase 1 (LSD1) protein levels and autophagy increased simultaneously in granulosa cells (GCs) in a time-dependent manner, we therefore evaluated the importance of LSD1 upon facilitating the formation of AFs correlated to autophagy in GCs. Conditional knockout of Lsd1 in GCs resulted in significantly decreased AF number and subfertility in females, accompanied by marked suppression of the autophagy in GCs. On the one hand, depletion of Lsd1 resulted in accumulation of Wilms tumor 1 homolog (WT1), at both the protein and mRNA levels. WT1 prevented the expression of FSH receptor (Fshr) in GCs and thus reduced the responsiveness of the secondary follicles to FSH induction. On the other hand, depletion of LSD1 resulted in suppressed level of autophagy by upregulation of ATG16L2 in GCs. We finally approved that LSD1 contributed to these sequential activities in GCs through its H3K4me2 demethylase activity. Therefore, the importance of LSD1 in GCs is attributable to its roles in both accelerating autophagy and suppressing WT1 expression to ensure the responsiveness of GCs to FSH during AFs formation.
Collapse
Affiliation(s)
- Zijian Zhu
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meina He
- College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Tuo Zhang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Ting Zhao
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shaogang Qin
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meng Gao
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenji Wang
- School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Wenying Zheng
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ziqi Chen
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Longping Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ming Hao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bo Zhou
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hua Zhang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fengchao Wang
- Transgenic Animal Center, National Institute of Biological Sciences, Beijing 102206, China.
| | - Guoliang Xia
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan 750021, China.
| | - Chao Wang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
12
|
Zimmermann A, Madeo F, Diwan A, Sadoshima J, Sedej S, Kroemer G, Abdellatif M. Metabolic control of mitophagy. Eur J Clin Invest 2024; 54:e14138. [PMID: 38041247 DOI: 10.1111/eci.14138] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Mitochondrial dysfunction is a major hallmark of ageing and related chronic disorders. Controlled removal of damaged mitochondria by the autophagic machinery, a process known as mitophagy, is vital for mitochondrial homeostasis and cell survival. The central role of mitochondria in cellular metabolism places mitochondrial removal at the interface of key metabolic pathways affecting the biosynthesis or catabolism of acetyl-coenzyme A, nicotinamide adenine dinucleotide, polyamines, as well as fatty acids and amino acids. Molecular switches that integrate the metabolic status of the cell, like AMP-dependent protein kinase, protein kinase A, mechanistic target of rapamycin and sirtuins, have also emerged as important regulators of mitophagy. In this review, we discuss how metabolic regulation intersects with mitophagy. We place special emphasis on the metabolic regulatory circuits that may be therapeutically targeted to delay ageing and mitochondria-associated chronic diseases. Moreover, we identify outstanding knowledge gaps, such as the ill-defined distinction between basal and damage-induced mitophagy, which must be resolved to boost progress in this area.
Collapse
Affiliation(s)
- Andreas Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence BioHealth-University of Graz, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence BioHealth-University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Abhinav Diwan
- Division of Cardiology and Center for Cardiovascular Research, Washington University School of Medicine, and John Cochran Veterans Affairs Medical Center, St. Louis, Missouri, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Simon Sedej
- BioTechMed Graz, Graz, Austria
- Department of Cardiology, Medical University of Graz, Graz, Austria
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Department of Biology, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, Paris, France
| | - Mahmoud Abdellatif
- BioTechMed Graz, Graz, Austria
- Department of Cardiology, Medical University of Graz, Graz, Austria
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
| |
Collapse
|
13
|
Yuan Z, Ye J, Liu B, Zhang L. Unraveling the role of autophagy regulation in Crohn's disease: from genetic mechanisms to potential therapeutics. ADVANCED BIOTECHNOLOGY 2024; 2:14. [PMID: 39883213 PMCID: PMC11740883 DOI: 10.1007/s44307-024-00021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 01/31/2025]
Abstract
Autophagy serves as the primary intracellular degradation mechanism in which damaged organelles and self-cytoplasmic proteins are transported to the lysosome for degradation. Crohn's disease, an idiopathic chronic inflammatory disorder of the gastrointestinal tract, manifests in diverse regions of the digestive system. Recent research suggests that autophagy modulation may be a new avenue for treating Crohn's disease, and several promising small-molecule modulators of autophagy have been reported as therapeutic options. In this review, we discuss in detail how mutations in autophagy-related genes function in Crohn's disease and summarize the modulatory effects on autophagy of small-molecule drugs currently used for Crohn's disease treatment. Furthermore, we delve into the therapeutic potential of small-molecule autophagy inducers on Crohn's disease, emphasizing the prospects for development in this field. We aim to highlight the significance of autophagy modulation in Crohn's disease, with the aspiration of contributing to the development of more efficacious treatments that can alleviate their suffering, and improve their quality of life.
Collapse
Affiliation(s)
- Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jing Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
14
|
Yamashita SI, Kanki T. Mitophagy Responds to the Environmental Temperature and Regulates Mitochondrial Mass in Adipose Tissues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:229-243. [PMID: 39289285 DOI: 10.1007/978-981-97-4584-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
There are at least two types of adipose tissues in the body, defined as brown adipose tissues (BATs) and white adipose tissues (WATs). These tissues comprise brown and white adipocytes, respectively. The adipocytes are commonly endowed with mitochondria, but they have diverse characteristics and roles. Brown adipocytes have abundant mitochondria that contribute to the β-oxidation of fatty acids to produce chemical energy and the production of heat via uncoupling of the mitochondrial membrane potential from ATP synthesis. Alternatively, white adipocytes have fewer mitochondria that contribute to the generation of free fatty acids via lipogenesis by providing key intermediates. Besides the described types of adipocytes, brown-like adipocytes, termed beige adipocytes, are developed in WAT depots during cold exposure. Beige adipocytes also contribute to thermogenesis. Notably, beige adipocytes may transform into white-like adipocytes after the withdrawal of cold exposure. This process is marked by the elimination of mitochondria through the activation of mitochondria autophagy (mitophagy). This review aims to describe the mitophagy that occurs during the beige-to-white transition and discuss recent insights into the molecular mechanisms of this transformation. Additionally, we describe the mitophagy monitoring strategy in adipose tissues using three independent reporter systems and discuss the availabilities and limitations of the method.
Collapse
Affiliation(s)
- Shun-Ichi Yamashita
- Department of Cellular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Tomotake Kanki
- Department of Cellular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
15
|
Udagawa O. Oocyte Health and Quality: Implication of Mitochondria-related Organelle Interactions. Results Probl Cell Differ 2024; 73:25-42. [PMID: 39242373 DOI: 10.1007/978-3-031-62036-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Among factors like hormonal imbalance and uterine condition, oocyte quality is regarded as one of the key factors involved in age-related decline in the reproductive capacity. Here, are discussions about the functions played by organelles within the oocyte in forming the next generation that is more suitable for survival. Many insights on the adaptation to aging and maintenance of quality can be obtained from: interactions between mitochondria and other organelles that enable the long life of primordial oocytes; characteristics of organelle interactions after breaking dormancy from primary oocytes to mature oocytes; and characteristics of interactions between mitochondria and other organelles of aged oocytes collected during the ovulatory cycle from elderly individuals and animals. This information would potentially be beneficial to the development of future therapeutic methods or agents.
Collapse
Affiliation(s)
- Osamu Udagawa
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
16
|
Akabane S, Oka T. Insights into the regulation of mitochondrial functions by protein kinase A-mediated phosphorylation. J Biochem 2023; 175:1-7. [PMID: 37775269 DOI: 10.1093/jb/mvad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023] Open
Abstract
Cyclic AMP (cAMP)-protein kinase A (PKA) signaling is a highly conserved pathway in eukaryotes and plays a central role in cell signaling cascades in response to environmental changes. Elevated cAMP levels promote the activation of PKA, which phosphorylates various downstream proteins. Many cytosolic and nuclear proteins, such as metabolic enzymes and transcriptional factors, have been identified as substrates for PKA, suggesting that PKA-mediated regulation occurs predominantly in the cytosol. Mitochondrial proteins are also phosphorylated by PKA, and PKA-mediated phosphorylation of mitochondrial proteins is considered to control a variety of mitochondrial functions, including oxidative phosphorylation, protein import, morphology and quality control. In this review, we outline PKA mitochondrial substrates and summarize the regulation of mitochondrial functions through PKA-mediated phosphorylation.
Collapse
Affiliation(s)
- Shiori Akabane
- Department of Life Science, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, Tokyo 171-8501, Japan
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Toshihiko Oka
- Department of Life Science, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
17
|
Liu T, Wetzel L, Zhu Z, Kumaraguru P, Gorthi V, Yan Y, Bukhari MZ, Ermekbaeva A, Jeon H, Kee TR, Woo JAA, Kang DE. Disruption of Mitophagy Flux through the PARL-PINK1 Pathway by CHCHD10 Mutations or CHCHD10 Depletion. Cells 2023; 12:2781. [PMID: 38132101 PMCID: PMC10741529 DOI: 10.3390/cells12242781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/21/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023] Open
Abstract
Coiled-coil-helix-coiled-coil-helix domain-containing 10 (CHCHD10) is a nuclear-encoded mitochondrial protein which is primarily mutated in the spectrum of familial and sporadic amyotrophic lateral sclerosis (ALS)-frontotemporal dementia (FTD). Endogenous CHCHD10 levels decline in the brains of ALS-FTD patients, and the CHCHD10S59L mutation in Drosophila induces dominant toxicity together with PTEN-induced kinase 1 (PINK1), a protein critical for the induction of mitophagy. However, whether and how CHCHD10 variants regulate mitophagy flux in the mammalian brain is unknown. Here, we demonstrate through in vivo and in vitro models, as well as human FTD brain tissue, that ALS/FTD-linked CHCHD10 mutations (R15L and S59L) impair mitophagy flux and mitochondrial Parkin recruitment, whereas wild-type CHCHD10 (CHCHD10WT) normally enhances these measures. Specifically, we show that CHCHD10R15L and CHCHD10S59L mutations reduce PINK1 levels by increasing PARL activity, whereas CHCHD10WT produces the opposite results through its stronger interaction with PARL, suppressing its activity. Importantly, we also demonstrate that FTD brains with TAR DNA-binding protein-43 (TDP-43) pathology demonstrate disruption of the PARL-PINK1 pathway and that experimentally impairing mitophagy promotes TDP-43 aggregation. Thus, we provide herein new insights into the regulation of mitophagy and TDP-43 aggregation in the mammalian brain through the CHCHD10-PARL-PINK1 pathway.
