1
|
Deng W, Zhao J, Wang X, Li D, Wang M, Zheng X, Wang R, Guo Q, Zhao P, Yan H, Shen L, Long C, Wei G, Wu S. Role of ferroptosis mediated by abnormal membrane structure in DEHP-induced reproductive injury. Free Radic Biol Med 2025; 235:150-161. [PMID: 40306442 DOI: 10.1016/j.freeradbiomed.2025.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/08/2025] [Accepted: 04/18/2025] [Indexed: 05/02/2025]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a commonly used plasticizer, has been demonstrated to possess reproductive toxicity; however, the precise mechanisms underlying this effect have yet to be fully elucidated. This study aimed to investigate the potential mechanisms by which prepubertal DEHP exposure impairs testicular development and to provide possible therapeutic targets. We exposed BALB/c male mice from postnatal days 22-35 to different doses of DEHP (0, 250, and 500 mg/kg/day) and utilized lipid metabolomics and other methods to elucidate the reproductive damage caused by DEHP from a multidimensional tissue-cell-molecule perspective. Our findings indicate that DEHP exposure induces ferroptosis in testicular tissue by remodeling membrane lipid structure, in which the imbalance of phospholipid-polyunsaturated fatty acids (PL-PUFA) and phospholipid-monounsaturated fatty acids (PL-MUFA) playing a crucial role. DEHP exposure altered the expression of ACSL4 and MBOAT2 via HIPPO and androgen receptor pathways, thereby impacting PL-PUFA/PL-MUFA synthesis. In conclusion, this study highlights a link between DEHP-induced reproductive damage and lipid metabolism reprogramming, suggesting new targets for preventing DEHP-induced reproductive toxicity.
Collapse
Affiliation(s)
- Wei Deng
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, 400014, Chongqing, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children Urogenital Development and Tissue Engineering of Chongqing Education Commission of China, 400014, Chongqing, China.
| | - Jie Zhao
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, 400014, Chongqing, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children Urogenital Development and Tissue Engineering of Chongqing Education Commission of China, 400014, Chongqing, China.
| | - Xia Wang
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, 400014, Chongqing, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children Urogenital Development and Tissue Engineering of Chongqing Education Commission of China, 400014, Chongqing, China; Hubei Enshi College, 445000, Hubei, China.
| | - Dinggang Li
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, 400014, Chongqing, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children Urogenital Development and Tissue Engineering of Chongqing Education Commission of China, 400014, Chongqing, China.
| | - Mingxin Wang
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, 400014, Chongqing, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children Urogenital Development and Tissue Engineering of Chongqing Education Commission of China, 400014, Chongqing, China.
| | - Xiangqin Zheng
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, 400014, Chongqing, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children Urogenital Development and Tissue Engineering of Chongqing Education Commission of China, 400014, Chongqing, China.
| | - Runchang Wang
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, 400014, Chongqing, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children Urogenital Development and Tissue Engineering of Chongqing Education Commission of China, 400014, Chongqing, China.
| | - Qitong Guo
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, 400014, Chongqing, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children Urogenital Development and Tissue Engineering of Chongqing Education Commission of China, 400014, Chongqing, China.
| | - Peng Zhao
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, 400014, Chongqing, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children Urogenital Development and Tissue Engineering of Chongqing Education Commission of China, 400014, Chongqing, China.
| | - Hao Yan
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, 400014, Chongqing, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children Urogenital Development and Tissue Engineering of Chongqing Education Commission of China, 400014, Chongqing, China.
| | - Lianju Shen
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, 400014, Chongqing, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children Urogenital Development and Tissue Engineering of Chongqing Education Commission of China, 400014, Chongqing, China.
| | - Chunlan Long
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, 400014, Chongqing, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children Urogenital Development and Tissue Engineering of Chongqing Education Commission of China, 400014, Chongqing, China.
| | - Guanghui Wei
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, 400014, Chongqing, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children Urogenital Development and Tissue Engineering of Chongqing Education Commission of China, 400014, Chongqing, China.
| | - Shengde Wu
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, 400014, Chongqing, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children Urogenital Development and Tissue Engineering of Chongqing Education Commission of China, 400014, Chongqing, China.
| |
Collapse
|
2
|
Dong Y, Lam SM, Li Y, Li MD, Shui G. The circadian clock at the intersection of metabolism and aging - emerging roles of metabolites. J Genet Genomics 2025:S1673-8527(25)00123-7. [PMID: 40306487 DOI: 10.1016/j.jgg.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
The circadian clock is a highly hierarchical network of endogenous pacemakers that primarily maintains and directs oscillations through transcriptional and translational feedback loops, which modulates an approximately 24-hour cycle of endocrine and metabolic rhythms within cells and tissues. While circadian clocks regulate metabolic processes and related physiology, emerging evidence indicates that metabolism and circadian rhythm are intimately intertwined. In this review, we highlight the concept of metabolites, including lipids and other polar metabolites generated from intestinal microbial metabolism and nutrient intake, as circadian pacemakers that drive changes in circadian rhythms, which in turn influence metabolism and aging. Furthermore, we discuss the roles of functional metabolites as circadian pacemakers, paving a new direction on potential intervention targets of circadian disruption, pathological aging, as well as metabolic diseases that are clinically important.
Collapse
Affiliation(s)
- Yue Dong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; LipidALL Technologies Company Limited, Changzhou, Jiangsu 213022, China
| | - Yan Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China.
| | - Min-Dian Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, MOE Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China.
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China.
| |
Collapse
|
3
|
Tomar MS, Mohit, Kumar A, Shrivastava A. Circadian immunometabolism: A future insight for targeted therapy in cancer. Sleep Med Rev 2025; 80:102031. [PMID: 39603026 DOI: 10.1016/j.smrv.2024.102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Circadian rhythms send messages to regulate the sleep-wake cycle in living beings, which, regulate various biological activities. It is well known that altered sleep-wake cycles affect host metabolism and significantly deregulate the host immunity. The dysregulation of circadian-related genes is critical for various malignancies. One of the hallmarks of cancer is altered metabolism, the effects of which spill into surrounding microenvironments. Here, we review the emerging literature linking the circadian immunometabolic axis to cancer. Small metabolites are the products of various metabolic pathways, that are usually perturbed in cancer. Genes that regulate circadian rhythms also regulate host metabolism and control metabolite content in the tumor microenvironment. Immune cell infiltration into the tumor site is critical to perform anticancer functions, and altered metabolite content affects their trafficking to the tumor site. A compromised immune response in the tumor microenvironment aids cancer cell proliferation and immune evasion, resulting in metastases. The role of circadian rhythms in these processes is largely overlooked and demands renewed attention in the search for targets against cancer growth and spread. The precision medicine approach requires targeting the circadian immune metabolism in cancer.
Collapse
Affiliation(s)
- Manendra Singh Tomar
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Mohit
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India; Department of Prosthodontics, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462020, India.
| | - Ashutosh Shrivastava
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India.
| |
Collapse
|
4
|
Jain R, Rajendran R, Rajakumari S. Diet-induced obesity dampens the temporal oscillation of hepatic mitochondrial lipids. J Lipid Res 2025; 66:100790. [PMID: 40180216 DOI: 10.1016/j.jlr.2025.100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/25/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025] Open
Abstract
Mitochondria play a pivotal role in energy homeostasis and regulate several metabolic pathways. The inner and outer membrane of mitochondria comprises unique lipid composition and proteins that are essential to form electron transport chain complexes, orchestrate oxidative phosphorylation, β-oxidation, ATP synthesis, etc. As known, diet-induced obesity affects mitochondrial function, dynamics, and mitophagy, which are governed by circadian clock machinery. Though DIO impairs the interplay between circadian oscillation and lipid metabolism, the impact of DIO on mitochondrial membrane lipid composition and their temporal oscillation is unknown. Thus, we investigated the diurnal oscillation of liver mitochondrial lipidome at various Zeitgeber times using quantitative lipidomics. Our data suggested that obesity disrupted lipid accumulation profiles and diminished the oscillating lipid species in the hepatic mitochondria. Strikingly, HFD manifested a more homogenous temporal oscillation pattern in phospholipids regardless of possessing different fatty acyl-chain lengths and degrees of unsaturation. In particular, DIO impaired the circadian rhythmicity of phosphatidyl ethanolamine, phosphatidyl choline, phosphatidyl serine, and ether-linked phosphatidyl ethanolamine. Also, DIO altered the rhythmic profile of PE/PC, ePE/PC, PS/PC ratio, and key proteins related to mitochondrial function, dynamics, and quality control. Since HFD dampened lipid oscillation, we examined whether the diurnal oscillation of mitochondrial lipids synchronized with mitochondrial function. Also, our data emphasized that acrophase of mitochondrial lipids synchronized with increased oxygen consumption rate and Parkin levels at ZT16 in chow-fed mice. Our study revealed that obesity altered the mitochondrial lipid composition and hampered the rhythmicity of mitochondrial lipids, oxygen consumption rate, and Parkin levels in the liver.
Collapse
Affiliation(s)
- Rashi Jain
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Rajprabu Rajendran
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sona Rajakumari
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India.
| |
Collapse
|
5
|
De la Fuente IM, Cortes JM, Malaina I, Pérez-Yarza G, Martinez L, López JI, Fedetz M, Carrasco-Pujante J. The main sources of molecular organization in the cell. Atlas of self-organized and self-regulated dynamic biostructures. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:167-191. [PMID: 39805422 DOI: 10.1016/j.pbiomolbio.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
One of the most important goals of contemporary biology is to understand the principles of the molecular order underlying the complex dynamic architecture of cells. Here, we present an overview of the main driving forces involved in the cellular molecular complexity and in the emergent functional dynamic structures, spanning from the most basic molecular organization levels to the complex emergent integrative systemic behaviors. First, we address the molecular information processing which is essential in many complex fundamental mechanisms such as the epigenetic memory, alternative splicing, regulation of transcriptional system, and the adequate self-regulatory adaptation to the extracellular environment. Next, we approach the biochemical self-organization, which is central to understand the emergency of metabolic rhythms, circadian oscillations, and spatial traveling waves. Such a complex behavior is also fundamental to understand the temporal compartmentalization of the cellular metabolism and the dynamic regulation of many physiological activities. Numerous examples of biochemical self-organization are considered here, which show that practically all the main physiological processes in the cell exhibit this type of dynamic molecular organization. Finally, we focus on the biochemical self-assembly which, at a primary level of organization, is a basic but important mechanism for the order in the cell allowing biomolecules in a disorganized state to form complex aggregates necessary for a plethora of essential structures and physiological functions. In total, more than 500 references have been compiled in this review. Due to these main sources of order, systemic functional structures emerge in the cell, driving the metabolic functionality towards the biological complexity.
