1
|
Richard Albert J, Urli T, Monteagudo-Sánchez A, Le Breton A, Sultanova A, David A, Scarpa M, Schulz M, Greenberg MVC. DNA methylation shapes the Polycomb landscape during the exit from naive pluripotency. Nat Struct Mol Biol 2025; 32:346-357. [PMID: 39448850 DOI: 10.1038/s41594-024-01405-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
In mammals, 5-methylcytosine (5mC) and Polycomb repressive complex 2 (PRC2)-deposited histone 3 lysine 27 trimethylation (H3K27me3) are generally mutually exclusive at CpG-rich regions. As mouse embryonic stem cells exit the naive pluripotent state, there is massive gain of 5mC concomitantly with restriction of broad H3K27me3 to 5mC-free, CpG-rich regions. To formally assess how 5mC shapes the H3K27me3 landscape, we profiled the epigenome of naive and differentiated cells in the presence and absence of the DNA methylation machinery. Surprisingly, we found that 5mC accumulation is not required to restrict most H3K27me3 domains. Instead, this 5mC-independent H3K27me3 restriction is mediated by aberrant expression of the PRC2 antagonist Ezhip (encoding EZH inhibitory protein). At the subset of regions where 5mC appears to genuinely supplant H3K27me3, we identified 163 candidate genes that appeared to require 5mC deposition and/or H3K27me3 depletion for their activation in differentiated cells. Using site-directed epigenome editing to directly modulate 5mC levels, we demonstrated that 5mC deposition is sufficient to antagonize H3K27me3 deposition and confer gene activation at individual candidates. Altogether, we systematically measured the antagonistic interplay between 5mC and H3K27me3 in a system that recapitulates early embryonic dynamics. Our results suggest that H3K27me3 restraint depends on 5mC, both directly and indirectly. Our study also implies a noncanonical role of 5mC in gene activation, which may be important not only for normal development but also for cancer progression, as oncogenic cells frequently exhibit dynamic replacement of 5mC for H3K27me3 and vice versa.
Collapse
Affiliation(s)
| | - Teresa Urli
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Ana Monteagudo-Sánchez
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Carlos Simon Foundation, INCLIVA Health Research Institute, Valencia, Spain
| | - Anna Le Breton
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Amina Sultanova
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Development and Disease Research Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Angélique David
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | | - Mathieu Schulz
- Institut Curie, PSL Research University, INSERM U934, CNRS, UMR3215, Paris, France
- Department of Pathology and Cell Biology, Faculty of Medicine, University of Montreal Hospital Research Centre, Montréal, Québec, Canada
| | | |
Collapse
|
2
|
Monteagudo-Sánchez A, Richard Albert J, Scarpa M, Noordermeer D, Greenberg MC. The impact of the embryonic DNA methylation program on CTCF-mediated genome regulation. Nucleic Acids Res 2024; 52:10934-10950. [PMID: 39180406 PMCID: PMC11472158 DOI: 10.1093/nar/gkae724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/23/2024] [Accepted: 08/21/2024] [Indexed: 08/26/2024] Open
Abstract
During mammalian embryogenesis, both the 5-cytosine DNA methylation (5meC) landscape and three dimensional (3D) chromatin architecture are profoundly remodeled during a process known as 'epigenetic reprogramming.' An understudied aspect of epigenetic reprogramming is how the 5meC flux, per se, affects the 3D genome. This is pertinent given the 5meC-sensitivity of DNA binding for a key regulator of chromosome folding: CTCF. We profiled the CTCF binding landscape using a mouse embryonic stem cell (ESC) differentiation protocol that models embryonic 5meC dynamics. Mouse ESCs lacking DNA methylation machinery are able to exit naive pluripotency, thus allowing for dissection of subtle effects of CTCF on gene expression. We performed CTCF HiChIP in both wild-type and mutant conditions to assess gained CTCF-CTCF contacts in the absence of 5meC. We performed H3K27ac HiChIP to determine the impact that ectopic CTCF binding has on cis-regulatory contacts. Using 5meC epigenome editing, we demonstrated that the methyl-mark is able to impair CTCF binding at select loci. Finally, a detailed dissection of the imprinted Zdbf2 locus showed how 5meC-antagonism of CTCF allows for proper gene regulation during differentiation. This work provides a comprehensive overview of how 5meC impacts the 3D genome in a relevant model for early embryonic events.
Collapse
Affiliation(s)
| | | | - Margherita Scarpa
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Daan Noordermeer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91998 Gif-sur-Yvette, France
| | | |
Collapse
|
3
|
Massafret O, Barragán M, Álvarez-González L, Aran B, Martín-Mur B, Esteve-Codina A, Ruiz-Herrera A, Ibáñez E, Santaló J. The pluripotency state of human embryonic stem cells derived from single blastomeres of eight-cell embryos. Cells Dev 2024; 179:203935. [PMID: 38914137 DOI: 10.1016/j.cdev.2024.203935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Human embryonic stem cells (hESCs) derived from blastocyst stage embryos present a primed state of pluripotency, whereas mouse ESCs (mESCs) display naïve pluripotency. Their unique characteristics make naïve hESCs more suitable for particular applications in biomedical research. This work aimed to derive hESCs from single blastomeres and determine their pluripotency state, which is currently unclear. We derived hESC lines from single blastomeres of 8-cell embryos and from whole blastocysts, and analysed several naïve pluripotency indicators, their transcriptomic profile and their trilineage differentiation potential. No significant differences were observed between blastomere-derived hESCs (bm-hESCs) and blastocyst-derived hESCs (bc-hESCs) for most naïve pluripotency indicators, including TFE3 localization, mitochondrial activity, and global DNA methylation and hydroxymethylation, nor for their trilineage differentiation potential. Nevertheless, bm-hESCs showed an increased single-cell clonogenicity and a higher expression of naïve pluripotency markers at early passages than bc-hESCs. Furthermore, RNA-seq revealed that bc-hESCs overexpressed a set of genes related to the post-implantational epiblast. Altogether, these results suggest that bm-hESCs, although displaying primed pluripotency, would be slightly closer to the naïve end of the pluripotency continuum than bc-hESCs.
Collapse
Affiliation(s)
- Ot Massafret
- Genome Integrity and Reproductive Biology Group, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Bioengineering in Reproductive Health, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Montserrat Barragán
- Basic Research Laboratory, Eugin Group, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Lucía Álvarez-González
- Genome Integrity and Reproductive Biology Group, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Begoña Aran
- Stem Cell Bank, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
| | - Beatriz Martín-Mur
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Aurora Ruiz-Herrera
- Genome Integrity and Reproductive Biology Group, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Elena Ibáñez
- Genome Integrity and Reproductive Biology Group, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Josep Santaló
- Genome Integrity and Reproductive Biology Group, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
4
|
Chialastri A, Sarkar S, Schauer EE, Lamba S, Dey SS. Combinatorial quantification of 5mC and 5hmC at individual CpG dyads and the transcriptome in single cells reveals modulators of DNA methylation maintenance fidelity. Nat Struct Mol Biol 2024; 31:1296-1308. [PMID: 38671229 DOI: 10.1038/s41594-024-01291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Inheritance of 5-methylcytosine from one cell generation to the next by DNA methyltransferase 1 (DNMT1) plays a key role in regulating cellular identity. While recent work has shown that the activity of DNMT1 is imprecise, it remains unclear how the fidelity of DNMT1 is tuned in different genomic and cell state contexts. Here we describe Dyad-seq, a method to quantify the genome-wide methylation status of cytosines at the resolution of individual CpG dinucleotides to find that the fidelity of DNMT1-mediated maintenance methylation is related to the local density of DNA methylation and the landscape of histone modifications. To gain deeper insights into methylation/demethylation turnover dynamics, we first extended Dyad-seq to quantify all combinations of 5-methylcytosine and 5-hydroxymethylcytosine at individual CpG dyads. Next, to understand how cell state transitions impact maintenance methylation, we scaled the method down to jointly profile genome-wide methylation levels, maintenance methylation fidelity and the transcriptome from single cells (scDyad&T-seq). Using scDyad&T-seq, we demonstrate that, while distinct cell states can substantially impact the activity of the maintenance methylation machinery, locally there exists an intrinsic relationship between DNA methylation density, histone modifications and DNMT1-mediated maintenance methylation fidelity that is independent of cell state.
Collapse
Affiliation(s)
- Alex Chialastri
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Bioengineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Saumya Sarkar
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Bioengineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Elizabeth E Schauer
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Bioengineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Shyl Lamba
- Department of Mathematics, University of California Los Angeles, Los Angeles, CA, USA
| | - Siddharth S Dey
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA.
- Department of Bioengineering, University of California Santa Barbara, Santa Barbara, CA, USA.
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
5
|
Shiraishi N, Konuma T, Chiba Y, Hokazono S, Nakamura N, Islam MH, Nakanishi M, Nishiyama A, Arita K. Structure of human DPPA3 bound to the UHRF1 PHD finger reveals its functional and structural differences from mouse DPPA3. Commun Biol 2024; 7:746. [PMID: 38898124 PMCID: PMC11187062 DOI: 10.1038/s42003-024-06434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
DNA methylation maintenance is essential for cell fate inheritance. In differentiated cells, this involves orchestrated actions of DNMT1 and UHRF1. In mice, the high-affinity binding of DPPA3 to the UHRF1 PHD finger regulates UHRF1 chromatin dissociation and cytosolic localization, which is required for oocyte maturation and early embryo development. However, the human DPPA3 ortholog functions during these stages remain unclear. Here, we report the structural basis for human DPPA3 binding to the UHRF1 PHD finger. The conserved human DPPA3 85VRT87 motif binds to the acidic surface of UHRF1 PHD finger, whereas mouse DPPA3 binding additionally utilizes two unique α-helices. The binding affinity of human DPPA3 for the UHRF1 PHD finger was weaker than that of mouse DPPA3. Consequently, human DPPA3, unlike mouse DPPA3, failed to inhibit UHRF1 chromatin binding and DNA remethylation in Xenopus egg extracts effectively. Our data provide novel insights into the distinct function and structure of human DPPA3.
Collapse
Affiliation(s)
- Nao Shiraishi
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Tsuyoshi Konuma
- Structural Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yoshie Chiba
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Sayaka Hokazono
- Structural Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Nao Nakamura
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Md Hadiul Islam
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Kyohei Arita
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
6
|
Kriukienė E, Tomkuvienė M, Klimašauskas S. 5-Hydroxymethylcytosine: the many faces of the sixth base of mammalian DNA. Chem Soc Rev 2024; 53:2264-2283. [PMID: 38205583 DOI: 10.1039/d3cs00858d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Epigenetic phenomena play a central role in cell regulatory processes and are important factors for understanding complex human disease. One of the best understood epigenetic mechanisms is DNA methylation. In the mammalian genome, cytosines (C) in CpG dinucleotides were long known to undergo methylation at the 5-position of the pyrimidine ring (mC). Later it was found that mC can be oxidized to 5-hydroxymethylcytosine (hmC) or even further to 5-formylcytosine (fC) and to 5-carboxylcytosine (caC) by the action of 2-oxoglutarate-dependent dioxygenases of the TET family. These findings unveiled a long elusive mechanism of active DNA demethylation and bolstered a wave of studies in the area of epigenetic regulation in mammals. This review is dedicated to critical assessment of recent data on biochemical and chemical aspects of the formation and conversion of hmC in DNA, analytical techniques used for detection and mapping of this nucleobase in mammalian genomes as well as epigenetic roles of hmC in DNA replication, transcription, cell differentiation and human disease.
Collapse
Affiliation(s)
- Edita Kriukienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Miglė Tomkuvienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Saulius Klimašauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
7
|
Rupasinghe M, Bersaglieri C, Leslie Pedrioli DM, Pedrioli PG, Panatta M, Hottiger MO, Cinelli P, Santoro R. PRAMEL7 and CUL2 decrease NuRD stability to establish ground-state pluripotency. EMBO Rep 2024; 25:1453-1468. [PMID: 38332149 PMCID: PMC10933316 DOI: 10.1038/s44319-024-00083-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Pluripotency is established in E4.5 preimplantation epiblast. Embryonic stem cells (ESCs) represent the immortalization of pluripotency, however, their gene expression signature only partially resembles that of developmental ground-state. Induced PRAMEL7 expression, a protein highly expressed in the ICM but lowly expressed in ESCs, reprograms developmentally advanced ESC+serum into ground-state pluripotency by inducing a gene expression signature close to developmental ground-state. However, how PRAMEL7 reprograms gene expression remains elusive. Here we show that PRAMEL7 associates with Cullin2 (CUL2) and this interaction is required to establish ground-state gene expression. PRAMEL7 recruits CUL2 to chromatin and targets regulators of repressive chromatin, including the NuRD complex, for proteasomal degradation. PRAMEL7 antagonizes NuRD-mediated repression of genes implicated in pluripotency by decreasing NuRD stability and promoter association in a CUL2-dependent manner. Our data link proteasome degradation pathways to ground-state gene expression, offering insights to generate in vitro models to reproduce the in vivo ground-state pluripotency.
