1
|
Chen L, van der Veer BK, Chen Q, Champeris Tsaniras S, Brangers W, Kwak HHM, Khoueiry R, Lei Y, Cabrera R, Gross SS, Finnell RH, Koh KP. The DNA demethylase TET1 modifies the impact of maternal folic acid status on embryonic brain development. EMBO Rep 2025; 26:175-199. [PMID: 39578553 PMCID: PMC11724065 DOI: 10.1038/s44319-024-00316-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/24/2024] Open
Abstract
Folic acid (FA) is well known to prevent neural tube defects (NTDs), but we do not know why many human NTD cases still remain refractory to FA supplementation. Here, we investigate how the DNA demethylase TET1 interacts with maternal FA status to regulate mouse embryonic brain development. We determined that cranial NTDs display higher penetrance in non-inbred than in inbred Tet1-/- embryos and are resistant to FA supplementation across strains. Maternal diets that are either too rich or deficient in FA are linked to an increased incidence of cranial deformities in wild type and Tet1+/- offspring and to altered DNA hypermethylation in Tet1-/- embryos, primarily at neurodevelopmental loci. Excess FA in Tet1-/- embryos results in phospholipid metabolite loss and reduced expression of multiple membrane solute carriers, including a FA transporter gene that exhibits increased promoter DNA methylation and thereby mimics FA deficiency. Moreover, FA deficiency reveals that Tet1 haploinsufficiency can contribute to DNA hypermethylation and susceptibility to NTDs. Overall, our study suggests that epigenetic dysregulation may underlie NTD development despite FA supplementation.
Collapse
Affiliation(s)
- Lehua Chen
- Department of Development and Regeneration, Stem Cell and Developmental Biology, KU Leuven, Leuven, 3000, Belgium
| | - Bernard K van der Veer
- Department of Development and Regeneration, Stem Cell and Developmental Biology, KU Leuven, Leuven, 3000, Belgium
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Spyridon Champeris Tsaniras
- Department of Development and Regeneration, Stem Cell and Developmental Biology, KU Leuven, Leuven, 3000, Belgium
| | - Wannes Brangers
- Department of Development and Regeneration, Stem Cell and Developmental Biology, KU Leuven, Leuven, 3000, Belgium
| | - Harm H M Kwak
- Department of Development and Regeneration, Stem Cell and Developmental Biology, KU Leuven, Leuven, 3000, Belgium
| | - Rita Khoueiry
- Department of Development and Regeneration, Stem Cell and Developmental Biology, KU Leuven, Leuven, 3000, Belgium
| | - Yunping Lei
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Robert Cabrera
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Steven S Gross
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Richard H Finnell
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Kian Peng Koh
- Department of Development and Regeneration, Stem Cell and Developmental Biology, KU Leuven, Leuven, 3000, Belgium.
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Jin SG, Johnson J, Huang Z, Cui W, Dunwell T, Pfeifer GP. CXXC5 stabilizes DNA methylation patterns in mouse embryonic stem cells. Epigenomics 2024; 16:1351-1363. [PMID: 39585161 PMCID: PMC11622772 DOI: 10.1080/17501911.2024.2426450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
AIMS Mammalian genomes encode 12 proteins that contain a CXXC zinc finger domain. Most members of this family are large multi-domain proteins that function in the control of DNA methylation and histone methylation patterns. CXXC5 is a smaller member of the family, along with its closest homologue CXXC4. These two proteins lack known catalytic domains. Here, we have characterized CXXC5 in mouse embryonic stem (ES) cells. MATERIALS & METHODS We used gene knockouts, RNA sequencing, and DNA methylation analysis by whole-genome bisulfite sequencing. RESULTS & CONCLUSIONS We show that CXXC5 is a nuclear protein that interacts with 5-methylcytosine oxidases (TET proteins). Removal of CXXC5 from ES cells leads to very few changes in gene expression. CXXC5 extensively colocalizes with TET1 and TET2 at CpG islands. CXXC5 inactivation leads to a substantial reduction of DNA methylation levels that affects all genomic compartments including genic and intergenic regions and CpG island shores. We propose a model in which CXXC5 serves as an anchor for TET proteins at CpG islands. In the absence of CXXC5, the 5-methylcytosine oxidases become dislodged from CpG islands and are enabled to induce genome-scale DNA demethylation. Thus, CXXC5 serves as a stabilizer of DNA methylation patterns.
Collapse
Affiliation(s)
- Seung-Gi Jin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Jennifer Johnson
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Zhijun Huang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Wei Cui
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Gerd P. Pfeifer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
3
|
Linowiecka K, Szpotan J, Godlewska M, Gaweł D, Zarakowska E, Gackowski D, Brożyna AA, Foksiński M. Selective Estrogen Receptor Modulators' (SERMs) Influence on TET3 Expression in Breast Cancer Cell Lines with Distinct Biological Subtypes. Int J Mol Sci 2024; 25:8561. [PMID: 39201247 PMCID: PMC11354732 DOI: 10.3390/ijms25168561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Tamoxifen, a selective estrogen receptor modulator (SERM), exhibits dual agonist or antagonist effects contingent upon its binding to either G-protein-coupled estrogen receptor (GPER) or estrogen nuclear receptor (ESR). Estrogen signaling plays a pivotal role in initiating epigenetic alterations and regulating estrogen-responsive genes in breast cancer. Employing three distinct breast cancer cell lines-MCF-7 (ESR+; GPER+), MDA-MB-231 (ESR-; GPER-), and SkBr3 (ESR-; GPER+)-this study subjected them to treatment with two tamoxifen derivatives: 4-hydroxytamoxifen (4-HT) and endoxifen (Endox). Through 2D high-performance liquid chromatography with tandem mass spectrometry detection (HPLC-MS/MS), varying levels of 5-methylcytosine (5-mC) were found, with MCF-7 displaying the highest levels. Furthermore, TET3 mRNA expression levels varied among the cell lines, with MCF-7 exhibiting the lowest expression. Notably, treatment with 4-HT induced significant changes in TET3 expression across all cell lines, with the most pronounced increase seen in MCF-7 and the least in MDA-MB-231. These findings underscore the influence of tamoxifen derivatives on DNA methylation patterns, particularly through modulating TET3 expression, which appears to be contingent on the presence of estrogen receptors. This study highlights the potential of targeting epigenetic modifications for personalized anti-cancer therapy, offering a novel avenue to improve treatment outcomes.
Collapse
Affiliation(s)
- Kinga Linowiecka
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.S.); (A.A.B.)
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (E.Z.); (D.G.)
| | - Justyna Szpotan
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.S.); (A.A.B.)
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (E.Z.); (D.G.)
| | - Marlena Godlewska
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (M.G.); (D.G.)
| | - Damian Gaweł
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (M.G.); (D.G.)
| | - Ewelina Zarakowska
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (E.Z.); (D.G.)
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (E.Z.); (D.G.)
| | - Anna A. Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.S.); (A.A.B.)
| | - Marek Foksiński
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (E.Z.); (D.G.)
| |
Collapse
|
4
|
van der Veer BK, Chen L, Tsaniras SC, Brangers W, Chen Q, Schroiff M, Custers C, Kwak HH, Khoueiry R, Cabrera R, Gross SS, Finnell RH, Lei Y, Koh KP. Epigenetic regulation by TET1 in gene-environmental interactions influencing susceptibility to congenital malformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.21.581196. [PMID: 39026762 PMCID: PMC11257484 DOI: 10.1101/2024.02.21.581196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The etiology of neural tube defects (NTDs) involves complex gene-environmental interactions. Folic acid (FA) prevents NTDs, but the mechanisms remain poorly understood and at least 30% of human NTDs resist the beneficial effects of FA supplementation. Here, we identify the DNA demethylase TET1 as a nexus of folate-dependent one-carbon metabolism and genetic risk factors post-neural tube closure. We determine that cranial NTDs in Tet1 -/- embryos occur at two to three times higher penetrance in genetically heterogeneous than in homogeneous genetic backgrounds, suggesting a strong impact of genetic modifiers on phenotypic expression. Quantitative trait locus mapping identified a strong NTD risk locus in the 129S6 strain, which harbors missense and modifier variants at genes implicated in intracellular endocytic trafficking and developmental signaling. NTDs across Tet1 -/- strains are resistant to FA supplementation. However, both excess and depleted maternal FA diets modify the impact of Tet1 loss on offspring DNA methylation primarily at neurodevelopmental loci. FA deficiency reveals susceptibility to NTD and other structural brain defects due to haploinsufficiency of Tet1. In contrast, excess FA in Tet1 -/- embryos drives promoter DNA hypermethylation and reduced expression of multiple membrane solute transporters, including a FA transporter, accompanied by loss of phospholipid metabolites. Overall, our study unravels interactions between modified maternal FA status, Tet1 gene dosage and genetic backgrounds that impact neurotransmitter functions, cellular methylation and individual susceptibilities to congenital malformations, further implicating that epigenetic dysregulation may underlie NTDs resistant to FA supplementation.
Collapse
Affiliation(s)
- Bernard K. van der Veer
- Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, KU Leuven, Leuven 3000, Belgium
| | - Lehua Chen
- Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, KU Leuven, Leuven 3000, Belgium
| | - Spyridon Champeris Tsaniras
- Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, KU Leuven, Leuven 3000, Belgium
| | - Wannes Brangers
- Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, KU Leuven, Leuven 3000, Belgium
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Mariana Schroiff
- Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, KU Leuven, Leuven 3000, Belgium
| | - Colin Custers
- Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, KU Leuven, Leuven 3000, Belgium
| | - Harm H.M. Kwak
- Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, KU Leuven, Leuven 3000, Belgium
| | - Rita Khoueiry
- Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, KU Leuven, Leuven 3000, Belgium
| | - Robert Cabrera
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Steven S. Gross
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Richard H. Finnell
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Yunping Lei
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Kian Peng Koh
- Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, KU Leuven, Leuven 3000, Belgium
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
5
|
Xie J, Zhang Z. Recent Advances and Therapeutic Implications of 2-Oxoglutarate-Dependent Dioxygenases in Ischemic Stroke. Mol Neurobiol 2024; 61:3949-3975. [PMID: 38041714 DOI: 10.1007/s12035-023-03790-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
Ischemic stroke is a common disease with a high disability rate and mortality, which brings heavy pressure on families and medical insurance. Nowadays, the golden treatments for ischemic stroke in the acute phase mainly include endovascular therapy and intravenous thrombolysis. Some drugs are used to alleviate brain injury in patients with ischemic stroke, such as edaravone and 3-n-butylphthalide. However, no effective neuroprotective drug for ischemic stroke has been acknowledged. 2-Oxoglutarate-dependent dioxygenases (2OGDDs) are conserved and common dioxygenases whose activities depend on O2, Fe2+, and 2OG. Most 2OGDDs are expressed in the brain and are essential for the development and functions of the brain. Therefore, 2OGDDs likely play essential roles in ischemic brain injury. In this review, we briefly elucidate the functions of most 2OGDDs, particularly the effects of regulations of 2OGDDs on various cells in different phases after ischemic stroke. It would also provide promising potential therapeutic targets and directions of drug development for protecting the brain against ischemic injury and improving outcomes of ischemic stroke.
