1
|
Skrzypczak M, Wolinska E, Adaszek Ł, Ortmann O, Treeck O. Epigenetic Modulation of Estrogen Receptor Signaling in Ovarian Cancer. Int J Mol Sci 2024; 26:166. [PMID: 39796024 PMCID: PMC11720219 DOI: 10.3390/ijms26010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Ovarian cancer remains one of the leading causes of cancer-related deaths in women. There are several processes that are described to have a causal relationship in ovarian cancer development, progression, and metastasis formation, that occur both at the genetic and epigenetic level. One of the mechanisms involved in its pathogenesis and progression is estrogen signaling. Estrogen receptors (ER) α, ERβ, and G-protein coupled estrogen receptor 1 (GPER1), in concert with various coregulators and pioneer transcription factors, mediate the effects of estrogens primarily by the transcriptional regulation of estrogen responsive genes, thereby exerting pleiotropic effects including the regulation of cellular proliferation and apoptosis. The expression and activity of estrogen receptors and their coregulators have been demonstrated to be regulated by epigenetic mechanisms like histone modifications and DNA methylation. Here, we intend to summarize and to provide an update on the current understanding of epigenetic mechanisms regulating estrogen signaling and their role in ovarian cancer. For this purpose, we reviewed publications on this topic listed in the PubMed database. Finally, we assess to which extent drugs acting on the epigenetic level might be suitable for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Maciej Skrzypczak
- Chair and Department of Gynecology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Ewa Wolinska
- Department of Pathology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Łukasz Adaszek
- Clinic of Infectious Diseases, University of Life Sciences Lublin, 20-950 Lublin, Poland;
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93935 Regensburg, Germany;
| | - Oliver Treeck
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93935 Regensburg, Germany;
| |
Collapse
|
2
|
Sun G, Zhao C, Han J, Wu S, Chen Y, Yao J, Li L. Regulatory mechanisms of steroid hormone receptors on gene transcription through chromatin interaction and enhancer reprogramming. Cell Oncol (Dordr) 2024; 47:2073-2090. [PMID: 39543064 DOI: 10.1007/s13402-024-01011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
Regulation of steroid hormone receptors (SHRs) on transcriptional reprogramming is crucial for breast cancer progression. SHRs, including estrogen receptor (ER), androgen receptor (AR), progesterone receptor (PR), and glucocorticoid receptor (GR) play key roles in remodeling the transcriptome of breast cancer cells. However, the molecular mechanisms by which SHRs regulate chromatin landscape in enhancer regions and transcription factor interactions remain largely unknown. In this review, we summarized the regulatory effects of 3 types of SHRs (AR, PR, and GR) on gene transcription through chromatin interactions and enhancer reprogramming. Specifically, AR and PR exhibit bi-directional regulatory effects (both inhibitory and promoting) on ER-mediated gene transcription, while GR modulates the transcription of pro-proliferation genes in ER-positive breast cancer cells. In addition, we have presented four enhancer reprogramming mechanisms (transcription factor cooperation, pioneer factor binding, dynamic assisted loading, and tethering) and the multiple enhancer-promoter contact models. Based on these mechanisms and models, this review proposes that the combination of multiple therapy strategies such as agonists/antagonists of SHRs plus endocrine therapy and the adoption of the latest sequencing technologies are expected to improve the efficacy of ER positive breast cancer treatment.
Collapse
Affiliation(s)
- Ge Sun
- Gene Regulation and Diseases Lab, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Chunguang Zhao
- Department of Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Jing Han
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Shaoya Wu
- Gene Regulation and Diseases Lab, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yan Chen
- Gene Regulation and Diseases Lab, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jing Yao
- Cancer Center, Institute of Radiation Oncology, Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
| | - Li Li
- Gene Regulation and Diseases Lab, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
3
|
Minisini M, Mascaro M, Brancolini C. HDAC-driven mechanisms in anticancer resistance: epigenetics and beyond. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:46. [PMID: 39624079 PMCID: PMC11609180 DOI: 10.20517/cdr.2024.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 01/03/2025]
Abstract
The emergence of drug resistance leading to cancer recurrence is one of the challenges in the treatment of cancer patients. Several mechanisms can lead to drug resistance, including epigenetic changes. Histone deacetylases (HDACs) play a key role in chromatin regulation through epigenetic mechanisms and are also involved in drug resistance. The control of histone acetylation and the accessibility of regulatory DNA sequences such as promoters, enhancers, and super-enhancers are known mechanisms by which HDACs influence gene expression. Other targets of HDACs that are not histones can also contribute to resistance. This review describes the contribution of HDACs to the mechanisms that, in some cases, may determine resistance to chemotherapy or other cancer treatments.
Collapse
Affiliation(s)
| | | | - Claudio Brancolini
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, Udine 33100, Italy
| |
Collapse
|
4
|
Clark AB, Conzen SD. Glucocorticoid receptor-mediated oncogenic activity is dependent on breast cancer subtype. J Steroid Biochem Mol Biol 2024; 243:106518. [PMID: 38734115 DOI: 10.1016/j.jsbmb.2024.106518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/23/2024] [Accepted: 04/08/2024] [Indexed: 05/13/2024]
Abstract
Breast cancer incidence has been steadily rising and is the leading cause of cancer death in women due to its high metastatic potential. Individual breast cancer subtypes are classified by both cell type of origin and receptor expression, namely estrogen, progesterone and human epidermal growth factor receptors (ER, PR and HER2). Recently, the importance and context-dependent role of glucocorticoid receptor (GR) expression in the natural history and prognosis of breast cancer subtypes have been uncovered. In ER-positive breast cancer, GR expression is associated with a better prognosis as a result of ER-GR crosstalk. GR appears to modulate ER-mediated gene expression resulting in decreased tumor cell proliferation and a more indolent cancer phenotype. In ER-negative breast cancer, including GR-positive triple-negative breast cancer (TNBC), GR expression enhances migration, chemotherapy resistance and cell survival. In invasive lobular carcinoma, GR function is relatively understudied, and more work is required to determine whether lobular subtypes behave similarly to their invasive ductal carcinoma counterparts. Importantly, understanding GR signaling in individual breast cancer subtypes has potential clinical implications because of the recent development of highly selective GR non-steroidal ligands, which represent a therapeutic approach for modulating GR activity systemically.
Collapse
Affiliation(s)
- Abigail B Clark
- Depatment of Internal Medicine, Division of Hematology and Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Suzanne D Conzen
- Depatment of Internal Medicine, Division of Hematology and Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
5
|
Friedman MJ, Wagner T, Lee H, Rosenfeld MG, Oh S. Enhancer-promoter specificity in gene transcription: molecular mechanisms and disease associations. Exp Mol Med 2024; 56:772-787. [PMID: 38658702 PMCID: PMC11058250 DOI: 10.1038/s12276-024-01233-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/26/2024] Open
Abstract
Although often located at a distance from their target gene promoters, enhancers are the primary genomic determinants of temporal and spatial transcriptional specificity in metazoans. Since the discovery of the first enhancer element in simian virus 40, there has been substantial interest in unraveling the mechanism(s) by which enhancers communicate with their partner promoters to ensure proper gene expression. These research efforts have benefited considerably from the application of increasingly sophisticated sequencing- and imaging-based approaches in conjunction with innovative (epi)genome-editing technologies; however, despite various proposed models, the principles of enhancer-promoter interaction have still not been fully elucidated. In this review, we provide an overview of recent progress in the eukaryotic gene transcription field pertaining to enhancer-promoter specificity. A better understanding of the mechanistic basis of lineage- and context-dependent enhancer-promoter engagement, along with the continued identification of functional enhancers, will provide key insights into the spatiotemporal control of gene expression that can reveal therapeutic opportunities for a range of enhancer-related diseases.
Collapse
Affiliation(s)
- Meyer J Friedman
- Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Tobias Wagner
- Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Haram Lee
- College of Pharmacy Korea University, 2511 Sejong-ro, Sejong, 30019, Republic of Korea
| | - Michael G Rosenfeld
- Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Soohwan Oh
- College of Pharmacy Korea University, 2511 Sejong-ro, Sejong, 30019, Republic of Korea.
| |
Collapse
|
6
|
Berkel C. Estrogen receptor- and progesterone receptor-positive breast tumors have higher mRNA levels of NR3C1 and ZBTB16, with implications in prognosis for luminal A subtype. Hum Cell 2024; 37:376-379. [PMID: 37999919 DOI: 10.1007/s13577-023-01014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Affiliation(s)
- Caglar Berkel
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, Turkey.