Collapse
Affiliation(s)
- Tian Liu
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA (Z.Z.); (Y.Y.)
| | - Liam Wetzel
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA (Z.Z.); (Y.Y.)
| | - Zexi Zhu
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA (Z.Z.); (Y.Y.)
| | - Pavan Kumaraguru
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA (Z.Z.); (Y.Y.)
| | - Viraj Gorthi
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA (Z.Z.); (Y.Y.)
| | - Yan Yan
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA (Z.Z.); (Y.Y.)
- Byrd Alzheimer’s Center & Research Institute, Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL 33613, USA
| | - Mohammed Zaheen Bukhari
- Byrd Alzheimer’s Center & Research Institute, Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL 33613, USA
| | - Aizara Ermekbaeva
- Byrd Alzheimer’s Center & Research Institute, Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL 33613, USA
| | - Hanna Jeon
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA (Z.Z.); (Y.Y.)
| | - Teresa R. Kee
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA (Z.Z.); (Y.Y.)
- Byrd Alzheimer’s Center & Research Institute, Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL 33613, USA
| | - Jung-A Alexa Woo
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA (Z.Z.); (Y.Y.)
| | - David E. Kang
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA (Z.Z.); (Y.Y.)
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
18
|
Zhang H, Li C, Liu Q, Li J, Wu H, Xu R, Sun Y, Cheng M, Zhao X, Pan M, Wei Q, Ma B. C-type natriuretic peptide improves maternally aged oocytes quality by inhibiting excessive PINK1/Parkin-mediated mitophagy. eLife 2023; 12:RP88523. [PMID: 37860954 PMCID: PMC10588981 DOI: 10.7554/elife.88523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
The overall oocyte quality declines with aging, and this effect is strongly associated with a higher reactive oxygen species (ROS) level and the resultant oxidative damage. C-type natriuretic peptide (CNP) is a well-characterized physiological meiotic inhibitor that has been successfully used to improve immature oocyte quality during in vitro maturation. However, the underlying roles of CNP in maternally aged oocytes have not been reported. Here, we found that the age-related reduction in the serum CNP concentration was highly correlated with decreased oocyte quality. Treatment with exogenous CNP promoted follicle growth and ovulation in aged mice and enhanced meiotic competency and fertilization ability. Interestingly, the cytoplasmic maturation of aged oocytes was thoroughly improved by CNP treatment, as assessed by spindle/chromosome morphology and redistribution of organelles (mitochondria, the endoplasmic reticulum, cortical granules, and the Golgi apparatus). CNP treatment also ameliorated DNA damage and apoptosis caused by ROS accumulation in aged oocytes. Importantly, oocyte RNA-seq revealed that the beneficial effect of CNP on aged oocytes was mediated by restoration of mitochondrial oxidative phosphorylation, eliminating excessive mitophagy. CNP reversed the defective phenotypes in aged oocytes by alleviating oxidative damage and suppressing excessive PINK1/Parkin-mediated mitophagy. Mechanistically, CNP functioned as a cAMP/PKA pathway modulator to decrease PINK1 stability and inhibit Parkin recruitment. In summary, our results demonstrated that CNP supplementation constitutes an alternative therapeutic approach for advanced maternal age-related oocyte deterioration and may improve the overall success rates of clinically assisted reproduction in older women.
Collapse
Affiliation(s)
- Hui Zhang
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Chan Li
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Qingyang Liu
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Jingmei Li
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Hao Wu
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Rui Xu
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Yidan Sun
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Ming Cheng
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Xiaoe Zhao
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Menghao Pan
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Qiang Wei
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| |
Collapse
|
19
|
López-Doménech G, Kittler JT. Mitochondrial regulation of local supply of energy in neurons. Curr Opin Neurobiol 2023; 81:102747. [PMID: 37392672 PMCID: PMC11139648 DOI: 10.1016/j.conb.2023.102747] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 07/03/2023]
Abstract
Brain computation is metabolically expensive and requires the supply of significant amounts of energy. Mitochondria are highly specialized organelles whose main function is to generate cellular energy. Due to their complex morphologies, neurons are especially dependent on a set of tools necessary to regulate mitochondrial function locally in order to match energy provision with local demands. By regulating mitochondrial transport, neurons control the local availability of mitochondrial mass in response to changes in synaptic activity. Neurons also modulate mitochondrial dynamics locally to adjust metabolic efficiency with energetic demand. Additionally, neurons remove inefficient mitochondria through mitophagy. Neurons coordinate these processes through signalling pathways that couple energetic expenditure with energy availability. When these mechanisms fail, neurons can no longer support brain function giving rise to neuropathological states like metabolic syndromes or neurodegeneration.
Collapse
Affiliation(s)
- Guillermo López-Doménech
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
20
|
Dong T, Zhang Z, Sun L, Zhang W, Zhu Z, Lin L, Yang L, Lv A, Liu C, Li Q, Yang R, Zhang X, Niu Y, Chen H, Liu D, Tong W. Mic60 is essential to maintain mitochondrial integrity and to prevent encephalomyopathy. Brain Pathol 2023; 33:e13157. [PMID: 36974636 PMCID: PMC10307528 DOI: 10.1111/bpa.13157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
Mitochondrial encephalomyopathies (ME) are frequently associated with mutations of mitochondrial DNA, but the pathogenesis of a subset of ME (sME) remains elusive. Here we report that haploinsufficiency of a mitochondrial inner membrane protein, Mic60, causes progressive neurological abnormalities with insulted mitochondrial structure and neuronal loss in mice. In addition, haploinsufficiency of Mic60 reduces mitochondrial membrane potential and cellular ATP production, increases reactive oxygen species, and alters mitochondrial oxidative phosphorylation complexes in neurons in an age-dependent manner. Moreover, haploinsufficiency of Mic60 compromises brain glucose intake and oxygen consumption in mice, resembling human ME syndrome. We further discover that MIC60 protein expression declined significantly in human sME, implying that insufficient MIC60 may contribute for pathogenesis of human ME. Notably, systemic administration of antioxidant N-acetylcysteine largely reverses mitochondrial dysfunctions and metabolic disorders in haplo-insufficient Mic60 mice, also restores neurological abnormal symptom. These results reveal Mic60 is required in the maintenance of mitochondrial integrity and function, and likely a potential therapeutics target for mitochondrial encephalomyopathies.
Collapse
Affiliation(s)
- Tingting Dong
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College, Neuroscience CenterChinese Academy of Medical SciencesBeijing100005China
- Biobank of Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zai‐Qiang Zhang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Li‐Hong Sun
- Center for Experimental Animal ResearchInstitute of Basic Medical Sciences Chinese Academy of Medical ScienceBeijing100005China
| | - Weilong Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Institute and Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijing100021China
| | - Zhaohui Zhu
- Department of Nuclear MedicinePeking Union Medical College Hospital (PUMCH)BeijingChina
| | - Lin Lin
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College, Neuroscience CenterChinese Academy of Medical SciencesBeijing100005China
| | - Lin Yang
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College, Neuroscience CenterChinese Academy of Medical SciencesBeijing100005China
| | - An Lv
- Center for Experimental Animal ResearchInstitute of Basic Medical Sciences Chinese Academy of Medical ScienceBeijing100005China
| | - Chunying Liu
- Center for Experimental Animal ResearchInstitute of Basic Medical Sciences Chinese Academy of Medical ScienceBeijing100005China
| | - Qing Li
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College, Neuroscience CenterChinese Academy of Medical SciencesBeijing100005China
| | - Rui‐Feng Yang
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine Peking Union Medical College (PUMC)BeijingChina
| | - Xiuru Zhang
- Department of Pathology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yamei Niu
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College, Neuroscience CenterChinese Academy of Medical SciencesBeijing100005China
- Molecular Pathology Research CenterChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100005China
| | - Hou‐Zao Chen
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine Peking Union Medical College (PUMC)BeijingChina
| | - De‐Pei Liu
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine Peking Union Medical College (PUMC)BeijingChina
| | - Wei‐Min Tong
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College, Neuroscience CenterChinese Academy of Medical SciencesBeijing100005China
- Molecular Pathology Research CenterChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100005China
| |
Collapse
|
21
|
Cohen HM, Salik O, Elrod JW. Signaling pathways regulating mitochondrial calcium efflux - a commentary on Rozenfeld et al. "Essential role of the mitochondrial Na +/Ca 2+ exchanger NCLX in mediating PDE2-dependent neuronal survival and learning". Cell Calcium 2023; 113:102764. [PMID: 37271053 PMCID: PMC12006933 DOI: 10.1016/j.ceca.2023.102764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
Mitochondrial calcium (mCa2+) is a critical regulator of neuronal cell death, bioenergetics, and signaling pathways. Although the regulatory machinery governing mCa2+ uptake via the mitochondrial calcium uniporter (mtCU) has been identified and functionally characterized, regulation of the mitochondrial Na+/Ca2+ exchanger (NCLX), the primary means of mCa2+ efflux, is poorly understood. Rozenfeld et al. report that inhibition of phosphodiesterase 2 (PDE2) enhances mCa2+efflux via increased NCLX phosphorylation by protein kinase A (PKA) [1]. The authors demonstrate that enhancing NCLX activity by pharmacologic inhibition of PDE2 improves neuronal survival in response to excitotoxic insult in vitro and enhances cognitive performance. Here we contextualize this discovery within existing literature and provide conjecture to add clarity to the proposed novel regulatory mechanism.