Collapse
Affiliation(s)
- Meneka Rupasinghe
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, 8057, Zurich, Switzerland
- Molecular Life Science Program, Life Science Zurich Graduate School, University of Zurich, 8057, Zurich, Switzerland
| | - Cristiana Bersaglieri
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, 8057, Zurich, Switzerland
| | - Deena M Leslie Pedrioli
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, 8057, Zurich, Switzerland
| | - Patrick Ga Pedrioli
- Department of Health Sciences and Technology, ETH Zurich, 8093, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Martina Panatta
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, 8057, Zurich, Switzerland
- RNA Biology Program, Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, 8057, Zurich, Switzerland
| | - Paolo Cinelli
- Department of Trauma Surgery, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Raffaella Santoro
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
8
|
Bruno S, Schlaeger TM, Del Vecchio D. Epigenetic OCT4 regulatory network: stochastic analysis of cellular reprogramming. NPJ Syst Biol Appl 2024; 10:3. [PMID: 38184707 PMCID: PMC10771499 DOI: 10.1038/s41540-023-00326-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/08/2023] [Indexed: 01/08/2024] Open
Abstract
Experimental studies have shown that chromatin modifiers have a critical effect on cellular reprogramming, i.e., the conversion of differentiated cells to pluripotent stem cells. Here, we develop a model of the OCT4 gene regulatory network that includes genes expressing chromatin modifiers TET1 and JMJD2, and the chromatin modification circuit on which these modifiers act. We employ this model to compare three reprogramming approaches that have been considered in the literature with respect to reprogramming efficiency and latency variability. These approaches are overexpression of OCT4 alone, overexpression of OCT4 with TET1, and overexpression of OCT4 with JMJD2. Our results show more efficient and less variable reprogramming when also JMJD2 and TET1 are overexpressed, consistent with previous experimental data. Nevertheless, TET1 overexpression can lead to more efficient reprogramming compared to JMJD2 overexpression. This is the case when the recruitment of DNA methylation by H3K9me3 is weak and the methyl-CpG-binding domain (MBD) proteins are sufficiently scarce such that they do not hamper TET1 binding to methylated DNA. The model that we developed provides a mechanistic understanding of existing experimental results and is also a tool for designing optimized reprogramming approaches that combine overexpression of cell-fate specific transcription factors (TFs) with targeted recruitment of epigenetic modifiers.
Collapse
Affiliation(s)
- Simone Bruno
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Thorsten M Schlaeger
- Boston Children's Hospital Stem Cell Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Domitilla Del Vecchio
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
9
|
Fatima N, Saif Ur Rahman M, Qasim M, Ali Ashfaq U, Ahmed U, Masoud MS. Transcriptional Factors Mediated Reprogramming to Pluripotency. Curr Stem Cell Res Ther 2024; 19:367-388. [PMID: 37073151 DOI: 10.2174/1574888x18666230417084518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 04/20/2023]
Abstract
A unique kind of pluripotent cell, i.e., Induced pluripotent stem cells (iPSCs), now being targeted for iPSC synthesis, are produced by reprogramming animal and human differentiated cells (with no change in genetic makeup for the sake of high efficacy iPSCs formation). The conversion of specific cells to iPSCs has revolutionized stem cell research by making pluripotent cells more controllable for regenerative therapy. For the past 15 years, somatic cell reprogramming to pluripotency with force expression of specified factors has been a fascinating field of biomedical study. For that technological primary viewpoint reprogramming method, a cocktail of four transcription factors (TF) has required: Kruppel-like factor 4 (KLF4), four-octamer binding protein 34 (OCT3/4), MYC and SOX2 (together referred to as OSKM) and host cells. IPS cells have great potential for future tissue replacement treatments because of their ability to self-renew and specialize in all adult cell types, although factor-mediated reprogramming mechanisms are still poorly understood medically. This technique has dramatically improved performance and efficiency, making it more useful in drug discovery, disease remodeling, and regenerative medicine. Moreover, in these four TF cocktails, more than 30 reprogramming combinations were proposed, but for reprogramming effectiveness, only a few numbers have been demonstrated for the somatic cells of humans and mice. Stoichiometry, a combination of reprogramming agents and chromatin remodeling compounds, impacts kinetics, quality, and efficiency in stem cell research.
Collapse
Affiliation(s)
- Nazira Fatima
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Muhammad Saif Ur Rahman
- Institute of Advanced Studies, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Uzair Ahmed
- EMBL Partnership Institute for Genome Editing Technologies, Vilnius University, Vilnius, 10257, Lithuania
| | - Muhammad Shareef Masoud
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|
10
|
Mishra MK, Gupta S, Shivangi, Sharma M, Sehgal S. The repertoire of mutational signatures in tobacco- and non-tobacco-induced oral cancer. Clin Transl Oncol 2023; 25:3332-3344. [PMID: 37058208 DOI: 10.1007/s12094-023-03192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
The use of tobacco products is one of the established contributors toward the development and spread of oral cancer. Additionally, recent research has indicated oral microbiome, infections with Human papilloma virus (HPV), Epstein-Barr virus (EBV), Candida as significant contributing factors to this disease along with lifestyle habits. Deregulation of cellular pathways envisaging metabolism, transcription, translation, and epigenetics caused by these risk factors either individually or in unison is manifold, resulting in the increased risk of oral cancer. Globally, this cancer continues to exist as one of the major causes of cancer-related mortalities; the numbers in the developing South Asian countries clearly indicate yearly escalation. This review encompasses the variety of genetic modifications, including adduct formation, mutation (duplication, deletion, and translocation), and epigenetic changes evident in oral squamous cell carcinoma (OSCC). In addition, it highlights the interference caused by tobacco products in Wnt signaling, PI3K/Akt/mTOR, JAK-STAT, and other important pathways. The information provided also ensures a comprehensive and critical revisit to non-tobacco-induced OSCC. Extensive literature survey and analysis has been conducted to generate the chromosome maps specifically highlighting OSCC-related mutations with the potential to act as spectacles for the early diagnosis and targeted treatment of this disease cancer.
Collapse
Affiliation(s)
- Manish Kumar Mishra
- Centre for Molecular Biology, Central University of Jammu, Jammu, J&K, India
| | - Sachin Gupta
- Department of ENT and Head and Neck Surgery, ASCOMS, Jammu, J&K, India
| | - Shivangi
- Centre for Molecular Biology, Central University of Jammu, Jammu, J&K, India
| | - Manshi Sharma
- Centre for Molecular Biology, Central University of Jammu, Jammu, J&K, India
| | - Shelly Sehgal
- Centre for Molecular Biology, Central University of Jammu, Jammu, J&K, India.
| |
Collapse
|
11
|
Hong T, Li J, Guo L, Cavalier M, Wang T, Dou Y, DeLaFuente A, Fang S, Guzman A, Wohlan K, Kapadia C, Rosas C, Yang Y, Yin CC, Li S, You MJ, Cheng X, Goodell MA, Zhou Y, Huang Y. TET2 modulates spatial relocalization of heterochromatin in aged hematopoietic stem and progenitor cells. NATURE AGING 2023; 3:1387-1400. [PMID: 37884767 PMCID: PMC11209854 DOI: 10.1038/s43587-023-00505-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/21/2023] [Indexed: 10/28/2023]
Abstract
DNA methylation deregulation at partially methylated domains (PMDs) represents an epigenetic signature of aging and cancer, yet the underlying molecular basis and resulting biological consequences remain unresolved. We report herein a mechanistic link between disrupted DNA methylation at PMDs and the spatial relocalization of H3K9me3-marked heterochromatin in aged hematopoietic stem and progenitor cells (HSPCs) or those with impaired DNA methylation. We uncover that TET2 modulates the spatial redistribution of H3K9me3-marked heterochromatin to mediate the upregulation of endogenous retroviruses (ERVs) and interferon-stimulated genes (ISGs), hence contributing to functional decline of aged HSPCs. TET2-deficient HSPCs retain perinuclear distribution of heterochromatin and exhibit age-related clonal expansion. Reverse transcriptase inhibitors suppress ERVs and ISGs expression, thereby restoring age-related defects in aged HSPCs. Collectively, our findings deepen the understanding of the functional interplay between DNA methylation and histone modifications, which is vital for maintaining heterochromatin function and safeguarding genome stability in stem cells.
Collapse
Affiliation(s)
- Tingting Hong
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Jia Li
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
- State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Lei Guo
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Maryn Cavalier
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Tianlu Wang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Yaling Dou
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Aaron DeLaFuente
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Shaohai Fang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Anna Guzman
- Department of Molecular Cell Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Katherina Wohlan
- Department of Molecular Cell Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Chiraag Kapadia
- Department of Molecular Cell Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Carina Rosas
- Department of Molecular Cell Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Yaling Yang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - C Cameron Yin
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shaoying Li
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M James You
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Margaret A Goodell
- Department of Molecular Cell Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Yubin Zhou
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA.
| | - Yun Huang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA.
| |
Collapse
|
12
|
Xiong X, Yang M, Hai Z, Fei X, Zhu Y, Pan B, Yang Q, Xie Y, Cheng Y, Xiong Y, Lan D, Fu W, Li J. Maternal Kdm2a-mediated PI3K/Akt signaling and E-cadherin stimulate the morula-to-blastocyst transition revealing crucial roles in early embryonic development. Theriogenology 2023; 209:60-75. [PMID: 37356280 DOI: 10.1016/j.theriogenology.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Histone methylation plays an essential role in oocyte growth and preimplantation embryonic development. The modification relies on histone methyl-transferases and demethylases, and one of these, lysine-specific demethylase 2a (Kdm2a), is responsible for modulating histone methylation during oocyte and early embryonic development. The mechanism of how Kdm2a deficiency disrupts early embryonic development and fertility remains elusive. To determine if maternally deposited Kdm2a is required for preimplantation embryonic development, the expression profile of Kdm2a during early embryos was detected via immunofluorescence staining and RT-qPCR. The Kdm2a gene in oocytes was specifically deleted with the Zp3-Cre/LoxP system and the effects of maternal Kdm2a loss were studied through a comprehensive range of female reproductive parameters including fertilization, embryo development, and the number of births. RNA transcriptome sequencing was performed to determine differential mRNA expression, and the interaction between Kdm2a and the PI3K/Akt pathway was studied with a specific inhibitor and activator. Our results revealed that Kdm2a was continuously expressed in preimplantation embryos and loss of maternal Kdm2a suppressed the morula-to-blastocyst transition, which may have been responsible for female subfertility. After the deletion of Kdm2a, the global H3K36me2 methylation in mutant embryos was markedly increased, but the expression of E-cadherin decreased significantly in morula embryos compared to controls. Mechanistically, RNA-seq analysis revealed that deficiency of maternal Kdm2a altered the mRNA expression profile, especially in the PI3K/Akt signaling pathway. Interestingly, the addition of a PI3K/Akt inhibitor (LY294002) to the culture medium blocked embryo development at the stage of morula; however, the developmental block caused by maternal Kdm2a loss was partially rescued with a PI3K/Akt activator (SC79). In summary, our results indicate that loss of Kdm2a influences the transcriptome profile and disrupts the PI3K/Akt signaling pathway during the development of preimplantation embryo. This can result in embryo block at the morula stage and female subfertility, which suggests that maternal Kdm2a is a potential partial redundancy with other genes encoding enzymes in the dynamics of early embryonic development. Our results provide further insight into the role of histone modification, especially on Kdm2a, in preimplantation embryonic development in mice.