| |
Collapse
|
7
|
Oakley RH, Riddick NV, Moy SS, Cidlowski JA. Imbalanced glucocorticoid and mineralocorticoid stress hormone receptor function has sex-dependent and independent regulatory effects in the mouse hippocampus. Neurobiol Stress 2024; 28:100589. [PMID: 38075021 PMCID: PMC10709088 DOI: 10.1016/j.ynstr.2023.100589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/25/2023] [Accepted: 11/12/2023] [Indexed: 02/12/2024] Open
Abstract
Many stress-related neuropsychiatric disorders display pronounced sex differences in their frequency and clinical symptoms. Glucocorticoids are primary stress hormones that have been implicated in the development of these disorders but whether they contribute to the observed sex bias is poorly understood. Glucocorticoids signal through two closely related nuclear receptors, the glucocorticoid (GR) and mineralocorticoid receptor (MR). To elucidate the sex-specific and independent actions of glucocorticoids in the hippocampus, we developed knockout mice lacking hippocampal GR, MR, or both GR and MR. Mice deficient in hippocampal MR or both GR and MR showed an altered molecular phenotype of CA2 neurons and reduced anxiety-like behavior in both sexes, but altered stress adaptation behavior only in females and enhanced fear-motivated cue learning only in males. All three knockout mouse models displayed reduced sociability but only in male mice. Male and female mice deficient in both hippocampal GR and MR exhibited extensive neurodegeneration in the dentate gyrus. Global transcriptomic analysis revealed a marked expansion in the number of dysregulated genes in the hippocampus of female knockout mice compared to their male counterparts; however, the overall patterns of gene dysregulation were remarkably similar in both sexes. Within and across sex comparisons identified key GR and MR target genes and associated signaling pathways underlying the knockout phenotypes. These findings define major sex-dependent and independent effects of GR/MR imbalances on gene expression and functional profiles in the hippocampus and inform new strategies for treating men and women with stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Robert H. Oakley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Natallia V. Riddick
- Department of Psychiatry and Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sheryl S. Moy
- Department of Psychiatry and Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - John A. Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
8
|
Mayayo-Peralta I, Debets DO, Prekovic S, Schuurman K, Beerthuijzen S, Almekinders M, Sanders J, Moelans CB, Saleiro S, Wesseling J, van Diest PJ, Henrique R, Jerónimo C, Altelaar M, Zwart W. Proteomics on malignant pleural effusions reveals ERα loss in metastatic breast cancer associates with SGK1-NDRG1 deregulation. Mol Oncol 2024; 18:156-169. [PMID: 37854018 PMCID: PMC10766196 DOI: 10.1002/1878-0261.13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/06/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023] Open
Abstract
Breast cancer (BCa) is a highly heterogeneous disease, with hormone receptor status being a key factor in patient prognostication and treatment decision-making. The majority of primary tumours are positive for oestrogen receptor alpha (ERα), which plays a key role in tumorigenesis and disease progression, and represents the major target for treatment of BCa. However, around one-third of patients with ERα-positive BCa relapse and progress into the metastatic stage, with 20% of metastatic cases characterised by loss of ERα expression after endocrine treatment, known as ERα-conversion. It remains unclear whether ERα-converted cancers are biologically similar to bona fide ERα-negative disease and which signalling cascades compensate for ERα loss and drive tumour progression. To better understand the biological changes that occur in metastatic BCa upon ERα loss, we performed (phospho)proteomics analysis of 47 malignant pleural effusions derived from 37 BCa patients, comparing ERα-positive, ERα-converted and ERα-negative cases. Our data revealed that the loss of ERα-dependency in this metastatic site leads to only a partial switch to an ERα-negative molecular phenotype, with preservation of a luminal-like proteomic landscape. Furthermore, we found evidence for decreased activity of several key kinases, including serum/glucocorticoid regulated kinase 1 (SGK1), in ERα-converted metastases. Loss of SGK1 substrate phosphorylation may compensate for the loss of ERα-dependency in advanced disease and exposes a potential therapeutic vulnerability that may be exploited in treating these patients.
Collapse
Affiliation(s)
- Isabel Mayayo-Peralta
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Donna O Debets
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University and Netherlands Proteomics Centre, The Netherlands
| | - Stefan Prekovic
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Karianne Schuurman
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Suzanne Beerthuijzen
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mathilde Almekinders
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joyce Sanders
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Cathy B Moelans
- Department of Pathology, University Medical Center Utrecht, The Netherlands
| | - Sandra Saleiro
- Lung Cancer Clinics, Portuguese Oncology Institute of Porto, Portugal
| | - Jelle Wesseling
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, The Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, The Netherlands
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of the Portuguese Oncology Institute-Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of the Portuguese Oncology Institute-Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University and Netherlands Proteomics Centre, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| |
Collapse
|
9
|
Prekovic S, Chalkiadakis T, Roest M, Roden D, Lutz C, Schuurman K, Opdam M, Hoekman L, Abbott N, Tesselaar T, Wajahat M, Dwyer AR, Mayayo‐Peralta I, Gomez G, Altelaar M, Beijersbergen R, Győrffy B, Young L, Linn S, Jonkers J, Tilley W, Hickey T, Vareslija D, Swarbrick A, Zwart W. Luminal breast cancer identity is determined by loss of glucocorticoid receptor activity. EMBO Mol Med 2023; 15:e17737. [PMID: 37902007 PMCID: PMC10701603 DOI: 10.15252/emmm.202317737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/31/2023] Open
Abstract
Glucocorticoid receptor (GR) is a transcription factor that plays a crucial role in cancer biology. In this study, we utilized an in silico-designed GR activity signature to demonstrate that GR relates to the proliferative capacity of numerous primary cancer types. In breast cancer, the GR activity status determines luminal subtype identity and has implications for patient outcomes. We reveal that GR engages with estrogen receptor (ER), leading to redistribution of ER on the chromatin. Notably, GR activation leads to upregulation of the ZBTB16 gene, encoding for a transcriptional repressor, which controls growth in ER-positive breast cancer and associates with prognosis in luminal A patients. In relation to ZBTB16's repressive nature, GR activation leads to epigenetic remodeling and loss of histone acetylation at sites proximal to cancer-driving genes. Based on these findings, epigenetic inhibitors reduce viability of ER-positive breast cancer cells that display absence of GR activity. Our findings provide insights into how GR controls ER-positive breast cancer growth and may have implications for patients' prognostication and provide novel therapeutic candidates for breast cancer treatment.
Collapse
Affiliation(s)
- Stefan Prekovic
- Division of Oncogenomics, Oncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Center for Molecular MedicineUMC UtrechtUtrechtThe Netherlands
| | | | - Merel Roest
- Division of Oncogenomics, Oncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Daniel Roden
- Cancer Ecosystems ProgramGarvan Institute of Medical ResearchDarlinghurstNSWAustralia
- School of Clinical Medicine, Faculty of Medicine and HealthUNSW SydneySydneyNSWAustralia
| | - Catrin Lutz
- Division of Molecular Pathology, Oncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Karianne Schuurman
- Division of Oncogenomics, Oncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Mark Opdam
- Division of Molecular Pathology, Oncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Liesbeth Hoekman
- Mass Spectrometry/Proteomics FacilityThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Nina Abbott
- Division of Oncogenomics, Oncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Tanja Tesselaar
- Division of Oncogenomics, Oncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Maliha Wajahat
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical SchoolUniversity of AdelaideAdelaideSAAustralia
| | - Amy R Dwyer
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical SchoolUniversity of AdelaideAdelaideSAAustralia
| | - Isabel Mayayo‐Peralta
- Division of Oncogenomics, Oncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Gabriela Gomez
- School of Pharmacy and Biomolecular SciencesThe Royal College of Surgeons University of Medicine and Health SciencesDublinIreland
| | - Maarten Altelaar
- Mass Spectrometry/Proteomics FacilityThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Roderick Beijersbergen
- Division of Molecular Carcinogenesis and Robotics and Screening CentreNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Balázs Győrffy
- TTK Cancer Biomarker Research GroupInstitute of EnzymologyBudapestHungary
- Department of Bioinformatics and 2nd Department of PediatricsSemmelweis UniversityBudapestHungary
| | - Leonie Young
- Endocrine Oncology Research Group, Department of SurgeryThe Royal College of Surgeons University of Medicine and Health SciencesDublinIreland
- Beaumont RCSI Cancer CentreBeaumont HospitalDublinIreland
| | - Sabine Linn
- Division of Molecular Pathology, Oncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Wayne Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical SchoolUniversity of AdelaideAdelaideSAAustralia
- Freemasons Centre for Male Health and WellbeingUniversity of AdelaideAdelaideSAAustralia
| | - Theresa Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical SchoolUniversity of AdelaideAdelaideSAAustralia
| | - Damir Vareslija
- School of Pharmacy and Biomolecular SciencesThe Royal College of Surgeons University of Medicine and Health SciencesDublinIreland
- Beaumont RCSI Cancer CentreBeaumont HospitalDublinIreland
| | - Alexander Swarbrick
- Cancer Ecosystems ProgramGarvan Institute of Medical ResearchDarlinghurstNSWAustralia
- School of Clinical Medicine, Faculty of Medicine and HealthUNSW SydneySydneyNSWAustralia
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| |
Collapse
|
10
|
Ma X, Liu H, Jia Q, Zheng Y, Li W, Chang M, Fu H, Zhu H. Diverse roles of glucocorticoids in the ruminant mammary gland: modulation of mammary growth, milk production, and mastitis. Stress 2023; 26:2252938. [PMID: 37632459 DOI: 10.1080/10253890.2023.2252938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/23/2023] [Indexed: 08/28/2023] Open
Abstract
As endocrine hormones, glucocorticoids (GCs) play a pivotal role in numerous physiological processes, including mammary growth and lactation, circulatory metabolism, and responses to external stimuli. In the dairy industry, milk production from cows or goats is important for newborns and economic benefits. However, the milk yields from ruminant animals are always affected by the extent of mammary development, mammary disease, stress, or changes in metabolism. Thus, it is necessary to clarify how GCs changes in ruminants affect ruminant mammary gland function and mammary disease. This review summarizes the findings identifying that GCs modulate mammary gland development before lactation, but the stress-induced excessive release of GCs leads to milk production loss. In addition, the manner of GCs release may change under different concentrations of metabolites or during mastitis or inflammatory challenge. Nevertheless, exogenous GCs administration to animals may alleviate the clinical symptoms of mastitis. This review demonstrates that GCs offer a fascinating contribution to both physiologic and pathogenic conditions of the mammary gland in ruminant animals. Characterizing and understanding these changes or functions of endogenous and exogenous GCs in animals will be crucial for developing more endocrine regulators and therapies for improving milk production in ruminants.