Collapse
Affiliation(s)
- Jian Xie
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
6
|
Šimelis K, Saraç H, Salah E, Nishio K, McAllister TE, Corner TP, Tumber A, Belle R, Schofield CJ, Suga H, Kawamura A. Selective targeting of human TET1 by cyclic peptide inhibitors: Insights from biochemical profiling. Bioorg Med Chem 2024; 99:117597. [PMID: 38262305 DOI: 10.1016/j.bmc.2024.117597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
Ten-Eleven Translocation (TET) enzymes are Fe(II)/2OG-dependent oxygenases that play important roles in epigenetic regulation, but selective inhibition of the TETs is an unmet challenge. We describe the profiling of previously identified TET1-binding macrocyclic peptides. TiP1 is established as a potent TET1 inhibitor (IC50 = 0.26 µM) with excellent selectivity over other TETs and 2OG oxygenases. TiP1 alanine scanning reveals the critical roles of Trp10 and Glu11 residues for inhibition of TET isoenzymes. The results highlight the utility of the RaPID method to identify potent enzyme inhibitors with selectivity over closely related paralogues. The structure-activity relationship data generated herein may find utility in the development of chemical probes for the TETs.
Collapse
Affiliation(s)
- Klemensas Šimelis
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Hilal Saraç
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Kosuke Nishio
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tom E McAllister
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Thomas P Corner
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Roman Belle
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom; Chemistry - School of Natural and Environmental Sciences, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akane Kawamura
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom; Chemistry - School of Natural and Environmental Sciences, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
7
|
Kaplánek R, Kejík Z, Hajduch J, Veselá K, Kučnirová K, Skaličková M, Venhauerová A, Hosnedlová B, Hromádka R, Dytrych P, Novotný P, Abramenko N, Antonyová V, Hoskovec D, Babula P, Masařík M, Martásek P, Jakubek M. TET protein inhibitors: Potential and limitations. Biomed Pharmacother 2023; 166:115324. [PMID: 37598475 DOI: 10.1016/j.biopha.2023.115324] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023] Open
Abstract
TET proteins (methylcytosine dioxygenases) play an important role in the regulation of gene expression. Dysregulation of their activity is associated with many serious pathogenic states such as oncological diseases. Regulation of their activity by specific inhibitors could represent a promising therapeutic strategy. Therefore, this review describes various types of TET protein inhibitors in terms of their inhibitory mechanism and possible applicability. The potential and possible limitations of this approach are thoroughly discussed in the context of TET protein functionality in living systems. Furthermore, possible therapeutic strategies based on the inhibition of TET proteins are presented and evaluated, especially in the field of oncological diseases.
Collapse
Affiliation(s)
- Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Kateřina Kučnirová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Markéta Skaličková
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Anna Venhauerová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Božena Hosnedlová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Róbert Hromádka
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08 Prague, Czech Republic
| | - Petr Novotný
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Veronika Antonyová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08 Prague, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Michal Masařík
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic.
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic.
| |
Collapse
|
8
|
Qu K, Wang C, Huang L, Qin X, Zhang K, Qiu J, Wang G. Oscillatory shear stress-induced downregulation of TET1s injures vascular endothelial planar cell polarity by suppression of actin polymerization. APL Bioeng 2023; 7:036104. [PMID: 37533755 PMCID: PMC10393427 DOI: 10.1063/5.0141289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/29/2023] [Indexed: 08/04/2023] Open
Abstract
Vascular endothelial polarity induced by blood flow plays crucial roles in the development of atherosclerosis. Loss of endothelial polarity leads to an increase in permeability and leukocyte recruitment, which are crucial hallmarks of atherosclerotic initiation. Endothelial cells exhibit a morphological adaptation to hemodynamic shear stress and possesses planar cell polarity to the direction of blood flow. However, the mechanism of how hemodynamic shear stress regulates endothelial planar cell polarity has not been firmly established. Here, we found that TET1s, a short isoform of Tet methylcytosine dioxygenase 1, was a mediator in the regulation of the planar cell polarity in endothelial cells in response to hemodynamic shear stress. In the process, low expression of TET1s induced by oscillatory shear stress led to the endothelial planar polarity damage through inhibition of F-actin polymerization. TET1s can regulate demethylation level of the sFRP-1 promoter to alter the expression of sFRP-1, which affects the interaction of sFRP-1/Fzd4 and F-actin polymerization. Our study revealed the mechanism of how TET1s mediates endothelial planar cell polarity in response to hemodynamic shear stress and provides a new insight for the prevention of atherosclerosis.
Collapse
Affiliation(s)
| | - Caihong Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | | | | | | | - Juhui Qiu
- Authors to whom correspondence should be addressed: and
| | - Guixue Wang
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
9
|
Hsu FM, Wu QY, Fabyanic EB, Wei A, Wu H, Clark AT. TET1 facilitates specification of early human lineages including germ cells. iScience 2023; 26:107191. [PMID: 37456839 PMCID: PMC10345126 DOI: 10.1016/j.isci.2023.107191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/07/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023] Open
Abstract
Ten Eleven Translocation 1 (TET1) is a regulator of localized DNA demethylation through the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). To examine DNA demethylation in human primordial germ cell-like cells (hPGCLCs) induced from human embryonic stem cells (hESCs), we performed bisulfite-assisted APOBEC coupled epigenetic sequencing (bACEseq) followed by integrated genomics analysis. Our data indicates that 5hmC enriches at hPGCLC-specific NANOG, SOX17 or TFAP2C binding sites on hPGCLC induction, and this is accompanied by localized DNA demethylation. Using CRISPR-Cas9, we show that deleting the catalytic domain of TET1 reduces hPGCLC competency when starting with hESC cultured on mouse embryonic fibroblasts, and this phenotype can be rescued after transitioning hESCs to defined media and a recombinant substrate. Taken together, our study demonstrates the importance of 5hmC in facilitating hPGCLC competency, and the role of hESC culture conditions in modulating this effect.
Collapse
Affiliation(s)
- Fei-Man Hsu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Qiu Ya Wu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emily B. Fabyanic
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex Wei
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hao Wu
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amander T. Clark
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
van der Veer BK, Chen L, Custers C, Athanasouli P, Schroiff M, Cornelis R, Chui JSH, Finnell R, Lluis F, Koh K. Dual functions of TET1 in germ layer lineage bifurcation distinguished by genomic context and dependence on 5-methylcytosine oxidation. Nucleic Acids Res 2023; 51:5469-5498. [PMID: 37021585 PMCID: PMC10287924 DOI: 10.1093/nar/gkad231] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/12/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Gastrulation begins when the epiblast forms the primitive streak or becomes definitive ectoderm. During this lineage bifurcation, the DNA dioxygenase TET1 has bipartite functions in transcriptional activation and repression, but the mechanisms remain unclear. By converting mouse embryonic stem cells (ESCs) into neuroprogenitors, we defined how Tet1-/- cells switch from neuroectoderm fate to form mesoderm and endoderm. We identified the Wnt repressor Tcf7l1 as a TET1 target that suppresses Wnt/β-catenin and Nodal signalling. ESCs expressing catalytic dead TET1 retain neural potential but activate Nodal and subsequently Wnt/β-catenin pathways to generate also mesoderm and endoderm. At CpG-poor distal enhancers, TET1 maintains accessible chromatin at neuroectodermal loci independently of DNA demethylation. At CpG-rich promoters, DNA demethylation by TET1 affects the expression of bivalent genes. In ESCs, a non-catalytic TET1 cooperation with Polycomb represses primitive streak genes; post-lineage priming, the interaction becomes antagonistic at neuronal genes, when TET1's catalytic activity is further involved by repressing Wnt signalling. The convergence of repressive DNA and histone methylation does not inhibit neural induction in Tet1-deficient cells, but some DNA hypermethylated loci persist at genes with brain-specific functions. Our results reveal versatile switching of non-catalytic and catalytic TET1 activities based on genomic context, lineage and developmental stage.
Collapse
Affiliation(s)
- Bernard K van der Veer
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, B-3000 Leuven, Belgium
| | - Lehua Chen
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, B-3000 Leuven, Belgium
| | - Colin Custers
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, B-3000 Leuven, Belgium
| | - Paraskevi Athanasouli
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell Signaling, B-3000 Leuven, Belgium
| | - Mariana Schroiff
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, B-3000 Leuven, Belgium
| | - Riet Cornelis
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, B-3000 Leuven, Belgium
| | - Jonathan Sai-Hong Chui
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell Signaling, B-3000 Leuven, Belgium
| | - Richard H Finnell
- Baylor College of Medicine, Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Houston, TX 77030, USA
- Baylor College of Medicine, Department of Molecular and Human Genetics, Department of Medicine, Houston, TX 77030, USA
| | - Frederic Lluis
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell Signaling, B-3000 Leuven, Belgium
| | - Kian Peng Koh
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, B-3000 Leuven, Belgium
- Baylor College of Medicine, Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Houston, TX 77030, USA
| |
Collapse
|
11
|
Franklin JM, Wu Z, Guan KL. Insights into recent findings and clinical application of YAP and TAZ in cancer. Nat Rev Cancer 2023:10.1038/s41568-023-00579-1. [PMID: 37308716 DOI: 10.1038/s41568-023-00579-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 06/14/2023]
Abstract
Decades of research have mapped out the basic mechanics of the Hippo pathway. The paralogues Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), as the central transcription control module of the Hippo pathway, have long been implicated in the progression of various human cancers. The current literature regarding oncogenic YAP and TAZ activities consists mostly of context-specific mechanisms and treatments of human cancers. Furthermore, a growing number of studies demonstrate tumour-suppressor functions of YAP and TAZ. In this Review we aim to synthesize an integrated perspective of the many disparate findings regarding YAP and TAZ in cancer. We then conclude with the various strategies for targeting and treating YAP- and TAZ-dependent cancers.
Collapse
Affiliation(s)
- J Matthew Franklin
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Zhengming Wu
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Chen Z, Zhou K, Xue J, Small A, Xiao G, Nguyen LXT, Zhang Z, Prince E, Weng H, Huang H, Zhao Z, Qing Y, Shen C, Li W, Han L, Tan B, Su R, Qin H, Li Y, Wu D, Gu Z, Ngo VN, He X, Chao J, Leung K, Wang K, Dong L, Qin X, Cai Z, Sheng Y, Chen Y, Wu X, Zhang B, Shi Y, Marcucci G, Qian Z, Xu M, Müschen M, Chen J, Deng X. Phosphorylation stabilized TET1 acts as an oncoprotein and therapeutic target in B cell acute lymphoblastic leukemia. Sci Transl Med 2023; 15:eabq8513. [PMID: 36989375 PMCID: PMC11163962 DOI: 10.1126/scitranslmed.abq8513] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/06/2023] [Indexed: 03/31/2023]
Abstract
Although the overall survival rate of B cell acute lymphoblastic leukemia (B-ALL) in childhood is more than 80%, it is merely 30% in refractory/relapsed and adult patients with B-ALL. This demonstrates a need for improved therapy targeting this subgroup of B-ALL. Here, we show that the ten-eleven translocation 1 (TET1) protein, a dioxygenase involved in DNA demethylation, is overexpressed and plays a crucial oncogenic role independent of its catalytic activity in B-ALL. Consistent with its oncogenic role in B-ALL, overexpression of TET1 alone in normal precursor B cells is sufficient to transform the cells and cause B-ALL in mice within 3 to 4 months. We found that TET1 protein is stabilized and overexpressed because of its phosphorylation mediated by protein kinase C epsilon (PRKCE) and ATM serine/threonine kinase (ATM), which are also overexpressed in B-ALL. Mechanistically, TET1 recruits STAT5B to the promoters of CD72 and JCHAIN and promotes their transcription, which in turn promotes B-ALL development. Destabilization of TET1 protein by treatment with PKC or ATM inhibitors (staurosporine or AZD0156; both tested in clinical trials), or by pharmacological targeting of STAT5B, greatly decreases B-ALL cell viability and inhibits B-ALL progression in vitro and in vivo. The combination of AZD0156 with staurosporine or vincristine exhibits a synergistic effect on inhibition of refractory/relapsed B-ALL cell survival and leukemia progression in PDX models. Collectively, our study reveals an oncogenic role of the phosphorylated TET1 protein in B-ALL independent of its catalytic activity and highlights the therapeutic potential of targeting TET1 signaling for the treatment of refractory/relapsed B-ALL.