Collapse
Affiliation(s)
- Ildefonso M De la Fuente
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain.
| | - Jesus M Cortes
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain; Biobizkaia Health Research Institute, Barakaldo, 48903, Spain; IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Gorka Pérez-Yarza
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Luis Martinez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - José I López
- Biobizkaia Health Research Institute, Barakaldo, 48903, Spain
| | - Maria Fedetz
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, 18016, Spain
| | - Jose Carrasco-Pujante
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| |
Collapse
|
6
|
Su J, Zhao L, Fu R, Tang Z. Linking Circadian Rhythms to Gut-Brain Axis Lipid Metabolism Associated With Endoplasmic Reticulum Stress in Alzheimer's Disease. CNS Neurosci Ther 2025; 31:e70329. [PMID: 40059063 PMCID: PMC11890981 DOI: 10.1111/cns.70329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/02/2025] [Accepted: 02/26/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by a decline in cognitive, learning, and memory abilities. Neuroinflammation is associated with the spread of tau tangles in the neocortex of AD, leading to cognitive impairment. Therefore, clarifying the pathogenesis of Neuroinflammation and finding effective treatments are the crucial issues for the clinical management of AD. METHOD We systematically review the latest research on the pathogenesis and therapeutic strategies of AD in PubMed, Web of Science, and Elsevier SD. RESULT In this review, the mechanism of the effect of gut-brain axis lipid metabolism mediated by circadian rhythm on AD was discussed, and we also analysed the effects of inflammation and endoplasmic reticulum stress (ERS) induced by lipid abnormalities on intestinal mucosal barrier and neurodegeneration; furthermore, the importance of lipid homeostasis (phospholipids, fatty acids, sterol) in maintaining the functions of endoplasmic reticulum was emphasized. Meanwhile, as lipid composition affects protein conformation, the membrane phospholipids surrounding sarcoplasmic reticulum Ca2+-ATPase (SERCA) that influence SERCA to release Ca2+ mediating inflammation were also reviewed. CONCLUSION We interpreted the mechanism of action between lipid microdomains and ER membrane proteins, reviewed the role of the new pathway of circadian rhythm, lipid metabolism, intestinal mucosa, and brain signaling in the pathogenesis of AD, and proposed strategies to prevent AD by changing the dietary lipid measures.
Collapse
Affiliation(s)
- Jianhui Su
- School of Marine and BioengineeringYancheng Institute of TechnologyYanchengJiangsuChina
| | - Lanyang Zhao
- School of PharmacyNanjing University of Chinese MedicineNanjingChina
| | - Runze Fu
- School of Marine and BioengineeringYancheng Institute of TechnologyYanchengJiangsuChina
| | - Zhe Tang
- School of Chemistry & Chemical EngineeringYancheng Institute of TechnologyYanchengJiangsuChina
| |
Collapse
|
7
|
Santos RMS, Samelo J, Oliveira AC, Cordeiro MM, Mora MJ, Granero GE, Filipe HAL, Loura LMS, Moreno MJ. Interaction of the Antibiotic Rifampicin with Lipid Membranes. Biomolecules 2025; 15:320. [PMID: 40149856 PMCID: PMC11940268 DOI: 10.3390/biom15030320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 03/29/2025] Open
Abstract
Rifampicin is a broad-spectrum antibiotic, active against several bacterial infections such as tuberculosis. It is a relatively large and structurally complex molecule, including numerous polar groups. Although violating several of Lipinski's rules for efficient intestinal absorption, rifampicin shows good oral bioavailability, permeating through cell membranes in the absorption pathway and those of the target organisms. Some hypotheses have been proposed for its efficient membrane permeation, but the details are mostly unknown. In this work, the interaction of rifampicin with POPC lipid bilayers is studied using experimental biophysics methodologies and atomistic molecular dynamics simulations considering the two most prevalent ionic species at physiological pH, the anionic and the zwitterionic forms. The results show that both ionization forms of rifampicin establish favorable interactions with the membrane lipids, in agreement with the relatively high partition coefficient obtained experimentally. The results from MD simulations and isothermal titration calorimetry using different pH buffers show that the piperazine group inserts deeply in the membrane and is accompanied by a stabilization of its neutral form. The bulky nature of rifampicin and its deep insertion in the membrane lead to a strong perturbation in the lipids local order, decreasing the membrane barrier properties as evaluated from the rate of carboxyfluorescein leaching. Altogether, the comparison between the experimental and MD simulations results provides important insight regarding the rifampicin molecular features responsible for its relatively fast membrane permeation. The lipid POPC used in this study was selected as a simple membrane with relevance for different organisms across all kingdoms. Further studies using more complex lipid compositions will provide details on eventual specificities for rifampicin interaction with the membranes of distinct organisms.
Collapse
Affiliation(s)
- Rui M. S. Santos
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal (A.C.O.)
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Jaime Samelo
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal (A.C.O.)
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Alexandre C. Oliveira
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal (A.C.O.)
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Margarida M. Cordeiro
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal (A.C.O.)
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Maria Julia Mora
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal (A.C.O.)
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA, CONICET) and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina; (M.J.M.); (G.E.G.)
| | - Gladys E. Granero
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA, CONICET) and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina; (M.J.M.); (G.E.G.)
| | - Hugo A. L. Filipe
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal (A.C.O.)
- BRIDGES-Biotechnology Research, Innovation, and Design of Health Products, Polytechnic of Guarda, Av. Dr. Francisco Sá Carneiro, 50, 6300-559 Guarda, Portugal;
| | - Luís M. S. Loura
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal (A.C.O.)
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-535 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria João Moreno
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal (A.C.O.)
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
8
|
Arora S, Houdek P, Čajka T, Dočkal T, Sládek M, Sumová A. Chronodisruption that dampens output of the central clock abolishes rhythms in metabolome profiles and elevates acylcarnitine levels in the liver of female rats. Acta Physiol (Oxf) 2025; 241:e14278. [PMID: 39801395 PMCID: PMC11726269 DOI: 10.1111/apha.14278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/02/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
AIM Exposure to light at night and meal time misaligned with the light/dark (LD) cycle-typical features of daily life in modern 24/7 society-are associated with negative effects on health. To understand the mechanism, we developed a novel protocol of complex chronodisruption (CD) in which we exposed female rats to four weekly cycles consisting of 5-day intervals of constant light and 2-day intervals of food access restricted to the light phase of the 12:12 LD cycle. METHODS We examined the effects of CD on behavior, estrous cycle, sleep patterns, glucose homeostasis and profiles of clock- and metabolism-related gene expression (using RT qPCR) and liver metabolome and lipidome (using untargeted metabolomic and lipidomic profiling). RESULTS CD attenuated the rhythmic output of the central clock in the suprachiasmatic nucleus via Prok2 signaling, thereby disrupting locomotor activity, the estrous cycle, sleep patterns, and mutual phase relationship between the central and peripheral clocks. In the periphery, CD abolished Per1,2 expression rhythms in peripheral tissues (liver, pancreas, colon) and worsened glucose homeostasis. In the liver, it impaired the expression of NAD+, lipid, and cholesterol metabolism genes and abolished most of the high-amplitude rhythms of lipids and polar metabolites. Interestingly, CD abolished the circadian rhythm of Cpt1a expression and increased the levels of long-chain acylcarnitines (ACar 18:2, ACar 16:0), indicating enhanced fatty acid oxidation in mitochondria. CONCLUSION Our data show the widespread effects of CD on metabolism and point to ACars as biomarkers for CD due to misaligned sleep and feeding patterns.
Collapse
Affiliation(s)
- Shiyana Arora
- Laboratory of Biological RhythmsInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Pavel Houdek
- Laboratory of Biological RhythmsInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Tomáš Čajka
- Laboratory of Translational MetabolismInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Tereza Dočkal
- Laboratory of Biological RhythmsInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Martin Sládek
- Laboratory of Biological RhythmsInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Alena Sumová
- Laboratory of Biological RhythmsInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
9
|
Xu W, Li L, Cao Z, Ye J, Gu X. Circadian Rhythms and Lung Cancer in the Context of Aging: A Review of Current Evidence. Aging Dis 2025:AD.2024.1188. [PMID: 39812541 DOI: 10.14336/ad.2024.1188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025] Open
Abstract
Circadian rhythm is the internal homeostatic physiological clock that regulates the 24-hour sleep/wake cycle. This biological clock helps to adapt to environmental changes such as light, dark, temperature, and behaviors. Aging, on the other hand, is a process of physiological changes that results in a progressive decline in cells, tissues, and other vital systems of the body. Both aging and the circadian clock are highly interlinked phenomena with a bidirectional relationship. The process of aging leads to circadian disruptions while dysfunctional circadian rhythms promote age-related complications. Both processes involve diverse physiological, molecular, and cellular changes such as modifications in the DNA repair mechanisms, mechanisms, ROS generation, apoptosis, and cell proliferation. This review aims to examine the role of aging and circadian rhythms in the context of lung cancer. This will also review the existing literature on the role of circadian disruptions in the process of aging and vice versa. Various molecular pathways and genes such as BMAL1, SIRT1, HLF, and PER1 and their implications in aging, circadian rhythms, and lung cancer will also be discussed.
Collapse
Affiliation(s)
- Wenhui Xu
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Lei Li
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Zhendong Cao
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Jinghong Ye
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Xuyu Gu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Blumstein DM, MacManes MD. Impacts of dietary fat on multi tissue gene expression in the desert-adapted cactus mouse. J Exp Biol 2024; 227:jeb247978. [PMID: 39676723 PMCID: PMC11698062 DOI: 10.1242/jeb.247978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/05/2024] [Indexed: 12/17/2024]
Abstract
Understanding the relationship between dietary fat and physiological responses is crucial in species adapted to arid environments where water scarcity is common. In this study, we present a comprehensive exploration of gene expression across five tissues (kidney, liver, lung, gastrointestinal tract and hypothalamus) and 17 phenotypic measurements, investigating the effects of dietary fat in the desert-adapted cactus mouse (Peromyscus eremicus). We show impacts on immune function, circadian gene regulation and mitochondrial function for mice fed a lower-fat diet compared with mice fed a higher-fat diet. In arid environments with severe water scarcity, even subtle changes in organismal health and water balance can affect physical performance, potentially impacting survival and reproductive success. This study sheds light on the complex interplay between diet, physiological processes and environmental adaptation, providing valuable insights into the multifaceted impacts of dietary choices on organismal well-being and adaptation strategies in arid habitats.
Collapse
Affiliation(s)
- Danielle M. Blumstein
- University of New Hampshire, Molecular, Cellular, and Biomedical Sciences Department, Durham, NH 03824, USA
| | - Matthew D. MacManes
- University of New Hampshire, Molecular, Cellular, and Biomedical Sciences Department, Durham, NH 03824, USA
| |
Collapse
|
11
|
Chen YL, Wang R, Pang R, Sun ZP, He XL, Tang WH, Ou JY, Yi HM, Cheng X, Chen JH, Yu Y, Ren CH, Wang QJ, Zhang ZJ. Transcriptome-Based Revelation of the Effects of Sleep Deprivation on Hepatic Metabolic Rhythms in Tibetan Sheep ( Ovis aries). Animals (Basel) 2024; 14:3165. [PMID: 39595218 PMCID: PMC11591132 DOI: 10.3390/ani14223165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Sleep deprivation (SD) disrupts circadian rhythms; however, its effects on SD and the mechanisms involved require further investigation. Previous studies on SD were mainly conducted on rodents, such as mice, with few studies on its effects on the liver of large diurnal animals, such as sheep. In this study, we used a Tibetan sheep model for the first time to investigate the effects of SD on the liver by exposing Tibetan sheep (Ovis aries) to 7 days of SD (6 h/day) and performed transcriptome sequencing analysis on liver samples taken at 4 h intervals over 24 h. The results revealed that SD significantly altered the circadian expression of genes and their expression patterns in the liver of Tibetan sheep. Enrichment analysis of the circadian rhythm-altered genes revealed changes in the pathways related to lipid metabolism in the liver. Further evidence from serum markers and gene expression analyses using qualitative real-time polymerase chain reaction and Oil Red O and apoptosis staining indicated that SD leads to abnormal lipid metabolism in the liver, potentially causing liver damage. Therefore, our results suggest that SD disrupts the circadian rhythms of metabolism-related genes in the Tibetan sheep liver, thereby affecting metabolic homeostasis.