Collapse
Affiliation(s)
- Xiaoyue Ma
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hanling Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qianqian Jia
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yumiao Zheng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wentao Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mengyu Chang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haixia Fu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hongmei Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Mayayo-Peralta I, Gregoricchio S, Schuurman K, Yavuz S, Zaalberg A, Kojic A, Abbott N, Geverts B, Beerthuijzen S, Siefert J, Severson TM, van Baalen M, Hoekman L, Lieftink C, Altelaar M, Beijersbergen RL, Houtsmuller A, Prekovic S, Zwart W. PAXIP1 and STAG2 converge to maintain 3D genome architecture and facilitate promoter/enhancer contacts to enable stress hormone-dependent transcription. Nucleic Acids Res 2023; 51:9576-9593. [PMID: 37070193 PMCID: PMC10570044 DOI: 10.1093/nar/gkad267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/03/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023] Open
Abstract
How steroid hormone receptors (SHRs) regulate transcriptional activity remains partly understood. Upon activation, SHRs bind the genome together with a co-regulator repertoire, crucial to induce gene expression. However, it remains unknown which components of the SHR-recruited co-regulator complex are essential to drive transcription following hormonal stimuli. Through a FACS-based genome-wide CRISPR screen, we functionally dissected the Glucocorticoid Receptor (GR) complex. We describe a functional cross-talk between PAXIP1 and the cohesin subunit STAG2, critical for regulation of gene expression by GR. Without altering the GR cistrome, PAXIP1 and STAG2 depletion alter the GR transcriptome, by impairing the recruitment of 3D-genome organization proteins to the GR complex. Importantly, we demonstrate that PAXIP1 is required for stability of cohesin on chromatin, its localization to GR-occupied sites, and maintenance of enhancer-promoter interactions. In lung cancer, where GR acts as tumor suppressor, PAXIP1/STAG2 loss enhances GR-mediated tumor suppressor activity by modifying local chromatin interactions. All together, we introduce PAXIP1 and STAG2 as novel co-regulators of GR, required to maintain 3D-genome architecture and drive the GR transcriptional programme following hormonal stimuli.
Collapse
Affiliation(s)
- Isabel Mayayo-Peralta
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sebastian Gregoricchio
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Karianne Schuurman
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Selçuk Yavuz
- Erasmus Optical Imaging Center, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherland
| | - Anniek Zaalberg
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Aleksandar Kojic
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Nina Abbott
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bart Geverts
- Erasmus Optical Imaging Center, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherland
- Department of Pathology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Suzanne Beerthuijzen
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joseph Siefert
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tesa M Severson
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Martijn van Baalen
- Flow Cytometry Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, The NKI Robotics and Screening Centre, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maarten Altelaar
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University and Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis, The NKI Robotics and Screening Centre, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Adriaan B Houtsmuller
- Erasmus Optical Imaging Center, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherland
| | - Stefan Prekovic
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
12
|
Noureddine LM, Ablain J, Surmieliova-Garnès A, Jacquemetton J, Pham TH, Marangoni E, Schnitzler A, Bieche I, Badran B, Trédan O, Hussein N, Le Romancer M, Poulard C. PRMT5 triggers glucocorticoid-induced cell migration in triple-negative breast cancer. Life Sci Alliance 2023; 6:e202302009. [PMID: 37536978 PMCID: PMC10400884 DOI: 10.26508/lsa.202302009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023] Open
Abstract
Triple-negative breast cancers (TNBCs) are the most aggressive breast cancers, and therapeutic options mainly rely on chemotherapy and immunotherapy. Although synthetic glucocorticoids (GCs) are given to alleviate the side effects of these treatments, GCs and their receptor, the glucocorticoid receptor (GR), were recently associated with detrimental effects, albeit the mechanisms involved remain elusive. Here, we identified the arginine methyltransferase PRMT5 as a master coregulator of GR, serving as a scaffold protein to recruit phospho-HP1γ and subsequently RNA polymerase II, independently of its methyltransferase activity. Moreover, the GR/PRMT5/HP1γ complex regulated the transcription of GC-target genes involved in cell motility and triggering cell migration of human TNBC cells in vitro and in a zebrafish model. Of note, we observed that GR/PRMT5 interaction was low in primary tumors but significantly increased in residual tumors treated with chemotherapy and GCs in neoadjuvant setting. These data suggest that the routine premedication prescription of GCs for early TNBC patients should be further assessed and that this complex could potentially be modulated to specifically target deleterious GR effects.
Collapse
Affiliation(s)
- Lara Malik Noureddine
- Université de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Lebanese University, Faculty of Sciences I, Department of Chemistry and Biochemistry, Laboratory of Cancer Biology and Molecular Immunology, Beirut, Lebanon
| | - Julien Ablain
- Université de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Ausra Surmieliova-Garnès
- Université de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Julien Jacquemetton
- Université de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Thuy Ha Pham
- Université de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Elisabetta Marangoni
- Institut Curie, Translational Research Department, PSL University, Paris, France
| | | | - Ivan Bieche
- Institut Curie, Department of Genetics, Paris, France
| | - Bassam Badran
- Lebanese University, Faculty of Sciences I, Department of Chemistry and Biochemistry, Laboratory of Cancer Biology and Molecular Immunology, Beirut, Lebanon
| | - Olivier Trédan
- Université de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Centre Leon Bérard, Oncology Department, Lyon, France
| | - Nader Hussein
- Lebanese University, Faculty of Sciences I, Department of Chemistry and Biochemistry, Laboratory of Cancer Biology and Molecular Immunology, Beirut, Lebanon
| | - Muriel Le Romancer
- Université de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Coralie Poulard
- Université de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| |
Collapse
|
13
|
Miziak P, Baran M, Błaszczak E, Przybyszewska-Podstawka A, Kałafut J, Smok-Kalwat J, Dmoszyńska-Graniczka M, Kiełbus M, Stepulak A. Estrogen Receptor Signaling in Breast Cancer. Cancers (Basel) 2023; 15:4689. [PMID: 37835383 PMCID: PMC10572081 DOI: 10.3390/cancers15194689] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Estrogen receptor (ER) signaling is a critical regulator of cell proliferation, differentiation, and survival in breast cancer (BC) and other hormone-sensitive cancers. In this review, we explore the mechanism of ER-dependent downstream signaling in BC and the role of estrogens as growth factors necessary for cancer invasion and dissemination. The significance of the clinical implications of ER signaling in BC, including the potential of endocrine therapies that target estrogens' synthesis and ER-dependent signal transmission, such as aromatase inhibitors or selective estrogen receptor modulators, is discussed. As a consequence, the challenges associated with the resistance to these therapies resulting from acquired ER mutations and potential strategies to overcome them are the critical point for the new treatment strategies' development.
Collapse
Affiliation(s)
- Paulina Miziak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Marzena Baran
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Ewa Błaszczak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland;
| | - Magdalena Dmoszyńska-Graniczka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| |
Collapse
|
14
|
Porter BA, Frerich C, Lainé M, Clark AB, Durdana I, Lee J, Taya M, Sahoo S, Greene GL, Bennett L, Conzen SD. Glucocorticoid Receptor Activation in Lobular Breast Cancer Is Associated with Reduced Cell Proliferation and Promotion of Metastases. Cancers (Basel) 2023; 15:4679. [PMID: 37835373 PMCID: PMC10571671 DOI: 10.3390/cancers15194679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Estrogen receptor-positive (ER+) invasive lobular breast cancer (ILC) comprises about ~15% of breast cancer. ILC's unique genotypic (loss of wild type E-cadherin expression) and phenotypic (small individual round cancer cells that grow in discontinuous nests) are thought to contribute to a distinctive pattern of metastases to serosal membranes. Unlike invasive ductal carcinoma (IDC), ILC metastases often intercalate into the mesothelial layer of the peritoneum and other serosal surfaces. While ER activity is a known driver of ILC proliferation, very little is known about how additional nuclear receptors contribute to ILC's distinctive biology. In ER+ IDC, we showed previously that glucocorticoid receptor (GR) activity inhibits pro-proliferative gene expression and cell proliferation. Here we examined ER+ ILC models and found that GR activation similarly reduces S-phase entry gene expression and ILC proliferation. While slowing tumor growth rate, our data also suggest that GR activation results in an enhanced metastatic phenotype through increasing integrin-encoding gene expression, extracellular matrix protein adhesion, and mesothelial cell clearance. Moreover, in an intraductal mouse mammary gland model of ILC, we found that GR expression is associated with increased bone metastases despite slowed primary mammary tumor growth. Taken together, our findings suggest GR-mediated gene expression may contribute to the unusual characteristics of ILC biology.