Collapse
Affiliation(s)
- Henry M Cohen
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - Oniel Salik
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - John W Elrod
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States.
| |
Collapse
|
22
|
Zhang Y, Weng J, Huan L, Sheng S, Xu F. Mitophagy in atherosclerosis: from mechanism to therapy. Front Immunol 2023; 14:1165507. [PMID: 37261351 PMCID: PMC10228545 DOI: 10.3389/fimmu.2023.1165507] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 06/02/2023] Open
Abstract
Mitophagy is a type of autophagy that can selectively eliminate damaged and depolarized mitochondria to maintain mitochondrial activity and cellular homeostasis. Several pathways have been found to participate in different steps of mitophagy. Mitophagy plays a significant role in the homeostasis and physiological function of vascular endothelial cells, vascular smooth muscle cells, and macrophages, and is involved in the development of atherosclerosis (AS). At present, many medications and natural chemicals have been shown to alter mitophagy and slow the progression of AS. This review serves as an introduction to the field of mitophagy for researchers interested in targeting this pathway as part of a potential AS management strategy.
Collapse
Affiliation(s)
- Yanhong Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiajun Weng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University, Beijing, China
- Department of Integrated Traditional and Western Medicine, Peking University Health Science Center, Beijing, China
| | - Luyao Huan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Song Sheng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengqin Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University, Beijing, China
- Department of Integrated Traditional and Western Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|
23
|
Akabane S, Watanabe K, Kosako H, Yamashita SI, Nishino K, Kato M, Sekine S, Kanki T, Matsuda N, Endo T, Oka T. TIM23 facilitates PINK1 activation by safeguarding against OMA1-mediated degradation in damaged mitochondria. Cell Rep 2023:112454. [PMID: 37160114 DOI: 10.1016/j.celrep.2023.112454] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/24/2023] [Accepted: 04/16/2023] [Indexed: 05/11/2023] Open
Abstract
PINK1 is activated by autophosphorylation and forms a high-molecular-weight complex, thereby initiating the selective removal of damaged mitochondria by autophagy. Other than translocase of the outer mitochondrial membrane complexes, members of PINK1-containing protein complexes remain obscure. By mass spectrometric analysis of PINK1 co-immunoprecipitates, we identify the inner membrane protein TIM23 as a component of the PINK1 complex. TIM23 downregulation decreases PINK1 levels and significantly delays autophosphorylation, indicating that TIM23 promotes PINK1 accumulation in response to depolarization. Moreover, inactivation of the mitochondrial protease OMA1 not only enhances PINK1 accumulation but also represses the reduction in PINK1 levels induced by TIM23 downregulation, suggesting that TIM23 facilitates PINK1 activation by safeguarding against degradation by OMA1. Indeed, deficiencies of pathogenic PINK1 mutants that fail to interact with TIM23 are partially restored by OMA1 inactivation. These findings indicate that TIM23 plays a distinct role in activating mitochondrial autophagy by protecting PINK1.
Collapse
Affiliation(s)
- Shiori Akabane
- Department of Life Science, Rikkyo University, Tokyo 171-8501, Japan; Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Kiyona Watanabe
- Department of Life Science, Rikkyo University, Tokyo 171-8501, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Shun-Ichi Yamashita
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Kohei Nishino
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Masahiro Kato
- Department of Life Science, Rikkyo University, Tokyo 171-8501, Japan
| | - Shiori Sekine
- Aging Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Tomotake Kanki
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Noriyuki Matsuda
- Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan; Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Toshihiko Oka
- Department of Life Science, Rikkyo University, Tokyo 171-8501, Japan.
| |
Collapse
|
24
|
Carnosic acid attenuated cytochrome c release through the mitochondrial structural protein Mic60 by PINK1 in SH-SY5Y cells. Food Chem Toxicol 2023; 173:113636. [PMID: 36708866 DOI: 10.1016/j.fct.2023.113636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 01/11/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Mitochondrial dysfunction has been implicated in Parkinson's disease. Mic60 is a critical component of mitochondrial crista remodeling and participates in maintaining mitochondrial structure and function. This study investigated whether the carnosic acid (CA) of rosemary protects the mitochondria of SH-SY5Y cells against the neurotoxicity of 6-hydroxydopamine (6-OHDA) by regulating Mic60. Our results showed that CA pretreatment reversed the reduction in the Mic60 and citrate synthase proteins, as well as the protein induction of PKA caused by 6-OHDA. Moreover, Mic60 and PINK1 siRNAs blocked the ability of CA to lessen the release of mitochondrial cytochrome c by 6-OHDA. As shown by immunoprecipitation assay, in 6-OHDA-treated cells, the interaction of Mic60 with its phosphorylated threonine residue was decreased, but the interaction with its phosphorylated serine residue was increased. PINK1 siRNA and forskolin, a PKA activator, reversed these interactions. Moreover, forskolin pretreatment prevented CA from rescuing the interaction of PINK1 and Mic60 and the reduction in cytochrome c release and mitophagy impairment in 6-OHDA-treated cells. In conclusion, CA prevents 6-OHDA-induced cytochrome c release by regulating Mic60 phosphorylation by PINK1 through a downregulation of PKA. The regulation of Mic60 by CA can be considered as a protective mechanism for the prevention of Parkinson's disease.
Collapse
|
25
|
Kovanich D, Low TY, Zaccolo M. Using the Proteomics Toolbox to Resolve Topology and Dynamics of Compartmentalized cAMP Signaling. Int J Mol Sci 2023; 24:4667. [PMID: 36902098 PMCID: PMC10003371 DOI: 10.3390/ijms24054667] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
cAMP is a second messenger that regulates a myriad of cellular functions in response to multiple extracellular stimuli. New developments in the field have provided exciting insights into how cAMP utilizes compartmentalization to ensure specificity when the message conveyed to the cell by an extracellular stimulus is translated into the appropriate functional outcome. cAMP compartmentalization relies on the formation of local signaling domains where the subset of cAMP signaling effectors, regulators and targets involved in a specific cellular response cluster together. These domains are dynamic in nature and underpin the exacting spatiotemporal regulation of cAMP signaling. In this review, we focus on how the proteomics toolbox can be utilized to identify the molecular components of these domains and to define the dynamic cellular cAMP signaling landscape. From a therapeutic perspective, compiling data on compartmentalized cAMP signaling in physiological and pathological conditions will help define the signaling events underlying disease and may reveal domain-specific targets for the development of precision medicine interventions.
Collapse
Affiliation(s)
- Duangnapa Kovanich
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
26
|
Mitochondrial cristae in health and disease. Int J Biol Macromol 2023; 235:123755. [PMID: 36812974 DOI: 10.1016/j.ijbiomac.2023.123755] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
Mitochondria are centers of energy metabolism. The mitochondrial network is shaped by mitochondrial dynamics, including the processes of mitochondrial fission and fusion and cristae remodeling. The cristae folded by the inner mitochondrial membrane are sites of the mitochondrial oxidative phosphorylation (OXPHOS) system. However, the factors and their coordinated interplay in cristae remodeling and linked human diseases have not been fully demonstrated. In this review, we focus on key regulators of cristae structure, including the mitochondrial contact site and cristae organizing system, optic atrophy-1, mitochondrial calcium uniporter, and ATP synthase, which function in the dynamic remodeling of cristae. We summarized their contribution to sustaining functional cristae structure and abnormal cristae morphology, including a decreased number of cristae, enlarged cristae junctions, and cristae as concentric ring structures. These abnormalities directly impact cellular respiration and are caused by dysfunction or deletion of these regulators in diseases such as Parkinson's disease, Leigh syndrome, and dominant optic atrophy. Identifying the important regulators of cristae morphology and understanding their role in sustaining mitochondrial morphology could be applied to explore the pathologies of diseases and to develop relevant therapeutic tools.
Collapse
|
27
|
Li J, Yang D, Li Z, Zhao M, Wang D, Sun Z, Wen P, Dai Y, Gou F, Ji Y, Zhao D, Yang L. PINK1/Parkin-mediated mitophagy in neurodegenerative diseases. Ageing Res Rev 2023; 84:101817. [PMID: 36503124 DOI: 10.1016/j.arr.2022.101817] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Mitochondria play key roles in bioenergetics, metabolism, and signaling; therefore, stable mitochondrial function is essential for cell survival, particularly in energy-intensive neuronal cells. In neurodegenerative diseases, damaged mitochondria accumulate in neurons causing associated bioenergetics deficiency, impaired cell signaling, defective cytoplasmic calcium buffering, and other pathological changes. Mitochondrial quality control is an important mechanism to ensure the maintenance of mitochondrial health, homeostasis, and mitophagy, the latter of which is a pathway that delivers defective mitochondria to the lysosome for degradation. Defective mitophagy is thought to be responsible for the accumulation of damaged mitochondria, which leads to cellular dysfunction and/or death in neurodegenerative diseases. PINK1/Parkin mainly regulates ubiquitin-dependent mitophagy, which is crucial for many aspects of mitochondrial physiology, particularly the initiation of autophagic mechanisms. Therefore, in the present review, we summarize the current knowledge of the conventional mitophagy pathway, focusing on the molecular mechanisms underlying mitophagy dysregulation in prion disease and other age-related neurodegenerative diseases, especially in relation to the PINK1/Parkin pathway. Moreover, we list the inducers of mitophagy that possess neuroprotective effects, in addition to their mechanisms related to the PINK1/Parkin pathway. These mechanisms may provide potential interventions centered on the regulation of mitophagy and offer therapeutic strategies for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jie Li
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Dongming Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Zhiping Li
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Mengyang Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Dongdong Wang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Zhixin Sun
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Pei Wen
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Yuexin Dai
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Fengting Gou
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Yilan Ji
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Lifeng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China.
| |
Collapse
|
28
|
Bennett CF, Latorre-Muro P, Puigserver P. Mechanisms of mitochondrial respiratory adaptation. Nat Rev Mol Cell Biol 2022; 23:817-835. [PMID: 35804199 PMCID: PMC9926497 DOI: 10.1038/s41580-022-00506-6] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 02/07/2023]
Abstract
Mitochondrial energetic adaptations encompass a plethora of conserved processes that maintain cell and organismal fitness and survival in the changing environment by adjusting the respiratory capacity of mitochondria. These mitochondrial responses are governed by general principles of regulatory biology exemplified by changes in gene expression, protein translation, protein complex formation, transmembrane transport, enzymatic activities and metabolite levels. These changes can promote mitochondrial biogenesis and membrane dynamics that in turn support mitochondrial respiration. The main regulatory components of mitochondrial energetic adaptation include: the transcription coactivator peroxisome proliferator-activated receptor-γ (PPARγ) coactivator 1α (PGC1α) and associated transcription factors; mTOR and endoplasmic reticulum stress signalling; TOM70-dependent mitochondrial protein import; the cristae remodelling factors, including mitochondrial contact site and cristae organizing system (MICOS) and OPA1; lipid remodelling; and the assembly and metabolite-dependent regulation of respiratory complexes. These adaptive molecular and structural mechanisms increase respiration to maintain basic processes specific to cell types and tissues. Failure to execute these regulatory responses causes cell damage and inflammation or senescence, compromising cell survival and the ability to adapt to energetically demanding conditions. Thus, mitochondrial adaptive cellular processes are important for physiological responses, including to nutrient availability, temperature and physical activity, and their failure leads to diseases associated with mitochondrial dysfunction such as metabolic and age-associated diseases and cancer.