Collapse
Affiliation(s)
- Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Manzhen Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Zhuo Hai
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Xixi Fei
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Yanjin Zhu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Bangting Pan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Qinhui Yang
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Yumian Xie
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Yuying Cheng
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Daoliang Lan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Wei Fu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Eachus H, Oberski L, Paveley J, Bacila I, Ashton JP, Esposito U, Seifuddin F, Pirooznia M, Elhaik E, Placzek M, Krone NP, Cunliffe VT. Glucocorticoid receptor regulates protein chaperone, circadian clock and affective disorder genes in the zebrafish brain. Dis Model Mech 2023; 16:dmm050141. [PMID: 37525888 PMCID: PMC10565112 DOI: 10.1242/dmm.050141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023] Open
Abstract
Glucocorticoid resistance is commonly observed in depression, and has been linked to reduced expression and/or function of the glucocorticoid receptor (NR3C1 in human, hereafter referred to as GR). Previous studies have shown that GR-mutant zebrafish exhibit behavioural abnormalities that are indicative of an affective disorder, suggesting that GR plays a role in brain function. We compared the brain methylomes and brain transcriptomes of adult wild-type and GR-mutant zebrafish, and identified 249 differentially methylated regions (DMRs) that are regulated by GR. These include a cluster of CpG sites within the first intron of fkbp5, the gene encoding the glucocorticoid-inducible heat shock protein co-chaperone Fkbp5. RNA-sequencing analysis revealed that genes associated with chaperone-mediated protein folding, the regulation of circadian rhythm and the regulation of metabolism are particularly sensitive to loss of GR function. In addition, we identified subsets of genes exhibiting GR-regulated transcription that are known to regulate behaviour, and are linked to unipolar depression and anxiety. Taken together, our results identify key biological processes and novel molecular mechanisms through which the GR is likely to mediate responses to stress in the adult zebrafish brain, and they provide further support for the zebrafish GR mutant as a model for the study of affective disorders.
Collapse
Affiliation(s)
- Helen Eachus
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Lara Oberski
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Jack Paveley
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Irina Bacila
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - John-Paul Ashton
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Umberto Esposito
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Fayaz Seifuddin
- Bioinformatics and Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Building 12, 12 South Drive, Bethesda, MD 20892, USA
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Building 12, 12 South Drive, Bethesda, MD 20892, USA
| | - Eran Elhaik
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Marysia Placzek
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Nils P. Krone
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Vincent T. Cunliffe
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
14
|
Hoetker MS, Yagi M, Di Stefano B, Langerman J, Cristea S, Wong LP, Huebner AJ, Charlton J, Deng W, Haggerty C, Sadreyev RI, Meissner A, Michor F, Plath K, Hochedlinger K. H3K36 methylation maintains cell identity by regulating opposing lineage programmes. Nat Cell Biol 2023; 25:1121-1134. [PMID: 37460697 PMCID: PMC10896483 DOI: 10.1038/s41556-023-01191-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/19/2023] [Indexed: 08/12/2023]
Abstract
The epigenetic mechanisms that maintain differentiated cell states remain incompletely understood. Here we employed histone mutants to uncover a crucial role for H3K36 methylation in the maintenance of cell identities across diverse developmental contexts. Focusing on the experimental induction of pluripotency, we show that H3K36M-mediated depletion of H3K36 methylation endows fibroblasts with a plastic state poised to acquire pluripotency in nearly all cells. At a cellular level, H3K36M facilitates epithelial plasticity by rendering fibroblasts insensitive to TGFβ signals. At a molecular level, H3K36M enables the decommissioning of mesenchymal enhancers and the parallel activation of epithelial/stem cell enhancers. This enhancer rewiring is Tet dependent and redirects Sox2 from promiscuous somatic to pluripotency targets. Our findings reveal a previously unappreciated dual role for H3K36 methylation in the maintenance of cell identity by integrating a crucial developmental pathway into sustained expression of cell-type-specific programmes, and by opposing the expression of alternative lineage programmes through enhancer methylation.
Collapse
Affiliation(s)
- Michael S Hoetker
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Masaki Yagi
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bruno Di Stefano
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Justin Langerman
- David Geffen School of Medicine, Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Simona Cristea
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lai Ping Wong
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Aaron J Huebner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jocelyn Charlton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Genome Regulation, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Weixian Deng
- David Geffen School of Medicine, Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Chuck Haggerty
- Department of Genome Regulation, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Alexander Meissner
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Genome Regulation, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Franziska Michor
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- The Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA, USA
- The Ludwig Center at Harvard, Boston, MA, USA
| | - Kathrin Plath
- David Geffen School of Medicine, Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
15
|
Liu S, Zhao S, Zhang C, Tian C, Wang D, Yu H, Li Z, Liu L, Liu N. Dppa3 Improves the Germline Competence of Pluripotent Stem Cells. Stem Cell Rev Rep 2023:10.1007/s12015-023-10552-y. [PMID: 37171679 DOI: 10.1007/s12015-023-10552-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Chimera formation and germline competence are critical features of mouse pluripotent stem cells (PSCs). However, the factors that contribute to germline competence in the chimeras remain to be understood. METHODS To determine the role of Dppa3 in PSCs, we first constructed Dppa3 knockout (Dppa3 KO) and Dppa3 overexpression (Dppa3 OE) PSCs, respectively. Using Dppa3 KO and Dppa3 OE PSCs, we then investigated the role of Dppa3 in PSCs by evaluating the chimera generation, DNA methylation, and pluripotent state conversion. RESULTS We show that Dppa3 plays an important role in chimera formation and germline competence of mouse PSCs. PSC lines with high expression of Dppa3 show high germline competence. In contrast, Dppa3 deficiency reduces chimera formation and abrogates the germline transmission capacity of PSCs. Molecularly, Dppa3 facilitates establishing global DNA hypomethylation in PSCs. High levels of Dppa3 in PSCs reduce the expression of Dnmt3a/b and impede Uhrf1-Dnmt1 complex binding to DNA replication forks, maintaining DNA hypomethylation. Additionally, Dppa3 facilitates two-cell-stage (2C) genes expression and promotes conversion to a 2C-like state. CONCLUSION These data show that Dppa3 is involved in maintaining DNA hypomethylation homeostasis and is required for high chimera formation and germline competence of PSCs.
Collapse
Affiliation(s)
- Siying Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences Nankai University, Tianjin, 300071, China
| | - Shuang Zhao
- School of Medicine, Nankai University, Tianjin, 300071, China
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chuanyu Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chenglei Tian
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Dan Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Huaxin Yu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Lin Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences Nankai University, Tianjin, 300071, China.
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Na Liu
- School of Medicine, Nankai University, Tianjin, 300071, China.
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences Nankai University, Tianjin, 300071, China.
| |
Collapse
|
16
|
Chialastri A, Sarkar S, Schauer EE, Lamba S, Dey SS. Combinatorial quantification of 5mC and 5hmC at individual CpG dyads and the transcriptome in single cells reveals modulators of DNA methylation maintenance fidelity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539708. [PMID: 37205524 PMCID: PMC10187321 DOI: 10.1101/2023.05.06.539708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Transmission of 5-methylcytosine (5mC) from one cell generation to the next plays a key role in regulating cellular identity in mammalian development and diseases. While recent work has shown that the activity of DNMT1, the protein responsible for the stable inheritance of 5mC from mother to daughter cells, is imprecise; it remains unclear how the fidelity of DNMT1 is tuned in different genomic and cell state contexts. Here we describe Dyad-seq, a method that combines enzymatic detection of modified cytosines with nucleobase conversion techniques to quantify the genome-wide methylation status of cytosines at the resolution of individual CpG dinucleotides. We find that the fidelity of DNMT1-mediated maintenance methylation is directly related to the local density of DNA methylation, and for genomic regions that are lowly methylated, histone modifications can dramatically alter the maintenance methylation activity. Further, to gain deeper insights into the methylation and demethylation turnover dynamics, we extended Dyad-seq to quantify all combinations of 5mC and 5-hydroxymethylcytosine (5hmC) at individual CpG dyads to show that TET proteins preferentially hydroxymethylate only one of the two 5mC sites in a symmetrically methylated CpG dyad rather than sequentially convert both 5mC to 5hmC. To understand how cell state transitions impact DNMT1-mediated maintenance methylation, we scaled the method down and combined it with the measurement of mRNA to simultaneously quantify genome-wide methylation levels, maintenance methylation fidelity and the transcriptome from the same cell (scDyad&T-seq). Applying scDyad&T-seq to mouse embryonic stem cells transitioning from serum to 2i conditions, we observe dramatic and heterogenous demethylation and the emergence of transcriptionally distinct subpopulations that are closely linked to the cell-to-cell variability in loss of DNMT1-mediated maintenance methylation activity, with regions of the genome that escape 5mC reprogramming retaining high levels of maintenance methylation fidelity. Overall, our results demonstrate that while distinct cell states can substantially impact the genome-wide activity of the DNA methylation maintenance machinery, locally there exists an intrinsic relationship between DNA methylation density, histone modifications and DNMT1-mediated maintenance methylation fidelity that is independent of cell state.
Collapse
Affiliation(s)
- Alex Chialastri
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Biological Engineering Program, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Saumya Sarkar
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Biological Engineering Program, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Elizabeth E. Schauer
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Biological Engineering Program, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Shyl Lamba
- Department of Mathematics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Siddharth S. Dey
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Biological Engineering Program, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
17
|
Ma W, Fang H, Pease N, Filippova GN, Disteche CM, Berletch JB. Sex-biased and parental allele-specific gene regulation by KDM6A. Biol Sex Differ 2022; 13:40. [PMID: 35871105 PMCID: PMC9308343 DOI: 10.1186/s13293-022-00452-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/09/2022] [Indexed: 12/22/2022] Open
Abstract
Abstract
Background
KDM6A is a demethylase encoded by a gene with female-biased expression due to escape from X inactivation. Its main role is to facilitate gene expression through removal of the repressive H3K27me3 mark, with evidence of some additional histone demethylase-independent functions. KDM6A mutations have been implicated in congenital disorders such as Kabuki Syndrome, as well as in sex differences in cancer.
Methods
Kdm6a was knocked out using CRISPR/Cas9 gene editing in F1 male and female mouse embryonic stem cells (ES) derived from reciprocal crosses between C57BL6 x Mus castaneus. Diploid and allelic RNA-seq analyses were done to compare gene expression between wild-type and Kdm6a knockout (KO) clones. The effects of Kdm6a KO on sex-biased gene expression were investigated by comparing gene expression between male and female ES cells. Changes in H3K27me3 enrichment and chromatin accessibility at promoter regions of genes with expression changes were characterized by ChIP-seq and ATAC-seq followed by diploid and allelic analyses.
Results
We report that Kdm6a KO in male and female embryonic stem (ES) cells derived from F1 hybrid mice cause extensive gene dysregulation, disruption of sex biases, and specific parental allele effects. Among the dysregulated genes are candidate genes that may explain abnormal developmental features of Kabuki syndrome caused by KDM6A mutations in human. Strikingly, Kdm6a knockouts result in a decrease in sex-biased expression and in preferential downregulation of the maternal alleles of a number of genes. Most promoters of dysregulated genes show concordant epigenetic changes including gain of H3K27me3 and loss of chromatin accessibility, but there was less concordance when considering allelic changes.
Conclusions
Our study reveals new sex-related roles of KDM6A in the regulation of developmental genes, the maintenance of sex-biased gene expression, and the differential expression of parental alleles.
Collapse
|
18
|
Hata K, Kobayashi N, Sugimura K, Qin W, Haxholli D, Chiba Y, Yoshimi S, Hayashi G, Onoda H, Ikegami T, Mulholland C, Nishiyama A, Nakanishi M, Leonhardt H, Konuma T, Arita K. Structural basis for the unique multifaceted interaction of DPPA3 with the UHRF1 PHD finger. Nucleic Acids Res 2022; 50:12527-12542. [PMID: 36420895 PMCID: PMC9757060 DOI: 10.1093/nar/gkac1082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/20/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022] Open
Abstract
Ubiquitin-like with PHD and RING finger domain-containing protein 1 (UHRF1)-dependent DNA methylation is essential for maintaining cell fate during cell proliferation. Developmental pluripotency-associated 3 (DPPA3) is an intrinsically disordered protein that specifically interacts with UHRF1 and promotes passive DNA demethylation by inhibiting UHRF1 chromatin localization. However, the molecular basis of how DPPA3 interacts with and inhibits UHRF1 remains unclear. We aimed to determine the structure of the mouse UHRF1 plant homeodomain (PHD) complexed with DPPA3 using nuclear magnetic resonance. Induced α-helices in DPPA3 upon binding of UHRF1 PHD contribute to stable complex formation with multifaceted interactions, unlike canonical ligand proteins of the PHD domain. Mutations in the binding interface and unfolding of the DPPA3 helical structure inhibited binding to UHRF1 and its chromatin localization. Our results provide structural insights into the mechanism and specificity underlying the inhibition of UHRF1 by DPPA3.