Collapse
Affiliation(s)
- Baylee A. Porter
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Candace Frerich
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Muriel Lainé
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Abigail B. Clark
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ishrat Durdana
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeon Lee
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Manisha Taya
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sunati Sahoo
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Geoffrey L. Greene
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Lynda Bennett
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Suzanne D. Conzen
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
15
|
Yan J, Gu Q, Meng C, Liu J, Liu F, Xia C. Panaxytriol upregulates CYP3A4 expression through the interaction between nuclear regulators and DNA response elements. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116398. [PMID: 36948264 DOI: 10.1016/j.jep.2023.116398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cytochrome P3A4 (CYP3A4) is a crucial drug-metabolizing enzyme, and its expression is regulated by the pregnane X receptor (PXR), constitutive androstane receptor (CAR), steroid receptor coactivator 1 (SRC-1), and acetyltransferase P300. Panaxytriol is a naturally derived active substance extracted from the roots of Panax ginseng C. A. Mey. which is widely used clinically. Our previous studies have shown that panaxytriol induces CYP3A4 expression through PXR activation, which is antagonized by high CAR expression. However, the underlying mechanism remains unclear. AIM OF THE STUDY This study aimed to investigate the mechanism of panaxytriol in inducing CYP3A4 expression via interactions between nuclear regulators and DNA response elements. MATERIALS AND METHODS Immunoprecipitation technique was used to assess the binding levels of PXR and CAR with the coactivators SRC-1 and P300 in HepG2 and Huh-7 cells. Furthermore, chromatin immunoprecipitation assay was used to investigate the PXR and CAR interaction with the CYP3A4 promoter response element ER-6/DR-3. RESULTS The binding of PXR to SRC-1, P300, and the response elements ER-6 and DR-3 was improved with an increase in panaxytriol concentration (10-80 μM), and the binding affinity was further enhanced upon CAR silencing. The binding of CAR to SRC-1 and the response elements ER-6 and DR-3 was significantly higher at 80 μM panaxytriol, whereas no significant binding was observed between CAR and P300. CONCLUSION Panaxytriol promoted the recruitment of PXR to SRC-1 and P300, binding to ER-6 and DR-3, and upregulating CYP3A4 expression. Furthermore, an interactive dialogue regulatory mechanism between PXR and CAR was observed.
Collapse
Affiliation(s)
- Jingdi Yan
- Clinical Pharmacology Institute, Pharmaceutical School, Nanchang University, Nanchang, 330031, PR China; Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Qi Gu
- Clinical Pharmacology Institute, Pharmaceutical School, Nanchang University, Nanchang, 330031, PR China
| | - Chao Meng
- Clinical Pharmacology Institute, Pharmaceutical School, Nanchang University, Nanchang, 330031, PR China
| | - Jianming Liu
- Clinical Pharmacology Institute, Pharmaceutical School, Nanchang University, Nanchang, 330031, PR China
| | - Fanglan Liu
- Clinical Pharmacology Institute, Pharmaceutical School, Nanchang University, Nanchang, 330031, PR China
| | - Chunhua Xia
- Clinical Pharmacology Institute, Pharmaceutical School, Nanchang University, Nanchang, 330031, PR China.
| |
Collapse
|
16
|
Zhang J, Miki Y, Iwabuchi E, Xu J, Kanai A, Sagara Y, Ohi Y, Rai Y, Yamaguchi R, Tanaka M, Ishida T, Suzuki T, Sasano H. Induction of SGK1 via glucocorticoid-influenced clinical outcome of triple-negative breast cancer patients. Breast Cancer Res Treat 2023:10.1007/s10549-023-06990-4. [PMID: 37286891 DOI: 10.1007/s10549-023-06990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is a highly heterogeneous and aggressive breast malignancy. Glucocorticoid (GC)-glucocorticoid receptor (GR) pathway plays a pivotal role in the cellular responses to various stresses including chemotherapy. Serum- and glucocorticoid-induced kinase-1 (SGK1) is known as an important downstream effector molecule in the GR signaling pathway, we attempted to explore its clinicopathological and functional significance in TNBC in which GR is expressed. METHODS We first immunolocalized GR and SGK1 and correlated the results with clinicopathological variables and clinical outcome in 131 TNBC patients. We also evaluated the effects of SGK1 on the cell proliferation and migration in TNBC cell lines with administration of dexamethasone (DEX) to further clarify the significance of SGK1. RESULTS The status of SGK1 in carcinoma cells was significantly associated with adverse clinical outcome in TNBC patients examined and was significantly associated with lymph node metastasis, pathological stage, and lymphatic invasion of the patients. In particular, SGK1 immunoreactivity was significantly associated with an increased risk of recurrence in GR-positive TNBC patients. Subsequent in vitro studies also demonstrated that DEX promoted TNBC cell migration and the silencing of gene expression did inhibit the cell proliferation and migration of TNBC cells under DEX treatment. CONCLUSIONS To the best of our knowledge, this is the first study to explore an association between SGK1 and clinicopathological variables and clinical outcome of TNBC patients. SGK1 status was significantly positively correlated with adverse clinical outcome of TNBC patients and promoted carcinoma cell proliferation and migration of carcinoma cells.
Collapse
Affiliation(s)
- Junjia Zhang
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Miki
- Department of Nursing, Faculty of Medical Science and Welfare, Tohoku Bunka Gakuen University, Sendai, Japan.
| | - Erina Iwabuchi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junyao Xu
- The Cancer Hospital of the University of Chinese Academy of Sciences Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Ayako Kanai
- Department of Breast Surgery, Hachinohe City Hospital, Aomori, Japan
| | - Yasuaki Sagara
- Department of Breast and Thyroid Surgical Oncology, Sagara Hospital, Kagoshima, Japan
| | - Yasuyo Ohi
- Department of Pathology, Sagara Hospital, Kagoshima, Japan
| | - Yoshiaki Rai
- Department of Breast and Thyroid Surgical Oncology, Sagara Hospital, Kagoshima, Japan
| | - Rin Yamaguchi
- Department of Pathology, Nagasaki University Hospital, Nagasaki, Japan
| | - Maki Tanaka
- JCHO Kurume General Hospital, Fukuoka, Japan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Suzuki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
17
|
Zhang L, Yan J, Liu J, Meng C, Liu F, Xia C. Panaxytriol upregulates CYP3A4 expression based on the interaction of PXR, CAR, HSP90α, and RXRα. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154097. [PMID: 35417848 DOI: 10.1016/j.phymed.2022.154097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/10/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cytochrome P450 3A4 (CYP3A4) is one of the most important drug-metabolizing enzymes in the human body, mainly existing in the liver, small intestine, and kidney. Panaxytriol is one of the key active components in red ginseng and Shenmai injection. Our previous study demonstrated that panaxytriol regulates CYP3A4 expression mainly by activating pregnancy X receptor (PXR). At a high concentration of panaxytriol (80 μM), the constitutive androstane receptor (CAR) is also involved in the upregulation of CYP3A4. PURPOSE This study investigated how the cofactors heat shock protein 90 alpha (HSP90α) and retinoid X receptor alpha (RXRα) interact with PXR and CAR to participate in the regulation of CYP3A4 by panaxytriol from the perspective of the PXR and CAR interaction. METHODS The mRNA and protein expressions of PXR, CAR, CYP3A4, RXRα, and HSP90α in HepG2 cells and Huh-7 cells were detected by quantitative PCR and western blot analysis, respectively. The binding levels of PXR and CAR to RXRα and HSP90α were determined by co-immunoprecipitation analysis. The nuclear translocation of PXR and RXRα into HepG2 cells and human (hCAR)-silenced HepG2 cells were measured by immunofluorescence. RESULTS In HepG2 cells and Huh-7 cells, panaxytriol (10-80 μM) upregulated CYP3A4 expression in a concentration-dependent manner by decreasing PXR binding to HSP90α and increasing PXR binding to RXRα. When hCAR was silenced, panaxytriol further enhanced CYP3A4 expression by strengthening PXR binding to RXRα, but it had no significant effect on the binding level of PXR and HSP90α. Additionally, at the high concentration of 80 μM panaxytriol, CAR binding to HSP90α was weakened while binding to RXRα was enhanced. CONCLUSION Panaxytriol can upregulate CYP3A4 expression by promoting PXR dissociation from HSP90α and enhancing PXR binding to RXRα in HepG2 cells and Huh-7 cells. At high concentrations of panaxytriol, CAR also participates in the induction of CYP3A4 through a similar mechanism. However, in general, CAR antagonizes PXR binding to RXRα, thereby attenuating the upregulation of CYP3A4 by panaxytriol.
Collapse
Affiliation(s)
- Lingming Zhang
- Clinical Pharmacology Institute, Nanchang University, Bayi Road 461, Nanchang 330006, PR China
| | - Jingdi Yan
- Clinical Pharmacology Institute, Nanchang University, Bayi Road 461, Nanchang 330006, PR China
| | - Jianming Liu
- Clinical Pharmacology Institute, Nanchang University, Bayi Road 461, Nanchang 330006, PR China
| | - Chao Meng
- Clinical Pharmacology Institute, Nanchang University, Bayi Road 461, Nanchang 330006, PR China
| | - Fanglan Liu
- Clinical Pharmacology Institute, Nanchang University, Bayi Road 461, Nanchang 330006, PR China
| | - Chunhua Xia
- Clinical Pharmacology Institute, Nanchang University, Bayi Road 461, Nanchang 330006, PR China.
| |
Collapse
|
18
|
Arruabarrena-Aristorena A, Toska E. Epigenetic Mechanisms Influencing Therapeutic Response in Breast Cancer. Front Oncol 2022; 12:924808. [PMID: 35774123 PMCID: PMC9239340 DOI: 10.3389/fonc.2022.924808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022] Open
Abstract
The majority of breast cancers are estrogen receptor (ER)+ and agents targeting the ER signaling pathway have markedly increased survival for women with breast cancer for decades. However, therapeutic resistance eventually emerges, especially in the metastatic setting. In the past decade disrupted epigenetic regulatory processes have emerged as major contributors to carcinogenesis in many cancer types. Aberrations in chromatin modifiers and transcription factors have also been recognized as mediators of breast cancer development and therapeutic outcome, and new epigenetic-based therapies in combination with targeted therapies have been proposed. Here we will discuss recent progress in our understanding of the chromatin-based mechanisms of breast tumorigenesis, how these mechanisms affect therapeutic response to standard of care treatment, and discuss new strategies towards therapeutic intervention to overcome resistance.