Collapse
Affiliation(s)
- Christopher F Bennett
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pedro Latorre-Muro
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pere Puigserver
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
29
|
Zhou X, Torres VE. Emerging therapies for autosomal dominant polycystic kidney disease with a focus on cAMP signaling. Front Mol Biosci 2022; 9:981963. [PMID: 36120538 PMCID: PMC9478168 DOI: 10.3389/fmolb.2022.981963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), with an estimated genetic prevalence between 1:400 and 1:1,000 individuals, is the third most common cause of end stage kidney disease after diabetes mellitus and hypertension. Over the last 3 decades there has been great progress in understanding its pathogenesis. This allows the stratification of therapeutic targets into four levels, gene mutation and polycystin disruption, proximal mechanisms directly caused by disruption of polycystin function, downstream regulatory and signaling pathways, and non-specific pathophysiologic processes shared by many other diseases. Dysfunction of the polycystins, encoded by the PKD genes, is closely associated with disruption of calcium and upregulation of cyclic AMP and protein kinase A (PKA) signaling, affecting most downstream regulatory, signaling, and pathophysiologic pathways altered in this disease. Interventions acting on G protein coupled receptors to inhibit of 3',5'-cyclic adenosine monophosphate (cAMP) production have been effective in preclinical trials and have led to the first approved treatment for ADPKD. However, completely blocking cAMP mediated PKA activation is not feasible and PKA activation independently from cAMP can also occur in ADPKD. Therefore, targeting the cAMP/PKA/CREB pathway beyond cAMP production makes sense. Redundancy of mechanisms, numerous positive and negative feedback loops, and possibly counteracting effects may limit the effectiveness of targeting downstream pathways. Nevertheless, interventions targeting important regulatory, signaling and pathophysiologic pathways downstream from cAMP/PKA activation may provide additive or synergistic value and build on a strategy that has already had success. The purpose of this manuscript is to review the role of cAMP and PKA signaling and their multiple downstream pathways as potential targets for emergent therapies for ADPKD.
Collapse
Affiliation(s)
- Xia Zhou
- Mayo Clinic, Department of Nephrology, Rochester, MN, United States
| | | |
Collapse
|
30
|
Li G, Yin W, Yang Y, Yang H, Chen Y, Liang Y, Zhang W, Xie T. Bibliometric Insights of Global Research Landscape in Mitophagy. Front Mol Biosci 2022; 9:851966. [PMID: 35923469 PMCID: PMC9340163 DOI: 10.3389/fmolb.2022.851966] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Autophagy is a highly regulated and evolutionarily conserved process in eukaryotes which is responsible for protein and organelle degradation. Although this process was described over 60 years ago, the selective autophagy of mitochondria (mitophagy) was recently coined in 2005. Research on the topic of mitophagy has made rapid progress in the past decade, which proposed to play critical roles in human health and disease. This study aimed to visualize the scientific outputs and research trends of mitophagy.Methods: Articles and reviews related to the topic of mitophagy were retrieved from the Web of Science Core Collection on 30 November 2021. Two kinds of software (CiteSpace and VOSviewer) were used to perform a visualized analysis of countries/regions, institutions, authors, journals, references, and keywords.Results: From 2005 to 2021, total 5844 publications on mitophagy were identified for final analysis. The annual number of publications grew yearly over the past 17 years. United States (N = 2025) and Chinese Academy of Sciences is the leading country and institute (N = 112) ranked by the number of publications, respectively. The most productive author was Jun Ren (N = 38) and Derek P. Narendra obtained the most co-cited times (2693 times). The journals with the highest output and the highest co-citation frequency were Autophagy (N = 208) and Journal of Biological Chemistry (co-citation: 17226), respectively. Analyses of references and keywords suggested that “mechanism of mitochondrial quality control”, “molecule and signaling pathway in mitophagy”, and “mitophagy related diseases” were research hotspots, and parkin-mediated mitophagy and its roles in skeletal muscle and inflammation-related diseases may be the frontiers of future research.Conclusion: Although mitophagy research has flourished and attracted attention from all over the world, the regional imbalance in the development of mitophagy research was observed. Our results provided a comprehensive global research landscape of mitophagy from 2005– 2021 from a perspective of bibliometrics, which may serve as a reference for future mitophagy studies.
Collapse
Affiliation(s)
- Guoli Li
- Department of Nephrology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
- Changsha Clinical Research Center for Kidney Disease, Changsha, China
- Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, China
| | - Wei Yin
- Department of Nephrology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
- Changsha Clinical Research Center for Kidney Disease, Changsha, China
- Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, China
| | - Yiya Yang
- Department of Nephrology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
- Changsha Clinical Research Center for Kidney Disease, Changsha, China
- Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, China
| | - Hongyu Yang
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Yinyin Chen
- Department of Nephrology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
- Changsha Clinical Research Center for Kidney Disease, Changsha, China
- Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, China
| | - Yumei Liang
- Department of Nephrology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
- Changsha Clinical Research Center for Kidney Disease, Changsha, China
- Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, China
| | - Weiru Zhang
- Department of General Medicine, Xiangya Hospital, Central South University, Changsha, China
- International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
| | - Tingting Xie
- Department of General Medicine, Xiangya Hospital, Central South University, Changsha, China
- International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
- *Correspondence: Tingting Xie,
| |
Collapse
|
31
|
Adipocyte HIF2α functions as a thermostat via PKA Cα regulation in beige adipocytes. Nat Commun 2022; 13:3268. [PMID: 35672324 PMCID: PMC9174489 DOI: 10.1038/s41467-022-30925-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Thermogenic adipocytes generate heat to maintain body temperature against hypothermia in response to cold. Although tight regulation of thermogenesis is required to prevent energy sources depletion, the molecular details that tune thermogenesis are not thoroughly understood. Here, we demonstrate that adipocyte hypoxia-inducible factor α (HIFα) plays a key role in calibrating thermogenic function upon cold and re-warming. In beige adipocytes, HIFα attenuates protein kinase A (PKA) activity, leading to suppression of thermogenic activity. Mechanistically, HIF2α suppresses PKA activity by inducing miR-3085-3p expression to downregulate PKA catalytic subunit α (PKA Cα). Ablation of adipocyte HIF2α stimulates retention of beige adipocytes, accompanied by increased PKA Cα during re-warming after cold stimuli. Moreover, administration of miR-3085-3p promotes beige-to-white transition via downregulation of PKA Cα and mitochondrial abundance in adipocyte HIF2α deficient mice. Collectively, these findings suggest that HIF2α-dependent PKA regulation plays an important role as a thermostat through dynamic remodeling of beige adipocytes. Thermogenic adipocytes maintain body temperature in response to cold, but how this is tuned during cold and re-warming is unclear. Here, the authors show HIF2α inhibits beige adipocyte retention, regulating PKA catalysis to control dynamic adipocyte remodelling.