Collapse
Affiliation(s)
- Ya-Le Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Ru Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Rui Pang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Zhi-Peng Sun
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China;
| | - Xiao-Long He
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Wen-Hui Tang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Jing-Yu Ou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Huan-Ming Yi
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Xiao Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Jia-Hong Chen
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China;
| | - Yang Yu
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China;
| | - Chun-Huan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China;
| | - Qiang-Jun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Zi-Jun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China;
| |
Collapse
|
12
|
Dandavate V, Bolshette N, Van Drunen R, Manella G, Bueno-Levy H, Zerbib M, Kawano I, Golik M, Adamovich Y, Asher G. Hepatic BMAL1 and HIF1α regulate a time-dependent hypoxic response and prevent hepatopulmonary-like syndrome. Cell Metab 2024; 36:2038-2053.e5. [PMID: 39106859 DOI: 10.1016/j.cmet.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/28/2024] [Accepted: 07/05/2024] [Indexed: 08/09/2024]
Abstract
The transcriptional response to hypoxia is temporally regulated, yet the molecular underpinnings and physiological implications are unknown. We examined the roles of hepatic Bmal1 and Hif1α in the circadian response to hypoxia in mice. We found that the majority of the transcriptional response to hypoxia is dependent on either Bmal1 or Hif1α, through shared and distinct roles that are daytime determined. We further show that hypoxia-inducible factor (HIF)1α accumulation upon hypoxia is temporally regulated and Bmal1 dependent. Unexpectedly, mice lacking both hepatic Bmal1 and Hif1α are hypoxemic and exhibit increased mortality upon hypoxic exposure in a daytime-dependent manner. These mice display mild liver dysfunction with pulmonary vasodilation likely due to extracellular signaling regulated kinase (ERK) activation, endothelial nitric oxide synthase, and nitric oxide accumulation in lungs, suggestive of hepatopulmonary syndrome. Our findings indicate that hepatic BMAL1 and HIF1α are key time-dependent regulators of the hypoxic response and can provide molecular insights into the pathophysiology of hepatopulmonary syndrome.
Collapse
Affiliation(s)
- Vaishnavi Dandavate
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Nityanand Bolshette
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Rachel Van Drunen
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Gal Manella
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Hanna Bueno-Levy
- Department of the Veterinary Resources, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Mirie Zerbib
- Department of the Veterinary Resources, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Ippei Kawano
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Marina Golik
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yaarit Adamovich
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
13
|
Suomalainen A, Nunnari J. Mitochondria at the crossroads of health and disease. Cell 2024; 187:2601-2627. [PMID: 38788685 DOI: 10.1016/j.cell.2024.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Mitochondria reside at the crossroads of catabolic and anabolic metabolism-the essence of life. How their structure and function are dynamically tuned in response to tissue-specific needs for energy, growth repair, and renewal is being increasingly understood. Mitochondria respond to intrinsic and extrinsic stresses and can alter cell and organismal function by inducing metabolic signaling within cells and to distal cells and tissues. Here, we review how the centrality of mitochondrial functions manifests in health and a broad spectrum of diseases and aging.
Collapse
Affiliation(s)
- Anu Suomalainen
- University of Helsinki, Stem Cells and Metabolism Program, Faculty of Medicine, Helsinki, Finland; HiLife, University of Helsinki, Helsinki, Finland; HUS Diagnostics, Helsinki University Hospital, Helsinki, Finland.
| | - Jodi Nunnari
- Altos Labs, Bay Area Institute, Redwood Shores, CA, USA.
| |
Collapse
|
14
|
Blumstein DM, MacManes MD. Impacts of dietary fat on multi tissue gene expression in the desert-adapted cactus mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592397. [PMID: 38746252 PMCID: PMC11092757 DOI: 10.1101/2024.05.03.592397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Understanding the relationship between dietary fat and physiological responses is crucial in species adapted to arid environments where water scarcity is common. In this study, we present a comprehensive exploration of gene expression across five tissues (kidney, liver, lung, gastrointestinal tract, and hypothalamus) and 19 phenotypic measurements, investigating the effects of dietary fat in the desert-adapted cactus mouse ( Peromyscus eremicus ). We show impacts on immune function, circadian gene regulation, and mitochondrial function for mice fed a lower-fat diet compared to mice fed a higher-fat diet. In arid environments with severe water scarcity, even subtle changes in organismal health and water balance can affect physical performance, potentially impacting survival and reproductive success. The study sheds light on the complex interplay between diet, physiological processes, and environmental adaptation, providing valuable insights into the multifaceted impacts of dietary choices on organismal well-being and adaptation strategies in arid habitats.
Collapse
|
15
|
Liang C, Murray S, Li Y, Lee R, Low A, Sasaki S, Chiang AWT, Lin WJ, Mathews J, Barnes W, Lewis NE. LipidSIM: Inferring mechanistic lipid biosynthesis perturbations from lipidomics with a flexible, low-parameter, Markov modeling framework. Metab Eng 2024; 82:110-122. [PMID: 38311182 PMCID: PMC11163374 DOI: 10.1016/j.ymben.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/03/2024] [Accepted: 01/21/2024] [Indexed: 02/10/2024]
Abstract
Lipid metabolism is a complex and dynamic system involving numerous enzymes at the junction of multiple metabolic pathways. Disruption of these pathways leads to systematic dyslipidemia, a hallmark of many pathological developments, such as nonalcoholic steatohepatitis and diabetes. Recent advances in computational tools can provide insights into the dysregulation of lipid biosynthesis, but limitations remain due to the complexity of lipidomic data, limited knowledge of interactions among involved enzymes, and technical challenges in standardizing across different lipid types. Here, we present a low-parameter, biologically interpretable framework named Lipid Synthesis Investigative Markov model (LipidSIM), which models and predicts the source of perturbations in lipid biosynthesis from lipidomic data. LipidSIM achieves this by accounting for the interdependency between the lipid species via the lipid biosynthesis network and generates testable hypotheses regarding changes in lipid biosynthetic reactions. This feature allows the integration of lipidomics with other omics types, such as transcriptomics, to elucidate the direct driving mechanisms of altered lipidomes due to treatments or disease progression. To demonstrate the value of LipidSIM, we first applied it to hepatic lipidomics following Keap1 knockdown and found that changes in mRNA expression of the lipid pathways were consistent with the LipidSIM-predicted fluxes. Second, we used it to study lipidomic changes following intraperitoneal injection of CCl4 to induce fast NAFLD/NASH development and the progression of fibrosis and hepatic cancer. Finally, to show the power of LipidSIM for classifying samples with dyslipidemia, we used a Dgat2-knockdown study dataset. Thus, we show that as it demands no a priori knowledge of enzyme kinetics, LipidSIM is a valuable and intuitive framework for extracting biological insights from complex lipidomic data.
Collapse
Affiliation(s)
- Chenguang Liang
- Department of Bioengineering, University of California, La Jolla, CA, 92093, USA
| | - Sue Murray
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Yang Li
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Richard Lee
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Audrey Low
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Shruti Sasaki
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Austin W T Chiang
- Department of Pediatrics, University of California, La Jolla, CA, 92093, USA
| | - Wen-Jen Lin
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404333, Taiwan
| | - Joel Mathews
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Will Barnes
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Nathan E Lewis
- Department of Bioengineering, University of California, La Jolla, CA, 92093, USA; Department of Pediatrics, University of California, La Jolla, CA, 92093, USA.
| |
Collapse
|
16
|
Engin AB. Mechanism of Obesity-Related Lipotoxicity and Clinical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:131-166. [PMID: 39287851 DOI: 10.1007/978-3-031-63657-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The link between cellular exposure to fatty acid species and toxicity phenotypes remains poorly understood. However, structural characterization and functional profiling of human plasma free fatty acids (FFAs) analysis has revealed that FFAs are located either in the toxic cluster or in the cluster that is transcriptionally responsive to lipotoxic stress and creates genetic risk factors. Genome-wide short hairpin RNA screen has identified more than 350 genes modulating lipotoxicity. Hypertrophic adipocytes in obese adipose are both unable to expand further to store excess lipids in the diet and are resistant to the antilipolytic action of insulin. In addition to lipolysis, the inability of packaging the excess lipids into lipid droplets causes circulating fatty acids to reach toxic levels in non-adipose tissues. Deleterious effects of accumulated lipid in non-adipose tissues are known as lipotoxicity. Although triglycerides serve a storage function for long-chain non-esterified fatty acid and their products such as ceramide and diacylglycerols (DAGs), overloading of palmitic acid fraction of saturated fatty acids (SFAs) raises ceramide levels. The excess DAG and ceramide load create harmful effects on multiple organs and systems, inducing chronic inflammation in obesity. Thus, lipotoxic inflammation results in β cells death and pancreatic islets dysfunction. Endoplasmic reticulum stress stimuli induce lipolysis by activating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and extracellular signal-regulated kinase (Erk) 1/2 signaling in adipocytes. However, palmitic acid-induced endoplasmic reticulum stress-c-Jun N-terminal kinase (JNK)-autophagy axis in hypertrophic adipocytes is a pro-survival mechanism against endoplasmic reticulum stress and cell death induced by SFAs. Endoplasmic reticulum-localized acyl-coenzyme A (CoA): glycerol-3-phosphate acyltransferase (GPAT) enzymes are mediators of lipotoxicity, and inhibiting these enzymes has therapeutic potential for lipotoxicity. Lipotoxicity increases the number of autophagosomes, which engulf palmitic acid, and thus suppress the autophagic turnover. Fatty acid desaturation promotes palmitate detoxification and storages into triglycerides. As therapeutic targets of glucolipotoxicity, in addition to caloric restriction and exercise, there are four different pharmacological approaches, which consist of metformin, glucagon-like peptide 1 (GLP-1) receptor agonists, peroxisome proliferator-activated receptor-gamma (PPARγ) ligands thiazolidinediones, and chaperones are still used in clinical practice. Furthermore, induction of the brown fat-like phenotype with the mixture of eicosapentanoic acid and docosahexaenoic acid appears as a potential therapeutic application for treatment of lipotoxicity.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| |
Collapse
|
17
|
Yao S, Kim SC, Li J, Tang S, Wang X. Phosphatidic acid signaling and function in nuclei. Prog Lipid Res 2024; 93:101267. [PMID: 38154743 PMCID: PMC10843600 DOI: 10.1016/j.plipres.2023.101267] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Membrane lipidomes are dynamic and their changes generate lipid mediators affecting various biological processes. Phosphatidic acid (PA) has emerged as an important class of lipid mediators involved in a wide range of cellular and physiological responses in plants, animals, and microbes. The regulatory functions of PA have been studied primarily outside the nuclei, but an increasing number of recent studies indicates that some of the PA effects result from its action in nuclei. PA levels in nuclei are dynamic in response to stimuli. Changes in nuclear PA levels can result from activities of enzymes associated with nuclei and/or from movements of PA generated extranuclearly. PA has also been found to interact with proteins involved in nuclear functions, such as transcription factors and proteins undergoing nuclear translocation in response to stimuli. The nuclear action of PA affects various aspects of plant growth, development, and response to stress and environmental changes.
Collapse
Affiliation(s)
- Shuaibing Yao
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Sang-Chul Kim
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Jianwu Li
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Shan Tang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
| |
Collapse
|
18
|
Wu Y, Sun Y, Chen R, Qiao Y, Zhang Q, Li Q, Wang X, Pan Y, Li S, Wang Z. Analysis for lipid nutrient differences in the milk of 13 species from a quantitative non-targeted lipidomics perspective. Food Chem X 2023; 20:101024. [PMID: 38144754 PMCID: PMC10740049 DOI: 10.1016/j.fochx.2023.101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Lipids are essential organic components in milk and have been associated with various health benefits for newborns. However, a comprehensive analysis of lipid profiles across multiple species and levels has been lacking. In this study, we employed liquid chromatography-tandem mass spectrometry (LC-MS/MS) to accurately determine the absolute content of lipid molecules. It revealed that ruminants exhibit a higher concentration of short-chain fatty acids compared to non-ruminants. Additionally, we identified ALC (camel), MGH (horse), and DZD (donkey) as species that display similarities to components found in human milk fat. Remarkably, it reveals that porcine milk fat is characterized by long chain lengths, low saturation, and a high proportion of essential fatty acids. PS (22:5_18:2) could potentially serve as a biomarker in porcine milk. These unique characteristics present potential opportunities for the utilization of porcine milk. Overall, our findings provide valuable insights into the lipidomics profiles of milk from different species.