Collapse
Affiliation(s)
- Amaia Arruabarrena-Aristorena
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Traslational Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, Derio, Spain
| | - Eneda Toska
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, United States
| |
Collapse
|
19
|
Strickland BA, Ansari SA, Dantoft W, Uhlenhaut NH. How to tame your genes: mechanisms of inflammatory gene repression by glucocorticoids. FEBS Lett 2022; 596:2596-2616. [PMID: 35612756 DOI: 10.1002/1873-3468.14409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/24/2022] [Accepted: 05/18/2022] [Indexed: 01/08/2023]
Abstract
Glucocorticoids (GCs) are widely used therapeutic agents to treat a broad range of inflammatory conditions. Their functional effects are elicited by binding to the glucocorticoid receptor (GR), which regulates transcription of distinct gene networks in response to ligand. However, the mechanisms governing various aspects of undesired side effects versus beneficial immunomodulation upon GR activation remain complex and incompletely understood. In this review, we discuss emerging models of inflammatory gene regulation by GR, highlighting GR's regulatory specificity conferred by context-dependent changes in chromatin architecture and transcription factor or co-regulator dynamics. GR controls both gene activation and repression, with the repression mechanism being central to favorable clinical outcomes. We describe current knowledge about 3D genome organization and its role in spatiotemporal transcriptional control by GR. Looking beyond, we summarize the evidence for dynamics in gene regulation by GR through cooperative convergence of epigenetic modifications, transcription factor crosstalk, molecular condensate formation and chromatin looping. Further characterizing these genomic events will reframe our understanding of mechanisms of transcriptional repression by GR.
Collapse
Affiliation(s)
- Benjamin A Strickland
- Metabolic Programming, Technische Universitaet Muenchen (TUM), School of Life Sciences Weihenstephan, ZIEL - Institute for Food and Health, Gregor-Mendel-Str. 2, 85354, Freising, Germany
| | - Suhail A Ansari
- Institute for Diabetes and Endocrinology (IDE), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Widad Dantoft
- Institute for Diabetes and Endocrinology (IDE), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - N Henriette Uhlenhaut
- Metabolic Programming, Technische Universitaet Muenchen (TUM), School of Life Sciences Weihenstephan, ZIEL - Institute for Food and Health, Gregor-Mendel-Str. 2, 85354, Freising, Germany.,Institute for Diabetes and Endocrinology (IDE), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
20
|
Caratti B, Fidan M, Caratti G, Breitenecker K, Engler M, Kazemitash N, Traut R, Wittig R, Casanova E, Ahmadian MR, Tuckermann JP, Moll HP, Cirstea IC. The glucocorticoid receptor associates with RAS complexes to inhibit cell proliferation and tumor growth. Sci Signal 2022; 15:eabm4452. [PMID: 35316097 DOI: 10.1126/scisignal.abm4452] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mutations that activate members of the RAS family of GTPases are associated with various cancers and drive tumor growth. The glucocorticoid receptor (GR), a member of the nuclear receptor family, has been proposed to interact with and inhibit the activation of components of the PI3K-AKT and MAPK pathways downstream of RAS. In the absence of activating ligands, we found that GR was present in cytoplasmic KRAS-containing complexes and inhibited the activation of wild-type and oncogenic KRAS in mouse embryonic fibroblasts and human lung cancer A549 cells. The DNA binding domain of GR was involved in the interaction with KRAS, but GR-dependent inhibition of RAS activation did not depend on the nuclear translocation of GR. The addition of ligand released GR-dependent inhibition of RAS, AKT, the MAPK p38, and the MAPKK MEK. CRISPR-Cas9-mediated deletion of GR in A549 cells enhanced tumor growth in xenografts in mice. Patient samples of non-small cell lung carcinomas showed lower expression of NR3C1, the gene encoding GR, compared to adjacent normal tissues and lower NR3C1 expression correlated with a worse disease outcome. These results suggest that glucocorticoids prevent the ability of GR to limit tumor growth by inhibiting RAS activation, which has potential implications for the use of glucocorticoids in patients with cancer.
Collapse
Affiliation(s)
- Bozhena Caratti
- Institute of Comparative Molecular Endocrinology, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Miray Fidan
- Institute of Comparative Molecular Endocrinology, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Giorgio Caratti
- Institute of Comparative Molecular Endocrinology, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Kristina Breitenecker
- Department of Pharmacology, Center of Physiology and Pharmacology, Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna 1090, Austria
| | - Melanie Engler
- Institute of Comparative Molecular Endocrinology, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Naser Kazemitash
- Institute of Comparative Molecular Endocrinology, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Rebecca Traut
- Institute of Comparative Molecular Endocrinology, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Rainer Wittig
- Institute for Laser Technologies in Medicine and Metrology (ILM), University of Ulm, Helmholtzstrasse 12, 89081 Ulm, Germany
| | - Emilio Casanova
- Department of Pharmacology, Center of Physiology and Pharmacology, Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna 1090, Austria
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Universitätsstraße 1, Building 22.03.05, 40225 Düsseldorf, Germany
| | - Jan P Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Herwig P Moll
- Department of Pharmacology, Center of Physiology and Pharmacology, Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna 1090, Austria
| | - Ion Cristian Cirstea
- Institute of Comparative Molecular Endocrinology, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| |
Collapse
|
21
|
Buurstede JC, Paul SN, De Bosscher K, Meijer OC, Kroon J. Hepatic glucocorticoid-induced transcriptional regulation is androgen-dependent after chronic but not acute glucocorticoid exposure. FASEB J 2022; 36:e22251. [PMID: 35262955 DOI: 10.1096/fj.202101313r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 11/11/2022]
Abstract
Glucocorticoids exert their pleiotropic effects by activating the glucocorticoid receptor (GR), which is expressed throughout the body. GR-mediated transcription is regulated by a multitude of tissue- and cell type-specific mechanisms, including interactions with other transcription factors such as the androgen receptor (AR). We previously showed that the transcription of canonical glucocorticoid-responsive genes is dependent on active androgen signaling, but the extent of this glucocorticoid-androgen crosstalk warrants further investigation. In this study, we investigated the overall glucocorticoid-androgen crosstalk in the hepatic transcriptome. Male mice were exposed to GR agonist corticosterone and AR antagonist enzalutamide in order to determine the extent of androgen-dependency after acute and chronic exposure. We found that a substantial proportion of the hepatic transcriptome is androgen-dependent after chronic exposure, while after acute exposure the transcriptomic effects of glucocorticoids are largely androgen-independent. We propose that prolonged glucocorticoid exposure triggers a gradual upregulation of AR expression, instating a situation of androgen dependence which is likely not driven by direct AR-GR interactions. This indirect mode of glucocorticoid-androgen interaction is in accordance with the absence of enriched AR DNA-binding near AR-dependent corticosterone-regulated genes after chronic exposure. In conclusion, we demonstrate that glucocorticoid effects and their interaction with androgen signaling are dependent on the duration of exposure and believe that our findings contribute to a better understanding of hepatic glucocorticoid biology in health and disease.
Collapse
Affiliation(s)
- Jacobus C Buurstede
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Susana N Paul
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Karolien De Bosscher
- Translational Nuclear Receptor Research, VIB Center for Medical Biotechnology, UGent Department of Biomolecular Medicine, Gent, Belgium
| | - Onno C Meijer
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Kroon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
22
|
Butz H, Patócs A. Mechanisms behind context-dependent role of glucocorticoids in breast cancer progression. Cancer Metastasis Rev 2022; 41:803-832. [PMID: 35761157 PMCID: PMC9758252 DOI: 10.1007/s10555-022-10047-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/09/2022] [Indexed: 02/08/2023]
Abstract
Glucocorticoids (GCs), mostly dexamethasone (dex), are routinely administered as adjuvant therapy to manage side effects in breast cancer. However, recently, it has been revealed that dex triggers different effects and correlates with opposite outcomes depending on the breast cancer molecular subtype. This has raised new concerns regarding the generalized use of GC and suggested that the context-dependent effects of GCs can be taken into potential consideration during treatment design. Based on this, attention has recently been drawn to the role of the glucocorticoid receptor (GR) in development and progression of breast cancer. Therefore, in this comprehensive review, we aimed to summarize the different mechanisms behind different context-dependent GC actions in breast cancer by applying a multilevel examination, starting from the association of variants of the GR-encoding gene to expression at the mRNA and protein level of the receptor, and its interactions with other factors influencing GC action in breast cancer. The role of GCs in chemosensitivity and chemoresistance observed during breast cancer therapy is discussed. In addition, experiences using GC targeting therapeutic options (already used and investigated in preclinical and clinical trials), such as classic GC dexamethasone, selective glucocorticoid receptor agonists and modulators, the GC antagonist mifepristone, and GR coregulators, are also summarized. Evidence presented can aid a better understanding of the biology of context-dependent GC action that can lead to further advances in the personalized therapy of breast cancer by the evaluation of GR along with the conventional estrogen receptor (ER) and progesterone receptor (PR) in the routine diagnostic procedure.
Collapse
Affiliation(s)
- Henriett Butz
- Department of Molecular Genetics and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary.