Collapse
Affiliation(s)
| | | | - Keita Sugimura
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Weihua Qin
- Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Deis Haxholli
- Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Yoshie Chiba
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Sae Yoshimi
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Gosuke Hayashi
- Department of Biomolecular Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hiroki Onoda
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takahisa Ikegami
- Structural Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | - Atsuya Nishiyama
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Heinrich Leonhardt
- Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tsuyoshi Konuma
- Correspondence may also be addressed to Tsuyoshi Konuma. Tel: +81 45 508 7218; Fax: +81 45 508 7362;
| | - Kyohei Arita
- To whom correspondence should be addressed. Tel: +81 45 508 7225; Fax: +81 45 508 7365;
| |
Collapse
|
19
|
Ren Y. Regulatory mechanism and biological function of UHRF1–DNMT1-mediated DNA methylation. Funct Integr Genomics 2022; 22:1113-1126. [DOI: 10.1007/s10142-022-00918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022]
|
20
|
Clark SJ, Argelaguet R, Lohoff T, Krueger F, Drage D, Göttgens B, Marioni JC, Nichols J, Reik W. Single-cell multi-omics profiling links dynamic DNA methylation to cell fate decisions during mouse early organogenesis. Genome Biol 2022; 23:202. [PMID: 36163261 PMCID: PMC9511790 DOI: 10.1186/s13059-022-02762-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/31/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Perturbation of DNA methyltransferases (DNMTs) and of the active DNA demethylation pathway via ten-eleven translocation (TET) methylcytosine dioxygenases results in severe developmental defects and embryonic lethality. Dynamic control of DNA methylation is therefore vital for embryogenesis, yet the underlying mechanisms remain poorly understood. RESULTS Here we report a single-cell transcriptomic atlas from Dnmt and Tet mutant mouse embryos during early organogenesis. We show that both the maintenance and de novo methyltransferase enzymes are dispensable for the formation of all major cell types at E8.5. However, DNA methyltransferases are required for silencing of prior or alternative cell fates such as pluripotency and extraembryonic programmes. Deletion of all three TET enzymes produces substantial lineage biases, in particular, a failure to generate primitive erythrocytes. Single-cell multi-omics profiling moreover reveals that this is linked to a failure to demethylate distal regulatory elements in Tet triple-knockout embryos. CONCLUSIONS This study provides a detailed analysis of the effects of perturbing DNA methylation on mouse organogenesis at a whole organism scale and affords new insights into the regulatory mechanisms of cell fate decisions.
Collapse
Affiliation(s)
- Stephen J Clark
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK.
- Altos Labs Cambridge Institute of Science, Granta Park, Cambridge, UK.
| | - Ricard Argelaguet
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK.
- Altos Labs Cambridge Institute of Science, Granta Park, Cambridge, UK.
| | - Tim Lohoff
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Felix Krueger
- Altos Labs Cambridge Institute of Science, Granta Park, Cambridge, UK
- Bioinformatics Group, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Deborah Drage
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
- Altos Labs Cambridge Institute of Science, Granta Park, Cambridge, UK
| | - Berthold Göttgens
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Jennifer Nichols
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge, CB2 3EG, UK
- Current address: MRC Human Genetics Unit, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK.
- Altos Labs Cambridge Institute of Science, Granta Park, Cambridge, UK.
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
21
|
Arez M, Eckersley-Maslin M, Klobučar T, von Gilsa Lopes J, Krueger F, Mupo A, Raposo AC, Oxley D, Mancino S, Gendrel AV, Bernardes de Jesus B, da Rocha ST. Imprinting fidelity in mouse iPSCs depends on sex of donor cell and medium formulation. Nat Commun 2022; 13:5432. [PMID: 36114205 PMCID: PMC9481624 DOI: 10.1038/s41467-022-33013-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Reprogramming of somatic cells into induced Pluripotent Stem Cells (iPSCs) is a major leap towards personalised approaches to disease modelling and cell-replacement therapies. However, we still lack the ability to fully control the epigenetic status of iPSCs, which is a major hurdle for their downstream applications. Epigenetic fidelity can be tracked by genomic imprinting, a phenomenon dependent on DNA methylation, which is frequently perturbed in iPSCs by yet unknown reasons. To try to understand the causes underlying these defects, we conducted a thorough imprinting analysis using IMPLICON, a high-throughput method measuring DNA methylation levels, in multiple female and male murine iPSC lines generated under different experimental conditions. Our results show that imprinting defects are remarkably common in iPSCs, but their nature depends on the sex of donor cells and their response to culture conditions. Imprints in female iPSCs resist the initial genome-wide DNA demethylation wave during reprogramming, but ultimately cells accumulate hypomethylation defects irrespective of culture medium formulations. In contrast, imprinting defects on male iPSCs depends on the experimental conditions and arise during reprogramming, being mitigated by the addition of vitamin C (VitC). Our findings are fundamental to further optimise reprogramming strategies and generate iPSCs with a stable epigenome.
Collapse
Affiliation(s)
- Maria Arez
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Melanie Eckersley-Maslin
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, United Kingdom
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, 3010, Australia
| | - Tajda Klobučar
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- National Institute of Chemistry, Ljubljana, Slovenia
| | - João von Gilsa Lopes
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Felix Krueger
- Bioinformatics Group, Babraham Institute, Cambridge, CB22 3AT, United Kingdom
- Altos Labs, Cambridge, United Kingdom
| | - Annalisa Mupo
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, United Kingdom
- Altos Labs, Cambridge, United Kingdom
| | - Ana Cláudia Raposo
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - David Oxley
- Mass Spectrometry Facility, The Babraham Institute, Cambridge, United Kingdom
| | - Samantha Mancino
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Anne-Valerie Gendrel
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Genetics and Developmental Biology Unit, Institut Curie, INSERM U934, CNRS UMR3215, PSL University, Paris, France
| | - Bruno Bernardes de Jesus
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Simão Teixeira da Rocha
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
22
|
Ravichandran M, Rafalski D, Davies CI, Ortega-Recalde O, Nan X, Glanfield CR, Kotter A, Misztal K, Wang AH, Wojciechowski M, Rażew M, Mayyas IM, Kardailsky O, Schwartz U, Zembrzycki K, Morison IM, Helm M, Weichenhan D, Jurkowska RZ, Krueger F, Plass C, Zacharias M, Bochtler M, Hore TA, Jurkowski TP. Pronounced sequence specificity of the TET enzyme catalytic domain guides its cellular function. SCIENCE ADVANCES 2022; 8:eabm2427. [PMID: 36070377 PMCID: PMC9451156 DOI: 10.1126/sciadv.abm2427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
TET (ten-eleven translocation) enzymes catalyze the oxidation of 5-methylcytosine bases in DNA, thus driving active and passive DNA demethylation. Here, we report that the catalytic domain of mammalian TET enzymes favor CGs embedded within basic helix-loop-helix and basic leucine zipper domain transcription factor-binding sites, with up to 250-fold preference in vitro. Crystal structures and molecular dynamics calculations show that sequence preference is caused by intrasubstrate interactions and CG flanking sequence indirectly affecting enzyme conformation. TET sequence preferences are physiologically relevant as they explain the rates of DNA demethylation in TET-rescue experiments in culture and in vivo within the zygote and germ line. Most and least favorable TET motifs represent DNA sites that are bound by methylation-sensitive immediate-early transcription factors and octamer-binding transcription factor 4 (OCT4), respectively, illuminating TET function in transcriptional responses and pluripotency support.
Collapse
Affiliation(s)
- Mirunalini Ravichandran
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, HSW 1301, San Francisco, CA 94143, USA
- Universität Stuttgart, Abteilung Biochemie, Institute für Biochemie und Technische Biochemie, Allmandring 31, Stuttgart D-70569, Germany
| | - Dominik Rafalski
- International Institute of Molecular and Cell Biology in Warsaw (IIMCB), Trojdena 4, 02-109 Warsaw, Poland
| | - Claudia I. Davies
- University of Otago, Department of Anatomy, Dunedin 9016, New Zealand
| | | | - Xinsheng Nan
- Cardiff University, School of Biosciences, Museum Avenue, CF10 3AX Cardiff, Wales, UK
| | | | - Annika Kotter
- Johannes-Gutenberg-Universität Mainz, Institute of Pharmaceutical and Biomedical Sciences, Staudingerweg 5, 55128 Mainz, Germany
| | - Katarzyna Misztal
- International Institute of Molecular and Cell Biology in Warsaw (IIMCB), Trojdena 4, 02-109 Warsaw, Poland
| | - Andrew H. Wang
- University of Otago, Department of Anatomy, Dunedin 9016, New Zealand
| | - Marek Wojciechowski
- International Institute of Molecular and Cell Biology in Warsaw (IIMCB), Trojdena 4, 02-109 Warsaw, Poland
| | - Michał Rażew
- International Institute of Molecular and Cell Biology in Warsaw (IIMCB), Trojdena 4, 02-109 Warsaw, Poland
| | - Issam M. Mayyas
- University of Otago, Department of Pathology, Dunedin 9016, New Zealand
| | - Olga Kardailsky
- University of Otago, Department of Anatomy, Dunedin 9016, New Zealand
| | - Uwe Schwartz
- University of Regensburg, Computational Core Unit, 93053 Regensburg, Germany
| | - Krzysztof Zembrzycki
- Institute of Fundamental Technological Research, Department of Biosystems and Soft Matter PAS, Pawińskiego 5B, Warsaw, Poland
| | - Ian M. Morison
- University of Otago, Department of Pathology, Dunedin 9016, New Zealand
| | - Mark Helm
- Johannes-Gutenberg-Universität Mainz, Institute of Pharmaceutical and Biomedical Sciences, Staudingerweg 5, 55128 Mainz, Germany
| | - Dieter Weichenhan
- German Cancer Research Center (DKFZ), Division of Cancer Epigenomics, Heidelberg, Germany
| | - Renata Z. Jurkowska
- Cardiff University, School of Biosciences, Museum Avenue, CF10 3AX Cardiff, Wales, UK
| | - Felix Krueger
- Bioinformatics Group, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Christoph Plass
- German Cancer Research Center (DKFZ), Division of Cancer Epigenomics, Heidelberg, Germany
| | - Martin Zacharias
- Physics Department, Technical University of Munich, James-Franck Str. 1, 85748 Garching, Germany
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology in Warsaw (IIMCB), Trojdena 4, 02-109 Warsaw, Poland
- Institute of Biochemistry and Biophysics PAS (IBB), Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Timothy A. Hore
- University of Otago, Department of Anatomy, Dunedin 9016, New Zealand
| | - Tomasz P. Jurkowski
- Universität Stuttgart, Abteilung Biochemie, Institute für Biochemie und Technische Biochemie, Allmandring 31, Stuttgart D-70569, Germany
- Cardiff University, School of Biosciences, Museum Avenue, CF10 3AX Cardiff, Wales, UK
| |
Collapse
|
23
|
van Schaik T, Liu NQ, Manzo SG, Peric-Hupkes D, de Wit E, van Steensel B. CTCF and cohesin promote focal detachment of DNA from the nuclear lamina. Genome Biol 2022; 23:185. [PMID: 36050765 PMCID: PMC9438259 DOI: 10.1186/s13059-022-02754-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 08/22/2022] [Indexed: 01/23/2023] Open
Abstract
Background Lamina-associated domains (LADs) are large genomic regions that are positioned at the nuclear lamina. It has remained largely unclear what drives the positioning and demarcation of LADs. Because the insulator protein CTCF is enriched at LAD borders, it was postulated that CTCF binding could position some LAD boundaries, possibly through its function in stalling cohesin and hence preventing cohesin invading into the LAD. To test this, we mapped genome–nuclear lamina interactions in mouse embryonic stem cells after rapid depletion of CTCF and other perturbations of cohesin dynamics. Results CTCF and cohesin contribute to a sharp transition in lamina interactions at LAD borders, while LADs are maintained after depletion of these proteins, also at borders marked by CTCF. CTCF and cohesin may thus reinforce LAD borders, but do not position these. CTCF binding sites within LADs are locally detached from the lamina and enriched for accessible DNA and active histone modifications. Remarkably, despite lamina positioning being strongly correlated with genome inactivity, this DNA remains accessible after the local detachment is lost following CTCF depletion. At a chromosomal scale, cohesin depletion and cohesin stabilization by depletion of the unloading factor WAPL quantitatively affect lamina interactions, indicative of perturbed chromosomal positioning in the nucleus. Finally, while H3K27me3 is locally enriched at CTCF-marked LAD borders, we find no evidence for an interplay between CTCF and H3K27me3 on lamina interactions. Conclusions These findings illustrate that CTCF and cohesin are not primary determinants of LAD patterns. Rather, these proteins locally modulate NL interactions. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02754-3.