Collapse
Affiliation(s)
| | | | | | - Yanjun Qiao
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qiu Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qian Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaowei Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuan Pan
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Siyi Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zeying Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
19
|
Bolshette N, Ibrahim H, Reinke H, Asher G. Circadian regulation of liver function: from molecular mechanisms to disease pathophysiology. Nat Rev Gastroenterol Hepatol 2023; 20:695-707. [PMID: 37291279 DOI: 10.1038/s41575-023-00792-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 06/10/2023]
Abstract
A wide variety of liver functions are regulated daily by the liver circadian clock and via systemic circadian control by other organs and cells within the gastrointestinal tract as well as the microbiome and immune cells. Disruption of the circadian system, as occurs during jetlag, shift work or an unhealthy lifestyle, is implicated in several liver-related pathologies, ranging from metabolic diseases such as obesity, type 2 diabetes mellitus and nonalcoholic fatty liver disease to liver malignancies such as hepatocellular carcinoma. In this Review, we cover the molecular, cellular and organismal aspects of various liver pathologies from a circadian viewpoint, and in particular how circadian dysregulation has a role in the development and progression of these diseases. Finally, we discuss therapeutic and lifestyle interventions that carry health benefits through support of a functional circadian clock that acts in synchrony with the environment.
Collapse
Affiliation(s)
- Nityanand Bolshette
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hussam Ibrahim
- University of Düsseldorf, Medical Faculty, Institute of Clinical Chemistry and Laboratory Diagnostics, Düsseldorf, Germany
| | - Hans Reinke
- University of Düsseldorf, Medical Faculty, Institute of Clinical Chemistry and Laboratory Diagnostics, Düsseldorf, Germany.
| | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
20
|
Zhao T, Li J, Wang Y, Guo X, Sun Y. Integrative metabolome and lipidome analyses of plasma in neovascular macular degeneration. Heliyon 2023; 9:e20329. [PMID: 37780745 PMCID: PMC10539639 DOI: 10.1016/j.heliyon.2023.e20329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/09/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023] Open
Abstract
Age-related macular degeneration (AMD) causes irreversible vision-loss among the elderly in industrial countries. Neovascular AMD (nAMD), which refers to late-stage AMD, is characterized by severe vision-threatening choroidal neovascularization (CNV). Herein, we constructed a global metabolic network of nAMD, based on untargeted metabolomic and lipidomic analysis of plasma samples collected from sixty subjects (30 nAMD patients and 30 age-matched controls). Among the nAMD and control groups, 62 and 44 significantly different metabolites were detected in the positive and negative ion modes, respectively. Grouping analysis further showed that lipid and lipid-like molecule-based superclasses contained the highest number of significantly different metabolites. Lipidomic analysis revealed that 53 lipids among the nAMD and control groups differed significantly; these belonged to four major lipid categories (glycerophospholipids, sphingolipids, glycerolipids, and fatty acids). A discriminative biomarker panel comprising 16 metabolites and lipids, which was constructed using multivariate statistical machine learning methods, could effectively identify nAMD cases. Among these 16 compounds, eight were lipids that belonged to three lipid categories (glycerophospholipids, sphingolipids, and prenol lipids). The top three biomarkers with the highest importance scores were all lipids (a glycerophospholipid and two sphingolipids), highlighting the crucial role played by glycerophospholipid and sphingolipid pathways in nAMD. These differences between the metabolic and lipid profiles of nAMD patients and elderly individuals without AMD provide a readout of the overall metabolic status of nAMD. Further insights into the identified discriminative biomarkers may pave the way for future diagnostic and therapeutic interventions for nAMD.
Collapse
Affiliation(s)
- Tantai Zhao
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jiani Li
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yanbin Wang
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Xiaojian Guo
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yun Sun
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| |
Collapse
|
21
|
Huang R, Chen J, Zhou M, Xin H, Lam SM, Jiang X, Li J, Deng F, Shui G, Zhang Z, Li MD. Multi-omics profiling reveals rhythmic liver function shaped by meal timing. Nat Commun 2023; 14:6086. [PMID: 37773240 PMCID: PMC10541894 DOI: 10.1038/s41467-023-41759-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/06/2023] [Indexed: 10/01/2023] Open
Abstract
Post-translational modifications (PTMs) couple feed-fast cycles to diurnal rhythms. However, it remains largely uncharacterized whether and how meal timing organizes diurnal rhythms beyond the transcriptome. Here, we systematically profile the daily rhythms of the proteome, four PTMs (phosphorylation, ubiquitylation, succinylation and N-glycosylation) and the lipidome in the liver from young female mice subjected to either day/sleep time-restricted feeding (DRF) or night/wake time-restricted feeding (NRF). We detect robust daily rhythms among different layers of omics with phosphorylation the most nutrient-responsive and succinylation the least. Integrative analyses reveal that clock regulation of fatty acid metabolism represents a key diurnal feature that is reset by meal timing, as indicated by the rhythmic phosphorylation of the circadian repressor PERIOD2 at Ser971 (PER2-pSer971). We confirm that PER2-pSer971 is activated by nutrient availability in vivo. Together, this dataset represents a comprehensive resource detailing the proteomic and lipidomic responses by the liver to alterations in meal timing.
Collapse
Affiliation(s)
- Rongfeng Huang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jianghui Chen
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Meiyu Zhou
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Haoran Xin
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- LipidALL Technologies Company Limited, Changzhou, Jiangsu Province, China
| | - Xiaoqing Jiang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jie Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Fang Deng
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhihui Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China.
| | - Min-Dian Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
22
|
Wu F, Li Z, Chen X, Si X, Lin S. Untargeted metabolomics reveals sour jujube kernel benefiting the nutritional value and flavor of Morchella esculenta. Open Life Sci 2023; 18:20220708. [PMID: 37671097 PMCID: PMC10476485 DOI: 10.1515/biol-2022-0708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/08/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Nucleosides, organic acids, and amino acids separated from Morchella esculenta are well known for their nutritional value and flavor. However, how to increase their content in a better way has been a challenge. In this study, the effect of adding jujube kernel on the active components of M. esculenta was investigated by untargeted metabolomics using UPLC-MS/MS. A total of 1,243 metabolites were identified, of which 262 metabolites (21.078%) were organic acids and derivatives, 245 metabolites (19.71%) were lipids and lipid-like molecules, and 26 metabolites (2.092%) were nucleosides, nucleotides, and analogues. Subsequently, differential metabolites between groups were screened by the orthogonal partial least squares-discriminant analysis model, which showed that 256 metabolites were identified as significantly different for the positive ion model and 149 for the negative ion model. Moreover, significant differential metabolites (VIP > 1, P < 0.05) in annotation of kyoto encyclopedia of genes and genomes pathway were investigated, which showed that ABC transporters were the most commonly observed transporters, followed by pyrimidine metabolism and purine metabolism. The results indicated that the main components of jujube kernel might be conducive to the accumulation of nucleoside organic acids and amino acid metabolites in M. esculenta. These results provide important information for the understanding of more suitable way for cultivation of M. esculenta.
Collapse
Affiliation(s)
- Fenfang Wu
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Zhiyuan Li
- Department of Acupuncture, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xiaoni Chen
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xinlei Si
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Shan Lin
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
23
|
Cazarin J, DeRollo RE, Ahmad Shahidan SNAB, Burchett JB, Mwangi D, Krishnaiah S, Hsieh AL, Walton ZE, Brooks R, Mello SS, Weljie AM, Dang CV, Altman BJ. MYC disrupts transcriptional and metabolic circadian oscillations in cancer and promotes enhanced biosynthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522637. [PMID: 36711638 PMCID: PMC9881876 DOI: 10.1101/2023.01.03.522637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The molecular circadian clock, which controls rhythmic 24-hour oscillation of genes, proteins, and metabolites in healthy tissues, is disrupted across many human cancers. Deregulated expression of the MYC oncoprotein has been shown to alter expression of molecular clock genes, leading to a disruption of molecular clock oscillation across cancer types. It remains unclear what benefit cancer cells gain from suppressing clock oscillation, and how this loss of molecular clock oscillation impacts global gene expression and metabolism in cancer. We hypothesized that MYC or its paralog N-MYC (collectively termed MYC herein) suppress oscillation of gene expression and metabolism to upregulate pathways involved in biosynthesis in a static, non-oscillatory fashion. To test this, cells from distinct cancer types with inducible MYC were examined, using time-series RNA-sequencing and metabolomics, to determine the extent to which MYC activation disrupts global oscillation of genes, gene expression pathways, and metabolites. We focused our analyses on genes, pathways, and metabolites that changed in common across multiple cancer cell line models. We report here that MYC disrupted over 85% of oscillating genes, while instead promoting enhanced ribosomal and mitochondrial biogenesis and suppressed cell attachment pathways. Notably, when MYC is activated, biosynthetic programs that were formerly circadian flipped to being upregulated in an oscillation-free manner. Further, activation of MYC ablates the oscillation of nutrient transporter proteins while greatly upregulating transporter expression, cell surface localization, and intracellular amino acid pools. Finally, we report that MYC disrupts metabolite oscillations and the temporal segregation of amino acid metabolism from nucleotide metabolism. Our results demonstrate that MYC disruption of the molecular circadian clock releases metabolic and biosynthetic processes from circadian control, which may provide a distinct advantage to cancer cells.
Collapse
Affiliation(s)
- Juliana Cazarin
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Rachel E. DeRollo
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | - Jamison B. Burchett
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Daniel Mwangi
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Saikumari Krishnaiah
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Stephano S. Mello
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Aalim M. Weljie
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Chi V. Dang
- Ludwig Institute for Cancer Research, New York, NY, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, MD, USA
| | - Brian J. Altman
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
24
|
Sarmento MJ, Llorente A, Petan T, Khnykin D, Popa I, Nikolac Perkovic M, Konjevod M, Jaganjac M. The expanding organelle lipidomes: current knowledge and challenges. Cell Mol Life Sci 2023; 80:237. [PMID: 37530856 PMCID: PMC10397142 DOI: 10.1007/s00018-023-04889-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/13/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
Lipids in cell membranes and subcellular compartments play essential roles in numerous cellular processes, such as energy production, cell signaling and inflammation. A specific organelle lipidome is characterized by lipid synthesis and metabolism, intracellular trafficking, and lipid homeostasis in the organelle. Over the years, considerable effort has been directed to the identification of the lipid fingerprints of cellular organelles. However, these fingerprints are not fully characterized due to the large variety and structural complexity of lipids and the great variability in the abundance of different lipid species. The process becomes even more challenging when considering that the lipidome differs in health and disease contexts. This review summarizes the information available on the lipid composition of mammalian cell organelles, particularly the lipidome of the nucleus, mitochondrion, endoplasmic reticulum, Golgi apparatus, plasma membrane and organelles in the endocytic pathway. The lipid compositions of extracellular vesicles and lamellar bodies are also described. In addition, several examples of subcellular lipidome dynamics under physiological and pathological conditions are presented. Finally, challenges in mapping organelle lipidomes are discussed.