- Hereditary Tumours Research Group, Hungarian Academy of Sciences-Semmelweis University, Budapest, Hungary.
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.
| | - Attila Patócs
- Department of Molecular Genetics and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
- Hereditary Tumours Research Group, Hungarian Academy of Sciences-Semmelweis University, Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
23
|
White SM, Snyder MP, Yi C. Master lineage transcription factors anchor trans mega transcriptional complexes at highly accessible enhancer sites to promote long-range chromatin clustering and transcription of distal target genes. Nucleic Acids Res 2021; 49:12196-12210. [PMID: 34850122 PMCID: PMC8643643 DOI: 10.1093/nar/gkab1105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/09/2021] [Accepted: 11/15/2021] [Indexed: 12/28/2022] Open
Abstract
The term 'super enhancers' (SE) has been widely used to describe stretches of closely localized enhancers that are occupied collectively by large numbers of transcription factors (TFs) and co-factors, and control the transcription of highly-expressed genes. Through integrated analysis of >600 DNase-seq, ChIP-seq, GRO-seq, STARR-seq, RNA-seq, Hi-C and ChIA-PET data in five human cancer cell lines, we identified a new class of autonomous SEs (aSEs) that are excluded from classic SE calls by the widely used Rank Ordering of Super-Enhancers (ROSE) method. TF footprint analysis revealed that compared to classic SEs and regular enhancers, aSEs are tightly bound by a dense array of master lineage TFs, which serve as anchors to recruit additional TFs and co-factors in trans. In addition, aSEs are preferentially enriched for Cohesins, which likely involve in stabilizing long-distance interactions between aSEs and their distal target genes. Finally, we showed that aSEs can be reliably predicted using a single DNase-seq data or combined with Mediator and/or P300 ChIP-seq. Overall, our study demonstrates that aSEs represent a unique class of functionally important enhancer elements that distally regulate the transcription of highly expressed genes.
Collapse
Affiliation(s)
- Shannon M White
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Chunling Yi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
24
|
Falcinelli M, Thaker PH, Lutgendorf SK, Conzen SD, Flaherty RL, Flint MS. The Role of Psychologic Stress in Cancer Initiation: Clinical Relevance and Potential Molecular Mechanisms. Cancer Res 2021; 81:5131-5140. [PMID: 34266894 PMCID: PMC8530873 DOI: 10.1158/0008-5472.can-21-0684] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/18/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022]
Abstract
The hypothesis that the physiologic response to psychologic stress influences the initiation of cancer is highly controversial. The link between initiating stressors, the psychologic stress response, and disease is plausible, considering that the stress response is associated with defined physiologic outcomes and molecular mechanisms. In light of this, we review the clinical relevance of psychologic stress on the risk of cancer, and we propose potential molecular pathways that may link the stress response to early stages of malignant cell transformation.
Collapse
Affiliation(s)
- Marta Falcinelli
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Centre for Stress and Age-related Diseases, Moulsecoomb, Brighton, United Kingdom
| | - Premal H Thaker
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Susan K Lutgendorf
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa
| | - Suzanne D Conzen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Renée L Flaherty
- Division of Breast Cancer Research, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Melanie S Flint
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Centre for Stress and Age-related Diseases, Moulsecoomb, Brighton, United Kingdom.
| |
Collapse
|
25
|
Paakinaho V, Palvimo JJ. Genome-wide crosstalk between steroid receptors in breast and prostate cancers. Endocr Relat Cancer 2021; 28:R231-R250. [PMID: 34137734 PMCID: PMC8345902 DOI: 10.1530/erc-21-0038] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
Steroid receptors (SRs) constitute an important class of signal-dependent transcription factors (TFs). They regulate a variety of key biological processes and are crucial drug targets in many disease states. In particular, estrogen (ER) and androgen receptors (AR) drive the development and progression of breast and prostate cancer, respectively. Thus, they represent the main specific drug targets in these diseases. Recent evidence has suggested that the crosstalk between signal-dependent TFs is an important step in the reprogramming of chromatin sites; a signal-activated TF can expand or restrict the chromatin binding of another TF. This crosstalk can rewire gene programs and thus alter biological processes and influence the progression of disease. Lately, it has been postulated that there may be an important crosstalk between the AR and the ER with other SRs. Especially, progesterone (PR) and glucocorticoid receptor (GR) can reprogram chromatin binding of ER and gene programs in breast cancer cells. Furthermore, GR can take the place of AR in antiandrogen-resistant prostate cancer cells. Here, we review the current knowledge of the crosstalk between SRs in breast and prostate cancers. We emphasize how the activity of ER and AR on chromatin can be modulated by other SRs on a genome-wide scale. We also highlight the knowledge gaps in the interplay of SRs and their complex interactions with other signaling pathways and suggest how to experimentally fill in these gaps.
Collapse
Affiliation(s)
- Ville Paakinaho
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Correspondence should be addressed to J J Palvimo:
| |
Collapse
|
26
|
Li Y, Jaiswal SK, Kaur R, Alsaadi D, Liang X, Drews F, DeLoia JA, Krivak T, Petrykowska HM, Gotea V, Welch L, Elnitski L. Differential gene expression identifies a transcriptional regulatory network involving ER-alpha and PITX1 in invasive epithelial ovarian cancer. BMC Cancer 2021; 21:768. [PMID: 34215221 PMCID: PMC8254236 DOI: 10.1186/s12885-021-08276-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/23/2021] [Indexed: 12/16/2022] Open
Abstract
Background The heterogeneous subtypes and stages of epithelial ovarian cancer (EOC) differ in their biological features, invasiveness, and response to chemotherapy, but the transcriptional regulators causing their differences remain nebulous. Methods In this study, we compared high-grade serous ovarian cancers (HGSOCs) to low malignant potential or serous borderline tumors (SBTs). Our aim was to discover new regulatory factors causing distinct biological properties of HGSOCs and SBTs. Results In a discovery dataset, we identified 11 differentially expressed genes (DEGs) between SBTs and HGSOCs. Their expression correctly classified 95% of 267 validation samples. Two of the DEGs, TMEM30B and TSPAN1, were significantly associated with worse overall survival in patients with HGSOC. We also identified 17 DEGs that distinguished stage II vs. III HGSOC. In these two DEG promoter sets, we identified significant enrichment of predicted transcription factor binding sites, including those of RARA, FOXF1, BHLHE41, and PITX1. Using published ChIP-seq data acquired from multiple non-ovarian cell types, we showed additional regulatory factors, including AP2-gamma/TFAP2C, FOXA1, and BHLHE40, bound at the majority of DEG promoters. Several of the factors are known to cooperate with and predict the presence of nuclear hormone receptor estrogen receptor alpha (ER-alpha). We experimentally confirmed ER-alpha and PITX1 presence at the DEGs by performing ChIP-seq analysis using the ovarian cancer cell line PEO4. Finally, RNA-seq analysis identified recurrent gene fusion events in our EOC tumor set. Some of these fusions were significantly associated with survival in HGSOC patients; however, the fusion genes are not regulated by the transcription factors identified for the DEGs. Conclusions These data implicate an estrogen-responsive regulatory network in the differential gene expression between ovarian cancer subtypes and stages, which includes PITX1. Importantly, the transcription factors associated with our DEG promoters are known to form the MegaTrans complex in breast cancer. This is the first study to implicate the MegaTrans complex in contributing to the distinct biological trajectories of malignant and indolent ovarian cancer subtypes. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08276-8.
Collapse
Affiliation(s)
- Yichao Li
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA
| | - Sushil K Jaiswal
- Translational Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rupleen Kaur
- Translational Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dana Alsaadi
- Translational Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaoyu Liang
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA
| | - Frank Drews
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA
| | - Julie A DeLoia
- Present address: Dignity Health Global Education, Roanoke, Virginia, USA
| | - Thomas Krivak
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh Medical School, Pittsburgh, PA, USA.,Present address: The Western Pennsylvania Hospital, Pittsburgh, PA, USA
| | - Hanna M Petrykowska
- Translational Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Valer Gotea
- Translational Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lonnie Welch
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA
| | - Laura Elnitski
- Translational Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
27
|
Wu J, Nagy LE, Liangpunsakul S, Wang L. Non-coding RNA crosstalk with nuclear receptors in liver disease. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166083. [PMID: 33497819 PMCID: PMC7987766 DOI: 10.1016/j.bbadis.2021.166083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/28/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023]
Abstract
The dysregulation of nuclear receptors (NRs) underlies the pathogenesis of a variety of liver disorders. Non-coding RNAs (ncRNAs) are defined as RNA molecules transcribed from DNA but not translated into proteins. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two types of ncRNAs that have been extensively studied for regulating gene expression during diverse cellular processes. NRs as therapeutic targets in liver disease have been exemplified by the successful application of their pharmacological ligands in clinics. MiRNA-based reagents or drugs are emerging as flagship products in clinical trials. Advancing our understanding of the crosstalk between NRs and ncRNAs is critical to the development of diagnostic and therapeutic strategies. This review summarizes recent findings on the reciprocal regulation between NRs and ncRNAs (mainly on miRNAs and lncRNAs) and their implication in liver pathophysiology, which might be informative to the translational medicine of targeting NRs and ncRNAs in liver disease.