Collapse
|
32
|
Zhang T, Liu Q, Gao W, Sehgal SA, Wu H. The multifaceted regulation of mitophagy by endogenous metabolites. Autophagy 2022; 18:1216-1239. [PMID: 34583624 PMCID: PMC9225590 DOI: 10.1080/15548627.2021.1975914] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/30/2022] Open
Abstract
Owing to the dominant functions of mitochondria in multiple cellular metabolisms and distinct types of regulated cell death, maintaining a functional mitochondrial network is fundamental for the cellular homeostasis and body fitness in response to physiological adaptations and stressed conditions. The process of mitophagy, in which the dysfunctional or superfluous mitochondria are selectively engulfed by autophagosome and subsequently degraded in lysosome, has been well formulated as one of the major mechanisms for mitochondrial quality control. To date, the PINK1-PRKN-dependent and receptors (including proteins and lipids)-dependent pathways have been characterized to determine the mitophagy in mammalian cells. The mitophagy is highly responsive to the dynamics of endogenous metabolites, including iron-, calcium-, glycolysis-TCA-, NAD+-, amino acids-, fatty acids-, and cAMP-associated metabolites. Herein, we summarize the recent advances toward the molecular details of mitophagy regulation in mammalian cells. We also highlight the key regulations of mammalian mitophagy by endogenous metabolites, shed new light on the bidirectional interplay between mitophagy and cellular metabolisms, with attempting to provide a perspective insight into the nutritional intervention of metabolic disorders with mitophagy deficit.Abbreviations: acetyl-CoA: acetyl-coenzyme A; ACO1: aconitase 1; ADCYs: adenylate cyclases; AMPK: AMP-activated protein kinase; ATM: ATM serine/threonine kinase; BCL2L1: BCL2 like 1; BCL2L13: BCL2 like 13; BNIP3: BCL2 interacting protein 3; BNIP3L: BCL2 interacting protein 3 like; Ca2+: calcium ion; CALCOCO2: calcium binding and coiled-coil domain 2; CANX: calnexin; CO: carbon monoxide; CYCS: cytochrome c, somatic; DFP: deferiprone; DNM1L: dynamin 1 like; ER: endoplasmic reticulum; FKBP8: FKBP prolyl isomerase 8; FOXO3: forkhead box O3; FTMT: ferritin mitochondrial; FUNDC1: FUN14 domain containing 1; GABA: γ-aminobutyric acid; GSH: glutathione; HIF1A: hypoxia inducible factor 1 subunit alpha; IMMT: inner membrane mitochondrial protein; IRP1: iron regulatory protein 1; ISC: iron-sulfur cluster; ITPR2: inositol 1,4,5-trisphosphate type 2 receptor; KMO: kynurenine 3-monooxygenase; LIR: LC3 interacting region; MAM: mitochondria-associated membrane; MAP1LC3: microtubule associated protein 1 light chain 3; MFNs: mitofusins; mitophagy: mitochondrial autophagy; mPTP: mitochondrial permeability transition pore; MTOR: mechanistic target of rapamycin kinase; NAD+: nicotinamide adenine dinucleotide; NAM: nicotinamide; NMN: nicotinamide mononucleotide; NO: nitric oxide; NPA: Niemann-Pick type A; NR: nicotinamide riboside; NR4A1: nuclear receptor subfamily 4 group A member 1; NRF1: nuclear respiratory factor 1; OPA1: OPA1 mitochondrial dynamin like GTPase; OPTN: optineurin; PARL: presenilin associated rhomboid like; PARPs: poly(ADP-ribose) polymerases; PC: phosphatidylcholine; PHB2: prohibitin 2; PINK1: PTEN induced kinase 1; PPARG: peroxisome proliferator activated receptor gamma; PPARGC1A: PPARG coactivator 1 alpha; PRKA: protein kinase AMP-activated; PRKDC: protein kinase, DNA-activated, catalytic subunit; PRKN: parkin RBR E3 ubiquitin protein ligase; RHOT: ras homolog family member T; ROS: reactive oxygen species; SIRTs: sirtuins; STK11: serine/threonine kinase 11; TCA: tricarboxylic acid; TP53: tumor protein p53; ULK1: unc-51 like autophagy activating kinase 1; VDAC1: voltage dependent anion channel 1.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, China
| | - Qian Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, China
| | - Weihua Gao
- Hubei Hongshan Laboratory, Wuhan, China
- Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
33
|
Segi N, Ozaki T, Suzuki Y, Ouchida J, Imagama S, Kadomatsu K, Sakamoto K. Close association of polarization and LC3, a marker of autophagy, in axon determination in mouse hippocampal neurons. Exp Neurol 2022; 354:114112. [PMID: 35568188 DOI: 10.1016/j.expneurol.2022.114112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 11/04/2022]
Abstract
The autophagy-lysosome pathway is a cellular clearance system for intracellular organelles, macromolecules and microorganisms. It is indispensable for cells not only to maintain their homeostasis but also to achieve more active cellular processes such as differentiation. Therefore, impairment or disruption of the autophagy-lysosome pathway leads to a wide spectrum of human diseases, ranging from several types of neurodegenerative diseases to malignancies. In elongating axons, autophagy preferentially occurs at growth cones, and disruption of autophagy is closely associated with incapacity for axonal regeneration after injury in the central nervous system. However, the roles of autophagy in developing neurons remain elusive. In particular, whether autophagy is involved in axon-dendrite determination is largely unclear. Using primary cultured mouse embryonic hippocampal neurons, we here showed the polarized distribution of autophagosomes among minor processes of neurons at stage 2. Time-lapse observation of neurons from GFP-LC3 transgenic mice demonstrated that an "LC3 surge"-i.e., a rapid accumulation of autophagic marker LC3 that continues for several hours in one minor process-proceeded the differentiation of neurons into axons. In addition, pharmacological activation and inhibition of autophagy by trehalose and bafilomycin, respectively, accelerated and delayed axonal determination. Taken together, our findings revealed the close association between LC3, a marker of autophagy, and axon determination in developing neurons.
Collapse
Affiliation(s)
- Naoki Segi
- Departments of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Departments of Orthopedics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tomoya Ozaki
- Departments of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yuji Suzuki
- Departments of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Jun Ouchida
- Departments of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Departments of Orthopedics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shiro Imagama
- Departments of Orthopedics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kenji Kadomatsu
- Departments of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Kazuma Sakamoto
- Departments of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
34
|
CARD19 Interacts with Mitochondrial Contact Site and Cristae Organizing System Constituent Proteins and Regulates Cristae Morphology. Cells 2022; 11:cells11071175. [PMID: 35406738 PMCID: PMC8997538 DOI: 10.3390/cells11071175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/25/2023] Open
Abstract
CARD19 is a mitochondrial protein of unknown function. While CARD19 was originally reported to regulate TCR-dependent NF-κB activation via interaction with BCL10, this function is not recapitulated ex vivo in primary murine CD8+ T cells. Here, we employ a combination of SIM, TEM, and confocal microscopy, along with proteinase K protection assays and proteomics approaches, to identify interacting partners of CARD19 in macrophages. Our data show that CARD19 is specifically localized to the outer mitochondrial membrane. Through deletion of functional domains, we demonstrate that both the distal C-terminus and transmembrane domain are required for mitochondrial targeting, whereas the CARD is not. Importantly, mass spectrometry analysis of 3×Myc-CARD19 immunoprecipitates reveals that CARD19 interacts with the components of the mitochondrial intermembrane bridge (MIB), consisting of mitochondrial contact site and cristae organizing system (MICOS) components MIC19, MIC25, and MIC60, and MICOS-interacting proteins SAMM50 and MTX2. These CARD19 interactions are in part dependent on a properly folded CARD. Consistent with previously reported phenotypes upon siRNA silencing of MICOS subunits, absence of CARD19 correlates with irregular cristae morphology. Based on these data, we propose that CARD19 is a previously unknown interacting partner of the MIB and the MIC19–MIC25–MIC60 MICOS subcomplex that regulates cristae morphology.
Collapse
|
35
|
Ghosh JC, Perego M, Agarwal E, Bertolini I, Wang Y, Goldman AR, Tang HY, Kossenkov AV, Landis CJ, Languino LR, Plow EF, Morotti A, Ottobrini L, Locatelli M, Speicher DW, Caino MC, Cassel J, Salvino JM, Robert ME, Vaira V, Altieri DC. Ghost mitochondria drive metastasis through adaptive GCN2/Akt therapeutic vulnerability. Proc Natl Acad Sci U S A 2022; 119:e2115624119. [PMID: 35177476 PMCID: PMC8872753 DOI: 10.1073/pnas.2115624119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/18/2022] [Indexed: 01/08/2023] Open
Abstract
Cancer metabolism, including in mitochondria, is a disease hallmark and therapeutic target, but its regulation is poorly understood. Here, we show that many human tumors have heterogeneous and often reduced levels of Mic60, or Mitofilin, an essential scaffold of mitochondrial structure. Despite a catastrophic collapse of mitochondrial integrity, loss of bioenergetics, and oxidative damage, tumors with Mic60 depletion slow down cell proliferation, evade cell death, and activate a nuclear gene expression program of innate immunity and cytokine/chemokine signaling. In turn, this induces epithelial-mesenchymal transition (EMT), activates tumor cell movements through exaggerated mitochondrial dynamics, and promotes metastatic dissemination in vivo. In a small-molecule drug screen, compensatory activation of stress response (GCN2) and survival (Akt) signaling maintains the viability of Mic60-low tumors and provides a selective therapeutic vulnerability. These data demonstrate that acutely damaged, "ghost" mitochondria drive tumor progression and expose an actionable therapeutic target in metastasis-prone cancers.
Collapse
Affiliation(s)
- Jagadish C Ghosh
- Prostate Cancer Discovery and Development Program, The Wistar Institute, Philadelphia, PA 19104
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104
| | - Michela Perego
- Prostate Cancer Discovery and Development Program, The Wistar Institute, Philadelphia, PA 19104
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104
| | - Ekta Agarwal
- Prostate Cancer Discovery and Development Program, The Wistar Institute, Philadelphia, PA 19104
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104
| | - Irene Bertolini
- Prostate Cancer Discovery and Development Program, The Wistar Institute, Philadelphia, PA 19104
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104
| | - Yuan Wang
- Prostate Cancer Discovery and Development Program, The Wistar Institute, Philadelphia, PA 19104
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104
| | - Aaron R Goldman
- Proteomics and Metabolomics Shared Resource, The Wistar Institute, Philadelphia, PA 19104
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Shared Resource, The Wistar Institute, Philadelphia, PA 19104
| | - Andrew V Kossenkov
- Bioinformatics Shared Resource, The Wistar Institute, Philadelphia, PA 19104
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA 19104
| | - Catherine J Landis
- Prostate Cancer Discovery and Development Program, The Wistar Institute, Philadelphia, PA 19104
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104
| | - Lucia R Languino
- Prostate Cancer Discovery and Development Program, The Wistar Institute, Philadelphia, PA 19104
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Edward F Plow
- Prostate Cancer Discovery and Development Program, The Wistar Institute, Philadelphia, PA 19104
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Annamaria Morotti
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| | - Luisa Ottobrini
- Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| | - Marco Locatelli
- Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
- Division of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - David W Speicher
- Prostate Cancer Discovery and Development Program, The Wistar Institute, Philadelphia, PA 19104
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA 19104
| | - M Cecilia Caino
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Joel Cassel
- Molecular Screening and Protein Expression Shared Resource, The Wistar Institute, Philadelphia, PA 19104
| | - Joseph M Salvino
- Molecular Screening and Protein Expression Shared Resource, The Wistar Institute, Philadelphia, PA 19104
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104
| | - Marie E Robert
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510
| | - Valentina Vaira
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| | - Dario C Altieri
- Prostate Cancer Discovery and Development Program, The Wistar Institute, Philadelphia, PA 19104;
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104
| |
Collapse
|
36
|
TRAP1 inhibits MIC60 ubiquitination to mitigate the injury of cardiomyocytes and protect mitochondria in extracellular acidosis. Cell Death Dis 2021; 7:389. [PMID: 34907169 PMCID: PMC8671480 DOI: 10.1038/s41420-021-00786-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022]
Abstract
Extracellular acidosis-induced mitochondrial damage of cardiomyocytes leads to cardiac dysfunction, but no detailed mechanism or efficient therapeutic target has been reported. Here we found that the protein levels of MIC60 were decreased in H9C2 cells and heart tissues in extracellular acidosis, which caused mitochondrial damage and cardiac dysfunction. Overexpression of MIC60 maintains H9C2 cells viability, increases ATP production and mitochondrial membrane potential, mitigates the disruptions of mitochondrial structure and cardiac injury. Mechanistically, extracellular acidosis excessively promoted MIC60 ubiquitin-dependent degradation. TRAP1 mitigated acidosis-induced mitochondrial impairments and cardiac injury by directly interacting with MIC60 to decrease its ubiquitin-dependent degradation in extracellular acidosis.