Collapse
Affiliation(s)
- Tom van Schaik
- Oncode Institute and Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ning Qing Liu
- Oncode Institute and Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Stefano G Manzo
- Oncode Institute and Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Daan Peric-Hupkes
- Oncode Institute and Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Present address: Annogen, Amsterdam, the Netherlands
| | - Elzo de Wit
- Oncode Institute and Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Bas van Steensel
- Oncode Institute and Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands. .,Department of Cell Biology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
24
|
Turpin M, Salbert G. 5-methylcytosine turnover: Mechanisms and therapeutic implications in cancer. Front Mol Biosci 2022; 9:976862. [PMID: 36060265 PMCID: PMC9428128 DOI: 10.3389/fmolb.2022.976862] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
DNA methylation at the fifth position of cytosine (5mC) is one of the most studied epigenetic mechanisms essential for the control of gene expression and for many other biological processes including genomic imprinting, X chromosome inactivation and genome stability. Over the last years, accumulating evidence suggest that DNA methylation is a highly dynamic mechanism driven by a balance between methylation by DNMTs and TET-mediated demethylation processes. However, one of the main challenges is to understand the dynamics underlying steady state DNA methylation levels. In this review article, we give an overview of the latest advances highlighting DNA methylation as a dynamic cycling process with a continuous turnover of cytosine modifications. We describe the cooperative actions of DNMT and TET enzymes which combine with many additional parameters including chromatin environment and protein partners to govern 5mC turnover. We also discuss how mathematical models can be used to address variable methylation levels during development and explain cell-type epigenetic heterogeneity locally but also at the genome scale. Finally, we review the therapeutic implications of these discoveries with the use of both epigenetic clocks as predictors and the development of epidrugs that target the DNA methylation/demethylation machinery. Together, these discoveries unveil with unprecedented detail how dynamic is DNA methylation during development, underlying the establishment of heterogeneous DNA methylation landscapes which could be altered in aging, diseases and cancer.
Collapse
Affiliation(s)
- Marion Turpin
- Sp@rte Team, UMR6290 CNRS, Institute of Genetics and Development of Rennes, Rennes, France
- University of Rennes 1, Rennes, France
| | - Gilles Salbert
- Sp@rte Team, UMR6290 CNRS, Institute of Genetics and Development of Rennes, Rennes, France
- University of Rennes 1, Rennes, France
| |
Collapse
|
25
|
Involvement of PGC7 and UHRF1 in the regulation of DNA methylation of the IG-DMR in the imprinted Dlk1-Dio3 locus. Acta Biochim Biophys Sin (Shanghai) 2022; 54:917-930. [PMID: 35866604 PMCID: PMC9828313 DOI: 10.3724/abbs.2022080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The gene dosage at the imprinted Dlk1-Dio3 locus is critical for cell growth and development. A relatively high gene expression within the Dlk1-Dio3 region, especially the active expression of Gtl2, has been identified as the only reliable marker for cell pluripotency. The DNA methylation state of the IG-DNA methylated regions (DMR), which is located upstream of the Gtl2 gene, dominantly contributes to the control of gene expression in the Dlk1-Dio3 locus. However, the precise mechanism underlying the regulation of DNA methylation in the IG-DMR remains largely unknown. Here, we use the F9 embryonal carcinoma cell line, a low pluripotent cell model, to identify the mechanism responsible for DNA methylation in the IG-DMR, and find that the interaction of PGC7 with UHRF1 is involved in maintaining DNA methylation and inducing DNA hypermethylation in the IG-DMR region. PGC7 and UHRF1 cooperatively bind in the IG-DMR to regulate the methylation of DNA and histones in this imprinted region. PGC7 promotes the recruitment of DNMT1 by UHRF1 to maintain DNA methylation in the IG-DMR locus. The interaction between PGC7 and UHRF1 strengthens their binding to H3K9me3 and leads to further enrichment of H3K9me3 in the IG-DMR by recruiting the specific histone methyltransferase SETDB1. Consequently, the abundance of H3K9me3 promotes DNMT3A to bind to the IG-DMR and increases DNA methylation level in this region. In summary, we propose a new mechanism of DNA methylation regulation in the IG-DMR locus and provide further insight into the understanding of the difference in Gtl2 expression levels between high and low pluripotent cells.
Collapse
|
26
|
Alata Jimenez N, Strobl-Mazzulla PH. Folate Carrier Deficiency Drives Differential Methylation and Enhanced Cellular Potency in the Neural Plate Border. Front Cell Dev Biol 2022; 10:834625. [PMID: 35912103 PMCID: PMC9326018 DOI: 10.3389/fcell.2022.834625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/07/2022] [Indexed: 11/28/2022] Open
Abstract
The neural plate border (NPB) of vertebrate embryos segregates from the neural and epidermal regions, and it is comprised of an intermingled group of multipotent progenitor cells. Folate is the precursor of S-adenosylmethionine, the main methyl donor for DNA methylation, and it is critical for embryonic development, including the specification of progenitors which reside in the NPB. Despite the fact that several intersecting signals involved in the specification and territorial restriction of NPB cells are known, the role of epigenetics, particularly DNA methylation, has been a matter of debate. Here, we examined the temporal and spatial distribution of the methyl source and analyzed the abundance of 5mC/5 hmC and their epigenetic writers throughout the segregation of the neural and NPB territories. Reduced representation bisulfite sequencing (RRBS) on Reduced Folate Carrier 1 (RFC1)-deficient embryos leads to the identification of differentially methylated regions (DMRs). In the RFC1-deficient embryos, we identified several DMRs in the Notch1 locus, and the spatiotemporal expression of Notch1 and its downstream target gene Bmp4 were expanded in the NPB. Cell fate analysis on folate deficient embryos revealed a significant increase in the number of cells coexpressing both neural (SOX2) and NPB (PAX7) markers, which may represent an enhancing effect in the cellular potential of those progenitors. Taken together, our findings propose a model where the RFC1 deficiency drives methylation changes in specific genomic regions that are correlated with a dysregulation of pathways involved in early development such as Notch1 and BMP4 signaling. These changes affect the potency of the progenitors residing in the juncture of the neural plate and NPB territories, thus driving them to a primed state.
Collapse
|
27
|
Hao JS, Xing JF, Hu X, Wang ZY, Tang MQ, Liao L. Distribution Pattern of N6-Methyladenine DNA Modification in the Seashore Paspalum ( Paspalum vaginatum) Genome. FRONTIERS IN PLANT SCIENCE 2022; 13:922152. [PMID: 35873961 PMCID: PMC9302377 DOI: 10.3389/fpls.2022.922152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
N6-methyladenine (6mA) DNA modification has been detected in several eukaryotic organisms, in some of them, it plays important role in the regulation process of stress-resistance response. However, the genome-wide distribution patterns and potential functions of 6mA DNA modification in halophyte Seashore paspalum (Paspalum vaginatum) remain largely unknown. Here, we examined the 6mA landscape in the P. vaginatum genome by adopting single molecule real-time sequencing technology and found that 6mA modification sites were broadly distributed across the P. vaginatum genome. We demonstrated distinct 6mA methylation levels and 6mA distribution patterns in different types of transcription genes, which hinted at different epigenetic rules. Furthermore, the moderate 6mA density genes in P. vaginatum functionally correlated with stress resistance, which also maintained a higher transcriptional level. On the other hand, a specific 6mA distribution pattern in the gene body and near TSS was observed in gene groups with higher RNA expression, which maybe implied some kind of regularity between 6mA site distribution and the protein coding genes transcription was possible. Our study provides new insights into the association between 6mA methylation and gene expression, which may also contribute to key agronomic traits in P. vaginatum.
Collapse
Affiliation(s)
- Jiang-Shan Hao
- College of Tropical Crops, Hainan University, Haikou, China
- Jinhua Polytechnic, Jinhua, China
| | - Jian-Feng Xing
- College of Tropical Crops, Hainan University, Haikou, China
| | - Xu Hu
- College of Tropical Crops, Hainan University, Haikou, China
| | - Zhi-Yong Wang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Min-Qiang Tang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Li Liao
- College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
28
|
Kyriakopoulos C, Nordström K, Kramer PL, Gottfreund JY, Salhab A, Arand J, Müller F, von Meyenn F, Ficz G, Reik W, Wolf V, Walter J, Giehr P. A comprehensive approach for genome-wide efficiency profiling of DNA modifying enzymes. CELL REPORTS METHODS 2022; 2:100187. [PMID: 35475220 PMCID: PMC9017147 DOI: 10.1016/j.crmeth.2022.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/19/2022] [Accepted: 03/01/2022] [Indexed: 10/25/2022]
Abstract
A precise understanding of DNA methylation dynamics is of great importance for a variety of biological processes including cellular reprogramming and differentiation. To date, complex integration of multiple and distinct genome-wide datasets is required to realize this task. We present GwEEP (genome-wide epigenetic efficiency profiling) a versatile approach to infer dynamic efficiencies of DNA modifying enzymes. GwEEP relies on genome-wide hairpin datasets, which are translated by a hidden Markov model into quantitative enzyme efficiencies with reported confidence around the estimates. GwEEP predicts de novo and maintenance methylation efficiencies of Dnmts and furthermore the hydroxylation efficiency of Tets. Its design also allows capturing further oxidation processes given available data. We show that GwEEP predicts accurately the epigenetic changes of ESCs following a Serum-to-2i shift and applied to Tet TKO cells confirms the hypothesized mutual interference between Dnmts and Tets.
Collapse
Affiliation(s)
| | - Karl Nordström
- Department of Genetics and Epigenetics, Saarland University, Campus A2.4, 66123 Saarbrücken, Germany
| | - Paula Linh Kramer
- Computer Science Department, Saarland University, Campus E1.3, 66123 Saarbrücken, Germany
| | - Judith Yumiko Gottfreund
- Department of Genetics and Epigenetics, Saarland University, Campus A2.4, 66123 Saarbrücken, Germany
| | - Abdulrahman Salhab
- Department of Genetics and Epigenetics, Saarland University, Campus A2.4, 66123 Saarbrücken, Germany
| | - Julia Arand
- Division of Cell and Developmental Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Fabian Müller
- Department of Integrative Cellular Biology and Bioinformatics, Campus A2.4, 66123 Saarbrücken, Germany
| | - Ferdinand von Meyenn
- Department of Health Sciences and Technology, ETH Zürich, Schorenstrasse 16, Schwerzenbach, 8603 Zürich, Switzerland
| | - Gabriella Ficz
- Haemato-Oncology, Queen Mary University of London, London EC1M 6BQ, UK
| | - Wolf Reik
- Epigenetics Department, Babraham Institute, Cambridge CB22 3AT, UK
| | - Verena Wolf
- Computer Science Department, Saarland University, Campus E1.3, 66123 Saarbrücken, Germany
| | - Jörn Walter
- Department of Genetics and Epigenetics, Saarland University, Campus A2.4, 66123 Saarbrücken, Germany
| | - Pascal Giehr
- Department of Genetics and Epigenetics, Saarland University, Campus A2.4, 66123 Saarbrücken, Germany
- Department of Health Sciences and Technology, ETH Zürich, Schorenstrasse 16, Schwerzenbach, 8603 Zürich, Switzerland
| |
Collapse
|
29
|
Rushton MD, Saunderson EA, Patani H, Green MR, Ficz G. An shRNA kinase screen identifies regulators of UHRF1 stability and activity in mouse embryonic stem cells. Epigenetics 2022; 17:1590-1607. [PMID: 35324392 DOI: 10.1080/15592294.2022.2044126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Propagation of DNA methylation through cell division relies on the recognition of methylated cytosines by UHRF1. In reprogramming of mouse embryonic stem cells to naive pluripotency (also known as ground state), despite high levels of Uhrf1 transcript, the protein is targeted for degradation by the proteasome, leading to DNA methylation loss. We have undertaken an shRNA screen to identify the signalling pathways that converge upon UHRF1 and control its degradation, using UHRF1-GFP fluorescence as readout. Many candidates we identified are key enzymes in regulation of glucose metabolism, nucleotide metabolism and Pi3K/AKT/mTOR pathway. Unexpectedly, while downregulation of all candidates we selected for validation rescued UHRF1 protein levels, we found that in some of the cases this was not sufficient to maintain DNA methylation. This has implications for development, ageing and diseased conditions. Our study demonstrates two separate processes that regulate UHRF1 protein abundance and activity.