Collapse
Affiliation(s)
- Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Keren Zhou
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Jianhuang Xue
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Andrew Small
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Gang Xiao
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Le Xuan Truong Nguyen
- Department of Hematological Malignancies Translational Science, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Gehr Family Center for Leukemia Research, City of Hope Medical Center and Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Zheng Zhang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Emily Prince
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Hengyou Weng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Guangzhou Laboratory, Guangzhou, Guangdong 510005, China
| | - Huilin Huang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Zhicong Zhao
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ying Qing
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Chao Shen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Wei Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Li Han
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Brandon Tan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Hanjun Qin
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Yangchan Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Department of Radiation Oncology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Dong Wu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Zhaohui Gu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Vu N. Ngo
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Xin He
- Department of Hematological Malignancies Translational Science, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Jianfei Chao
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Keith Leung
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Kitty Wang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Lei Dong
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Xi Qin
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Zhenming Cai
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, Nanjing Medical University, Nanjing 211166, China
| | - Yue Sheng
- Department of Medicine and Department of Biochemistry and Molecular Biology, UF Health Cancer Center, University of Florida, Gainesville, FL 32611, USA
- Department of Hematology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yu Chen
- Molecular Instrumentation Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Bin Zhang
- Department of Hematological Malignancies Translational Science, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Gehr Family Center for Leukemia Research, City of Hope Medical Center and Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Yanhong Shi
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Guido Marcucci
- Department of Hematological Malignancies Translational Science, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Gehr Family Center for Leukemia Research, City of Hope Medical Center and Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Zhijian Qian
- Department of Medicine and Department of Biochemistry and Molecular Biology, UF Health Cancer Center, University of Florida, Gainesville, FL 32611, USA
| | - Mingjiang Xu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Markus Müschen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Gehr Family Center for Leukemia Research, City of Hope Medical Center and Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| |
Collapse
|
13
|
Prasasya RD, Caldwell BA, Liu Z, Wu S, Leu NA, Fowler JM, Cincotta SA, Laird DJ, Kohli RM, Bartolomei MS. TET1 Catalytic Activity is Required for Reprogramming of Imprinting Control Regions and Patterning of Sperm-Specific Hypomethylated Regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529426. [PMID: 36865267 PMCID: PMC9980038 DOI: 10.1101/2023.02.21.529426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
DNA methylation erasure is required for mammalian primordial germ cell reprogramming. TET enzymes iteratively oxidize 5-methylcytosine to generate 5-hyroxymethylcytosine (5hmC), 5-formylcytosine, and 5-carboxycytosine to facilitate active genome demethylation. Whether these bases are required to promote replication-coupled dilution or activate base excision repair during germline reprogramming remains unresolved due to the lack of genetic models that decouple TET activities. Here, we generated two mouse lines expressing catalytically inactive TET1 ( Tet1-HxD ) and TET1 that stalls oxidation at 5hmC ( Tet1-V ). Tet1 -/- , Tet1 V/V , and Tet1 HxD/HxD sperm methylomes show that TET1 V and TET1 HxD rescue most Tet1 -/- hypermethylated regions, demonstrating the importance of TET1’s extra-catalytic functions. Imprinted regions, in contrast, require iterative oxidation. We further reveal a broader class of hypermethylated regions in sperm of Tet1 mutant mice that are excluded from de novo methylation during male germline development and depend on TET oxidation for reprogramming. Our study underscores the link between TET1-mediated demethylation during reprogramming and sperm methylome patterning.
Collapse
|
14
|
Skvortsova K, Bertrand S, Voronov D, Duckett PE, Ross SE, Magri MS, Maeso I, Weatheritt RJ, Gómez Skarmeta JL, Arnone MI, Escriva H, Bogdanovic O. Active DNA demethylation of developmental cis-regulatory regions predates vertebrate origins. SCIENCE ADVANCES 2022; 8:eabn2258. [PMID: 36459547 PMCID: PMC10936051 DOI: 10.1126/sciadv.abn2258] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
DNA methylation [5-methylcytosine (5mC)] is a repressive gene-regulatory mark required for vertebrate embryogenesis. Genomic 5mC is tightly regulated through the action of DNA methyltransferases, which deposit 5mC, and ten-eleven translocation (TET) enzymes, which participate in its active removal through the formation of 5-hydroxymethylcytosine (5hmC). TET enzymes are essential for mammalian gastrulation and activation of vertebrate developmental enhancers; however, to date, a clear picture of 5hmC function, abundance, and genomic distribution in nonvertebrate lineages is lacking. By using base-resolution 5mC and 5hmC quantification during sea urchin and lancelet embryogenesis, we shed light on the roles of nonvertebrate 5hmC and TET enzymes. We find that these invertebrate deuterostomes use TET enzymes for targeted demethylation of regulatory regions associated with developmental genes and show that the complement of identified 5hmC-regulated genes is conserved to vertebrates. This work demonstrates that active 5mC removal from regulatory regions is a common feature of deuterostome embryogenesis suggestive of an unexpected deep conservation of a major gene-regulatory module.
Collapse
Affiliation(s)
- Ksenia Skvortsova
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Stephanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Danila Voronov
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paul E. Duckett
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, Australia
| | - Samuel E. Ross
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 22, Australia
| | - Marta Silvia Magri
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Ignacio Maeso
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Robert J. Weatheritt
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, Australia
- EMBL Australia, Garvan Institute of Medical Research, Sydney, Australia
| | - Jose Luis Gómez Skarmeta
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Maria Ina Arnone
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Hector Escriva
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Ozren Bogdanovic
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 22, Australia
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| |
Collapse
|
15
|
Hains AE, Uppal S, Cao JZ, Salwen HR, Applebaum MA, Cohn SL, Godley LA. MYCN and HIF-1 directly regulate TET1 expression to control 5-hmC gains and enhance neuroblastoma cell migration in hypoxia. Epigenetics 2022; 17:2056-2074. [PMID: 35942521 PMCID: PMC9665154 DOI: 10.1080/15592294.2022.2106078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/14/2022] [Indexed: 11/03/2022] Open
Abstract
Ten-Eleven-Translocation 5-methylcytosine dioxygenases 1-3 (TET1-3) convert 5-methylcytosine to 5-hydroxymethylcytosine (5-hmC), using oxygen as a co-substrate. Contrary to expectations, hypoxia induces 5-hmC gains in MYCN-amplified neuroblastoma (NB) cells via upregulation of TET1. Here, we show that MYCN directly controls TET1 expression in normoxia, and in hypoxia, HIF-1 augments TET1 expression and TET1 protein stability. Through gene-editing, we identify two MYCN and HIF-1 binding sites within TET1 that regulate gene expression. Bioinformatic analyses of 5-hmC distribution and RNA-sequencing data from hypoxic cells implicate hypoxia-regulated genes important for cell migration, including CXCR4. We show that hypoxic cells lacking the two MYCN/HIF-1 binding sites within TET1 migrate slower than controls. Treatment of MYCN-amplified NB cells with a CXCR4 antagonist results in slower migration under hypoxic conditions, suggesting that inclusion of a CXCR4 antagonist into NB treatment regimens could be beneficial for children with MYCN-amplified NBs.
Collapse
Affiliation(s)
- Anastasia E. Hains
- Section of Hematology/Oncology, Department of Medicine, and the University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Sakshi Uppal
- Section of Hematology/Oncology, Department of Medicine, and the University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - John Z. Cao
- Section of Hematology/Oncology, Department of Medicine, and the University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Helen R. Salwen
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Mark A. Applebaum
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Susan L. Cohn
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Lucy A. Godley
- Section of Hematology/Oncology, Department of Medicine, and the University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
16
|
Role of TET dioxygenases in the regulation of both normal and pathological hematopoiesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:294. [PMID: 36203205 PMCID: PMC9540719 DOI: 10.1186/s13046-022-02496-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
Abstract
The family of ten-eleven translocation dioxygenases (TETs) consists of TET1, TET2, and TET3. Although all TETs are expressed in hematopoietic tissues, only TET2 is commonly found to be mutated in age-related clonal hematopoiesis and hematopoietic malignancies. TET2 mutation causes abnormal epigenetic landscape changes and results in multiple stages of lineage commitment/differentiation defects as well as genetic instability in hematopoietic stem/progenitor cells (HSPCs). TET2 mutations are founder mutations (first hits) in approximately 40–50% of cases of TET2-mutant (TET2MT) hematopoietic malignancies and are later hits in the remaining cases. In both situations, TET2MT collaborates with co-occurring mutations to promote malignant transformation. In TET2MT tumor cells, TET1 and TET3 partially compensate for TET2 activity and contribute to the pathogenesis of TET2MT hematopoietic malignancies. Here we summarize the most recent research on TETs in regulating of both normal and pathogenic hematopoiesis. We review the concomitant mutations and aberrant signals in TET2MT malignancies. We also discuss the molecular mechanisms by which concomitant mutations and aberrant signals determine lineage commitment in HSPCs and the identity of hematopoietic malignancies. Finally, we discuss potential strategies to treat TET2MT hematopoietic malignancies, including reverting the methylation state of TET2 target genes and targeting the concomitant mutations and aberrant signals.
Collapse
|
17
|
Arroyo M, Hastert FD, Zhadan A, Schelter F, Zimbelmann S, Rausch C, Ludwig AK, Carell T, Cardoso MC. Isoform-specific and ubiquitination dependent recruitment of Tet1 to replicating heterochromatin modulates methylcytosine oxidation. Nat Commun 2022; 13:5173. [PMID: 36056023 PMCID: PMC9440122 DOI: 10.1038/s41467-022-32799-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/15/2022] [Indexed: 01/26/2023] Open
Abstract
Oxidation of the epigenetic DNA mark 5-methylcytosine by Tet dioxygenases is an established route to diversify the epigenetic information, modulate gene expression and overall cellular (patho-)physiology. Here, we demonstrate that Tet1 and its short isoform Tet1s exhibit distinct nuclear localization during DNA replication resulting in aberrant cytosine modification levels in human and mouse cells. We show that Tet1 is tethered away from heterochromatin via its zinc finger domain, which is missing in Tet1s allowing its targeting to these regions. We find that Tet1s interacts with and is ubiquitinated by CRL4(VprBP). The ubiquitinated Tet1s is then recognized by Uhrf1 and recruited to late replicating heterochromatin. This leads to spreading of 5-methylcytosine oxidation to heterochromatin regions, LINE 1 activation and chromatin decondensation. In summary, we elucidate a dual regulation mechanism of Tet1, contributing to the understanding of how epigenetic information can be diversified by spatio-temporal directed Tet1 catalytic activity.