Collapse
|
37
|
Soman SK, Dagda RK. Role of Cleaved PINK1 in Neuronal Development, Synaptogenesis, and Plasticity: Implications for Parkinson's Disease. Front Neurosci 2021; 15:769331. [PMID: 34795558 PMCID: PMC8593325 DOI: 10.3389/fnins.2021.769331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022] Open
Abstract
Mitochondrial dysfunction plays a significant role in the pathogenesis of Parkinson's disease (PD). Consistent with this concept, loss of function mutations in the serine/threonine kinase- PINK1 (PTEN-induced putative kinase-1) causes autosomal recessive early onset PD. While the functional role of f-PINK1 (full-length PINK1) in clearing dysfunctional mitochondria via mitophagy is extensively documented, our understanding of specific physiological roles that the non-mitochondrial pool of PINK1 imparts in neurons is more limited. PINK1 is proteolytically processed in the intermembrane space and matrix of the mitochondria into functional cleaved products (c-PINK1) that are exported to the cytosol. While it is clear that posttranslational processing of PINK1 depends on the mitochondria's oxidative state and structural integrity, the functional roles of c-PINK1 in modulating neuronal functions are poorly understood. Here, we review the diverse roles played by c-PINK1 in modulating various neuronal functions. Specifically, we describe the non-canonical functional roles of PINK1, including but not limited to: governing mitochondrial movement, neuronal development, neuronal survival, and neurogenesis. We have published that c-PINK1 stimulates neuronal plasticity and differentiation via the PINK1-PKA-BDNF signaling cascade. In addition, we provide insight into how mitochondrial membrane potential-dependent processing of PINK1 confers conditional retrograde signaling functions to PINK1. Further studies delineating the role of c-PINK1 in neurons would increase our understanding regarding the role played by PINK1 in PD pathogenesis.
Collapse
Affiliation(s)
- Smijin K Soman
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, NV, United States
| | - Ruben K Dagda
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, NV, United States
| |
Collapse
|
38
|
Di Rienzo M, Romagnoli A, Ciccosanti F, Refolo G, Consalvi V, Arena G, Valente EM, Piacentini M, Fimia GM. AMBRA1 regulates mitophagy by interacting with ATAD3A and promoting PINK1 stability. Autophagy 2021; 18:1752-1762. [PMID: 34798798 PMCID: PMC9450973 DOI: 10.1080/15548627.2021.1997052] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
PINK1 accumulation at the outer mitochondrial membrane (OMM) is a key event required to signal depolarized mitochondria to the autophagy machinery. How this early step is, in turn, modulated by autophagy proteins remains less characterized. Here, we show that, upon mitochondrial depolarization, the proautophagic protein AMBRA1 is recruited to the OMM and interacts with PINK1 and ATAD3A, a transmembrane protein that mediates mitochondrial import and degradation of PINK1. Downregulation of AMBRA1 expression results in reduced levels of PINK1 due to its enhanced degradation by the mitochondrial protease LONP1, which leads to a decrease in PINK1-mediated ubiquitin phosphorylation and mitochondrial PRKN/PARKIN recruitment. Notably, ATAD3A silencing rescues defective PINK1 accumulation in AMBRA1-deficient cells upon mitochondrial damage. Overall, our findings underline an upstream contribution of AMBRA1 in the control of PINK1-PRKN mitophagy by interacting with ATAD3A and promoting PINK1 stability. This novel regulatory element may account for changes of PINK1 levels in neuropathological conditions. Abbreviations: ACTB/β-actin: actin beta; AMBRA1: autophagy and beclin 1 regulator 1; ATAD3A: ATPase family AAA domain containing 3A; BCL2L1/BCL-xL: BCL2 like 1; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; OMA1: OMA1 zinc metallopeptidase; OMM: outer mitochondrial membrane; PARL: presenilin associated rhomboid like; PARP: poly(ADP-ribose) polymerase; PD: Parkinson disease; PINK1: PTEN induced kinase 1; PRKN/PARKIN: parkin RBR E3 ubiquitin protein ligase; SDHA: succinate dehydrogenase complex flavoprotein subunit A; TOMM70: translocase of outer mitochondrial membrane 70.
Collapse
Affiliation(s)
- Martina Di Rienzo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases Irccs "L. Spallanzani", Rome, Italy
| | - Alessandra Romagnoli
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases Irccs "L. Spallanzani", Rome, Italy
| | - Fabiola Ciccosanti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases Irccs "L. Spallanzani", Rome, Italy
| | - Giulia Refolo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases Irccs "L. Spallanzani", Rome, Italy
| | - Veronica Consalvi
- Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy
| | - Giuseppe Arena
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Mauro Piacentini
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases Irccs "L. Spallanzani", Rome, Italy.,Laboratory of Molecular Medicine, Institute of Cytology of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases Irccs "L. Spallanzani", Rome, Italy.,Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy
| |
Collapse
|
39
|
Mukherjee I, Ghosh M, Meinecke M. MICOS and the mitochondrial inner membrane morphology - when things get out of shape. FEBS Lett 2021; 595:1159-1183. [PMID: 33837538 DOI: 10.1002/1873-3468.14089] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/21/2022]
Abstract
Mitochondria play a key role in cellular signalling, metabolism and energetics. Proper architecture and remodelling of the inner mitochondrial membrane are essential for efficient respiration, apoptosis and quality control in the cell. Several protein complexes including mitochondrial contact site and cristae organizing system (MICOS), F1 FO -ATP synthase, and Optic Atrophy 1 (OPA1), facilitate formation, maintenance and stability of cristae membranes. MICOS, the F1 FO -ATP synthase, OPA1 and inner membrane phospholipids such as cardiolipin and phosphatidylethanolamine interact with each other to organize the inner membrane ultra-structure and remodel cristae in response to the cell's demands. Functional alterations in these proteins or in the biosynthesis pathway of cardiolipin and phosphatidylethanolamine result in an aberrant inner membrane architecture and impair mitochondrial function. Mitochondrial dysfunction and abnormalities hallmark several human conditions and diseases including neurodegeneration, cardiomyopathies and diabetes mellitus. Yet, they have long been regarded as secondary pathological effects. This review discusses emerging evidence of a direct relationship between protein- and lipid-dependent regulation of the inner mitochondrial membrane morphology and diseases such as fatal encephalopathy, Leigh syndrome, Parkinson's disease, and cancer.
Collapse
Affiliation(s)
- Indrani Mukherjee
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Mausumi Ghosh
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Michael Meinecke
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany.,Göttinger Zentrum für Molekulare Biowissenschaften - GZMB, Göttingen, Germany
| |
Collapse
|
40
|
Yao L, Wu J, Koc S, Lu G. Genetic Imaging of Neuroinflammation in Parkinson's Disease: Recent Advancements. Front Cell Dev Biol 2021; 9:655819. [PMID: 34336822 PMCID: PMC8320775 DOI: 10.3389/fcell.2021.655819] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative aging disorders characterized by motor and non-motor symptoms due to the selective loss of midbrain dopaminergic (DA) neurons. The decreased viability of DA neurons slowly results in the appearance of motor symptoms such as rigidity, bradykinesia, resting tremor, and postural instability. These symptoms largely depend on DA nigrostriatal denervation. Pharmacological and surgical interventions are the main treatment for improving clinical symptoms, but it has not been possible to cure PD. Furthermore, the cause of neurodegeneration remains unclear. One of the possible neurodegeneration mechanisms is a chronic inflammation of the central nervous system, which is mediated by microglial cells. Impaired or dead DA neurons can directly lead to microglia activation, producing a large number of reactive oxygen species and pro-inflammatory cytokines. These cytotoxic factors contribute to the apoptosis and death of DA neurons, and the pathological process of neuroinflammation aggravates the primary morbid process and exacerbates ongoing neurodegeneration. Therefore, anti-inflammatory treatment exerts a robust neuroprotective effect in a mouse model of PD. Since discovering the first mutation in the α-synuclein gene (SNCA), which can cause disease-causing, PD has involved many genes and loci such as LRRK2, Parkin, SNCA, and PINK1. In this article, we summarize the critical descriptions of the genetic factors involved in PD's occurrence and development (such as LRRK2, SNCA, Parkin, PINK1, and inflammasome), and these factors play a crucial role in neuroinflammation. Regulation of these signaling pathways and molecular factors related to these genetic factors can vastly improve the neuroinflammation of PD.
Collapse
Affiliation(s)
- Longping Yao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiayu Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Sumeyye Koc
- Department of Neuroscience, Institute of Health Sciences, Ondokuz Mayıs University, Samsun, Turkey
| | - Guohui Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
41
|
Gialluisi A, Reccia MG, Modugno N, Nutile T, Lombardi A, Di Giovannantonio LG, Pietracupa S, Ruggiero D, Scala S, Gambardella S, Iacoviello L, Gianfrancesco F, Acampora D, D’Esposito M, Simeone A, Ciullo M, Esposito T. Identification of sixteen novel candidate genes for late onset Parkinson's disease. Mol Neurodegener 2021; 16:35. [PMID: 34148545 PMCID: PMC8215754 DOI: 10.1186/s13024-021-00455-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/06/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative movement disorder affecting 1-5% of the general population for which neither effective cure nor early diagnostic tools are available that could tackle the pathology in the early phase. Here we report a multi-stage procedure to identify candidate genes likely involved in the etiopathogenesis of PD. METHODS The study includes a discovery stage based on the analysis of whole exome data from 26 dominant late onset PD families, a validation analysis performed on 1542 independent PD patients and 706 controls from different cohorts and the assessment of polygenic variants load in the Italian cohort (394 unrelated patients and 203 controls). RESULTS Family-based approach identified 28 disrupting variants in 26 candidate genes for PD including PARK2, PINK1, DJ-1(PARK7), LRRK2, HTRA2, FBXO7, EIF4G1, DNAJC6, DNAJC13, SNCAIP, AIMP2, CHMP1A, GIPC1, HMOX2, HSPA8, IMMT, KIF21B, KIF24, MAN2C1, RHOT2, SLC25A39, SPTBN1, TMEM175, TOMM22, TVP23A and ZSCAN21. Sixteen of them have not been associated to PD before, were expressed in mesencephalon and were involved in pathways potentially deregulated in PD. Mutation analysis in independent cohorts disclosed a significant excess of highly deleterious variants in cases (p = 0.0001), supporting their role in PD. Moreover, we demonstrated that the co-inheritance of multiple rare variants (≥ 2) in the 26 genes may predict PD occurrence in about 20% of patients, both familial and sporadic cases, with high specificity (> 93%; p = 4.4 × 10- 5). Moreover, our data highlight the fact that the genetic landmarks of late onset PD does not systematically differ between sporadic and familial forms, especially in the case of small nuclear families and underline the importance of rare variants in the genetics of sporadic PD. Furthermore, patients carrying multiple rare variants showed higher risk of manifesting dyskinesia induced by levodopa treatment. CONCLUSIONS Besides confirming the extreme genetic heterogeneity of PD, these data provide novel insights into the genetic of the disease and may be relevant for its prediction, diagnosis and treatment.