Collapse
Affiliation(s)
- Maria J Sarmento
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway
- Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, 0167, Oslo, Norway
- Faculty of Medicine, Centre for Cancer Cell Reprogramming, University of Oslo, Montebello, 0379, Oslo, Norway
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Denis Khnykin
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Iuliana Popa
- Pharmacy Department, Bâtiment Henri Moissan, University Paris-Saclay, 17 Avenue des Sciences, 91400, Orsay, France
| | | | - Marcela Konjevod
- Division of Molecular Medicine, Ruder Boskovic Institute, 10000, Zagreb, Croatia
| | - Morana Jaganjac
- Division of Molecular Medicine, Ruder Boskovic Institute, 10000, Zagreb, Croatia.
| |
Collapse
|
25
|
Cazarin J, DeRollo RE, Shahidan SNABA, Burchett JB, Mwangi D, Krishnaiah S, Hsieh AL, Walton ZE, Brooks R, Mello SS, Weljie AM, Dang CV, Altman BJ. MYC disrupts transcriptional and metabolic circadian oscillations in cancer and promotes enhanced biosynthesis. PLoS Genet 2023; 19:e1010904. [PMID: 37639465 PMCID: PMC10491404 DOI: 10.1371/journal.pgen.1010904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/08/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
The molecular circadian clock, which controls rhythmic 24-hour oscillation of genes, proteins, and metabolites in healthy tissues, is disrupted across many human cancers. Deregulated expression of the MYC oncoprotein has been shown to alter expression of molecular clock genes, leading to a disruption of molecular clock oscillation across cancer types. It remains unclear what benefit cancer cells gain from suppressing clock oscillation, and how this loss of molecular clock oscillation impacts global gene expression and metabolism in cancer. We hypothesized that MYC or its paralog N-MYC (collectively termed MYC herein) suppress oscillation of gene expression and metabolism to upregulate pathways involved in biosynthesis in a static, non-oscillatory fashion. To test this, cells from distinct cancer types with inducible MYC were examined, using time-series RNA-sequencing and metabolomics, to determine the extent to which MYC activation disrupts global oscillation of genes, gene expression pathways, and metabolites. We focused our analyses on genes, pathways, and metabolites that changed in common across multiple cancer cell line models. We report here that MYC disrupted over 85% of oscillating genes, while instead promoting enhanced ribosomal and mitochondrial biogenesis and suppressed cell attachment pathways. Notably, when MYC is activated, biosynthetic programs that were formerly circadian flipped to being upregulated in an oscillation-free manner. Further, activation of MYC ablates the oscillation of nutrient transporter proteins while greatly upregulating transporter expression, cell surface localization, and intracellular amino acid pools. Finally, we report that MYC disrupts metabolite oscillations and the temporal segregation of amino acid metabolism from nucleotide metabolism. Our results demonstrate that MYC disruption of the molecular circadian clock releases metabolic and biosynthetic processes from circadian control, which may provide a distinct advantage to cancer cells.
Collapse
Affiliation(s)
- Juliana Cazarin
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Rachel E. DeRollo
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Siti Noor Ain Binti Ahmad Shahidan
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Jamison B. Burchett
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Daniel Mwangi
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Saikumari Krishnaiah
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Annie L. Hsieh
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Zandra E. Walton
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Rebekah Brooks
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Stephano S. Mello
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Aalim M. Weljie
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Chi V. Dang
- Ludwig Institute for Cancer Research, New York, New York, United States of America
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Maryland, United States of America
| | - Brian J. Altman
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
26
|
Cordeiro MM, Filipe HAL, dos Santos P, Samelo J, Ramalho JPP, Loura LMS, Moreno MJ. Interaction of Hoechst 33342 with POPC Membranes at Different pH Values. Molecules 2023; 28:5640. [PMID: 37570608 PMCID: PMC10420284 DOI: 10.3390/molecules28155640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Hoechst 33342 (H33342) is a fluorescent probe that is commonly used to stain the DNA of living cells. To do so, it needs to interact with and permeate through cell membranes, despite its high overall charge at physiological pH values. In this work, we address the effect of pH in the association of H33342 with lipid bilayers using a combined experimental and computational approach. The partition of H33342 to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid membranes was experimentally quantified using fluorescence spectroscopy and isothermal titration calorimetry (ITC) measurements. Quantum chemical calculations were performed to select the most stable isomer of H33342 for the overall charges 0, +1, and +2, expected to predominate across the 5 < pH < 10 range. The interaction of these isomers with POPC bilayers was then studied by both unrestrained and umbrella sampling molecular dynamics (MD) simulations. Both experimental results and computational free energy profiles indicate that the partition coefficient of H33342 displays a small variation over a wide pH range, not exceeding one order of magnitude. The enthalpy variation upon partition to the membrane suggests efficient hydrogen bonding between the probe and the lipid, namely, for the protonated +2 form, which was confirmed in the MD simulation studies. The relatively high lipophilicity obtained for the charged species contrasts with the decrease in their general hydrophobicity as estimated from octanol/water partition. This highlights the distinction between lipophilicity and hydrophobicity, as well as the importance of considering the association with lipid bilayers when predicting the affinity for biomembranes.
Collapse
Affiliation(s)
- Margarida M. Cordeiro
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal; (M.M.C.); (H.A.L.F.); (J.S.)
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Hugo A. L. Filipe
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal; (M.M.C.); (H.A.L.F.); (J.S.)
- Polytechnic of Guarda, CPIRN-IPG—Center of Potential and Innovation of Natural Resources, 6300-559 Guarda, Portugal
| | - Patrícia dos Santos
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal; (M.M.C.); (H.A.L.F.); (J.S.)
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Jaime Samelo
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal; (M.M.C.); (H.A.L.F.); (J.S.)
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - João P. Prates Ramalho
- LAQV, REQUIMTE, Hercules Laboratory, Department of Chemistry, School of Science and Technology, University of Évora, 7000-671 Évora, Portugal;
| | - Luís M. S. Loura
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal; (M.M.C.); (H.A.L.F.); (J.S.)
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-535 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria J. Moreno
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal; (M.M.C.); (H.A.L.F.); (J.S.)
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
27
|
Richardson RB, Mailloux RJ. Mitochondria Need Their Sleep: Redox, Bioenergetics, and Temperature Regulation of Circadian Rhythms and the Role of Cysteine-Mediated Redox Signaling, Uncoupling Proteins, and Substrate Cycles. Antioxidants (Basel) 2023; 12:antiox12030674. [PMID: 36978924 PMCID: PMC10045244 DOI: 10.3390/antiox12030674] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Although circadian biorhythms of mitochondria and cells are highly conserved and crucial for the well-being of complex animals, there is a paucity of studies on the reciprocal interactions between oxidative stress, redox modifications, metabolism, thermoregulation, and other major oscillatory physiological processes. To address this limitation, we hypothesize that circadian/ultradian interaction of the redoxome, bioenergetics, and temperature signaling strongly determine the differential activities of the sleep–wake cycling of mammalians and birds. Posttranslational modifications of proteins by reversible cysteine oxoforms, S-glutathionylation and S-nitrosylation are shown to play a major role in regulating mitochondrial reactive oxygen species production, protein activity, respiration, and metabolomics. Nuclear DNA repair and cellular protein synthesis are maximized during the wake phase, whereas the redoxome is restored and mitochondrial remodeling is maximized during sleep. Hence, our analysis reveals that wakefulness is more protective and restorative to the nucleus (nucleorestorative), whereas sleep is more protective and restorative to mitochondria (mitorestorative). The “redox–bioenergetics–temperature and differential mitochondrial–nuclear regulatory hypothesis” adds to the understanding of mitochondrial respiratory uncoupling, substrate cycling control and hibernation. Similarly, this hypothesis explains how the oscillatory redox–bioenergetics–temperature–regulated sleep–wake states, when perturbed by mitochondrial interactome disturbances, influence the pathogenesis of aging, cancer, spaceflight health effects, sudden infant death syndrome, and diseases of the metabolism and nervous system.
Collapse
Affiliation(s)
- Richard B. Richardson
- Radiobiology and Health, Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada
- McGill Medical Physics Unit, Cedars Cancer Centre—Glen Site, McGill University, Montreal, QC H4A 3J1, Canada
- Correspondence: or
| | - Ryan J. Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada;
| |
Collapse
|
28
|
Jové M, Mota-Martorell N, Obis È, Sol J, Martín-Garí M, Ferrer I, Portero-Otín M, Pamplona R. Lipid Adaptations against Oxidative Challenge in the Healthy Adult Human Brain. Antioxidants (Basel) 2023; 12:177. [PMID: 36671039 PMCID: PMC9855103 DOI: 10.3390/antiox12010177] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
It is assumed that the human brain is especially susceptible to oxidative stress, based on specific traits such as a higher rate of mitochondrial free radical production, a high content in peroxidizable fatty acids, and a low antioxidant defense. However, it is also evident that human neurons, although they are post-mitotic cells, survive throughout an entire lifetime. Therefore, to reduce or avoid the impact of oxidative stress on neuron functionality and survival, they must have evolved several adaptive mechanisms to cope with the deleterious effects of oxidative stress. Several of these antioxidant features are derived from lipid adaptations. At least six lipid adaptations against oxidative challenge in the healthy human brain can be discerned. In this work, we explore the idea that neurons and, by extension, the human brain is endowed with an important arsenal of non-pro-oxidant and antioxidant measures to preserve neuronal function, refuting part of the initial premise.
Collapse
Affiliation(s)
- Mariona Jové
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Natàlia Mota-Martorell
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Èlia Obis
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Joaquim Sol
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
- Catalan Institute of Health (ICS), Research Support Unit (USR), Fundació Institut Universitari per a la Recerca en Atenció Primària de Salut Jordi Gol i Gurina (IDIAP JGol), E-25007 Lleida, Spain
| | - Meritxell Martín-Garí
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona (UB), E-08907 Barcelona, Spain
- Neuropathology Group, Institute of Biomedical Research of Bellvitge (IDIBELL), E-08907 Barcelona, Spain
- Network Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, E-08907 Barcelona, Spain
| | - Manuel Portero-Otín
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| |
Collapse
|
29
|
Galper J, Kim WS, Dzamko N. LRRK2 and Lipid Pathways: Implications for Parkinson's Disease. Biomolecules 2022; 12:1597. [PMID: 36358947 PMCID: PMC9687231 DOI: 10.3390/biom12111597] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 04/10/2024] Open
Abstract
Genetic alterations in the LRRK2 gene, encoding leucine-rich repeat kinase 2, are a common risk factor for Parkinson's disease. How LRRK2 alterations lead to cell pathology is an area of ongoing investigation, however, multiple lines of evidence suggest a role for LRRK2 in lipid pathways. It is increasingly recognized that in addition to being energy reservoirs and structural entities, some lipids, including neural lipids, participate in signaling cascades. Early investigations revealed that LRRK2 localized to membranous and vesicular structures, suggesting an interaction of LRRK2 and lipids or lipid-associated proteins. LRRK2 substrates from the Rab GTPase family play a critical role in vesicle trafficking, lipid metabolism and lipid storage, all processes which rely on lipid dynamics. In addition, LRRK2 is associated with the phosphorylation and activity of enzymes that catabolize plasma membrane and lysosomal lipids. Furthermore, LRRK2 knockout studies have revealed that blood, brain and urine exhibit lipid level changes, including alterations to sterols, sphingolipids and phospholipids, respectively. In human LRRK2 mutation carriers, changes to sterols, sphingolipids, phospholipids, fatty acyls and glycerolipids are reported in multiple tissues. This review summarizes the evidence regarding associations between LRRK2 and lipids, and the functional consequences of LRRK2-associated lipid changes are discussed.