Collapse
Affiliation(s)
- Jianguo Wu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States of America.
| | - Laura E Nagy
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Gastroenterology and Hepatology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States of America; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Li Wang
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT, United States of America
| |
Collapse
|
28
|
Noureddine LM, Trédan O, Hussein N, Badran B, Le Romancer M, Poulard C. Glucocorticoid Receptor: A Multifaceted Actor in Breast Cancer. Int J Mol Sci 2021; 22:ijms22094446. [PMID: 33923160 PMCID: PMC8123001 DOI: 10.3390/ijms22094446] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is one of the most common cancers in women worldwide. Even though the role of estrogen receptor alpha (ERα) is extensively documented in the development of breast tumors, other members of the nuclear receptor family have emerged as important players. Synthetic glucocorticoids (GCs) such as dexamethasone (dex) are commonly used in BC for their antiemetic, anti-inflammatory, as well as energy and appetite stimulating properties, and to manage the side effects of chemotherapy. However, dex triggers different effects depending on the BC subtype. The glucocorticoid receptor (GR) is also an important marker in BC, as high GR expression is correlated with a poor and good prognosis in ERα-negative and ERα-positive BCs, respectively. Indeed, though it drives the expression of pro-tumorigenic genes in ERα-negative BCs and is involved in resistance to chemotherapy and metastasis formation, dex inhibits estrogen-mediated cell proliferation in ERα-positive BCs. Recently, a new natural ligand for GR called OCDO was identified. OCDO is a cholesterol metabolite with oncogenic properties, triggering mammary cell proliferation in vitro and in vivo. In this review, we summarize recent data on GR signaling and its involvement in tumoral breast tissue, via its different ligands.
Collapse
Affiliation(s)
- Lara Malik Noureddine
- Université de Lyon, F-69000 Lyon, France; (L.M.N.); (O.T.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences, Lebanese University, Hadat-Beirut 90656, Lebanon; (N.H.); (B.B.)
| | - Olivier Trédan
- Université de Lyon, F-69000 Lyon, France; (L.M.N.); (O.T.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Centre Leon Bérard, Oncology Department, F-69000 Lyon, France
| | - Nader Hussein
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences, Lebanese University, Hadat-Beirut 90656, Lebanon; (N.H.); (B.B.)
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences, Lebanese University, Hadat-Beirut 90656, Lebanon; (N.H.); (B.B.)
| | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France; (L.M.N.); (O.T.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Coralie Poulard
- Université de Lyon, F-69000 Lyon, France; (L.M.N.); (O.T.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Correspondence: ; Tel.: +33-478-786-663; Fax: +33-478-782-720
| |
Collapse
|
29
|
Paakinaho V, Lempiäinen JK, Sigismondo G, Niskanen EA, Malinen M, Jääskeläinen T, Varjosalo M, Krijgsveld J, Palvimo J. SUMOylation regulates the protein network and chromatin accessibility at glucocorticoid receptor-binding sites. Nucleic Acids Res 2021; 49:1951-1971. [PMID: 33524141 PMCID: PMC7913686 DOI: 10.1093/nar/gkab032] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoid receptor (GR) is an essential transcription factor (TF), controlling metabolism, development and immune responses. SUMOylation regulates chromatin occupancy and target gene expression of GR in a locus-selective manner, but the mechanism of regulation has remained elusive. Here, we identify the protein network around chromatin-bound GR by using selective isolation of chromatin-associated proteins and show that the network is affected by receptor SUMOylation, with several nuclear receptor coregulators and chromatin modifiers preferring interaction with SUMOylation-deficient GR and proteins implicated in transcriptional repression preferring interaction with SUMOylation-competent GR. This difference is reflected in our chromatin binding, chromatin accessibility and gene expression data, showing that the SUMOylation-deficient GR is more potent in binding and opening chromatin at glucocorticoid-regulated enhancers and inducing expression of target loci. Blockage of SUMOylation by a SUMO-activating enzyme inhibitor (ML-792) phenocopied to a large extent the consequences of GR SUMOylation deficiency on chromatin binding and target gene expression. Our results thus show that SUMOylation modulates the specificity of GR by regulating its chromatin protein network and accessibility at GR-bound enhancers. We speculate that many other SUMOylated TFs utilize a similar regulatory mechanism.
Collapse
Affiliation(s)
- Ville Paakinaho
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | | | | | - Einari A Niskanen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Marjo Malinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Tiina Jääskeläinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jeroen Krijgsveld
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
30
|
Chen D, Parker TM, Bhat-Nakshatri P, Chu X, Liu Y, Wang Y, Nakshatri H. Nonlinear relationship between chromatin accessibility and estradiol-regulated gene expression. Oncogene 2021; 40:1332-1346. [PMID: 33420376 DOI: 10.1038/s41388-020-01607-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
Chromatin accessibility is central to basal and inducible gene expression. Through ATAC-seq experiments in estrogen receptor-positive (ER+) breast cancer cell line MCF-7 and integration with multi-omics data, we found estradiol (E2) induced chromatin accessibility changes in a small number of breast cancer-relevant E2-regulated genes. As expected, open chromatin regions associated with E2-inducible gene expression showed enrichment of estrogen response element (ERE) and those associated with E2-repressible gene expression were enriched for ERE, PBX1, and PBX3. While a significant number of open chromatin regions showed pioneer factor FOXA1 occupancy in the absence of E2, E2-treatment further enhanced FOXA1 occupancy suggesting that ER-E2 enhances chromatin occupancy of FOXA1 to a subset of E2-regulated genes. Surprisingly, promoters of 80% and enhancers of 60% of E2-inducible genes displayed closed chromatin configuration both in the absence and presence of E2. Integration of ATAC-seq data with ERα ChIP-seq data revealed that ~40% ERα binding sites in the genome are found in chromatin regions that are not accessible as per ATAC-seq. Such ERα binding regions were enriched for binding sites of multiple nuclear receptors including ER, ESRRB, ERRγ, COUP-TFII (NR2F2), RARα, EAR2 as well as traditional pioneer factors FOXA1 and GATA3. Similar data were also obtained when ERα ChIP-seq data were integrated with MNase-seq and DNase-seq data sets. In summation, our results reveal complex mechanisms of ER-E2 interaction with nucleosomes. Notably, "closed chromatin" configuration as defined by ATAC-seq or by other techniques is not necessarily associated with lack of gene expression and technical limitations may preclude ATAC-seq to demonstrate accessibility of chromatin regions that are bound by ERα.
Collapse
Affiliation(s)
- Duojiao Chen
- Departments of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Taylor M Parker
- Departments of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Xiaona Chu
- Departments of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yunlong Liu
- Departments of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yue Wang
- Departments of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Harikrishna Nakshatri
- Departments of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Roudebush VA Medical Center, Indianapolis, IN, 46202, USA.
| |
Collapse
|
31
|
Estrogen Receptor on the move: Cistromic plasticity and its implications in breast cancer. Mol Aspects Med 2020; 78:100939. [PMID: 33358533 DOI: 10.1016/j.mam.2020.100939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 01/27/2023]
Abstract
Estrogen Receptor (ERα) is a hormone-driven transcription factor, critically involved in driving tumor cell proliferation in the vast majority of breast cancers (BCas). ERα binds the genome at cis-regulatory elements, dictating the expression of a large spectrum of responsive genes in 3D genomic space. While initial reports described a rather static ERα chromatin binding repertoire, we now know that ERα DNA interactions are highly versatile, altered in breast tumor development and progression, and deviate between tumors from patients with differential outcome. Multiple cellular signaling cascades are known to impinge on ERα genomic function, changing its cistrome to retarget the receptor to other regions of the genome and reprogram its impact on breast cell biology. This review describes the current state-of-the-art on which factors manipulate the ERα cistrome and how this alters the response to both endogenous and exogenous hormonal stimuli, ultimately impacting BCa cell progression and response to commonly used therapeutic interventions. Novel insights in ERα cistrome dynamics may pave the way for better patient diagnostics and the development of novel therapeutic interventions, ultimately improving cancer care and patient outcome.
Collapse
|
32
|
Ruiz D, Padmanabhan V, Sargis RM. Stress, Sex, and Sugar: Glucocorticoids and Sex-Steroid Crosstalk in the Sex-Specific Misprogramming of Metabolism. J Endocr Soc 2020; 4:bvaa087. [PMID: 32734132 PMCID: PMC7382384 DOI: 10.1210/jendso/bvaa087] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Early-life exposures to environmental insults can misprogram development and increase metabolic disease risk in a sex-dependent manner by mechanisms that remain poorly characterized. Modifiable factors of increasing public health relevance, such as diet, psychological stress, and endocrine-disrupting chemicals, can affect glucocorticoid receptor signaling during gestation and lead to sex-specific postnatal metabolic derangements. Evidence from humans and animal studies indicate that glucocorticoids crosstalk with sex steroids by several mechanisms in multiple tissues and can affect sex-steroid-dependent developmental processes. Nonetheless, glucocorticoid sex-steroid crosstalk has not been considered in the glucocorticoid-induced misprogramming of metabolism. Herein we review what is known about the mechanisms by which glucocorticoids crosstalk with estrogen, androgen, and progestogen action. We propose that glucocorticoid sex-steroid crosstalk is an understudied mechanism of action that requires consideration when examining the developmental misprogramming of metabolism, especially when assessing sex-specific outcomes.