Collapse
Affiliation(s)
- Michael D Rushton
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.,Horizon Discovery, Cambridge Research Park, 8100 Beach Dr, Waterbeach, Cambridge, CB25 9TL
| | - Emily A Saunderson
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Hemalvi Patani
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.,Research And Development, CS Genetics Ltd, Cambridge, UK
| | - Michael R Green
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Gabriella Ficz
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
30
|
Genome-wide maps of nucleolus interactions reveal distinct layers of repressive chromatin domains. Nat Commun 2022; 13:1483. [PMID: 35304483 PMCID: PMC8933459 DOI: 10.1038/s41467-022-29146-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 02/28/2022] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic chromosomes are folded into hierarchical domains, forming functional compartments. Nuclear periphery and nucleolus are two nuclear landmarks contributing to repressive chromosome architecture. However, while the role of nuclear lamina (NL) in genome organization has been well documented, the function of the nucleolus remains under-investigated due to the lack of methods for the identification of nucleolar associated domains (NADs). Here we have established DamID- and HiC-based methodologies to generate accurate genome-wide maps of NADs in embryonic stem cells (ESCs) and neural progenitor cells (NPCs), revealing layers of genome compartmentalization with distinct, repressive chromatin states based on the interaction with the nucleolus, NL, or both. NADs show higher H3K9me2 and lower H3K27me3 content than regions exclusively interacting with NL. Upon ESC differentiation into NPCs, chromosomes around the nucleolus acquire a more compact, rigid architecture with neural genes moving away from nucleoli and becoming unlocked for later activation. Further, histone modifications and the interaction strength within A and B compartments of NADs and LADs in ESCs set the choice to associate with NL or nucleoli upon dissociation from their respective compartments during differentiation. The methodologies here developed will make possible to include the nucleolar contribution in nuclear space and genome function in diverse biological systems.
Collapse
|
31
|
Janssen SM, Lorincz MC. Interplay between chromatin marks in development and disease. Nat Rev Genet 2022; 23:137-153. [PMID: 34608297 DOI: 10.1038/s41576-021-00416-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
DNA methylation (DNAme) and histone post-translational modifications (PTMs) have important roles in transcriptional regulation. Although many reports have characterized the functions of such chromatin marks in isolation, recent genome-wide studies reveal surprisingly complex interactions between them. Here, we focus on the interplay between DNAme and methylation of specific lysine residues on the histone H3 tail. We describe the impact of genetic perturbation of the relevant methyltransferases in the mouse on the landscape of chromatin marks as well as the transcriptome. In addition, we discuss the specific neurodevelopmental growth syndromes and cancers resulting from pathogenic mutations in the human orthologues of these genes. Integrating these observations underscores the fundamental importance of crosstalk between DNA and histone H3 methylation in development and disease.
Collapse
Affiliation(s)
- Sanne M Janssen
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew C Lorincz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
32
|
Lv S, Zhou X, Li YM, Yang T, Zhang SJ, Wang Y, Jia SH, Peng DT. N6-methyladenine-modified DNA was decreased in Alzheimer’s disease patients. World J Clin Cases 2022; 10:448-457. [PMID: 35097069 PMCID: PMC8771380 DOI: 10.12998/wjcc.v10.i2.448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/19/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In recent years, the prevalence of Alzheimer’s disease (AD) has increased, which places a great burden on society and families and creates considerable challenges for medical services. N6-methyladenine (m6A) deoxyribonucleic acid (DNA) adenine methylation is a novel biomarker and is abundant in the brain, but less common in AD. We support to analyze the relationship between DNA m6A and cognition in patients with AD and normal controls (NCs) in China.
AIM To analyze the relationship between the novel m6A DNA and cognition in patients with AD and NCs in China.
METHODS A total of 179 AD patients (mean age 71.60 ± 9.89 years; males: 91; females: 88) and 147 NCs (mean age 69.59 ± 11.22 years; males: 77; females: 70) who were age- and sex-matched were included in our study. All subjects underwent neuropsychological scale assessment and magnetic resonance imaging examination. Apolipoprotein E (APOE) genotypes were measured through agarose gel electrophoresis. Global m6A levels were evaluated by a MethylFlash m6A DNA Methylation ELISA Kit (colorimetric). Global m6A levels in total DNA from ten AD patients with 18F-AV-45 (florbetapir) positron emission tomography (PET) positivity and ten NCs with PET negativity were analyzed by dot blotting to determine the results.
RESULTS Our ELISA results showed that the global m6A DNA levels in peripheral blood were different between patients with AD and NCs (P = 0.002; < 0.05). And ten AD patients who were PET positive and ten NCs who were PET negative also showed the same results through dot blotting. There were significant differences between the two groups, which indicated that the leukocyte m6A DNA levels were different (P = 0.005; < 0.05). The m6A level was approximately 8.33% lower in AD patients than in NCs (mean 0.011 ± 0.006 vs 0.012 ± 0.005). A significant correlation was found between the Montreal Cognitive Assessment score and the peripheral blood m6A level in the tested population (r = 0.143, P = 0.01; < 0.05). However, no relationship was found with APOE ε4 (P = 0.633, > 0.05). Further studies should be performed to validate these findings.
CONCLUSION Our results show that reduced global m6A DNA methylation levels are significantly lower in AD patients than in NCs by approximately 8.33% in China.
Collapse
Affiliation(s)
- Shuang Lv
- Department of Neurology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
- Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiao Zhou
- Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China
- Department of Neurology, Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Yi-Ming Li
- Department of Cardiovascular, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Tao Yang
- Department of Geriatric, The Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100039, China
| | - Shu-Juan Zhang
- Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yu Wang
- Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Shu-Hong Jia
- Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Dan-Tao Peng
- Department of Neurology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
- Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China
- Department of Neurology, Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100029, China
| |
Collapse
|
33
|
Gordeev MN, Bakhmet EI, Tomilin AN. Pluripotency Dynamics during Embryogenesis and in Cell Culture. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421060059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Mochizuki K, Sharif J, Shirane K, Uranishi K, Bogutz AB, Janssen SM, Suzuki A, Okuda A, Koseki H, Lorincz MC. Repression of germline genes by PRC1.6 and SETDB1 in the early embryo precedes DNA methylation-mediated silencing. Nat Commun 2021; 12:7020. [PMID: 34857746 PMCID: PMC8639735 DOI: 10.1038/s41467-021-27345-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023] Open
Abstract
Silencing of a subset of germline genes is dependent upon DNA methylation (DNAme) post-implantation. However, these genes are generally hypomethylated in the blastocyst, implicating alternative repressive pathways before implantation. Indeed, in embryonic stem cells (ESCs), an overlapping set of genes, including germline "genome-defence" (GGD) genes, are upregulated following deletion of the H3K9 methyltransferase SETDB1 or subunits of the non-canonical PRC1 complex PRC1.6. Here, we show that in pre-implantation embryos and naïve ESCs (nESCs), hypomethylated promoters of germline genes bound by the PRC1.6 DNA-binding subunits MGA/MAX/E2F6 are enriched for RING1B-dependent H2AK119ub1 and H3K9me3. Accordingly, repression of these genes in nESCs shows a greater dependence on PRC1.6 than DNAme. In contrast, GGD genes are hypermethylated in epiblast-like cells (EpiLCs) and their silencing is dependent upon SETDB1, PRC1.6/RING1B and DNAme, with H3K9me3 and DNAme establishment dependent upon MGA binding. Thus, GGD genes are initially repressed by PRC1.6, with DNAme subsequently engaged in post-implantation embryos.
Collapse
Affiliation(s)
- Kentaro Mochizuki
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jafar Sharif
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Kenjiro Shirane
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Kousuke Uranishi
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Aaron B Bogutz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sanne M Janssen
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ayumu Suzuki
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Akihiko Okuda
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo ward, Chiba, Japan
| | - Matthew C Lorincz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
35
|
Transposable Element Dynamics and Regulation during Zygotic Genome Activation in Mammalian Embryos and Embryonic Stem Cell Model Systems. Stem Cells Int 2021; 2021:1624669. [PMID: 34691189 PMCID: PMC8536462 DOI: 10.1155/2021/1624669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 12/25/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic sequences capable of duplicating and reintegrating at new regions within the genome. A growing body of evidence has demonstrated that these elements play important roles in host genome evolution, despite being traditionally viewed as parasitic elements. To prevent ectopic activation of TE transposition and transcription, they are epigenetically silenced in most somatic tissues. Intriguingly, a specific class of TEs-retrotransposons-is transiently expressed at discrete phases during mammalian development and has been linked to the establishment of totipotency during zygotic genome activation (ZGA). While mechanisms controlling TE regulation in somatic tissues have been extensively studied, the significance underlying the unique transcriptional reactivation of retrotransposons during ZGA is only beginning to be uncovered. In this review, we summarize the expression dynamics of key retrotransposons during ZGA, focusing on findings from in vivo totipotent embryos and in vitro totipotent-like embryonic stem cells (ESCs). We then dissect the functions of retrotransposons and discuss how their transcriptional activities are finetuned during early stages of mammalian development.
Collapse
|
36
|
He S, Kong L, Chen J. iDNA6mA-Rice-DL: A local web server for identifying DNA N6-methyladenine sites in rice genome by deep learning method. J Bioinform Comput Biol 2021; 19:2150019. [PMID: 34291710 DOI: 10.1142/s0219720021500190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Accurate detection of N6-methyladenine (6mA) sites by biochemical experiments will help to reveal their biological functions, still, these wet experiments are laborious and expensive. Therefore, it is necessary to introduce a powerful computational model to identify the 6mA sites on a genomic scale, especially for plant genomes. In view of this, we proposed a model called iDNA6mA-Rice-DL for the effective identification of 6mA sites in rice genome, which is an intelligent computing model based on deep learning method. Traditional machine learning methods assume the preparation of the features for analysis. However, our proposed model automatically encodes and extracts key DNA features through an embedded layer and several groups of dense layers. We use an independent dataset to evaluate the generalization ability of our model. An area under the receiver operating characteristic curve (auROC) of 0.98 with an accuracy of 95.96% was obtained. The experiment results demonstrate that our model had good performance in predicting 6mA sites in the rice genome. A user-friendly local web server has been established. The Docker image of the local web server can be freely downloaded at https://hub.docker.com/r/his1server/idna6ma-rice-dl.
Collapse
Affiliation(s)
- Shiqian He
- School of Mathematics and Information Science & Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066000, P. R. China
| | - Liang Kong
- School of Mathematics and Information Science & Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066000, P. R. China
| | - Jing Chen
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066000, P. R. China
| |
Collapse
|
37
|
Khan SA, Park KM, Fischer LA, Dong C, Lungjangwa T, Jimenez M, Casalena D, Chew B, Dietmann S, Auld DS, Jaenisch R, Theunissen TW. Probing the signaling requirements for naive human pluripotency by high-throughput chemical screening. Cell Rep 2021; 35:109233. [PMID: 34133938 PMCID: PMC8272458 DOI: 10.1016/j.celrep.2021.109233] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 03/25/2021] [Accepted: 05/19/2021] [Indexed: 01/04/2023] Open
Abstract
Naive human embryonic stem cells (hESCs) have been isolated that more closely resemble the pre-implantation epiblast compared to conventional “primed” hESCs, but the signaling principles underlying these discrete stem cell states remain incompletely understood. Here, we describe the results from a high-throughput screen using ~3,000 well-annotated compounds to identify essential signaling requirements for naive human pluripotency. We report that MEK1/2 inhibitors can be replaced during maintenance of naive human pluripotency by inhibitors targeting either upstream (FGFR, RAF) or downstream (ERK1/2) kinases. Naive hESCs maintained under these alternative conditions display elevated levels of ERK phosphorylation but retain genome-wide DNA hypomethylation and a transcriptional identity of the pre-implantation epiblast. In contrast, dual inhibition of MEK and ERK promotes efficient primed-to-naive resetting in combination with PKC, ROCK, and TNKS inhibitors and activin A. This work demonstrates that induction and maintenance of naive human pluripotency are governed by distinct signaling requirements. Khan et al. describe a high-throughput chemical screen to identify essential signaling requirements for naive human pluripotency in minimal conditions. They report that naive hESCs can be maintained by blocking distinct nodes in the FGF signaling pathway and that dual MEK/ERK inhibition promotes efficient primed-to-naive resetting in combination with activin A.
Collapse
Affiliation(s)
- Shafqat A Khan
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kyoung-Mi Park
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura A Fischer
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chen Dong
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tenzin Lungjangwa
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Marta Jimenez
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Dominick Casalena
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Brian Chew
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sabine Dietmann
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Douglas S Auld
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA.