Collapse
Affiliation(s)
- María Arroyo
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Florian D. Hastert
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany ,grid.425396.f0000 0001 1019 0926Section AIDS and newly emerging pathogens, Paul Ehrlich Institute, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - Andreas Zhadan
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Florian Schelter
- grid.5252.00000 0004 1936 973XDepartment of Chemistry, Ludwig Maximilians University, Butenandstr. 5-13, 81377 Munich, Germany
| | - Susanne Zimbelmann
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Cathia Rausch
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany ,grid.16008.3f0000 0001 2295 9843Present Address: Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Anne K. Ludwig
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany ,grid.5253.10000 0001 0328 4908Present Address: Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Thomas Carell
- grid.5252.00000 0004 1936 973XDepartment of Chemistry, Ludwig Maximilians University, Butenandstr. 5-13, 81377 Munich, Germany
| | - M. Cristina Cardoso
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| |
Collapse
|
18
|
Huang X, Tang X, Bai X, Li H, Tao H, Wang J, Li Y, Sun Y, Zheng Y, Xu X, Wang L, Ding Y, Lu M, Zhou P, Bo X, Li H, Chen H. dbEmbryo multi-omics database for analyses of synergistic regulation in early mammalian embryo development. Genome Res 2022; 32:1612-1625. [PMID: 35977841 PMCID: PMC9435744 DOI: 10.1101/gr.276744.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022]
Abstract
During early mammalian embryo development, different epigenetic marks undergo reprogramming and play crucial roles in the mediation of gene expression. Currently, several databases provide multi-omics information on early embryos. However, how interconnected epigenetic markers function together to coordinate the expression of the genetic code in a spatiotemporal manner remains difficult to analyze, markedly limiting scientific and clinical research. Here, we present dbEmbryo, an integrated and interactive multi-omics database for human and mouse early embryos. dbEmbryo integrates data on gene expression, DNA methylation, histone modifications, chromatin accessibility, and higher-order chromatin structure profiles for human and mouse early embryos. It incorporates customized analysis tools, such as "multi-omics visualization," "Gene&Peak annotation," "ZGA gene cluster," "cis-regulation," "synergistic regulation," "promoter signal enrichment," and "3D genome." Users can retrieve gene expression and epigenetic profile patterns to analyze synergistic changes across different early embryo developmental stages. We showed the uniqueness of dbEmbryo among extant databases containing data on early embryo development and provided an overview. Using dbEmbryo, we obtained a phase-separated model of transcriptional control during early embryo development. dbEmbryo offers web-based analytical tools and a comprehensive resource for biologists and clinicians to decipher molecular regulatory mechanisms of human and mouse early embryo development.
Collapse
Affiliation(s)
- Xin Huang
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaohan Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xuemei Bai
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Honglei Li
- Beijing Cloudna Technology Company, Limited, Beijing 100029, China
| | - Huan Tao
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Junting Wang
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yaru Li
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Yu Sun
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Yang Zheng
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Xiang Xu
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Longteng Wang
- Center for Statistical Science, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yang Ding
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Meisong Lu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Pingkun Zhou
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaochen Bo
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Hao Li
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Hebing Chen
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| |
Collapse
|
19
|
Ashok A, Pooranawattanakul S, Tai WL, Cho KS, Utheim TP, Cestari DM, Chen DF. Epigenetic Regulation of Optic Nerve Development, Protection, and Repair. Int J Mol Sci 2022; 23:8927. [PMID: 36012190 PMCID: PMC9408916 DOI: 10.3390/ijms23168927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Epigenetic factors are known to influence tissue development, functionality, and their response to pathophysiology. This review will focus on different types of epigenetic regulators and their associated molecular apparatus that affect the optic nerve. A comprehensive understanding of epigenetic regulation in optic nerve development and homeostasis will help us unravel novel molecular pathways and pave the way to design blueprints for effective therapeutics to address optic nerve protection, repair, and regeneration.
Collapse
Affiliation(s)
- Ajay Ashok
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Sarita Pooranawattanakul
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Wai Lydia Tai
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Tor P. Utheim
- Department of Medical Biochemistry, Oslo University Hospital, 0372 Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, 0372 Oslo, Norway
| | - Dean M. Cestari
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Dong Feng Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
20
|
Wu BK, Mei SC, Chen EH, Zheng Y, Pan D. YAP induces an oncogenic transcriptional program through TET1-mediated epigenetic remodeling in liver growth and tumorigenesis. Nat Genet 2022; 54:1202-1213. [PMID: 35835915 PMCID: PMC9357225 DOI: 10.1038/s41588-022-01119-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 06/02/2022] [Indexed: 02/03/2023]
Abstract
Epigenetic remodeling is essential for oncogene-induced cellular transformation and malignancy. In contrast to histone post-translational modifications, how DNA methylation is remodeled by oncogenic signaling remains poorly understood. The oncoprotein YAP, a coactivator of the TEAD transcription factors mediating Hippo signaling, is widely activated in human cancers. Here, we identify the 5-methylcytosine dioxygenase TET1 as a direct YAP target and a master regulator that coordinates the genome-wide epigenetic and transcriptional reprogramming of YAP target genes in the liver. YAP activation induces the expression of TET1, which physically interacts with TEAD to cause regional DNA demethylation, histone H3K27 acetylation and chromatin opening in YAP target genes to facilitate transcriptional activation. Loss of TET1 not only reverses YAP-induced epigenetic and transcriptional changes but also suppresses YAP-induced hepatomegaly and tumorigenesis. These findings exemplify how oncogenic signaling regulates the site specificity of DNA demethylation to promote tumorigenesis and implicate TET1 as a potential target for modulating YAP signaling in physiology and disease.
Collapse
Affiliation(s)
- Bo-Kuan Wu
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Szu-Chieh Mei
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth H Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
21
|
Liu Y, Xu Z, Shi J, Zhang Y, Yang S, Chen Q, Song C, Geng S, Li Q, Li J, Xu GL, Xie W, Lin H, Li X. DNA methyltransferases are complementary in maintaining DNA methylation in embryonic stem cells. iScience 2022; 25:105003. [PMID: 36117996 PMCID: PMC9478929 DOI: 10.1016/j.isci.2022.105003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/15/2022] [Accepted: 08/18/2022] [Indexed: 12/01/2022] Open
Abstract
ZFP57 and ZFP445 maintain genomic imprinting in mouse embryos. We found DNA methylation was lost at most examined imprinting control regions (ICRs) in mouse Zfp57 mutant ES cells, which could not be prevented by the elimination of three TET proteins. To elucidate methylation maintenance mechanisms, we generated mutant ES clones lacking three major DNA methyltransferases (DNMTs). Intriguingly, DNMT3A and DNMT3B were essential for DNA methylation at a subset of ICRs in mouse ES cells although DNMT1 maintained DNA methylation at most known ICRs. These were similarly observed after extended culture. Germline-derived DNA methylation was lost at the examined ICRs lacking DNMTs according to allelic analysis. Similar to DNMT1, DNMT3A and DNMT3B were required for maintaining DNA methylation at repeats, genic regions, and other genomic sequences. Therefore, three DNA methyltransferases play complementary roles in maintaining DNA methylation in mouse ES cells including DNA methylation at the ICRs primarily mediated through the ZFP57-dependent pathway. ZFP57 maintains DNA methylation at the ICR of most imprinted regions in ES cells TET proteins may not be essential for maintaining most ICR DNA methylation in ES cells DNMT3 is required for the maintenance of DNA methylation at a subset of ICRs in ES cells Maintenance functions of DNMT1 and DNMT3 are complementary at repeats and genic regions
Collapse
Affiliation(s)
- Yuhan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiajia Shi
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yu Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China
| | - Shuting Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qian Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chenglin Song
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuhui Geng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qing Li
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinsong Li
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guo-Liang Xu
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haodong Lin
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Xiajun Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Genome Editing Center, ShanghaiTech University, Shanghai 201210, China
- Corresponding author
| |
Collapse
|
22
|
Early Expression of Tet1 and Tet2 in Mouse Zygotes Altered DNA Methylation Status and Affected Embryonic Development. Int J Mol Sci 2022; 23:ijms23158495. [PMID: 35955629 PMCID: PMC9369288 DOI: 10.3390/ijms23158495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
Ten-eleven translocation (Tet) dioxygenases can induce DNA demethylation by catalyzing 5-methylcytosine(5mC) to 5-hydroxymethylcytosine(5hmC), and play important roles during mammalian development. In mouse, Tet1 and Tet2 are not expressed in pronucleus-staged embryos and are not involved in the genomic demethylation of early zygotes. Here, we investigated the influence of Tet1 and Tet2 on methylation of parental genomes by ectopically expressing Tet1 and Tet2 in zygotes. Immunofluorescence staining showed a marked 5hmC increase in the maternal pronucleus after injection of Tet1 or Tet2 mRNA into zygotes. Whole-genome bisulfite sequencing further revealed that Tet2 greatly enhanced the global demethylation of both parental genomes, while Tet1 only promoted the paternal demethylation. Tet1 and Tet2 overexpression altered the DNA methylation across genomes, including various genic elements and germline-specific differently methylated regions. Tet2 exhibited overall stronger demethylation activity than Tet1. Either Tet1 or Tet2 overexpression impaired preimplantation embryonic development. These results demonstrated that early expression of Tet1 and Tet2 could substantially alter the zygotic methylation landscape and damage embryonic development. These findings provide new insights into understanding the function of Tet dioxygenases and the mechanism of DNA methylation in relation to embryogenesis.
Collapse
|
23
|
Stolz P, Mantero AS, Tvardovskiy A, Ugur E, Wange LE, Mulholland CB, Cheng Y, Wierer M, Enard W, Schneider R, Bartke T, Leonhardt H, Elsässer SJ, Bultmann S. TET1 regulates gene expression and repression of endogenous retroviruses independent of DNA demethylation. Nucleic Acids Res 2022; 50:8491-8511. [PMID: 35904814 PMCID: PMC9410877 DOI: 10.1093/nar/gkac642] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/25/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
DNA methylation (5-methylcytosine (5mC)) is critical for genome stability and transcriptional regulation in mammals. The discovery that ten-eleven translocation (TET) proteins catalyze the oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) revolutionized our perspective on the complexity and regulation of DNA modifications. However, to what extent the regulatory functions of TET1 can be attributed to its catalytic activity remains unclear. Here, we use genome engineering and quantitative multi-omics approaches to dissect the precise catalytic vs. non-catalytic functions of TET1 in murine embryonic stem cells (mESCs). Our study identifies TET1 as an essential interaction hub for multiple chromatin modifying complexes and a global regulator of histone modifications. Strikingly, we find that the majority of transcriptional regulation depends on non-catalytic functions of TET1. In particular, we show that TET1 is critical for the establishment of H3K9me3 and H4K20me3 at endogenous retroviral elements (ERVs) and their silencing that is independent of its canonical role in DNA demethylation. Furthermore, we provide evidence that this repression of ERVs depends on the interaction between TET1 and SIN3A. In summary, we demonstrate that the non-catalytic functions of TET1 are critical for regulation of gene expression and the silencing of endogenous retroviruses in mESCs.