Collapse
Affiliation(s)
- Jasmin Galper
- Charles Perkins Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| | - Woojin S Kim
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| | - Nicolas Dzamko
- Charles Perkins Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
30
|
Güldür T. Potential linkages between circadian rhythm and membrane lipids: timekeeper and bilayer. BIOL RHYTHM RES 2022. [DOI: 10.1080/09291016.2022.2096756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Tayfun Güldür
- Medical Biochemistry Department, Faculty of Medicine, Inönü University, Malatya, Turkey
| |
Collapse
|
31
|
Circadian rhythm of lipid metabolism. Biochem Soc Trans 2022; 50:1191-1204. [PMID: 35604112 DOI: 10.1042/bst20210508] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
Lipids comprise a diverse group of metabolites that are indispensable as energy storage molecules, cellular membrane components and mediators of inter- and intra-cellular signaling processes. Lipid homeostasis plays a crucial role in maintaining metabolic health in mammals including human beings. A growing body of evidence suggests that the circadian clock system ensures temporal orchestration of lipid homeostasis, and that perturbation of such diurnal regulation leads to the development of metabolic disorders comprising obesity and type 2 diabetes. In view of the emerging role of circadian regulation in maintaining lipid homeostasis, in this review, we summarize the current knowledge on lipid metabolic pathways controlled by the mammalian circadian system. Furthermore, we review the emerging connection between the development of human metabolic diseases and changes in lipid metabolites that belong to major classes of lipids. Finally, we highlight the mechanisms underlying circadian organization of lipid metabolic rhythms upon the physiological situation, and the consequences of circadian clock dysfunction for dysregulation of lipid metabolism.
Collapse
|
32
|
Cervantes M, Lewis RG, Della-Fazia MA, Borrelli E, Sassone-Corsi P. Dopamine D2 receptor signaling in the brain modulates circadian liver metabolomic profiles. Proc Natl Acad Sci U S A 2022; 119:e2117113119. [PMID: 35271395 PMCID: PMC8931347 DOI: 10.1073/pnas.2117113119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
SignificanceWe analyzed the liver metabolome of mice deficient in the expression of the dopamine D2 receptor (D2R) in striatal medium spiny neurons (iMSN-D2RKO) and found profound changes in the liver circadian metabolome compared to control mice. Additionally, we show activation of dopaminergic circuits by acute cocaine administration in iMSN-D2RKO mice reprograms the circadian liver metabolome in response to cocaine. D2R signaling in MSNs is key for striatal output and essential for regulating the first response to the cellular and rewarding effects of cocaine. Our results suggest changes in dopamine signaling in specific striatal neurons evoke major changes in liver physiology. Dysregulation of liver metabolism could contribute to an altered allostatic state and therefore be involved in continued use of drugs.
Collapse
Affiliation(s)
- Marlene Cervantes
- INSERM U1233, Center for Epigenetics and Metabolism, University of California, Irvine, CA 92697
- Department of Biological Chemistry, University of California, Irvine, CA 92697
| | - Robert G. Lewis
- INSERM U1233, Center for Epigenetics and Metabolism, University of California, Irvine, CA 92697
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697
| | | | - Emiliana Borrelli
- INSERM U1233, Center for Epigenetics and Metabolism, University of California, Irvine, CA 92697
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697
| | - Paolo Sassone-Corsi
- INSERM U1233, Center for Epigenetics and Metabolism, University of California, Irvine, CA 92697
- Department of Biological Chemistry, University of California, Irvine, CA 92697
| |
Collapse
|
33
|
Nazemidashtarjandi S, Sharma VM, Puri V, Farnoud AM, Burdick MM. Lipid Composition of the Cell Membrane Outer Leaflet Regulates Endocytosis of Nanomaterials through Alterations in Scavenger Receptor Activity. ACS NANO 2022; 16:2233-2248. [PMID: 35138811 PMCID: PMC10538024 DOI: 10.1021/acsnano.1c08344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding the principles that guide the uptake of engineered nanomaterials (ENMs) by cells is of interest in biomedical and occupational health research. While evidence has started to accumulate on the role of membrane proteins in ENM uptake, the role of membrane lipid chemistry in regulating ENM endocytosis has remained largely unexplored. Here, we have addressed this issue by altering the plasma membrane lipid composition directly in live cells using a methyl-α-cyclodextrin (MαCD)-catalyzed lipid exchange method. Our observations, in an alveolar epithelial cell line and using silica nanoparticles, reveal that the lipid composition of the plasma membrane outer leaflet plays a significant role in ENM endocytosis and the intracellular fate of ENMs, by affecting nonspecific ENM diffusion into the cell, changing membrane fluidity, and altering the activity of scavenger receptors (SRs) involved in active endocytosis. These results have implications for understanding ENM uptake in different subsets of cells, depending on cell membrane lipid composition.
Collapse
Affiliation(s)
- Saeed Nazemidashtarjandi
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701, United States
| | - Vishva M Sharma
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, United States
| | - Vishwajeet Puri
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, United States
| | - Amir M Farnoud
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701, United States
- Biomedical Engineering Program, Ohio University, Athens, Ohio 45701, United States
| | - Monica M Burdick
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701, United States
- Biomedical Engineering Program, Ohio University, Athens, Ohio 45701, United States
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
34
|
Han X, Gross RW. The foundations and development of lipidomics. J Lipid Res 2022; 63:100164. [PMID: 34953866 PMCID: PMC8953652 DOI: 10.1016/j.jlr.2021.100164] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022] Open
Abstract
For over a century, the importance of lipid metabolism in biology was recognized but difficult to mechanistically understand due to the lack of sensitive and robust technologies for identification and quantification of lipid molecular species. The enabling technological breakthroughs emerged in the 1980s with the development of soft ionization methods (Electrospray Ionization and Matrix Assisted Laser Desorption/Ionization) that could identify and quantify intact individual lipid molecular species. These soft ionization technologies laid the foundations for what was to be later named the field of lipidomics. Further innovative advances in multistage fragmentation, dramatic improvements in resolution and mass accuracy, and multiplexed sample analysis fueled the early growth of lipidomics through the early 1990s. The field exponentially grew through the use of a variety of strategic approaches, which included direct infusion, chromatographic separation, and charge-switch derivatization, which facilitated access to the low abundance species of the lipidome. In this Thematic Review, we provide a broad perspective of the foundations, enabling advances, and predicted future directions of growth of the lipidomics field.
Collapse
Affiliation(s)
- Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Departments of Medicine - Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Richard W Gross
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Chemistry, Washington University, St. Louis, MO, USA
| |
Collapse
|
35
|
Urine Metabolomics Reveals the Effects of Confined Environment on Mating Choice in Adult Male Giant Pandas. Physiol Behav 2022; 249:113744. [DOI: 10.1016/j.physbeh.2022.113744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/20/2022] [Accepted: 02/14/2022] [Indexed: 12/19/2022]
|
36
|
Lipid Droplet-a New Target in Ischemic Heart Disease. J Cardiovasc Transl Res 2022; 15:730-739. [PMID: 34984637 DOI: 10.1007/s12265-021-10204-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/22/2021] [Indexed: 10/19/2022]
Abstract
Lipid droplet (LD) is a kind of subcellular organelle, which originates from the endoplasmic reticulum (ER). LDs can move flexibly between other organelles and store energy in the cells. In recent years, LDs and lipid droplet-associated proteins have attracted added attention at home and abroad, especially in cardiovascular diseases. Cardiovascular diseases, especially ischemic heart disease (IHD), have always been the focus of attention because of their high morbidity and mortality. Atherosclerosis and myocardial remodeling are two important pathologic processes of IHD, and LDs and other organelles are involved in the development of the disease. The interaction between LDs and ER is involved in the formation of foam cells in atherosclerosis. And LDs, mitochondria, and lysosomes also affect the remodeling of cardiomyocytes by affecting ROS production and regulating PI3K/AKT pathways. In this article, we will review the role of LDs in IHD.
Collapse
|
37
|
Artati A, Prehn C, Lutter D, Dyar KA. Untargeted and Targeted Circadian Metabolomics Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) and Flow Injection-Electrospray Ionization-Tandem Mass Spectrometry (FIA-ESI-MS/MS). Methods Mol Biol 2022; 2482:311-327. [PMID: 35610436 DOI: 10.1007/978-1-0716-2249-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A diverse array of 24-h oscillating hormones and metabolites direct and reflect circadian clock function. Circadian metabolomics uses advanced high-throughput analytical chemistry techniques to comprehensively profile these small molecules (<1.5 kDa) across 24 h in cells, media, body fluids, breath, tissues, and subcellular compartments. The goals of circadian metabolomics experiments are often multifaceted. These include identifying and tracking rhythmic metabolic inputs and outputs of central and peripheral circadian clocks, quantifying endogenous free-running period, monitoring relative phase alignment between clocks, and mapping pathophysiological consequences of clock disruption or misalignment. Depending on the particular experimental question, samples are collected under free-running or entrained conditions. Here we describe both untargeted and targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) and flow injection-electrospray ionization-tandem mass spectrometry (FIA-ESI-MS/MS) based assays we have used for circadian metabolomics studies. We discuss tissue homogenization, chemical derivatization, measurement, and tips for data processing, normalization, scaling, how to handle outliers, and imputation of missing values.
Collapse
Affiliation(s)
- Anna Artati
- Metabolomics and Proteomics Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Cornelia Prehn
- Metabolomics and Proteomics Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Dominik Lutter
- Computational Discovery Research, Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Kenneth Allen Dyar
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Metabolic Physiology, Institute for Diabetes and Cancer (IDC), Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
38
|
Liu X, Jiang Y, Song D, Zhang L, Xu G, Hou R, Zhang Y, Chen J, Cheng Y, Liu L, Xu X, Chen G, Wu D, Chen T, Chen A, Wang X. Clinical challenges of tissue preparation for spatial transcriptome. Clin Transl Med 2022; 12:e669. [PMID: 35083877 PMCID: PMC8792118 DOI: 10.1002/ctm2.669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Spatial transcriptomics is considered as an important part of spatiotemporal molecular images to bridge molecular information with clinical images. Of those potentials and opportunities, the excellent quality of human sample preparation and handling will ensure the precise and reliable information generated from clinical spatial transcriptome. The present study aims at defining potential factors that might influence the quality of spatial transcriptomics in lung cancer, para-cancer, or normal tissues, pathological images of sections and the RNA integrity before spatial transcriptome sequencing. We categorised potential influencing factors from clinical aspects, including patient selection, pathological definition, surgical types, sample harvest, temporary preservation conditions and solutions, frozen approaches, transport and storage conditions and duration. We emphasis on the relationship between the combination of histological scores with RNA integrity number (RIN) and the unique molecular identifier (UMI), which is determines the quality of of spatial transcriptomics; however, we did not find significantly relevance between them. Our results showed that isolated times and dry conditions of sample are critical for the UMI and the quality of spatial transcriptomic samples. Thus, clinical procedures of sample preparation should be furthermore optimised and standardised as new standards of operation performance for clinical spatial transcriptome. Our data suggested that the temporary preservation time and condition of samples at operation room should be within 30 min and in 'dry' status. The direct cryo-preservation within OCT media for human lung sample is recommended. Thus, we believe that clinical spatial transcriptome will be a decisive approach and bridge in the development of spatiotemporal molecular images and provide new insights for understanding molecular mechanisms of diseases at multi-orientations.