Collapse
Affiliation(s)
- Alessandro Gialluisi
- grid.419543.e0000 0004 1760 3561IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Isernia, Italy
| | - Mafalda Giovanna Reccia
- grid.419543.e0000 0004 1760 3561IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Isernia, Italy
| | - Nicola Modugno
- grid.419543.e0000 0004 1760 3561IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Isernia, Italy
| | - Teresa Nutile
- grid.419869.b0000 0004 1758 2860National Research Council, Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, Naples, Italy
| | - Alessia Lombardi
- grid.419543.e0000 0004 1760 3561IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Isernia, Italy
| | - Luca Giovanni Di Giovannantonio
- grid.419869.b0000 0004 1758 2860National Research Council, Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, Naples, Italy
| | - Sara Pietracupa
- grid.419543.e0000 0004 1760 3561IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Isernia, Italy
| | - Daniela Ruggiero
- grid.419543.e0000 0004 1760 3561IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Isernia, Italy
- grid.419869.b0000 0004 1758 2860National Research Council, Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, Naples, Italy
| | - Simona Scala
- grid.419543.e0000 0004 1760 3561IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Isernia, Italy
| | - Stefano Gambardella
- grid.419543.e0000 0004 1760 3561IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Isernia, Italy
- grid.12711.340000 0001 2369 7670Department of Biomolecular Science, University of Urbino Carlo Bò, Urbino, Italy
| | | | - Licia Iacoviello
- grid.419543.e0000 0004 1760 3561IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Isernia, Italy
- grid.18147.3b0000000121724807Research Center in Epidemiology and Preventive Medicine (EPIMED), Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Fernando Gianfrancesco
- grid.419869.b0000 0004 1758 2860National Research Council, Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, Naples, Italy
| | - Dario Acampora
- grid.419869.b0000 0004 1758 2860National Research Council, Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, Naples, Italy
| | - Maurizio D’Esposito
- grid.419869.b0000 0004 1758 2860National Research Council, Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, Naples, Italy
| | - Antonio Simeone
- grid.419869.b0000 0004 1758 2860National Research Council, Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, Naples, Italy
| | - Marina Ciullo
- grid.419543.e0000 0004 1760 3561IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Isernia, Italy
- grid.419869.b0000 0004 1758 2860National Research Council, Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, Naples, Italy
| | - Teresa Esposito
- grid.419543.e0000 0004 1760 3561IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Isernia, Italy
- grid.419869.b0000 0004 1758 2860National Research Council, Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, Naples, Italy
| |
Collapse
|
42
|
Lee H, Jiang X, Perwaiz I, Yu P, Wang J, Wang Y, Hüttemann M, Felder RA, Sibley DR, Polster BM, Rozyyev S, Armando I, Yang Z, Qu P, Jose PA. Dopamine D 5 receptor-mediated decreases in mitochondrial reactive oxygen species production are cAMP and autophagy dependent. Hypertens Res 2021; 44:628-641. [PMID: 33820956 PMCID: PMC8369611 DOI: 10.1038/s41440-021-00646-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 11/10/2019] [Accepted: 12/03/2019] [Indexed: 01/31/2023]
Abstract
Overproduction of reactive oxygen species (ROS) plays an important role in the pathogenesis of hypertension. The dopamine D5 receptor (D5R) is known to decrease ROS production, but the mechanism is not completely understood. In HEK293 cells overexpressing D5R, fenoldopam, an agonist of the two D1-like receptors, D1R and D5R, decreased the production of mitochondria-derived ROS (mito-ROS). The fenoldopam-mediated decrease in mito-ROS production was mimicked by Sp-cAMPS but blocked by Rp-cAMPS. In human renal proximal tubule cells with DRD1 gene silencing to eliminate the confounding effect of D1R, fenoldopam still decreased mito-ROS production. By contrast, Sch23390, a D1R and D5R antagonist, increased mito-ROS production in the absence of D1R, D5R is constitutively active. The fenoldopam-mediated inhibition of mito-ROS production may have been related to autophagy because fenoldopam increased the expression of the autophagy hallmark proteins, autophagy protein 5 (ATG5), and the microtubule-associated protein 1 light chain (LC)3-II. In the presence of chloroquine or spautin-1, inhibitors of autophagy, fenoldopam further increased ATG5 and LC3-II expression, indicating an important role of D5R in the positive regulation of autophagy. However, when autophagy was inhibited, fenoldopam was unable to inhibit ROS production. Indeed, the levels of these autophagy hallmark proteins were decreased in the kidney cortices of Drd5-/- mice. Moreover, ROS production was increased in mitochondria isolated from the kidney cortices of Drd5-/- mice, relative to Drd5+/+ littermates. In conclusion, D5R-mediated activation of autophagy plays a role in the D5R-mediated inhibition of mito-ROS production in the kidneys.
Collapse
Affiliation(s)
- Hewang Lee
- Department of Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC, USA,Institute of Heart and Vessel Diseases, Affiliated Second Hospital, Dalian Medical University, Dalian, China,Division of Nephrology, Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA,Center for Molecular Physiology Research, Children’s Research Institute, Children’s National Medical Center, Washington, DC, USA,Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA,Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Xiaoliang Jiang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Imran Perwaiz
- Institute of Heart and Vessel Diseases, Affiliated Second Hospital, Dalian Medical University, Dalian, China
| | - Peiying Yu
- Division of Nephrology, Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA,Center for Molecular Physiology Research, Children’s Research Institute, Children’s National Medical Center, Washington, DC, USA,Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| | - Jin Wang
- Institute of Heart and Vessel Diseases, Affiliated Second Hospital, Dalian Medical University, Dalian, China
| | - Ying Wang
- Institute of Heart and Vessel Diseases, Affiliated Second Hospital, Dalian Medical University, Dalian, China
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics and Cardiovascular Research Institute, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Robin A. Felder
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| | - David R. Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Brian M. Polster
- Department of Anesthesiology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Selim Rozyyev
- Department of Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC, USA
| | - Ines Armando
- Department of Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC, USA,Division of Nephrology, Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA,Center for Molecular Physiology Research, Children’s Research Institute, Children’s National Medical Center, Washington, DC, USA,Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| | - Zhiwei Yang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Peng Qu
- Institute of Heart and Vessel Diseases, Affiliated Second Hospital, Dalian Medical University, Dalian, China
| | - Pedro A. Jose
- Department of Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC, USA,Division of Nephrology, Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA,Center for Molecular Physiology Research, Children’s Research Institute, Children’s National Medical Center, Washington, DC, USA,Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA,Department of Pharmacology and Physiology, School of Medicine & Health Sciences, George Washington University, Washington, DC, USA
| |
Collapse
|
43
|
Jin X, Guo JL, Wang L, Zhong X, Yao WF, Gao H, Liu MY. Natural products as pharmacological modulators of mitochondrial dysfunctions for the treatments of Alzheimer's disease: A comprehensive review. Eur J Med Chem 2021; 218:113401. [PMID: 33831779 DOI: 10.1016/j.ejmech.2021.113401] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is the most common progressive neurodegenerative disorder characterized by neuronal loss and cognitive impairment that harshly affect the elderly individuals. Currently, the available anti-AD pharmacological approaches are purely symptomatic to alleviate AD symptoms, and the curative effects of novel anti-AD drugs focused on Aβ target are disappointing. Hence, there is a tremendous need to adjust AD therapeutic targets and discover novel anti-AD agents. In AD, mitochondrial dysfunction gradually triggers neuronal death from different aspects and worsens the occurrence and progress of AD. Consequently, it has been proposed that the intervention of impaired mitochondria represents an attractive breakthrough point for AD treatments. Due to chemical diversity, poly-pharmacological activities, few adverse effects and multiple targeting, natural products (NPs) have been identified as a valuable treasure for drug discovery and development. Multiple lines of studies have scientifically proven that NPs display ameliorative benefits in AD treatment in relation to mitochondrial dysfunction. This review surveys the complicated implications for mitochondrial dysregulation and AD, and then summarizes the potentials of NPs and their underlying molecular mechanisms against AD via reducing or improving mitochondrial dysfunction. It is expected that this work may open the window to speed up the development of innovative anti-AD drugs originated from NPs and improve upcoming AD therapeutics.
Collapse
Affiliation(s)
- Xin Jin
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Jia-Ling Guo
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Lin Wang
- Department of Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Xin Zhong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Wei-Fan Yao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Hua Gao
- Division of Pharmacology Laboratory, National Institutes for Food and Drug Control, Beijing, China
| | - Ming-Yan Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.
| |
Collapse
|
44
|
Onishi M, Okamoto K. Mitochondrial clearance: mechanisms and roles in cellular fitness. FEBS Lett 2021; 595:1239-1263. [PMID: 33615465 DOI: 10.1002/1873-3468.14060] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022]
Abstract
Mitophagy is one of the selective autophagy pathways that catabolizes dysfunctional or superfluous mitochondria. Under mitophagy-inducing conditions, mitochondria are labeled with specific molecular landmarks that recruit the autophagy machinery to the surface of mitochondria, enclosed into autophagosomes, and delivered to lysosomes (vacuoles in yeast) for degradation. As damaged mitochondria are the major sources of reactive oxygen species, mitophagy is critical for mitochondrial quality control and cellular health. Moreover, appropriate control of mitochondrial quantity via mitophagy is vital for the energy supply-demand balance in cells and whole organisms, cell differentiation, and developmental programs. Thus, it seems conceivable that defects in mitophagy could elicit pleiotropic pathologies such as excess inflammation, tissue injury, neurodegeneration, and aging. In this review, we will focus on the molecular basis and physiological relevance of mitophagy, and potential of mitophagy as a therapeutic target to overcome such disorders.