Collapse
Affiliation(s)
- Paul Stolz
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Angelo Salazar Mantero
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet 17165 Stockholm, Sweden, Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institutet 17177 Stockholm, Sweden
| | - Andrey Tvardovskiy
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Enes Ugur
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich 81377, Germany.,Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Lucas E Wange
- Faculty of Biology, Anthropology and Human Genomics, Ludwig-Maximilians-Universität München 82152, Planegg-Martinsried, Germany
| | - Christopher B Mulholland
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Yuying Cheng
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet 17165 Stockholm, Sweden, Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institutet 17177 Stockholm, Sweden
| | - Michael Wierer
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Wolfgang Enard
- Faculty of Biology, Anthropology and Human Genomics, Ludwig-Maximilians-Universität München 82152, Planegg-Martinsried, Germany
| | - Robert Schneider
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Till Bartke
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Heinrich Leonhardt
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Simon J Elsässer
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet 17165 Stockholm, Sweden, Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institutet 17177 Stockholm, Sweden
| | - Sebastian Bultmann
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| |
Collapse
|
24
|
Epigenetics as "conductor" in "orchestra" of pluripotent states. Cell Tissue Res 2022; 390:141-172. [PMID: 35838826 DOI: 10.1007/s00441-022-03667-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 07/01/2022] [Indexed: 11/02/2022]
Abstract
Pluripotent character is described as the potency of cells to differentiate into all three germ layers. The best example to reinstate the term lies in the context of embryonic stem cells (ESCs). Pluripotent ESC describes the in vitro status of those cells that originate during the complex process of embryogenesis. Pre-implantation to post-implantation development of embryo embrace cells with different levels of stemness. Currently, four states of pluripotency have been recognized, in the progressing order of "naïve," "poised," "formative," and "primed." Epigenetics act as the "conductor" in this "orchestra" of transition in pluripotent states. With a distinguishable gene expression profile, these four states associate with different epigenetic signatures, sometimes distinct while otherwise overlapping. The present review focuses on how epigenetic factors, including DNA methylation, bivalent chromatin, chromatin remodelers, chromatin/nuclear architecture, and microRNA, could dictate pluripotent states and their transition among themselves.
Collapse
|
25
|
Joshi K, Liu S, Breslin S J P, Zhang J. Mechanisms that regulate the activities of TET proteins. Cell Mol Life Sci 2022; 79:363. [PMID: 35705880 DOI: 10.1007/s00018-022-04396-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 02/08/2023]
Abstract
The ten-eleven translocation (TET) family of dioxygenases consists of three members, TET1, TET2, and TET3. All three TET enzymes have Fe+2 and α-ketoglutarate (α-KG)-dependent dioxygenase activities, catalyzing the 1st step of DNA demethylation by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), and further oxidize 5hmC to 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Gene knockout studies demonstrated that all three TET proteins are involved in the regulation of fetal organ generation during embryonic development and normal tissue generation postnatally. TET proteins play such roles by regulating the expression of key differentiation and fate-determining genes via (1) enzymatic activity-dependent DNA methylation of the promoters and enhancers of target genes; and (2) enzymatic activity-independent regulation of histone modification. Interacting partner proteins and post-translational regulatory mechanisms regulate the activities of TET proteins. Mutations and dysregulation of TET proteins are involved in the pathogenesis of human diseases, specifically cancers. Here, we summarize the research on the interaction partners and post-translational modifications of TET proteins. We also discuss the molecular mechanisms by which these partner proteins and modifications regulate TET functioning and target gene expression. Such information will help in the design of medications useful for targeted therapy of TET-mutant-related diseases.
Collapse
Affiliation(s)
- Kanak Joshi
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Shanhui Liu
- School of Life Sciences, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Peter Breslin S J
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Departments of Pathology and Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
26
|
Alzahayqa M, Jamous A, Khatib AAH, Salah Z. TET1 Isoforms Have Distinct Expression Pattern, Localization and Regulation in Breast Cancer. Front Oncol 2022; 12:848544. [PMID: 35646706 PMCID: PMC9133332 DOI: 10.3389/fonc.2022.848544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/08/2022] [Indexed: 12/22/2022] Open
Abstract
TET1 regulates gene expression by demethylating their regulatory sequences through the conversion of 5-methylcytosine to 5-hyroxymethylcytosine. TET1 plays important roles in tissue homeostasis. In breast cancer, TET1 was shown to play controversial roles. Moreover, TET1 has at least two isoforms (long and short) that have distinct expression pattern and apparently different functions in tissue development and disease including breast cancer. We hypothesized that TET1 isoforms have different expression patterns, localization and regulation in different types of breast cancer. To prove our hypothesis, we studied the expression of TET1 isoforms in basal and luminal breast cancer cell lines, as well as in basal and luminal breast cancer animal models. We also studied the effect of different hormones on the expression of the two isoforms. Moreover, we assessed the distribution of the isoforms between the cytoplasm and nucleus. Finally, we overexpressed the full length in a breast cancer cell line and tested its effect on cancer cell behavior. In this study, we demonstrate that while Estrogen and GnRH downregulate the expression of long TET1, they lead to upregulation of short TET1 expression. In addition, we uncovered that luminal cells show higher expression level of the long isoform. We also show that while all TET1 isoforms are almost depleted in a basal breast cancer animal model, the expression of the short isoform is induced in luminal breast cancer model. The short form is expressed mainly in the cytoplasm while the long isoform is expressed mainly in the nucleus. Finally, we show that long TET1 overexpression suppresses cell oncogenic phenotypes. In conclusion, our data suggest that TET1 isoforms have distinct expression pattern, localization and regulation in breast cancer and that long TET1 suppresses oncogenic phenotypes, and that further studies are necessary to elucidate the functional roles of different TET1 isoforms in breast cancer.
Collapse
Affiliation(s)
| | - Abrar Jamous
- Department of Molecular Biology and Biochemistry, Al Quds University, Jerusalem, Palestine
| | - Areej A H Khatib
- Women Health Research Unit, McGill University Health Center, Montreal, QC, Canada
| | - Zaidoun Salah
- Molecular Genetics and Genetic Toxicology Program, Arab American University, Ramallah, Palestine
| |
Collapse
|
27
|
Brągiel-Pieczonka A, Lipka G, Stapińska-Syniec A, Czyżewski M, Żybura-Broda K, Sobstyl M, Rylski M, Grabiec M. The Profiles of Tet-Mediated DNA Hydroxymethylation in Human Gliomas. Front Oncol 2022; 12:621460. [PMID: 35494033 PMCID: PMC9047681 DOI: 10.3389/fonc.2022.621460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Gliomas are the most common primary malignant intracranial brain tumors. Their proliferative and invasive behavior is controlled by various epigenetic mechanisms. 5-hydroxymethylcytosine (5-hmC) is one of the epigenetic DNA modifications that employs ten-eleven translocation (TET) enzymes to its oxidation. Previous studies demonstrated altered expression of 5-hmC across gliomagenesis. However, its contribution to the initiation and progression of human gliomas still remains unknown. To characterize the expression profiles of 5-hmC and TET in human glioma samples we used the EpiJET 5-hmC and 5-mC Analysis Kit, quantitative real-time PCR, and Western blot analysis. A continuous decline of 5-hmC levels was observed in solid tissue across glioma grades. However, in glioblastoma (GBM), we documented uncommon heterogeneity in 5-hmC expression. Further analysis showed that the levels of TET proteins, but not their transcripts, may influence the 5-hmC abundance in GBM. Early tumor-related biomarkers may also be provided by the study of aberrant DNA hydroxymethylation in the blood of glioma patients. Therefore, we explored the patterns of TET transcripts in plasma samples and we found that their profiles were variously regulated, with significant value for TET2. The results of our study confirmed that DNA hydroxymethylation is an important mechanism involved in the pathogenesis of gliomas, with particular reference to glioblastoma. Heterogeneity of 5-hmC and TET proteins expression across GBM may provide novel insight into define subtype-specific patterns of hydroxymethylome, and thus help to interpret the heterogeneous outcomes of patients with the same disease.
Collapse
Affiliation(s)
| | - Gabriela Lipka
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | | - Michał Czyżewski
- Department of Neurosurgery, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Katarzyna Żybura-Broda
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Michał Sobstyl
- Department of Neurosurgery, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Marcin Rylski
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, Warsaw, Poland.,Department of Radiology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Marta Grabiec
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
28
|
Lejart A, Zentout S, Chapuis C, D'Augustin O, Smith R, Salbert G, Huet S. The N-terminal domain of TET1 promotes the formation of dense chromatin regions refractory to transcription. Chromosoma 2022; 131:47-58. [PMID: 35235010 DOI: 10.1007/s00412-022-00769-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 11/03/2022]
Abstract
TET (ten-eleven translocation) enzymes initiate active cytosine demethylation via the oxidation of 5-methylcytosine. TET1 is composed of a C-terminal domain, which bears the catalytic activity of the enzyme, and a N-terminal region that is less well characterized except for the CXXC domain responsible for the targeting to CpG islands. While cytosine demethylation induced by TET1 promotes transcription, this protein also interacts with chromatin-regulating factors that rather silence this process, the coordination between these two opposite functions of TET1 being unclear. In the present work, we uncover a new function of the N-terminal part of the TET1 protein in the regulation of the chromatin architecture. This domain of the protein promotes the establishment of a compact chromatin architecture displaying reduced exchange rate of core histones and partial dissociation of the histone linker. This chromatin reorganization process, which does not rely on the CXXC domain, is associated with a global shutdown of transcription and an increase in heterochromatin-associated histone epigenetic marks. Based on these findings, we propose that the dense chromatin organization generated by the N-terminal domain of TET1 could contribute to restraining the transcription enhancement induced by the DNA demethylation activity of this enzyme.
Collapse
Affiliation(s)
- Audrey Lejart
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes) - UMS 3480, US 018, 35000, Rennes, France
| | - Siham Zentout
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes) - UMS 3480, US 018, 35000, Rennes, France
| | - Catherine Chapuis
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes) - UMS 3480, US 018, 35000, Rennes, France
| | - Ostiane D'Augustin
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes) - UMS 3480, US 018, 35000, Rennes, France
- Institut de Biologie François Jacob, Institute of Cellular and Molecular Radiobiology, Université Paris-Saclay, Université de Paris, CEA, 92265, Fontenay-aux-Roses, France
| | - Rebecca Smith
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes) - UMS 3480, US 018, 35000, Rennes, France
| | - Gilles Salbert
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes) - UMS 3480, US 018, 35000, Rennes, France.
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes) - UMS 3480, US 018, 35000, Rennes, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
29
|
Bernstein C. DNA Methylation and Establishing Memory. Epigenet Insights 2022; 15:25168657211072499. [PMID: 35098021 PMCID: PMC8793415 DOI: 10.1177/25168657211072499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022] Open
Abstract
A single event can cause a life-long memory. Memories physically reside in neurons, and changes in neuronal gene expression are considered to be central to memory. Early models proposed that specific DNA methylations of cytosines in neuronal DNA encode memories in a stable biochemical form. This review describes recent research that elucidates the molecular mechanisms used by the mammalian brain to form DNA methylcytosine encoded memories. For example, neuron activation initiates cytosine demethylation by stimulating DNA topoisomerase II beta (TOP2B) protein to make a temporary DNA double-strand break (repaired within about 2 hours) at a promoter of an immediate early gene, EGR1, allowing expression of this gene. The EGR1 proteins then recruit methylcytosine dioxygenase TET1 proteins to initiate demethylation at several hundred genes, facilitating expression of those genes. Initiation of demethylation of cytosine also occurs when OGG1 localizes at oxidized guanine in a methylated CpG site and recruits TET1 for initiation of demethylation at that site. DNMT3A2 is another immediate early gene upregulated by synaptic activity. DNMT3A2 protein catalyzes de novo DNA methylations. These several mechanisms convert external experiences into DNA methylations and initiated demethylations of neuronal DNA cytosines, causing changes in gene expression that are the basis of long-term memories.