Collapse
Affiliation(s)
- Xiaoxia Liu
- Department of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Institute of Clinical BioinformaticsZhongshan Hospital of Fudan UniversityShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Yujia Jiang
- BGIShenzhenChina
- BGI College & Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Dongli Song
- Department of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Institute of Clinical BioinformaticsZhongshan Hospital of Fudan UniversityShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Jinshan Hospital Centre for Tumor Diagnosis and TherapyFudan University Shanghai Medical CollegeShanghaiChina
| | - Linlin Zhang
- Department of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Institute of Clinical BioinformaticsZhongshan Hospital of Fudan UniversityShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Guang Xu
- Institute of Computer ScienceFudan UniversityShanghaiChina
| | - Rui Hou
- Shanghai Biotechnology CorporationShanghaiChina
| | - Yong Zhang
- Department of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Institute of Clinical BioinformaticsZhongshan Hospital of Fudan UniversityShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Jian Chen
- Shanghai Lung Cancer CenterShanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Yunfeng Cheng
- Jinshan Hospital Centre for Tumor Diagnosis and TherapyFudan University Shanghai Medical CollegeShanghaiChina
| | | | | | - Gang Chen
- Department of PathologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Duojiao Wu
- Department of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Institute of Clinical BioinformaticsZhongshan Hospital of Fudan UniversityShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Jinshan Hospital Centre for Tumor Diagnosis and TherapyFudan University Shanghai Medical CollegeShanghaiChina
| | - Tianxiang Chen
- Shanghai Lung Cancer CenterShanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| | | | - Xiangdong Wang
- Department of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Institute of Clinical BioinformaticsZhongshan Hospital of Fudan UniversityShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Jinshan Hospital Centre for Tumor Diagnosis and TherapyFudan University Shanghai Medical CollegeShanghaiChina
| |
Collapse
|
39
|
Peters B, Koppold-Liebscher DA, Schuppelius B, Steckhan N, Pfeiffer AFH, Kramer A, Michalsen A, Pivovarova-Ramich O. Effects of Early vs. Late Time-Restricted Eating on Cardiometabolic Health, Inflammation, and Sleep in Overweight and Obese Women: A Study Protocol for the ChronoFast Trial. Front Nutr 2021; 8:765543. [PMID: 34869534 PMCID: PMC8634676 DOI: 10.3389/fnut.2021.765543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/13/2021] [Indexed: 11/15/2022] Open
Abstract
Background: Time-restricted eating is a promising dietary strategy for weight loss, glucose and lipid metabolism improvements, and overall well-being. However, human studies demonstrated contradictory results for the restriction of food intake to the beginning (early TRE, eTRE) or to the end of the day (late TRE, lTRE) suggesting that more carefully controlled studies are needed. Objective: The aim of the ChronoFast trial study is to determine whether eTRE or lTRE is a better dietary approach to improve cardiometabolic health upon minimized calorie deficits and nearly stable body weight. Methods: Here, we present the study protocol of the randomized cross-over ChronoFast clinical trial comparing effects of 2 week eTRE (8:00 to 16:00 h) and lTRE (13:00 to 21:00 h) on insulin sensitivity and other glycemic traits, blood lipids, inflammation, and sleep quality in 30 women with overweight or obesity and increased risk of type 2 diabetes. To ensure timely compliance and unchanged dietary composition, and to minimize possible calorie deficits, real-time monitoring of dietary intake and body weight using a smartphone application, and extensive nutritional counseling are performed. Continuous glucose monitoring, oral glucose tolerance test, 24 h activity tracking, questionnaires, and gene expression analysis in adipose tissue and blood monocytes will be used for assessment of study outcomes. Discussion: The trial will determine whether eTRE or lTRE is more effective to improve cardiometabolic health, elucidate underlying mechanisms, and contribute to the development of recommendations for medical practice and the wider population. Clinical Trial Registration:www.ClinicalTrials.gov, Identifier [NCT04351672]
Collapse
Affiliation(s)
- Beeke Peters
- Research Group Molecular Nutritional Medicine, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,Institute of Human Nutrition and Food Science, Faculty of Agriculture and Food Sciences, Christian-Albrecht-University Kiel, Kiel, Germany
| | - Daniela A Koppold-Liebscher
- Institute of Social Medicine, Epidemiology and Health Economics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Bettina Schuppelius
- Research Group Molecular Nutritional Medicine, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Nico Steckhan
- Institute of Social Medicine, Epidemiology and Health Economics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Digital Health-Connected Healthcare, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
| | - Andreas F H Pfeiffer
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Achim Kramer
- Laboratory of Chronobiology, Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Andreas Michalsen
- Institute of Social Medicine, Epidemiology and Health Economics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Internal and Integrative Medicine, Immanuel Hospital Berlin, Berlin, Germany
| | - Olga Pivovarova-Ramich
- Research Group Molecular Nutritional Medicine, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
40
|
Age-Related Changes in Lipidome of Rat Frontal Cortex and Cerebellum Are Partially Reversed by Methionine Restriction Applied in Old Age. Int J Mol Sci 2021; 22:ijms222212517. [PMID: 34830402 PMCID: PMC8623997 DOI: 10.3390/ijms222212517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Lipids are closely associated with brain structure and function. However, the potential changes in the lipidome induced by aging remain to be elucidated. In this study, we used chromatographic techniques and a mass spectrometry-based approach to evaluate age-associated changes in the lipidome of the frontal cortex and cerebellum obtained from adult male Wistar rats (8 months), aged male Wistar rats (26 months), and aged male Wistar rats submitted to a methionine restriction diet (MetR)—as an anti-aging intervention—for 8 weeks. The outcomes revealed that only small changes (about 10%) were observed in the lipidome profile in the cerebellum and frontal cortex during aging, and these changes differed, in some cases, between regions. Furthermore, a MetR diet partially reversed the effects of the aging process. Remarkably, the most affected lipid classes were ether-triacylglycerols, diacylglycerols, phosphatidylethanolamine N-methylated, plasmalogens, ceramides, and cholesterol esters. When the fatty acid profile was analyzed, we observed that the frontal cortex is highly preserved during aging and maintained under MetR, whereas in the cerebellum minor changes (increased monounsaturated and decreased polyunsaturated contents) were observed and not reversed by MetR. We conclude that the rat cerebellum and frontal cortex have efficient mechanisms to preserve the lipid profile of their cell membranes throughout their adult lifespan in order to maintain brain structure and function. A part of the small changes that take place during aging can be reversed with a MetR diet applied in old age.
Collapse
|
41
|
Abstract
A molecular circadian clock exists not only in the brain, but also in most cells of the body. Research over the past two decades has demonstrated that it directs daily rhythmicity of nearly every aspect of metabolism. It also consolidates sleep-wake behavior each day into an activity/feeding period and a sleep/fasting period. Otherwise, sleep-wake states are mostly controlled by hypothalamic and thalamic regulatory circuits in the brain that direct overall brain state. Recent evidence suggests that hypothalamic control of appetite and metabolism may be concomitant with sleep-wake regulation, and even share the same control centers. Thus, circadian control of metabolic pathways might be overlaid by sleep-wake control of the same pathways, providing a flexible and redundant system to modify metabolism according to both activity and environment.
Collapse
|
42
|
Dan Z, Chen Y, Li H, Zeng Y, Xu W, Zhao W, He R, Huang W. The metabolomic landscape of rice heterosis highlights pathway biomarkers for predicting complex phenotypes. PLANT PHYSIOLOGY 2021; 187:1011-1025. [PMID: 34608951 PMCID: PMC8491067 DOI: 10.1093/plphys/kiab273] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Understanding the molecular mechanisms underlying complex phenotypes requires systematic analyses of complicated metabolic networks and contributes to improvements in the breeding efficiency of staple cereal crops and diagnostic accuracy for human diseases. Here, we selected rice (Oryza sativa) heterosis as a complex phenotype and investigated the mechanisms of both vegetative and reproductive traits using an untargeted metabolomics strategy. Heterosis-associated analytes were identified, and the overlapping analytes were shown to underlie the association patterns for six agronomic traits. The heterosis-associated analytes of four yield components and plant height collectively contributed to yield heterosis, and the degree of contribution differed among the five traits. We performed dysregulated network analyses of the high- and low-better parent heterosis hybrids and found multiple types of metabolic pathways involved in heterosis. The metabolite levels of the significantly enriched pathways (especially those from amino acid and carbohydrate metabolism) were predictive of yield heterosis (area under the curve = 0.907 with 10 features), and the predictability of these pathway biomarkers was validated with hybrids across environments and populations. Our findings elucidate the metabolomic landscape of rice heterosis and highlight the potential application of pathway biomarkers in achieving accurate predictions of complex phenotypes.
Collapse
Affiliation(s)
- Zhiwu Dan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, the Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yunping Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, the Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hui Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, the Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yafei Zeng
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, the Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wuwu Xu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, the Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Weibo Zhao
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, the Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ruifeng He
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6414, USA
| | - Wenchao Huang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, the Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
43
|
Greco CM, Koronowski KB, Smith JG, Shi J, Kunderfranco P, Carriero R, Chen S, Samad M, Welz PS, Zinna VM, Mortimer T, Chun SK, Shimaji K, Sato T, Petrus P, Kumar A, Vaca-Dempere M, Deryagian O, Van C, Kuhn JMM, Lutter D, Seldin MM, Masri S, Li W, Baldi P, Dyar KA, Muñoz-Cánoves P, Benitah SA, Sassone-Corsi P. Integration of feeding behavior by the liver circadian clock reveals network dependency of metabolic rhythms. SCIENCE ADVANCES 2021; 7:eabi7828. [PMID: 34550736 PMCID: PMC8457671 DOI: 10.1126/sciadv.abi7828] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/29/2021] [Indexed: 05/28/2023]
Abstract
The mammalian circadian clock, expressed throughout the brain and body, controls daily metabolic homeostasis. Clock function in peripheral tissues is required, but not sufficient, for this task. Because of the lack of specialized animal models, it is unclear how tissue clocks interact with extrinsic signals to drive molecular oscillations. Here, we isolated the interaction between feeding and the liver clock by reconstituting Bmal1 exclusively in hepatocytes (Liver-RE), in otherwise clock-less mice, and controlling timing of food intake. We found that the cooperative action of BMAL1 and the transcription factor CEBPB regulates daily liver metabolic transcriptional programs. Functionally, the liver clock and feeding rhythm are sufficient to drive temporal carbohydrate homeostasis. By contrast, liver rhythms tied to redox and lipid metabolism required communication with the skeletal muscle clock, demonstrating peripheral clock cross-talk. Our results highlight how the inner workings of the clock system rely on communicating signals to maintain daily metabolism.
Collapse
Affiliation(s)
- Carolina M. Greco
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Kevin B. Koronowski
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Jacob G. Smith
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Jiejun Shi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Paolo Kunderfranco
- Bioinformatics Unit, Humanitas Clinical and Research Center–IRCCS, Rozzano 20089, Italy
| | - Roberta Carriero
- Bioinformatics Unit, Humanitas Clinical and Research Center–IRCCS, Rozzano 20089, Italy
| | - Siwei Chen
- Institute for Genomics and Bioinformatics, Department of Computer Science, UCI, Irvine, CA 92697, USA
| | - Muntaha Samad
- Institute for Genomics and Bioinformatics, Department of Computer Science, UCI, Irvine, CA 92697, USA
| | - Patrick-Simon Welz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
- Program in Cancer Research, Hospital del Mar Medical Research Institute (IMIM), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Valentina M. Zinna
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Thomas Mortimer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Sung Kook Chun
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Kohei Shimaji
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Tomoki Sato
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Paul Petrus
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Arun Kumar
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona 08003, Spain
| | - Mireia Vaca-Dempere
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona 08003, Spain
| | - Oleg Deryagian
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona 08003, Spain
| | - Cassandra Van
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - José Manuel Monroy Kuhn
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Computational Discovery Research, Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, Neuherberg, Germany
| | - Dominik Lutter
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Computational Discovery Research, Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, Neuherberg, Germany
| | - Marcus M. Seldin
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Selma Masri
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Wei Li
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, Department of Computer Science, UCI, Irvine, CA 92697, USA
| | - Kenneth A. Dyar
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Metabolic Physiology, Institute for Diabetes and Cancer (IDC), Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Pura Muñoz-Cánoves
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona 08003, Spain
- Spanish National Center on Cardiovascular Research (CNIC), Madrid 28029, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
44
|
Aviram R, Adamovich Y, Asher G. Circadian Organelles: Rhythms at All Scales. Cells 2021; 10:2447. [PMID: 34572096 PMCID: PMC8469338 DOI: 10.3390/cells10092447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Circadian clocks have evolved in most light-sensitive organisms, from unicellular organisms to mammals. Consequently, a myriad of biological functions exhibits circadian rhythmicity, from behavior to physiology, through tissue and cellular functions to subcellular processes. Circadian rhythms in intracellular organelles are an emerging and exciting research arena. We summarize herein the current literature for rhythmicity in major intracellular organelles in mammals. These include changes in the morphology, content, and functions of different intracellular organelles. While these data highlight the presence of rhythmicity in these organelles, a gap remains in our knowledge regarding the underlying molecular mechanisms and their functional significance. Finally, we discuss the importance and challenges faced by spatio-temporal studies on these organelles and speculate on the presence of oscillators in organelles and their potential mode of communication. As circadian biology has been and continues to be studied throughout temporal and spatial axes, circadian organelles appear to be the next frontier.