Collapse
Affiliation(s)
- Mashun Onishi
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Koji Okamoto
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
45
|
Latorre-Muro P, O'Malley KE, Bennett CF, Perry EA, Balsa E, Tavares CDJ, Jedrychowski M, Gygi SP, Puigserver P. A cold-stress-inducible PERK/OGT axis controls TOM70-assisted mitochondrial protein import and cristae formation. Cell Metab 2021; 33:598-614.e7. [PMID: 33592173 PMCID: PMC7962155 DOI: 10.1016/j.cmet.2021.01.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/20/2020] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
Abstract
The architecture of cristae provides a spatial mitochondrial organization that contains functional respiratory complexes. Several protein components including OPA1 and MICOS complex subunits organize cristae structure, but upstream regulatory mechanisms are largely unknown. Here, in vivo and in vitro reconstitution experiments show that the endoplasmic reticulum (ER) kinase PERK promotes cristae formation by increasing TOM70-assisted mitochondrial import of MIC19, a critical subunit of the MICOS complex. Cold stress or β-adrenergic stimulation activates PERK that phosphorylates O-linked N-acetylglucosamine transferase (OGT). Phosphorylated OGT glycosylates TOM70 on Ser94, enhancing MIC19 protein import into mitochondria and promoting cristae formation and respiration. In addition, PERK-activated OGT O-GlcNAcylates and attenuates CK2α activity, which mediates TOM70 Ser94 phosphorylation and decreases MIC19 mitochondrial protein import. We have identified a cold-stress inter-organelle PERK-OGT-TOM70 axis that increases cell respiration through mitochondrial protein import and subsequent cristae formation. These studies have significant implications in cellular bioenergetics and adaptations to stress conditions.
Collapse
Affiliation(s)
- Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Katherine E O'Malley
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Christopher F Bennett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Elizabeth A Perry
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Eduardo Balsa
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Clint D J Tavares
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Mark Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
46
|
Regulation of Mitochondrial Homeostasis by sAC-Derived cAMP Pool: Basic and Translational Aspects. Cells 2021; 10:cells10020473. [PMID: 33671810 PMCID: PMC7926680 DOI: 10.3390/cells10020473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 01/21/2023] Open
Abstract
In contrast to the traditional view of mitochondria being solely a source of cellular energy, e.g., the "powerhouse" of the cell, mitochondria are now known to be key regulators of numerous cellular processes. Accordingly, disturbance of mitochondrial homeostasis is a basic mechanism in several pathologies. Emerging data demonstrate that 3'-5'-cyclic adenosine monophosphate (cAMP) signalling plays a key role in mitochondrial biology and homeostasis. Mitochondria are equipped with an endogenous cAMP synthesis system involving soluble adenylyl cyclase (sAC), which localizes in the mitochondrial matrix and regulates mitochondrial function. Furthermore, sAC localized at the outer mitochondrial membrane contributes significantly to mitochondrial biology. Disturbance of the sAC-dependent cAMP pools within mitochondria leads to mitochondrial dysfunction and pathology. In this review, we discuss the available data concerning the role of sAC in regulating mitochondrial biology in relation to diseases.
Collapse
|
47
|
Di Benedetto G, Iannucci LF, Surdo NC, Zanin S, Conca F, Grisan F, Gerbino A, Lefkimmiatis K. Compartmentalized Signaling in Aging and Neurodegeneration. Cells 2021; 10:464. [PMID: 33671541 PMCID: PMC7926881 DOI: 10.3390/cells10020464] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The cyclic AMP (cAMP) signalling cascade is necessary for cell homeostasis and plays important roles in many processes. This is particularly relevant during ageing and age-related diseases, where drastic changes, generally decreases, in cAMP levels have been associated with the progressive decline in overall cell function and, eventually, the loss of cellular integrity. The functional relevance of reduced cAMP is clearly supported by the finding that increases in cAMP levels can reverse some of the effects of ageing. Nevertheless, despite these observations, the molecular mechanisms underlying the dysregulation of cAMP signalling in ageing are not well understood. Compartmentalization is widely accepted as the modality through which cAMP achieves its functional specificity; therefore, it is important to understand whether and how this mechanism is affected during ageing and to define which is its contribution to this process. Several animal models demonstrate the importance of specific cAMP signalling components in ageing, however, how age-related changes in each of these elements affect the compartmentalization of the cAMP pathway is largely unknown. In this review, we explore the connection of single components of the cAMP signalling cascade to ageing and age-related diseases whilst elaborating the literature in the context of cAMP signalling compartmentalization.
Collapse
Affiliation(s)
- Giulietta Di Benedetto
- Neuroscience Institute, National Research Council of Italy (CNR), 35121 Padova, Italy;
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
| | - Liliana F. Iannucci
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Nicoletta C. Surdo
- Neuroscience Institute, National Research Council of Italy (CNR), 35121 Padova, Italy;
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
| | - Sofia Zanin
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Filippo Conca
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Biology, University of Padova, 35122 Padova, Italy
| | - Francesca Grisan
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Biology, University of Padova, 35122 Padova, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70121 Bari, Italy;
| | - Konstantinos Lefkimmiatis
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
48
|
Liu L, Li Y, Wang J, Zhang D, Wu H, Li W, Wei H, Ta N, Fan Y, Liu Y, Wang X, Wang J, Pan X, Liao X, Zhu Y, Chen Q. Mitophagy receptor FUNDC1 is regulated by PGC-1α/NRF1 to fine tune mitochondrial homeostasis. EMBO Rep 2021; 22:e50629. [PMID: 33554448 DOI: 10.15252/embr.202050629] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 11/27/2020] [Accepted: 12/15/2020] [Indexed: 12/28/2022] Open
Abstract
Mitophagy is an essential cellular autophagic process that selectively removes superfluous and damaged mitochondria, and it is coordinated with mitochondrial biogenesis to fine tune the quantity and quality of mitochondria. Coordination between these two opposing processes to maintain the functional mitochondrial network is of paramount importance for normal cellular and organismal metabolism. However, the underlying mechanism is not completely understood. Here we report that PGC-1α and nuclear respiratory factor 1 (NRF1), master regulators of mitochondrial biogenesis and metabolic adaptation, also transcriptionally upregulate the gene encoding FUNDC1, a previously characterized mitophagy receptor, in response to cold stress in brown fat tissue. NRF1 binds to the classic consensus site in the promoter of Fundc1 to upregulate its expression and to enhance mitophagy through its interaction with LC3. Specific knockout of Fundc1 in BAT results in reduced mitochondrial turnover and accumulation of functionally compromised mitochondria, leading to impaired adaptive thermogenesis. Our results demonstrate that FUNDC1-dependent mitophagy is directly coupled with mitochondrial biogenesis through the PGC-1α/NRF1 pathway, which dictates mitochondrial quantity, quality, and turnover and contributes to adaptive thermogenesis.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanjun Li
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jianing Wang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Di Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, Nankai University, Tianjin, China
| | - Hao Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wenhui Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huifang Wei
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Na Ta
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuyuan Fan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yujiao Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohui Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jun Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xin Pan
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Xudong Liao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yushan Zhu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Quan Chen
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
49
|
Wang XL, Feng ST, Wang ZZ, Chen NH, Zhang Y. Role of mitophagy in mitochondrial quality control: Mechanisms and potential implications for neurodegenerative diseases. Pharmacol Res 2021; 165:105433. [PMID: 33454337 DOI: 10.1016/j.phrs.2021.105433] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/15/2020] [Accepted: 01/09/2021] [Indexed: 02/06/2023]
Abstract
Neurodegenerative diseases (e.g., Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis) commonly characterized by the gradual loss of neurons have a seriously bad impact on motor and cognitive abilities of affected humans and bring great inconvenience to their lives. Mitochondrial dysfunction has been considered the key and common factor for the pathologies of neurodegenerative diseases for that neurons are extremely energy-intensive due to their unique properties in structures and functions. Thus, mitophagy, as a central role of mitochondrial quality control and currently believed to be the most effective pathway to clear dysfunctional or unwanted mitochondria, is rather crucial in the preservation of neuronal health. In addition, mitophagy establishes an intimated link with several other pathways of mitochondrial quality control (e.g., mitochondrial biogenesis and mitochondrial dynamics), and they work together to preserve mitochondrial health. Therefore, in this review, we summarized the recent process on the mechanisms of mitophagy pathways in mammals, it's linking to mitochondrial quality control, its role in several major neurodegenerative diseases, and possible therapeutic interventions focusing on mitophagy pathways. And we expect that it can provide us with more understanding of the mitophagy pathways and more promising approaches for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiao-Le Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Si-Tong Feng
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
50
|
Abstract
The field of cAMP signaling is witnessing exciting developments with the recognition that cAMP is compartmentalized and that spatial regulation of cAMP is critical for faithful signal coding. This realization has changed our understanding of cAMP signaling from a model in which cAMP connects a receptor at the plasma membrane to an intracellular effector in a linear pathway to a model in which cAMP signals propagate within a complex network of alternative branches and the specific functional outcome strictly depends on local regulation of cAMP levels and on selective activation of a limited number of branches within the network. In this review, we cover some of the early studies and summarize more recent evidence supporting the model of compartmentalized cAMP signaling, and we discuss how this knowledge is starting to provide original mechanistic insight into cell physiology and a novel framework for the identification of disease mechanisms that potentially opens new avenues for therapeutic interventions. SIGNIFICANCE STATEMENT: cAMP mediates the intracellular response to multiple hormones and neurotransmitters. Signal fidelity and accurate coordination of a plethora of different cellular functions is achieved via organization of multiprotein signalosomes and cAMP compartmentalization in subcellular nanodomains. Defining the organization and regulation of subcellular cAMP nanocompartments is necessary if we want to understand the complex functional ramifications of pharmacological treatments that target G protein-coupled receptors and for generating a blueprint that can be used to develop precision medicine interventions.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|