Collapse
Affiliation(s)
- Carol Bernstein
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
30
|
Onodera A, Kiuchi M, Kokubo K, Nakayama T. Epigenetic regulation of inflammation by CxxC domain‐containing proteins*. Immunol Rev 2022. [DOI: 10.1111/imr.13056
expr 964170082 + 969516512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Atsushi Onodera
- Department of Immunology Graduate School of Medicine Chiba University Chiba Japan
- Institute for Global Prominent Research Chiba University Chiba Japan
| | - Masahiro Kiuchi
- Department of Immunology Graduate School of Medicine Chiba University Chiba Japan
| | - Kota Kokubo
- Department of Immunology Graduate School of Medicine Chiba University Chiba Japan
| | - Toshinori Nakayama
- Department of Immunology Graduate School of Medicine Chiba University Chiba Japan
- AMED‐CREST, AMED Chiba Japan
| |
Collapse
|
31
|
Onodera A, Kiuchi M, Kokubo K, Nakayama T. Epigenetic regulation of inflammation by CxxC domain-containing proteins. Immunol Rev 2021; 305:137-151. [PMID: 34935162 DOI: 10.1111/imr.13056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/03/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022]
Abstract
Epigenetic regulation of gene transcription in the immune system is important for proper control of protective and pathogenic inflammation. Aberrant epigenetic modifications are often associated with dysregulation of the immune cells, including lymphocytes and macrophages, leading to pathogenic inflammation and autoimmune diseases. Two classical epigenetic markers-histone modifications and DNA cytosine methylation, the latter is the 5 position of the cytosine base in the context of CpG dinucleotides-play multiple roles in the immune system. CxxC domain-containing proteins, which basically bind to the non-methylated CpG (i.e., epigenetic "readers"), often function as "writers" of the epigenetic markers via their catalytic domain within the proteins or by interacting with other epigenetic modifiers. We herein report the most recent advances in our understanding of the functions of CxxC domain-containing proteins in the immune system and inflammation, mainly focusing on T cells and macrophages.
Collapse
Affiliation(s)
- Atsushi Onodera
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Institute for Global Prominent Research, Chiba University, Chiba, Japan
| | - Masahiro Kiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kota Kokubo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,AMED-CREST, AMED, Chiba, Japan
| |
Collapse
|
32
|
Zhao X, Cui D, Yan F, Yang L, Huang B. Circ_0007919 exerts an anti-tumor role in colorectal cancer through targeting miR-942-5p/TET1 axis. Pathol Res Pract 2021; 229:153704. [PMID: 34906917 DOI: 10.1016/j.prp.2021.153704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/19/2021] [Accepted: 11/20/2021] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs) are key regulators in the development of many cancers. The present study was aimed to investigate the mechanism by which circ_0007919 affected colorectal cancer (CRC) progression.The differentially expressed circRNA was screened out by analyzing the expression profile of circRNAs of CRC tissues. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed for detecting the expressions of circ_0007919, miR-942-5p, and ten-eleven translocation 1 (TET1) mRNA in CRC tissues and cell lines. Cell growth and migration were assessed by cell counting kit-8 (CCK-8) 5-bromo-2'-deoxyuridine (BrdU) and scratch assays. Bioinformatics analysis and dual-luciferase reporter assay were conducted to predict and validate the targeted relationships between circ_0007919 and miR-942-5p, as well as between miR-942-5p and TET1 mRNA. Besides, Western blot was conducted for detecting TET1 protein expression in CRC cells. It was revealed that, in CRC tissues and cell lines, circ_0007919 and TET1 expressions were reduced whereas miR-942-5p expression was enhanced. It was also revealed that circ_0007919 overexpression markedly suppressed CRC cell growth and migration. In addition, circ_0007919 could competitively bind with miR-942-5p to increase the expression of miR-942-5p's target gene TET1. Collectively, circ_0007919 inhibits CRC cell growth and migration via regulating the miR-942-5p/TET1 axis. This study helps to better understand the molecular mechanism of CRC progression.
Collapse
Affiliation(s)
- Xun Zhao
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang 550002, Guizhou, China
| | - Dejun Cui
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang 550002, Guizhou, China
| | - Fang Yan
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang 550002, Guizhou, China
| | - Liuchan Yang
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang 550002, Guizhou, China
| | - Bo Huang
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang 550002, Guizhou, China.
| |
Collapse
|
33
|
Bend family proteins mark chromatin boundaries and synergistically promote early germ cell differentiation. Protein Cell 2021; 13:721-741. [PMID: 34731408 PMCID: PMC9233729 DOI: 10.1007/s13238-021-00884-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/19/2021] [Indexed: 12/30/2022] Open
Abstract
Understanding the regulatory networks for germ cell fate specification is necessary to developing strategies for improving the efficiency of germ cell production in vitro. In this study, we developed a coupled screening strategy that took advantage of an arrayed bi-molecular fluorescence complementation (BiFC) platform for protein-protein interaction screens and epiblast-like cell (EpiLC)-induction assays using reporter mouse embryonic stem cells (mESCs). Investigation of candidate interaction partners of core human pluripotent factors OCT4, NANOG, KLF4 and SOX2 in EpiLC differentiation assays identified novel primordial germ cell (PGC)-inducing factors including BEN-domain (BEND/Bend) family members. Through RNA-seq, ChIP-seq, and ATAC-seq analyses, we showed that Bend5 worked together with Bend4 and helped mark chromatin boundaries to promote EpiLC induction in vitro. Our findings suggest that BEND/Bend proteins represent a new family of transcriptional modulators and chromatin boundary factors that participate in gene expression regulation during early germline development.
Collapse
|
34
|
Xu J, Shu Y, Yao G, Zhang Y, Niu W, Zhang Y, Ma X, Jin H, Zhang F, Shi S, Wang Y, Song W, Dai S, Cheng L, Zhang X, Xie W, Hsueh AJ, Sun Y. Parental methylome reprogramming in human uniparental blastocysts reveals germline memory transition. Genome Res 2021; 31:1519-1530. [PMID: 34330789 PMCID: PMC8415376 DOI: 10.1101/gr.273318.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 07/22/2021] [Indexed: 11/24/2022]
Abstract
Uniparental embryos derived from only the mother (gynogenetic [GG]) or the father (androgenetic [AG]) are unique models for studying genomic imprinting and parental contributions to embryonic development. Human parthenogenetic embryos can be obtained following artificial activation of unfertilized oocytes, but the production of AG embryos by injection of two sperm into one denucleated oocyte leads to an extra centriole, resulting in multipolar spindles, abnormal cell division, and developmental defects. Here, we improved androgenote production by transferring the male pronucleus from one zygote into another haploid androgenote to prevent extra centrioles and successfully generated human diploid AG embryos capable of developing into blastocysts with an identifiable inner cell mass (ICM) and trophectoderm (TE). The GG embryos were also generated. The zygotic genome was successfully activated in both the AG and GG embryos. DNA methylome analysis showed that the GG blastocysts partially retain the oocyte transcription-dependent methylation pattern, whereas the AG blastocyst methylome showed more extensive demethylation. The methylation states of most known imprinted differentially methylated regions (DMRs) were recapitulated in the AG and GG blastocysts. Novel candidate imprinted DMRs were also identified. The production of uniparental human embryos followed by transcriptome and methylome analysis is valuable for identifying parental contributions and epigenome memory transitions during early human development.
Collapse
Affiliation(s)
- Jiawei Xu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Yimin Shu
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Guidong Yao
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Yu Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenbin Niu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Yile Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Xueshan Ma
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Haixia Jin
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Fuli Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Senlin Shi
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Yang Wang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Wenyan Song
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Shanjun Dai
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Luyao Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Xiangyang Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Aaron J Hsueh
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Yingpu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| |
Collapse
|
35
|
Ten-eleven translocation 1 mediated-DNA hydroxymethylation is required for myelination and remyelination in the mouse brain. Nat Commun 2021; 12:5091. [PMID: 34429415 PMCID: PMC8385008 DOI: 10.1038/s41467-021-25353-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 08/05/2021] [Indexed: 11/08/2022] Open
Abstract
Ten-eleven translocation (TET) proteins, the dioxygenase for DNA hydroxymethylation, are important players in nervous system development and diseases. However, their role in myelination and remyelination after injury remains elusive. Here, we identify a genome-wide and locus-specific DNA hydroxymethylation landscape shift during differentiation of oligodendrocyte-progenitor cells (OPC). Ablation of Tet1 results in stage-dependent defects in oligodendrocyte (OL) development and myelination in the mouse brain. The mice lacking Tet1 in the oligodendrocyte lineage develop behavioral deficiency. We also show that TET1 is required for remyelination in adulthood. Transcriptomic, genomic occupancy, and 5-hydroxymethylcytosine (5hmC) profiling reveal a critical TET1-regulated epigenetic program for oligodendrocyte differentiation that includes genes associated with myelination, cell division, and calcium transport. Tet1-deficient OPCs exhibit reduced calcium activity, increasing calcium activity rescues the differentiation defects in vitro. Deletion of a TET1-5hmC target gene, Itpr2, impairs the onset of OPC differentiation. Together, our results suggest that stage-specific TET1-mediated epigenetic programming and intracellular signaling are important for proper myelination and remyelination in mice.
Collapse
|
36
|
Building Pluripotency Identity in the Early Embryo and Derived Stem Cells. Cells 2021; 10:cells10082049. [PMID: 34440818 PMCID: PMC8391114 DOI: 10.3390/cells10082049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
The fusion of two highly differentiated cells, an oocyte with a spermatozoon, gives rise to the zygote, a single totipotent cell, which has the capability to develop into a complete, fully functional organism. Then, as development proceeds, a series of programmed cell divisions occur whereby the arising cells progressively acquire their own cellular and molecular identity, and totipotency narrows until when pluripotency is achieved. The path towards pluripotency involves transcriptome modulation, remodeling of the chromatin epigenetic landscape to which external modulators contribute. Both human and mouse embryos are a source of different types of pluripotent stem cells whose characteristics can be captured and maintained in vitro. The main aim of this review is to address the cellular properties and the molecular signature of the emerging cells during mouse and human early development, highlighting similarities and differences between the two species and between the embryos and their cognate stem cells.
Collapse
|
37
|
Bray JK, Dawlaty MM, Verma A, Maitra A. Roles and Regulations of TET Enzymes in Solid Tumors. Trends Cancer 2021; 7:635-646. [PMID: 33468438 DOI: 10.1016/j.trecan.2020.12.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 01/09/2023]
Abstract
The mechanisms governing the methylome profile of tumor suppressors and oncogenes have expanded with the discovery of oxidized states of 5-methylcytosine (5mC). Ten-eleven translocation (TET) enzymes are a family of dioxygenases that iteratively catalyze 5mC oxidation and promote cytosine demethylation, thereby creating a dynamic global and local methylation landscape. While the catalytic function of TET enzymes during stem cell differentiation and development have been well studied, less is known about the multifaceted roles of TET enzymes during carcinogenesis. This review outlines several tiers of TET regulation and overviews how TET deregulation promotes a cancer phenotype. Defining the tissue-specific and context-dependent roles of TET enzymes will deepen our understanding of the epigenetic perturbations that promote or inhibit carcinogenesis.