Collapse
Affiliation(s)
| | | | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (R.A.); (Y.A.)
| |
Collapse
|
45
|
Yoon H, Shaw JL, Haigis MC, Greka A. Lipid metabolism in sickness and in health: Emerging regulators of lipotoxicity. Mol Cell 2021; 81:3708-3730. [PMID: 34547235 PMCID: PMC8620413 DOI: 10.1016/j.molcel.2021.08.027] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022]
Abstract
Lipids play crucial roles in signal transduction, contribute to the structural integrity of cellular membranes, and regulate energy metabolism. Questions remain as to which lipid species maintain metabolic homeostasis and which disrupt essential cellular functions, leading to metabolic disorders. Here, we discuss recent advances in understanding lipid metabolism with a focus on catabolism, synthesis, and signaling. Technical advances, including functional genomics, metabolomics, lipidomics, lipid-protein interaction maps, and advances in mass spectrometry, have uncovered new ways to prioritize molecular mechanisms mediating lipid function. By reviewing what is known about the distinct effects of specific lipid species in physiological pathways, we provide a framework for understanding newly identified targets regulating lipid homeostasis with implications for ameliorating metabolic diseases.
Collapse
Affiliation(s)
- Haejin Yoon
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Ludwig Center for Cancer Research at Harvard, Boston, MA 02115, USA
| | - Jillian L Shaw
- Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Ludwig Center for Cancer Research at Harvard, Boston, MA 02115, USA.
| | - Anna Greka
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
46
|
Elowe C, Tomanek L. Circadian and circatidal rhythms of protein abundance in the California mussel (Mytilus californianus). Mol Ecol 2021; 30:5151-5163. [PMID: 34390513 DOI: 10.1111/mec.16122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 11/26/2022]
Abstract
Coastal habitats fluctuate with the 12.4 h tidal and 24 h light/dark cycle to predictably alter conditions such as air exposure, temperature, and food availability. Intertidal sessile bivalves exhibit behavioral and physiological adjustments to minimize the challenges of this environment. We investigated a high-resolution time course of the changes in protein abundance in the gill tissue of the intertidal mussel Mytilus californianus in a simulated tidal environment of 12:12 h light:dark cycles and a matching 6:6 h high:low tide cycle within each 12 h period. Approximately 38% of detected proteins showed significant rhythms in their abundances, with diversity in the phases of rhythmic isoforms. The circadian rhythm was dominant in protein abundance changes, particularly with oxidative metabolism. A tidal cycle elicited changes within functional groups, including in cytoskeletal proteins, chaperones, and oxidative stress proteins. In addition to protein abundance changes, we found the possibility for post-translational modifications driving rhythms, including methylation, mitochondrial peptide processing (proteolysis), and acylation. Dynamic changes in the proteome across functional categories demonstrate the importance of the tidal environment in entraining cellular processes, confirming that differential expression studies should not assume a static baseline of cellular conditions in intertidal organisms.
Collapse
Affiliation(s)
- Cory Elowe
- California Polytechnic State University, Department of Biological Sciences Environmental Proteomics Laboratory, Grand Avenue San Luis Obispo, CA, USA
| | - Lars Tomanek
- California Polytechnic State University, Department of Biological Sciences Environmental Proteomics Laboratory, Grand Avenue San Luis Obispo, CA, USA
| |
Collapse
|
47
|
Furse S, Williams HEL, Watkins AJ, Virtue S, Vidal-Puig A, Amarsi R, Charalambous M, Koulman A. A pipeline for making 31P NMR accessible for small- and large-scale lipidomics studies. Anal Bioanal Chem 2021; 413:4763-4773. [PMID: 34254158 PMCID: PMC8318958 DOI: 10.1007/s00216-021-03430-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/05/2021] [Accepted: 05/22/2021] [Indexed: 01/02/2023]
Abstract
Detailed molecular analysis is of increasing importance in research into the regulation of biochemical pathways, organismal growth and disease. Lipidomics in particular is increasingly sought after as it provides insight into molecular species involved in energy storage, signalling and fundamental cellular structures. This has led to the use of a range of tools and techniques to acquire lipidomics data. 31P NMR for lipidomics offers well-resolved head group/lipid class analysis, structural data that can be used to inform and strengthen interpretation of mass spectrometry data and part of a priori structural determination. In the present study, we codify the use of 31P NMR for lipidomics studies to make the technique more accessible to new users and more useful for a wider range of questions. The technique can be used in isolation (phospholipidomics) or as a part of determining lipid composition (lipidomics). We describe the process from sample extraction to data processing and analysis. This pipeline is important because it allows greater thoroughness in lipidomics studies and increases scope for answering scientific questions about lipid-containing systems.
Collapse
Affiliation(s)
- Samuel Furse
- Core Metabolomics and Lipidomics Laboratory, Wellcome Trust-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Metabolic Disease Unit, Wellcome Trust-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Biological Chemistry Group, Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, TW9 3AE, UK.
| | - Huw E L Williams
- Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Adam J Watkins
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Samuel Virtue
- Metabolic Disease Unit, Wellcome Trust-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Antonio Vidal-Puig
- Metabolic Disease Unit, Wellcome Trust-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Risha Amarsi
- Department of Medical and Molecular Genetics, King's College London, Guys Hospital, WC2R 2LS, London, UK
| | - Marika Charalambous
- Department of Medical and Molecular Genetics, King's College London, Guys Hospital, WC2R 2LS, London, UK
| | - Albert Koulman
- Core Metabolomics and Lipidomics Laboratory, Wellcome Trust-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Metabolic Disease Unit, Wellcome Trust-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
48
|
Burchett JB, Knudsen-Clark AM, Altman BJ. MYC Ran Up the Clock: The Complex Interplay between MYC and the Molecular Circadian Clock in Cancer. Int J Mol Sci 2021; 22:7761. [PMID: 34299381 PMCID: PMC8305799 DOI: 10.3390/ijms22147761] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/02/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
The MYC oncoprotein and its family members N-MYC and L-MYC are known to drive a wide variety of human cancers. Emerging evidence suggests that MYC has a bi-directional relationship with the molecular clock in cancer. The molecular clock is responsible for circadian (~24 h) rhythms in most eukaryotic cells and organisms, as a mechanism to adapt to light/dark cycles. Disruption of human circadian rhythms, such as through shift work, may serve as a risk factor for cancer, but connections with oncogenic drivers such as MYC were previously not well understood. In this review, we examine recent evidence that MYC in cancer cells can disrupt the molecular clock; and conversely, that molecular clock disruption in cancer can deregulate and elevate MYC. Since MYC and the molecular clock control many of the same processes, we then consider competition between MYC and the molecular clock in several select aspects of tumor biology, including chromatin state, global transcriptional profile, metabolic rewiring, and immune infiltrate in the tumor. Finally, we discuss how the molecular clock can be monitored or diagnosed in human tumors, and how MYC inhibition could potentially restore molecular clock function. Further study of the relationship between the molecular clock and MYC in cancer may reveal previously unsuspected vulnerabilities which could lead to new treatment strategies.
Collapse
Affiliation(s)
- Jamison B. Burchett
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Amelia M. Knudsen-Clark
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Brian J. Altman
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA;
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
49
|
Changes in Key Mitochondrial Lipids Accompany Mitochondrial Dysfunction and Oxidative Stress in NAFLD. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9986299. [PMID: 34257827 PMCID: PMC8257344 DOI: 10.1155/2021/9986299] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/06/2021] [Indexed: 12/30/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a dysmetabolic hepatic damage of increasing severity: simple fat accumulation (steatosis), nonalcoholic steatohepatitis (NASH), and hepatic fibrosis. Oxidative stress is considered an important factor in producing hepatocyte injury associated with NAFLD progression. Studies also suggest a link between the accumulation of specific hepatic lipid species, mitochondrial dysfunction, and the progression of NAFLD. However, it is unclear whether mitochondrial lipid modifications are involved in NAFLD progression. To gain insight into the relationship between mitochondrial lipids and disease progression through different stages of NAFLD, we performed lipidomic analyses on mouse livers at different stages of western diet-induced NAFLD, with or without hepatic fibrosis. After organelle separation, we studied separately the mitochondrial and the “nonmitochondrial” hepatic lipidomes. We identified 719 lipid species from 16 lipid families. Remarkably, the western diet triggered time-dependent changes in the mitochondrial lipidome, whereas the “nonmitochondrial” lipidome showed little difference with levels of hepatic steatosis or the presence of fibrosis. In mitochondria, the changes in the lipidome preceded hepatic fibrosis. In particular, two critical phospholipids, phosphatidic acid (PA) and cardiolipin (CL), displayed opposite responses in mitochondria. Decrease in CL and increase in PA were concurrent with an increase of coenzyme Q. Electron paramagnetic resonance spectroscopy superoxide spin trapping and Cu2+ measurement showed the progressive increase in oxidative stress in the liver. Overall, these results suggest mitochondrial lipid modifications could act as an early event in mitochondrial dysfunction and NAFLD progression.
Collapse
|
50
|
Fitz NF, Nam KN, Wolfe CM, Letronne F, Playso BE, Iordanova BE, Kozai TDY, Biedrzycki RJ, Kagan VE, Tyurina YY, Han X, Lefterov I, Koldamova R. Phospholipids of APOE lipoproteins activate microglia in an isoform-specific manner in preclinical models of Alzheimer's disease. Nat Commun 2021; 12:3416. [PMID: 34099706 PMCID: PMC8184801 DOI: 10.1038/s41467-021-23762-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
APOE and Trem2 are major genetic risk factors for Alzheimer's disease (AD), but how they affect microglia response to Aβ remains unclear. Here we report an APOE isoform-specific phospholipid signature with correlation between human APOEε3/3 and APOEε4/4 AD brain and lipoproteins from astrocyte conditioned media of APOE3 and APOE4 mice. Using preclinical AD mouse models, we show that APOE3 lipoproteins, unlike APOE4, induce faster microglial migration towards injected Aβ, facilitate Aβ uptake, and ameliorate Aβ effects on cognition. Bulk and single-cell RNA-seq demonstrate that, compared to APOE4, cortical infusion of APOE3 lipoproteins upregulates a higher proportion of genes linked to an activated microglia response, and this trend is augmented by TREM2 deficiency. In vitro, lack of TREM2 decreases Aβ uptake by APOE4-treated microglia only, suggesting TREM2-APOE interaction. Our study elucidates phenotypic and transcriptional differences in microglial response to Aβ mediated by APOE3 or APOE4 lipoproteins in preclinical models of AD.
Collapse
Affiliation(s)
- Nicholas F Fitz
- Deparment of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kyong Nyon Nam
- Deparment of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cody M Wolfe
- Deparment of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Florent Letronne
- Deparment of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brittany E Playso
- Deparment of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bistra E Iordanova
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Richard J Biedrzycki
- Deparment of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E Kagan
- Deparment of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yulia Y Tyurina
- Deparment of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Iliya Lefterov
- Deparment of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Radosveta Koldamova
- Deparment of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|