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - Thorold W Theunissen
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
38
|
Rahman CR, Amin R, Shatabda S, Toaha MSI. A convolution based computational approach towards DNA N6-methyladenine site identification and motif extraction in rice genome. Sci Rep 2021; 11:10357. [PMID: 33990665 PMCID: PMC8121938 DOI: 10.1038/s41598-021-89850-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 05/04/2021] [Indexed: 12/23/2022] Open
Abstract
DNA N6-methylation (6mA) in Adenine nucleotide is a post replication modification responsible for many biological functions. Automated and accurate computational methods can help to identify 6mA sites in long genomes saving significant time and money. Our study develops a convolutional neural network (CNN) based tool i6mA-CNN capable of identifying 6mA sites in the rice genome. Our model coordinates among multiple types of features such as PseAAC (Pseudo Amino Acid Composition) inspired customized feature vector, multiple one hot representations and dinucleotide physicochemical properties. It achieves auROC (area under Receiver Operating Characteristic curve) score of 0.98 with an overall accuracy of 93.97% using fivefold cross validation on benchmark dataset. Finally, we evaluate our model on three other plant genome 6mA site identification test datasets. Results suggest that our proposed tool is able to generalize its ability of 6mA site identification on plant genomes irrespective of plant species. An algorithm for potential motif extraction and a feature importance analysis procedure are two by products of this research. Web tool for this research can be found at: https://cutt.ly/dgp3QTR.
Collapse
Affiliation(s)
| | - Ruhul Amin
- United International University, Dhaka, Bangladesh
| | | | | |
Collapse
|
39
|
De Dieuleveult M, Bizet M, Colin L, Calonne E, Bachman M, Li C, Stancheva I, Miotto B, Fuks F, Deplus R. The chromatin remodelling protein LSH/HELLS regulates the amount and distribution of DNA hydroxymethylation in the genome. Epigenetics 2021; 17:422-443. [PMID: 33960278 DOI: 10.1080/15592294.2021.1917152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ten-Eleven Translocation (TET) proteins convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) leading to a dynamic epigenetic state of DNA that can influence transcription and chromatin organization. While TET proteins interact with complexes involved in transcriptional repression and activation, the overall understanding of the molecular mechanisms involved in TET-mediated regulation of gene expression still remains limited. Here, we show that TET proteins interact with the chromatin remodelling protein lymphoid-specific helicase (LSH/HELLS) in vivo and in vitro. In mouse embryonic fibroblasts (MEFs) and embryonic stem cells (ESCs) knock out of Lsh leads to a significant reduction of 5-hydroxymethylation amount in the DNA. Whole genome sequencing of 5hmC in wild-type versus Lsh knock-out MEFs and ESCs showed that in absence of Lsh, some regions of the genome gain 5hmC while others lose it, with mild correlation with gene expression changes. We further show that differentially hydroxymethylated regions did not completely overlap with differentially methylated regions indicating that changes in 5hmC distribution upon Lsh knock-out are not a direct consequence of 5mC decrease. Altogether, our results suggest that LSH, which interacts with TET proteins, contributes to the regulation of 5hmC levels and distribution in MEFs and ESCs.
Collapse
Affiliation(s)
- Maud De Dieuleveult
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC), Université Libre De Bruxelles, Brussels, Belgium.,Université De Paris, Institut Cochin, Inserm, Cnrs, PARIS, France
| | - Martin Bizet
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC), Université Libre De Bruxelles, Brussels, Belgium
| | - Laurence Colin
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC), Université Libre De Bruxelles, Brussels, Belgium
| | - Emilie Calonne
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC), Université Libre De Bruxelles, Brussels, Belgium
| | - Martin Bachman
- Medicines Discovery Catapult, Alderley Park, Macclesfield, UK
| | - Chao Li
- , Max Born Crescent, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Irina Stancheva
- , Max Born Crescent, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Benoit Miotto
- Université De Paris, Institut Cochin, Inserm, Cnrs, PARIS, France
| | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC), Université Libre De Bruxelles, Brussels, Belgium
| | - Rachel Deplus
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC), Université Libre De Bruxelles, Brussels, Belgium
| |
Collapse
|
40
|
Bayerl J, Ayyash M, Shani T, Manor YS, Gafni O, Massarwa R, Kalma Y, Aguilera-Castrejon A, Zerbib M, Amir H, Sheban D, Geula S, Mor N, Weinberger L, Naveh Tassa S, Krupalnik V, Oldak B, Livnat N, Tarazi S, Tawil S, Wildschutz E, Ashouokhi S, Lasman L, Rotter V, Hanna S, Ben-Yosef D, Novershtern N, Viukov S, Hanna JH. Principles of signaling pathway modulation for enhancing human naive pluripotency induction. Cell Stem Cell 2021; 28:1549-1565.e12. [PMID: 33915080 PMCID: PMC8423434 DOI: 10.1016/j.stem.2021.04.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/05/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022]
Abstract
Isolating human MEK/ERK signaling-independent pluripotent stem cells (PSCs) with naive pluripotency characteristics while maintaining differentiation competence and (epi)genetic integrity remains challenging. Here, we engineer reporter systems that allow the screening for defined conditions that induce molecular and functional features of human naive pluripotency. Synergistic inhibition of WNT/β-CATENIN, protein kinase C (PKC), and SRC signaling consolidates the induction of teratoma-competent naive human PSCs, with the capacity to differentiate into trophoblast stem cells (TSCs) and extraembryonic naive endodermal (nEND) cells in vitro. Divergent signaling and transcriptional requirements for boosting naive pluripotency were found between mouse and human. P53 depletion in naive hPSCs increased their contribution to mouse-human cross-species chimeric embryos upon priming and differentiation. Finally, MEK/ERK inhibition can be substituted with the inhibition of NOTCH/RBPj, which induces alternative naive-like hPSCs with a diminished risk for deleterious global DNA hypomethylation. Our findings set a framework for defining the signaling foundations of human naive pluripotency. Inhibition of SRC, PKC, and WNT consolidates human naive pluripotency induction Competitiveness of p53 depleted human PSCs in cross-species chimeric embryos Opposing net effect for ACTIVIN and WNT on mouse versus human naive pluripotency 2i and ERKi independent alternative human naive-like PSC conditions
Collapse
Affiliation(s)
- Jonathan Bayerl
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Muneef Ayyash
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tom Shani
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yair Shlomo Manor
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ohad Gafni
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rada Massarwa
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Kalma
- Wolfe PGD‑Stem Cell Laboratory, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel‑Aviv, Israel
| | | | - Mirie Zerbib
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hadar Amir
- Wolfe PGD‑Stem Cell Laboratory, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel‑Aviv, Israel
| | - Daoud Sheban
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shay Geula
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nofar Mor
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Leehee Weinberger
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Segev Naveh Tassa
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Vladislav Krupalnik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Bernardo Oldak
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nir Livnat
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shadi Tarazi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shadi Tawil
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Emilie Wildschutz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shahd Ashouokhi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lior Lasman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Suhair Hanna
- Department of Pediatrics, Rambam Hospital, Haifa, Israel
| | - Dalit Ben-Yosef
- Wolfe PGD‑Stem Cell Laboratory, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel‑Aviv, Israel.
| | - Noa Novershtern
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Sergey Viukov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jacob H Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
41
|
The regulation mechanisms and the Lamarckian inheritance property of DNA methylation in animals. Mamm Genome 2021; 32:135-152. [PMID: 33860357 DOI: 10.1007/s00335-021-09870-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/05/2021] [Indexed: 12/19/2022]
Abstract
DNA methylation is a stable and heritable epigenetic mechanism, of which the main functions are stabilizing the transcription of genes and promoting genetic conservation. In animals, the direct molecular inducers of DNA methylation mainly include histone covalent modification and non-coding RNA, whereas the fundamental regulators of DNA methylation are genetic and environmental factors. As is well known, competition is present everywhere in life systems, and will finally strike a balance that is optimal for the animal's survival and reproduction. The same goes for the regulation of DNA methylation. Genetic and environmental factors, respectively, are responsible for the programmed and plasticity changes of DNA methylation, and keen competition exists between genetically influenced procedural remodeling and environmentally influenced plastic alteration. In this process, genetic and environmental factors collaboratively decide the methylation patterns of corresponding loci. DNA methylation alterations induced by environmental factors can be transgenerationally inherited, and exhibit the characteristic of Lamarckian inheritance. Further research on regulatory mechanisms and the environmental plasticity of DNA methylation will provide strong support for understanding the biological function and evolutionary effects of DNA methylation.
Collapse
|
42
|
Petryk N, Bultmann S, Bartke T, Defossez PA. Staying true to yourself: mechanisms of DNA methylation maintenance in mammals. Nucleic Acids Res 2021; 49:3020-3032. [PMID: 33300031 PMCID: PMC8034647 DOI: 10.1093/nar/gkaa1154] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022] Open
Abstract
DNA methylation is essential to development and cellular physiology in mammals. Faulty DNA methylation is frequently observed in human diseases like cancer and neurological disorders. Molecularly, this epigenetic mark is linked to other chromatin modifications and it regulates key genomic processes, including transcription and splicing. Each round of DNA replication generates two hemi-methylated copies of the genome. These must be converted back to symmetrically methylated DNA before the next S-phase, or the mark will fade away; therefore the maintenance of DNA methylation is essential. Mechanistically, the maintenance of this epigenetic modification takes place during and after DNA replication, and occurs within the very dynamic context of chromatin re-assembly. Here, we review recent discoveries and unresolved questions regarding the mechanisms, dynamics and fidelity of DNA methylation maintenance in mammals. We also discuss how it could be regulated in normal development and misregulated in disease.
Collapse
Affiliation(s)
- Nataliya Petryk
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Université de Paris, F-75013 Paris, France
| | - Sebastian Bultmann
- Department of Biology II, Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Till Bartke
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | | |
Collapse
|
43
|
Dissection of two routes to naïve pluripotency using different kinase inhibitors. Nat Commun 2021; 12:1863. [PMID: 33767186 PMCID: PMC7994667 DOI: 10.1038/s41467-021-22181-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 03/04/2021] [Indexed: 01/31/2023] Open
Abstract
Embryonic stem cells (ESCs) can be maintained in the naïve state through inhibition of Mek1/2 and Gsk3 (2i). A relevant effect of 2i is the inhibition of Cdk8/19, which are negative regulators of the Mediator complex, responsible for the activity of enhancers. Inhibition of Cdk8/19 (Cdk8/19i) stimulates enhancers and, similar to 2i, stabilizes ESCs in the naïve state. Here, we use mass spectrometry to describe the molecular events (phosphoproteome, proteome, and metabolome) triggered by 2i and Cdk8/19i on ESCs. Our data reveal widespread commonalities between these two treatments, suggesting overlapping processes. We find that post-transcriptional de-repression by both 2i and Cdk8/19i might support the mitochondrial capacity of naive cells. However, proteome reprogramming in each treatment is achieved by different mechanisms. Cdk8/19i acts directly on the transcriptional machinery, activating key identity genes to promote the naïve program. In contrast, 2i stabilizes the naïve circuitry through, in part, de-phosphorylation of downstream transcriptional effectors.
Collapse
|
44
|
Betto RM, Diamante L, Perrera V, Audano M, Rapelli S, Lauria A, Incarnato D, Arboit M, Pedretti S, Rigoni G, Guerineau V, Touboul D, Stirparo GG, Lohoff T, Boroviak T, Grumati P, Soriano ME, Nichols J, Mitro N, Oliviero S, Martello G. Metabolic control of DNA methylation in naive pluripotent cells. Nat Genet 2021; 53:215-229. [PMID: 33526924 PMCID: PMC7116828 DOI: 10.1038/s41588-020-00770-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/17/2020] [Indexed: 12/31/2022]
Abstract
Naive epiblast and embryonic stem cells (ESCs) give rise to all cells of adults. Such developmental plasticity is associated with genome hypomethylation. Here, we show that LIF-Stat3 signaling induces genomic hypomethylation via metabolic reconfiguration. Stat3-/- ESCs show decreased α-ketoglutarate production from glutamine, leading to increased Dnmt3a and Dnmt3b expression and DNA methylation. Notably, genome methylation is dynamically controlled through modulation of α-ketoglutarate availability or Stat3 activation in mitochondria. Alpha-ketoglutarate links metabolism to the epigenome by reducing the expression of Otx2 and its targets Dnmt3a and Dnmt3b. Genetic inactivation of Otx2 or Dnmt3a and Dnmt3b results in genomic hypomethylation even in the absence of active LIF-Stat3. Stat3-/- ESCs show increased methylation at imprinting control regions and altered expression of cognate transcripts. Single-cell analyses of Stat3-/- embryos confirmed the dysregulated expression of Otx2, Dnmt3a and Dnmt3b as well as imprinted genes. Several cancers display Stat3 overactivation and abnormal DNA methylation; therefore, the molecular module that we describe might be exploited under pathological conditions.