Collapse
Affiliation(s)
- Julie K Bray
- Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Amit Verma
- Albert Einstein College of Medicine, New York City, NY, USA
| | - Anirban Maitra
- Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
38
|
The Roles of DNA Demethylases in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:ph14070628. [PMID: 34209564 PMCID: PMC8308559 DOI: 10.3390/ph14070628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancers (TNBCs) are very heterogenous, molecularly diverse, and are characterized by a high propensity to relapse or metastasize. Clinically, TNBC remains a diagnosis of exclusion by the lack of hormone receptors (Estrogen Receptor (ER) and Progesterone Receptor (PR)) as well as the absence of overexpression and/or amplification of HER2. DNA methylation plays an important role in breast cancer carcinogenesis and TNBCs have a distinct DNA methylation profile characterized by marked hypomethylation and lower gains of methylations compared to all other subtypes. DNA methylation is regulated by the balance of DNA methylases (DNMTs) and DNA demethylases (TETs). Here, we review the roles of TETs as context-dependent tumor-suppressor genes and/or oncogenes in solid tumors, and we discuss the current understandings of the oncogenic role of TET1 and its therapeutic implications in TNBCs.
Collapse
|
39
|
Dick A, Chen A. The role of TET proteins in stress-induced neuroepigenetic and behavioural adaptations. Neurobiol Stress 2021; 15:100352. [PMID: 34189192 PMCID: PMC8220100 DOI: 10.1016/j.ynstr.2021.100352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/21/2021] [Accepted: 06/05/2021] [Indexed: 12/27/2022] Open
Abstract
Over the past decade, critical, non-redundant roles of the ten-eleven translocation (TET) family of dioxygenase enzymes have been identified in the brain during developmental and postnatal stages. Specifically, TET-mediated active demethylation, involving the iterative oxidation of 5-methylcytosine to 5-hydroxymethylcytosine and subsequent oxidative derivatives, is dynamically regulated in response to environmental stimuli such as neuronal activity, learning and memory processes, and stressor exposure. Such changes may therefore perpetuate stable and dynamic transcriptional patterns within neuronal populations required for neuroplasticity and behavioural adaptation. In this review, we will highlight recent evidence supporting a role of TET protein function and active demethylation in stress-induced neuroepigenetic and behavioural adaptations. We further explore potential mechanisms by which TET proteins may mediate both the basal and pathological embedding of stressful life experiences within the brain of relevance to stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Alec Dick
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
- Corresponding author.
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
- The Ruhman Family Laboratory for Research on the Neurobiology of Stress, Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
40
|
Moyon S, Frawley R, Marechal D, Huang D, Marshall-Phelps KLH, Kegel L, Bøstrand SMK, Sadowski B, Jiang YH, Lyons DA, Möbius W, Casaccia P. TET1-mediated DNA hydroxymethylation regulates adult remyelination in mice. Nat Commun 2021; 12:3359. [PMID: 34099715 PMCID: PMC8185117 DOI: 10.1038/s41467-021-23735-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
The mechanisms regulating myelin repair in the adult central nervous system (CNS) are unclear. Here, we identify DNA hydroxymethylation, catalyzed by the Ten-Eleven-Translocation (TET) enzyme TET1, as necessary for myelin repair in young adults and defective in old mice. Constitutive and inducible oligodendrocyte lineage-specific ablation of Tet1 (but not of Tet2), recapitulate this age-related decline in repair of demyelinated lesions. DNA hydroxymethylation and transcriptomic analyses identify TET1-target in adult oligodendrocytes, as genes regulating neuro-glial communication, including the solute carrier (Slc) gene family. Among them, we show that the expression levels of the Na+/K+/Cl- transporter, SLC12A2, are higher in Tet1 overexpressing cells and lower in old or Tet1 knockout. Both aged mice and Tet1 mutants also present inefficient myelin repair and axo-myelinic swellings. Zebrafish mutants for slc12a2b also display swellings of CNS myelinated axons. Our findings suggest that TET1 is required for adult myelin repair and regulation of the axon-myelin interface.
Collapse
Affiliation(s)
- Sarah Moyon
- Neuroscience Initiative Advanced Science Research Center, New York, NY, USA.
| | - Rebecca Frawley
- Neuroscience Initiative Advanced Science Research Center, New York, NY, USA
| | - Damien Marechal
- Neuroscience Initiative Advanced Science Research Center, New York, NY, USA
| | - Dennis Huang
- Neuroscience Initiative Advanced Science Research Center, New York, NY, USA
| | | | - Linde Kegel
- Centre for Discovery Brain Sciences, Edinburgh, UK
| | | | - Boguslawa Sadowski
- Department of Neurogenetics, Göttingen, Germany
- Electron Microscopy Core Unit, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Yong-Hui Jiang
- Department of Neurobiology and Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | | | - Wiebke Möbius
- Department of Neurogenetics, Göttingen, Germany
- Electron Microscopy Core Unit, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Patrizia Casaccia
- Neuroscience Initiative Advanced Science Research Center, New York, NY, USA.
- Program of Biology and Biochemistry, The Graduate Center of The City University of New York, New York, NY, USA.
| |
Collapse
|
41
|
Greer CB, Wright J, Weiss JD, Lazarenko RM, Moran SP, Zhu J, Chronister KS, Jin AY, Kennedy AJ, Sweatt JD, Kaas GA. Tet1 Isoforms Differentially Regulate Gene Expression, Synaptic Transmission, and Memory in the Mammalian Brain. J Neurosci 2021; 41:578-593. [PMID: 33262245 PMCID: PMC7842754 DOI: 10.1523/jneurosci.1821-20.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/28/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
The dynamic regulation of DNA methylation in postmitotic neurons is necessary for memory formation and other adaptive behaviors. Ten-eleven translocation 1 (TET1) plays a part in these processes by oxidizing 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), thereby initiating active DNA demethylation. However, attempts to pinpoint its exact role in the nervous system have been hindered by contradictory findings, perhaps due in part, to a recent discovery that two isoforms of the Tet1 gene are differentially expressed from early development into adulthood. Here, we demonstrate that both the shorter transcript (Tet1S ) encoding an N-terminally truncated TET1 protein and a full-length Tet1 (Tet1FL ) transcript encoding canonical TET1 are co-expressed in the adult mouse brain. We show that Tet1S is the predominantly expressed isoform and is highly enriched in neurons, whereas Tet1FL is generally expressed at lower levels and more abundant in glia, suggesting their roles are at least partially cell type-specific. Using viral-mediated, isoform and neuron-specific molecular tools, we find that the individual repression of each transcript leads to the dysregulation of unique gene ensembles and contrasting changes in basal synaptic transmission. In addition, Tet1S repression enhances, while Tet1FL impairs, hippocampal-dependent memory in male mice. Together, our findings demonstrate that each Tet1 isoform serves a distinct role in the mammalian brain.SIGNIFICANCE STATEMENT In the brain, activity-dependent changes in gene expression are required for the formation of long-term memories. DNA methylation plays an essential role in orchestrating these learning-induced transcriptional programs by influencing chromatin accessibility and transcription factor binding. Once thought of as a stable epigenetic mark, DNA methylation is now known to be impermanent and dynamically regulated, driving neuroplasticity in the brain. We found that Tet1, a member of the ten-eleven translocation (TET) family of enzymes that mediates removal of DNA methyl marks, is expressed as two separate isoforms in the adult mouse brain and that each differentially regulates gene expression, synaptic transmission and memory formation. Together, our findings demonstrate that each Tet1 isoform serves a distinct role in the CNS.
Collapse
Affiliation(s)
- C B Greer
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - J Wright
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - J D Weiss
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - R M Lazarenko
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - S P Moran
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - J Zhu
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - K S Chronister
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - A Y Jin
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - A J Kennedy
- Department of Chemistry, Bates College, Lewiston, Maine 04240
| | - J D Sweatt
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - G A Kaas
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
42
|
Jones MC, Koh JM, Cheong KH. Synaptic Pruning in Schizophrenia: Does Minocycline Modulate Psychosocial Brain Development? Bioessays 2021; 42:e2000046. [PMID: 33448432 DOI: 10.1002/bies.202000046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/29/2020] [Indexed: 02/06/2023]
Abstract
Recent studies suggest that the tetracycline antibiotic minocycline, or its cousins, hold therapeutic potential for affective and psychotic disorders. This is proposed on the basis of a direct effect on microglia-mediated frontocortical synaptic pruning (FSP) during adolescence, perhaps in genetically susceptible individuals harboring risk alleles in the complement component cascade that is involved in this normal process of CNS circuit refinement. In reviewing this field, it is argued that minocycline is actually probing and modulating a deeply evolved and intricate system wherein psychosocial stimuli sculpt the circuitry of the "social brain" underlying adult behavior and personality. Furthermore, this system can generate psychiatric morbidity that is not dependent on genetic variation. This view has important ramifications for understanding "pathologies" of human social behavior and cognition as well as providing long-sought potential mechanistic links between social experience and susceptibility to mental and physical disease.
Collapse
Affiliation(s)
- Michael C Jones
- Science, Mathematics & Technology Cluster, Singapore University of Technology and Design (SUTD), 8 Somapah Road, S487372, Singapore
| | - Jin Ming Koh
- California Institute of Technology, Pasadena, CA, 91125, USA
| | - Kang Hao Cheong
- Science, Mathematics & Technology Cluster, Singapore University of Technology and Design (SUTD), 8 Somapah Road, S487372, Singapore.,SUTD-Massachusetts Institute of Technology International Design Centre, S487372, Singapore
| |
Collapse
|
43
|
Greenberg MVC. Get Out and Stay Out: New Insights Into DNA Methylation Reprogramming in Mammals. Front Cell Dev Biol 2021; 8:629068. [PMID: 33490089 PMCID: PMC7817772 DOI: 10.3389/fcell.2020.629068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Vertebrate genomes are marked by notably high levels of 5-cytosine DNA methylation (5meC). The clearest function of DNA methylation among members of the subphylum is repression of potentially deleterious transposable elements (TEs). However, enrichment in the bodies of protein coding genes and pericentromeric heterochromatin indicate an important role for 5meC in those genomic compartments as well. Moreover, DNA methylation plays an important role in silencing of germline-specific genes. Impaired function of major components of DNA methylation machinery results in lethality in fish, amphibians and mammals. Despite such apparent importance, mammals exhibit a dramatic loss and regain of DNA methylation in early embryogenesis prior to implantation, and then again in the cells specified for the germline. In this minireview we will highlight recent studies that shine light on two major aspects of embryonic DNA methylation reprogramming: (1) The mechanism of DNA methylation loss after fertilization and (2) the protection of discrete loci from ectopic DNA methylation deposition during reestablishment. Finally, we will conclude with some extrapolations for the evolutionary underpinnings of such extraordinary events that seemingly put the genome under unnecessary risk during a particularly vulnerable window of development.
Collapse
Affiliation(s)
- Maxim V C Greenberg
- Centre National de la Recherche Scientifique, Institut Jacques Monod, Université de Paris, Paris, France
| |
Collapse
|
44
|
Matuleviciute R, Cunha PP, Johnson RS, Foskolou IP. Oxygen regulation of TET enzymes. FEBS J 2021; 288:7143-7161. [PMID: 33410283 DOI: 10.1111/febs.15695] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022]
Abstract
Hypoxia has a significant impact on many physiological and pathological processes. Over the recent years, its role in modulation of epigenetic remodelling has also become clearer. In cancer, low oxygen environments and aberrant epigenomes often go hand in hand, and changes in DNA methylation are now commonly recognised as potential outcome indicators. TET (ten-eleven translocation) family enzymes are alpha-ketoglutarate-, iron- and oxygen-dependent DNA demethylases and are key players in these processes. Although TETs have historically been considered tumour suppressors, recent studies suggest that their functions in cancer might not be straightforward. Recently, inhibition of TETs has been reported to have positive impact in cancer immunotherapy and vaccination studies. This underlines the current interest in developing targeted pharmaceutical inhibitors of these enzymes. Here, we will survey the complexity of TET roles in cancer, and its hypoxic modulation, as well as highlight the potential of these enzymes as therapeutic targets.
Collapse
Affiliation(s)
- Rugile Matuleviciute
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | - Pedro P Cunha
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | - Randall S Johnson
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK.,Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Solna, Sweden
| | - Iosifina P Foskolou
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK.,Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Solna, Sweden
| |
Collapse
|
45
|
Abstract
The 5-methylcytosine (5mC) oxidation pathway mediated by TET proteins involves step-wise oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). 5fC and 5caC can be removed from DNA by base excision repair and the completion of this pathway results in "demethylation" of 5mC by converting the modified base back into cytosine. In vitro studies with TET proteins aimed at analyzing their DNA substrate specificities and their activity within defined chromatin templates are relatively limited. Here we describe purification methods for mammalian TET proteins based on expression in insect cells or in 293T cells. We also briefly summarize a method that can be used to monitor 5-methylcytosine oxidase activity of the purified TET proteins in vitro.
Collapse
Affiliation(s)
- Zhijun Huang
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Jiyoung Yu
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Asan Medical Center, University of Ulsan, College of Medicine, Seoul, South Korea
| | - Jennifer Johnson
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Seung-Gi Jin
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Gerd P Pfeifer
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
46
|
TET1 Interacts Directly with NANOG via Independent Domains Containing Hydrophobic and Aromatic Residues. J Mol Biol 2020; 432:6075-6091. [PMID: 33058869 PMCID: PMC7763487 DOI: 10.1016/j.jmb.2020.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/27/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022]
Abstract
TET1 and NANOG interact via multiple independent binding regions. TET1 and NANOG interactions are mediated by aromatic and hydrophobic residues. TET1 residues that bind NANOG are highly conserved in mammals. Co-localisation of TET1 and NANOG on chromatin is enriched at NANOG target genes. NANOG and TET1 have regulatory roles in maintaining and reprogramming pluripotency.
The DNA demethylase TET1 is highly expressed in embryonic stem cells and is important both for lineage commitment, and reprogramming to naïve pluripotency. TET1 interacts with the pluripotency transcription factor NANOG which may contribute to its biological activity in pluripotent cells. However, how TET1 interacts with other proteins is largely unknown. Here, we characterise the physical interaction between TET1 and NANOG using embryonic stem cells and bacterial expression systems. TET1 and NANOG interact through multiple binding sites that act independently. Critically, mutating conserved hydrophobic and aromatic residues within TET1 and NANOG abolishes the interaction. On chromatin, NANOG is predominantly localised at ESC enhancers. While TET1 binds to CpG dinucleotides in promoters using its CXXC domain, TET1 also binds to enhancers, though the mechanism involved is unknown. Comparative ChIP-seq analysis identifies genomic loci bound by both TET1 and NANOG, that correspond predominantly to pluripotency enhancers. Importantly, around half of NANOG transcriptional target genes are associated with TET1-NANOG co-bound sites. These results indicate a mechanism by which TET1 protein may be targeted to specific sites of action at enhancers by direct interaction with a transcription factor.
Collapse
|
47
|
de Oliveira DT, Guerra-Sá R. Uncovering epigenetic landscape: a new path for biomarkers identification and drug development. Mol Biol Rep 2020; 47:9097-9122. [PMID: 33089404 DOI: 10.1007/s11033-020-05916-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/10/2020] [Indexed: 12/31/2022]
Abstract
Scientific advances in recent decades have revealed an incredible degree of plasticity in gene expression in response to various environmental, nutritional, physiological, pathological, and behavioral conditions. Epigenetics emerges in this sense, as the link between the internal (genetic) and external (environmental) factors underlying the expression of the phenotype. Methylation of DNA and histone post-translationa modifications are canonical epigenetic events. Additionally, noncoding RNAs molecules (microRNAs and lncRNAs) have also been proposed as another layer of epigenetic regulation. Together, these events are responsible for regulating gene expression throughout life, controlling cellular fate in both normal and pathological development. Despite being a relatively recent science, epigenetics has been arousing the interest of researchers from different segments of the life sciences and the general public. This review highlights the recent advances in the characterization of the epigenetic events and points promising use of these brands for the diagnosis, prognosis, and therapy of diseases. We also present several classes of epigenetic modifying compounds with therapeutic applications (so-call epidrugs) and their current status in clinical trials and approved by the FDA. In summary, hopefully, we provide the reader with theoretical bases for a better understanding of the epigenetic mechanisms and of the promising application of these marks and events in the medical clinic.
Collapse
Affiliation(s)
- Daiane Teixeira de Oliveira
- Programa de Pós-graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil.
| | - Renata Guerra-Sá
- Programa de Pós-graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil.,Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| |
Collapse
|
48
|
Ravichandran M, Lei R, Tang Q, Zhao Y, Lee J, Ma L, Chrysanthou S, Lorton BM, Cvekl A, Shechter D, Zheng D, Dawlaty MM. Rinf Regulates Pluripotency Network Genes and Tet Enzymes in Embryonic Stem Cells. Cell Rep 2020; 28:1993-2003.e5. [PMID: 31433977 PMCID: PMC6716522 DOI: 10.1016/j.celrep.2019.07.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/07/2019] [Accepted: 07/23/2019] [Indexed: 11/30/2022] Open
Abstract
The Retinoid inducible nuclear factor (Rinf), also known as CXXC5, is a nuclear protein, but its functions in the context of the chromatin are poorly defined. We find that in mouse embryonic stem cells (mESCs), Rinf binds to the chromatin and is enriched at promoters and enhancers of Tet1, Tet2, and pluripotency genes. The Rinf-bound regions show significant overlapping occupancy of pluripotency factors Nanog, Oct4, and Sox2, as well as Tet1 and Tet2. We found that Rinf forms a complex with Nanog, Oct4, Tet1, and Tet2 and facilitates their proper recruitment to regulatory regions of pluripotency and Tet genes in ESCs to positively regulate their transcription. Rinf deficiency in ESCs reduces expression of Rinf target genes, including several pluripotency factors and Tet enzymes, and causes aberrant differentiation. Together, our findings establish Rinf as a regulator of the pluripotency network genes and Tet enzymes in ESCs.
Collapse
Affiliation(s)
- Mirunalini Ravichandran
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
| | - Run Lei
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
| | - Qin Tang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
| | - Yilin Zhao
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
| | - Joun Lee
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
| | - Liyang Ma
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
| | - Stephanie Chrysanthou
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
| | - Benjamin M Lorton
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
| | - Meelad M Dawlaty
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA.
| |
Collapse
|
49
|
Damal Villivalam S, You D, Kim J, Lim HW, Xiao H, Zushin PJH, Oguri Y, Amin P, Kang S. TET1 is a beige adipocyte-selective epigenetic suppressor of thermogenesis. Nat Commun 2020; 11:4313. [PMID: 32855402 PMCID: PMC7453011 DOI: 10.1038/s41467-020-18054-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 07/27/2020] [Indexed: 02/02/2023] Open
Abstract
It has been suggested that beige fat thermogenesis is tightly controlled by epigenetic regulators that sense environmental cues such as temperature. Here, we report that subcutaneous adipose expression of the DNA demethylase TET1 is suppressed by cold and other stimulators of beige adipocyte thermogenesis. TET1 acts as an autonomous repressor of key thermogenic genes, including Ucp1 and Ppargc1a, in beige adipocytes. Adipose-selective Tet1 knockout mice generated by using Fabp4-Cre improves cold tolerance and increases energy expenditure and protects against diet-induced obesity and insulin resistance. Moreover, the suppressive role of TET1 in the thermogenic gene regulation of beige adipocytes is largely DNA demethylase-independent. Rather, TET1 coordinates with HDAC1 to mediate the epigenetic changes to suppress thermogenic gene transcription. Taken together, TET1 is a potent beige-selective epigenetic breaker of the thermogenic gene program. Our findings may lead to a therapeutic strategy to increase energy expenditure in obesity and related metabolic disorders. Epigenetic regulators contribute to the modulation of adipose thermogenesis by sensing environmental cues and regulating gene expression in response. Here the authors report that a DNA demethylase TET1 mediates epigenetic changes to repress thermogenic genes in mouse adipose tissue.
Collapse
Affiliation(s)
- Sneha Damal Villivalam
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Dongjoo You
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Jinse Kim
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Hee Woong Lim
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center Department of Pediatrics & Biomedical Informatics, University of Cincinnati, 3333 Burnet Ave. MLC 7024, Cincinnati, OH, 45229, USA
| | - Han Xiao
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Pete-James H Zushin
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Yasuo Oguri
- UCSF Diabetes Center, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Cell and Tissue Biology, University of California, San Francisco, CA, 94143, USA
| | - Pouya Amin
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Sona Kang
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
50
|
Xing X, Sato S, Wong NK, Hidaka K, Sugiyama H, Endo M. Direct observation and analysis of TET-mediated oxidation processes in a DNA origami nanochip. Nucleic Acids Res 2020; 48:4041-4051. [PMID: 32170318 PMCID: PMC7192588 DOI: 10.1093/nar/gkaa137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022] Open
Abstract
DNA methylation and demethylation play a key role in the epigenetic regulation of gene expression; however, a series of oxidation reactions of 5-methyl cytosine (5mC) mediated by ten-eleven translocation (TET) enzymes driving demethylation process are yet to be uncovered. To elucidate the relationship between the oxidative processes and structural factors of DNA, we analysed the behavior of TET-mediated 5mC-oxidation by incorporating structural stress onto a substrate double-stranded DNA (dsDNA) using a DNA origami nanochip. The reactions and behaviors of TET enzymes were systematically monitored by biochemical analysis and single-molecule observation using atomic force microscopy (AFM). A reformative frame-like DNA origami was established to allow the incorporation of dsDNAs as 5mC-containing substrates in parallel orientations. We tested the potential effect of dsDNAs present in the tense and relaxed states within a DNA nanochip on TET oxidation. Based on enzyme binding and the detection of oxidation reactions within the DNA nanochip, it was revealed that TET preferred a relaxed substrate regardless of the modification types of 5-oxidated-methyl cytosine. Strikingly, when a multi-5mCG sites model was deployed to further characterize substrate preferences of TET, TET preferred the fully methylated site over the hemi-methylated site. This analytical modality also permits the direct observations of dynamic movements of TET such as sliding and interstrand transfer by high-speed AFM. In addition, the thymine DNA glycosylase-mediated base excision repair process was characterized in the DNA nanochip. Thus, we have convincingly established the system's ability to physically regulate enzymatic reactions, which could prove useful for the observation and characterization of coordinated DNA demethylation processes at the nanoscale.
Collapse
Affiliation(s)
- Xiwen Xing
- Department of Biotechnology, Key Laboratory of Virology of Guangzhou, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.,Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shinsuke Sato
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Nai-Kei Wong
- Department of Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masayuki Endo
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|