Collapse
Affiliation(s)
- Riccardo M Betto
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
| | - Linda Diamante
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
| | - Valentina Perrera
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
- Neuroscience Sector, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Stefania Rapelli
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- Italian Institute for Genomic Medicine (IIGM), Candiolo, Italy
| | - Andrea Lauria
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- Italian Institute for Genomic Medicine (IIGM), Candiolo, Italy
| | - Danny Incarnato
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| | - Mattia Arboit
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
| | - Silvia Pedretti
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Giovanni Rigoni
- Department of Biology, University of Padua, Padua, Italy
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Vincent Guerineau
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - David Touboul
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | | | - Tim Lohoff
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Thorsten Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Jennifer Nichols
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy.
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
- Italian Institute for Genomic Medicine (IIGM), Candiolo, Italy.
| | - Graziano Martello
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy.
- Department of Biology, University of Padua, Padua, Italy.
| |
Collapse
|
45
|
Abstract
In the past several decades, the establishment of in vitro models of pluripotency has ushered in a golden era for developmental and stem cell biology. Research in this arena has led to profound insights into the regulatory features that shape early embryonic development. Nevertheless, an integrative theory of the epigenetic principles that govern the pluripotent nucleus remains elusive. Here, we summarize the epigenetic characteristics that define the pluripotent state. We cover what is currently known about the epigenome of pluripotent stem cells and reflect on the use of embryonic stem cells as an experimental system. In addition, we highlight insights from super-resolution microscopy, which have advanced our understanding of the form and function of chromatin, particularly its role in establishing the characteristically "open chromatin" of pluripotent nuclei. Further, we discuss the rapid improvements in 3C-based methods, which have given us a means to investigate the 3D spatial organization of the pluripotent genome. This has aided the adaptation of prior notions of a "pluripotent molecular circuitry" into a more holistic model, where hotspots of co-interacting domains correspond with the accumulation of pluripotency-associated factors. Finally, we relate these earlier hypotheses to an emerging model of phase separation, which posits that a biophysical mechanism may presuppose the formation of a pluripotent-state-defining transcriptional program.
Collapse
Affiliation(s)
| | - Eran Meshorer
- Department of Genetics, the Institute of Life Sciences
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel 9190400
| |
Collapse
|
46
|
Ming X, Zhu B, Li Y. Mitotic inheritance of DNA methylation: more than just copy and paste. J Genet Genomics 2021; 48:1-13. [PMID: 33771455 DOI: 10.1016/j.jgg.2021.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
Decades of investigation on DNA methylation have led to deeper insights into its metabolic mechanisms and biological functions. This understanding was fueled by the recent development of genome editing tools and our improved capacity for analyzing the global DNA methylome in mammalian cells. This review focuses on the maintenance of DNA methylation patterns during mitotic cell division. We discuss the latest discoveries of the mechanisms for the inheritance of DNA methylation as a stable epigenetic memory. We also highlight recent evidence showing the rapid turnover of DNA methylation as a dynamic gene regulatory mechanism. A body of work has shown that altered DNA methylomes are common features in aging and disease. We discuss the potential links between methylation maintenance mechanisms and disease-associated methylation changes.
Collapse
Affiliation(s)
- Xuan Ming
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yingfeng Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
47
|
Li T, Fang T, Xu L, Liu X, Li X, Xue M, Yu X, Sun B, Chen L. Empagliflozin Alleviates Hepatic Steatosis by Activating the AMPK-TET2-Autophagy Pathway in vivo and in vitro. Front Pharmacol 2021; 11:622153. [PMID: 33551821 PMCID: PMC7854384 DOI: 10.3389/fphar.2020.622153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Metabolic associated fatty liver disease (MAFLD), characterized by hepatic lipid accumulation and fatty degeneration, is intertwined with obesity and type 2 diabetes mellitus (T2DM). Empagliflozin is a sodium-glucose cotransporter-2 inhibitor that effectively lowers blood glucose, but its effect on MAFLD and associated mechanisms are not fully understood. Methods: Eight-week-old db/db mice, an in vivo model, were administered empagliflozin or saline intragastrically. A hepatocyte steatosis model was established by inducing HL7702 cells with high glucose and palmitic acid and then treated with or without empagliflozin. The autophagy inhibitor (3-methyladenine, 3-MA) and AMP-activated protein kinase (AMPK) activator (AICAR)/inhibitor (Compound C) were used to determine the involvement of AMPK and autophagy in the regulation of lipid accumulation by empagliflozin. Ten-eleven translocation 2 (TET2) knockdown was achieved by siRNA transfection. Hepatic steatosis was evaluated by Oil Red O staining and triglyceride quantification. Immunohistochemistry, immunofluorescence, and western blot were performed to assess protein levels. Results: Empagliflozin alleviated liver steatosis in db/db mice and reduced triglyceride content and lipid accumulation in the hepatocyte steatosis model. Empagliflozin elevated autophagy, accompanied by an increase in p-AMPK and TET2. Both 3-MA and Compound C abolished the ability of empagliflozin to induce autophagy and reduce hepatic steatosis, while these effects could be recapitulated by AICAR treatment. TET2 knockdown resulted in autophagy inhibition and lipid accumulation despite empagliflozin treatment. Conclusion: Empagliflozin improves hepatic steatosis through the AMPK-TET2-autophagy pathway. The use of empagliflozin as a treatment for preventing and treating MAFLD in patients with T2DM warrants further study.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bei Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
48
|
Greenberg MVC. Get Out and Stay Out: New Insights Into DNA Methylation Reprogramming in Mammals. Front Cell Dev Biol 2021; 8:629068. [PMID: 33490089 PMCID: PMC7817772 DOI: 10.3389/fcell.2020.629068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Vertebrate genomes are marked by notably high levels of 5-cytosine DNA methylation (5meC). The clearest function of DNA methylation among members of the subphylum is repression of potentially deleterious transposable elements (TEs). However, enrichment in the bodies of protein coding genes and pericentromeric heterochromatin indicate an important role for 5meC in those genomic compartments as well. Moreover, DNA methylation plays an important role in silencing of germline-specific genes. Impaired function of major components of DNA methylation machinery results in lethality in fish, amphibians and mammals. Despite such apparent importance, mammals exhibit a dramatic loss and regain of DNA methylation in early embryogenesis prior to implantation, and then again in the cells specified for the germline. In this minireview we will highlight recent studies that shine light on two major aspects of embryonic DNA methylation reprogramming: (1) The mechanism of DNA methylation loss after fertilization and (2) the protection of discrete loci from ectopic DNA methylation deposition during reestablishment. Finally, we will conclude with some extrapolations for the evolutionary underpinnings of such extraordinary events that seemingly put the genome under unnecessary risk during a particularly vulnerable window of development.
Collapse
Affiliation(s)
- Maxim V C Greenberg
- Centre National de la Recherche Scientifique, Institut Jacques Monod, Université de Paris, Paris, France
| |
Collapse
|
49
|
Reardon ES, Shukla V, Xi S, Gara SK, Liu Y, Straughan D, Zhang M, Hong JA, Payabyab EC, Kumari A, Richards WG, De Rienzo A, Hassan R, Miettinen M, Xi L, Raffeld M, Uechi LT, Li X, Wang R, Chen H, Hoang CD, Bueno R, Schrump DS. UHRF1 Is a Novel Druggable Epigenetic Target in Malignant Pleural Mesothelioma. J Thorac Oncol 2021; 16:89-103. [PMID: 32927122 PMCID: PMC7775915 DOI: 10.1016/j.jtho.2020.08.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Ubiquitin-like with plant homeodomain and ring finger domains 1 (UHRF1) encodes a master regulator of DNA methylation that has emerged as an epigenetic driver in human cancers. To date, no studies have evaluated UHRF1 expression in malignant pleural mesothelioma (MPM). This study was undertaken to explore the therapeutic potential of targeting UHRF1 in MPM. METHODS Microarray, real-time quantitative reverse transcription-polymerase chain reaction, immunoblot, and immunohistochemistry techniques were used to evaluate UHRF1 expression in normal mesothelial cells (NMCs) cultured with or without asbestos, MPM lines, normal pleura, and primary MPM specimens. The impact of UHRF1 expression on MPM patient survival was evaluated using two independent databases. RNA-sequencing, proliferation, invasion, and colony formation assays, and murine xenograft experiments were performed to evaluate gene expression and growth of MPM cells after biochemical or pharmacologic inhibition of UHRF1 expression. RESULTS UHRF1 expression was significantly higher in MPM lines and specimens relative to NMC and normal pleura. Asbestos induced UHRF1 expression in NMC. The overexpression of UHRF1 was associated with decreased overall survival in patients with MPM. UHRF1 knockdown reversed genomewide DNA hypomethylation, and inhibited proliferation, invasion, and clonogenicity of MPM cells, and growth of MPM xenografts. These effects were phenocopied by the repurposed chemotherapeutic agent, mithramycin. Biochemical or pharmacologic up-regulation of p53 significantly reduced UHRF1 expression in MPM cells. RNA-sequencing experiments exhibited the pleiotropic effects of UHRF1 down-regulation and identified novel, clinically relevant biomarkers of UHRF1 expression in MPM. CONCLUSIONS UHRF1 is an epigenetic driver in MPM. These findings support the efforts to target UHRF1 expression or activity for mesothelioma therapy.
Collapse
Affiliation(s)
- Emily S Reardon
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Vivek Shukla
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sichuan Xi
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sudheer K Gara
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Yi Liu
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David Straughan
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mary Zhang
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Julie A Hong
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Eden C Payabyab
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Anju Kumari
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - William G Richards
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Assunta De Rienzo
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Raffit Hassan
- Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Markku Miettinen
- Laboratory of Pathology; National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Liqiang Xi
- Laboratory of Pathology; National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark Raffeld
- Laboratory of Pathology; National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lisa T Uechi
- Microarray Core Facility, University of California, Los Angeles School of Medicine, Los Angeles, California
| | - Xinmin Li
- Microarray Core Facility, University of California, Los Angeles School of Medicine, Los Angeles, California
| | - Ruihong Wang
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Haobin Chen
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Chuong D Hoang
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Raphael Bueno
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - David S Schrump
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
50
|
Spada F, Schiffers S, Kirchner A, Zhang Y, Arista G, Kosmatchev O, Korytiakova E, Rahimoff R, Ebert C, Carell T. Active turnover of genomic methylcytosine in pluripotent cells. Nat Chem Biol 2020; 16:1411-1419. [PMID: 32778844 DOI: 10.1038/s41589-020-0621-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 07/08/2020] [Indexed: 12/20/2022]
Abstract
Epigenetic plasticity underpins cell potency, but the extent to which active turnover of DNA methylation contributes to such plasticity is not known, and the underlying pathways are poorly understood. Here we use metabolic labeling with stable isotopes and mass spectrometry to quantitatively address the global turnover of genomic 5-methyl-2'-deoxycytidine (mdC), 5-hydroxymethyl-2'-deoxycytidine (hmdC) and 5-formyl-2'-deoxycytidine (fdC) across mouse pluripotent cell states. High rates of mdC/hmdC oxidation and fdC turnover characterize a formative-like pluripotent state. In primed pluripotent cells, the global mdC turnover rate is about 3-6% faster than can be explained by passive dilution through DNA synthesis. While this active component is largely dependent on ten-eleven translocation (Tet)-mediated mdC oxidation, we unveil additional oxidation-independent mdC turnover, possibly through DNA repair. This process accelerates upon acquisition of primed pluripotency and returns to low levels in lineage-committed cells. Thus, in pluripotent cells, active mdC turnover involves both mdC oxidation-dependent and oxidation-independent processes.
Collapse
Affiliation(s)
- Fabio Spada
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany.
| | - Sarah Schiffers
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
- National Cancer Institute, Center for Cancer Research, Bethesda, MD, USA
| | - Angie Kirchner
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
- Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Yingqian Zhang
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
- State Key Laboratory of Elemento-organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, China
| | - Gautier Arista
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
| | - Olesea Kosmatchev
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
| | - Eva Korytiakova
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
| | - René Rahimoff
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
- Department of Chemistry, University of California, Los Angeles, Berkeley, CA, USA
| | - Charlotte Ebert
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany.
| |
Collapse
|