Collapse
Affiliation(s)
- Daniel Ruiz
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | | | - Robert M Sargis
- Division of Endocrinology, Diabetes, and Metabolism; Department of Medicine; University of Illinois at Chicago, Chicago, Illinois
- Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
33
|
De Bosscher K, Desmet SJ, Clarisse D, Estébanez-Perpiña E, Brunsveld L. Nuclear receptor crosstalk - defining the mechanisms for therapeutic innovation. Nat Rev Endocrinol 2020; 16:363-377. [PMID: 32303708 DOI: 10.1038/s41574-020-0349-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 02/06/2023]
Abstract
Nuclear receptor crosstalk can be defined as the interplay between different nuclear receptors or between their overlapping signalling pathways. A subset of nuclear receptors (such as PPARs and RARs) engage in the formation of well-characterized 'typical' heterodimers with RXR. 'Atypical' heterodimers (such as GR with PPARs, or PPAR with ERR) might form a novel class of physical complexes that might be more transient in nature. These heterodimers might harbour strong transcriptional flexibility, with no strict need for DNA binding of both partners. Direct crosstalk could stem from a pairwise physical association between atypical nuclear receptor heterodimers, either via pre-existing interaction pairs or via interactions that are newly induced with small molecules; such crosstalk might constitute an uncharted space to target nuclear receptor physiological and/or pathophysiological actions. In this Review, we discuss the emerging aspects of crosstalk in the nuclear receptor field and present various mechanistic crosstalk modes with examples that support applicability of the atypical heterodimer concept. Stabilization or disruption, in a context-dependent or cell type-dependent manner, of these more transient heterodimers is expected to fuel unprecedented translational approaches to yield novel therapeutic agents to treat major human diseases with higher precision.
Collapse
Affiliation(s)
- Karolien De Bosscher
- Translational Nuclear Receptor Research, VIB Center for Medical Biotechnology, UGent Department of Biomolecular Medicine, Gent, Belgium.
| | - Sofie J Desmet
- Translational Nuclear Receptor Research, VIB Center for Medical Biotechnology, UGent Department of Biomolecular Medicine, Gent, Belgium
| | - Dorien Clarisse
- Translational Nuclear Receptor Research, VIB Center for Medical Biotechnology, UGent Department of Biomolecular Medicine, Gent, Belgium
| | - Eva Estébanez-Perpiña
- Laboratory of Structural Biology, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB) of the University of Barcelona (UB), Barcelona, Spain
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Eindhoven, Netherlands
| |
Collapse
|
34
|
Erdős E, Bálint BL. NR2F2 Orphan Nuclear Receptor is Involved in Estrogen Receptor Alpha-Mediated Transcriptional Regulation in Luminal A Breast Cancer Cells. Int J Mol Sci 2020; 21:E1910. [PMID: 32168782 PMCID: PMC7139668 DOI: 10.3390/ijms21061910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 12/23/2022] Open
Abstract
Nuclear Receptor Subfamily 2 Group F Member 2 (NR2F2) is a member of the steroid/thyroid hormone receptor superfamily with a crucial role in organogenesis, angiogenesis, cardiovascular development and tumorigenesis. However, there is limited knowledge about the cistrome and transcriptome of NR2F2 in breast cancer. In this study, we mapped the regulatory mechanism by NR2F2 using functional genomic methods. To investigate the clinical significance of NR2F2 in breast cancer, The Cancer Genome Atlas (TCGA) data were used. These results show that a high NR2F2 is associated with better survival of a specific subset of patients, namely those with luminal A breast cancer. Therefore, genome-wide NR2F2 and estrogen receptor alpha (ERα) binding sites were mapped in luminal A breast cancer cells using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq), revealing that most NR2F2 overlap with ERα that are co-occupied by forkhead box A1 (FOXA1) and GATA binding protein 3 (GATA3) in active enhancer regions. NR2F2 overlaps with highly frequent ERα chromatin interactions, which are essential for the formation of ERα-bound super-enhancers. In the process of the transcriptome profiling of NR2F2-depleted breast cancer cells such differentially expressed genes have been identified that are involved in endocrine therapy resistance and are also ERα target genes. Overall, these findings demonstrate that the NR2F2 nuclear receptor has a key role in ERα-mediated transcription and it can offer a potential therapeutic target in patients with luminal A breast cancer.
Collapse
Affiliation(s)
- Edina Erdős
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt., H-4032 Debrecen, Hungary;
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt., H-4032 Debrecen, Hungary
| | - Bálint László Bálint
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt., H-4032 Debrecen, Hungary;
| |
Collapse
|
35
|
Iemolo A, Montilla-Perez P, Lai IC, Meng Y, Nolan S, Wen J, Rusu I, Dulcis D, Telese F. A cell type-specific expression map of NCoR1 and SMRT transcriptional co-repressors in the mouse brain. J Comp Neurol 2020; 528:2218-2238. [PMID: 32072640 DOI: 10.1002/cne.24886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 12/12/2019] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
Abstract
The ability to rapidly change gene expression patterns is essential for differentiation, development, and functioning of the brain. Throughout development, or in response to environmental stimuli, gene expression patterns are tightly regulated by the dynamic interplay between transcription activators and repressors. Nuclear receptor corepressor 1 (NCoR1) and silencing mediator for retinoid or thyroid-hormone receptors (SMRT) are the best characterized transcriptional co-repressors from a molecular point of view. They mediate epigenetic silencing of gene expression in a wide range of developmental and homeostatic processes in many tissues, including the brain. For instance, NCoR1 and SMRT regulate neuronal stem cell proliferation and differentiation during brain development and they have been implicated in learning and memory. However, we still have a limited understanding of their regional and cell type-specific expression in the brain. In this study, we used fluorescent immunohistochemistry to map their expression patterns throughout the adult mouse brain. Our findings reveal that NCoR1 and SMRT share an overall neuroanatomical distribution, and are detected in both excitatory and inhibitory neurons. However, we observed striking differences in their cell type-specific expression in glial cells. Specifically, all oligodendrocytes express NCoR1, but only a subset express SMRT. In addition, NCoR1, but not SMRT, was detected in a subset of astrocytes and in the microglia. These novel observations are corroborated by single cell transcriptomics and emphasize how NCoR1 and SMRT may contribute to distinct biological functions, suggesting an exclusive role of NCoR1 in innate immune responses in the brain.
Collapse
Affiliation(s)
- Attilio Iemolo
- Department of Medicine, University of California San Diego, La Jolla, California
| | | | - I-Chi Lai
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Yinuo Meng
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Syreeta Nolan
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Junneng Wen
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Iulia Rusu
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Davide Dulcis
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Francesca Telese
- Department of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
36
|
Cardiello JF, Sanchez GJ, Allen MA, Dowell RD. Lessons from eRNAs: understanding transcriptional regulation through the lens of nascent RNAs. Transcription 2019; 11:3-18. [PMID: 31856658 DOI: 10.1080/21541264.2019.1704128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nascent transcription assays, such as global run-on sequencing (GRO-seq) and precision run-on sequencing (PRO-seq), have uncovered a myriad of unstable RNAs being actively produced from numerous sites genome-wide. These transcripts provide a more complete and immediate picture of the impact of regulatory events. Transcription factors recruit RNA polymerase II, effectively initiating the process of transcription; repressors inhibit polymerase recruitment. Efficiency of recruitment is dictated by sequence elements in and around the RNA polymerase loading zone. A combination of sequence elements and RNA binding proteins subsequently influence the ultimate stability of the resulting transcript. Some of these transcripts are capable of providing feedback on the process, influencing subsequent transcription. By monitoring RNA polymerase activity, nascent assays provide insights into every step of the regulated process of transcription.
Collapse
Affiliation(s)
| | - Gilson J Sanchez
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Mary A Allen
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA.,Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
37
|
Snider H, Villavarajan B, Peng Y, Shepherd LE, Robinson AC, Mueller CR. Region-specific glucocorticoid receptor promoter methylation has both positive and negative prognostic value in patients with estrogen receptor-positive breast cancer. Clin Epigenetics 2019; 11:155. [PMID: 31675993 PMCID: PMC6825343 DOI: 10.1186/s13148-019-0750-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/22/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The glucocorticoid receptor (NR3C1, GR) is frequently downregulated in breast tumors, and evidence suggests it acts as a tumor suppressor in estrogen receptor-positive (ER+) breast cancer. We previously found that methylation of the GR promoter CpG island represses gene expression and occurs in ER+ breast tumors. In this study, the prognostic and predictive value of GR methylation was examined in ER+ patients from the CCTG MA.12 clinical trial of tamoxifen versus placebo in women with early breast cancer. METHODS We developed a targeted multiplex bisulfite next-generation sequencing assay to detect methylation at multiple GR promoter regions in DNA from formalin-fixed paraffin-embedded (FFPE) samples. Following validation in a small cohort of breast tumors, ER+ FFPE tumor samples from MA.12 (n = 208) were tested. Survival analyses evaluated the impact of GR promoter methylation on patient overall survival (OS) and disease-free survival (DFS). RESULTS An analysis of TCGA data found that GR methylation is prevalent in ER+ tumors and is associated with decreased gene expression and analysis of public microarray data (KM Plotter) linked decreased GR expression to a poor outcome. In MA.12, two GR promoter regions (U and C) each had prognostic value, but with opposite effects on the outcome. U methylation was associated with poor OS (HR = 1.79, P = 0.041) whereas C methylation was associated with better OS (HR = 0.40, P = 0.040) and DFS (HR = 0.49, P = 0.037). The classification of patients based on the methylation status of the two regions was prognostic for OS (P = 0.006) and DFS (P = 0.041) and revealed a group of patients (U methylated, C unmethylated) with very poor outcomes. Placebo-treated patients in this high-risk group had worse OS (HR = 2.86, P = 0.002) and DFS (HR = 2.09, P = 0.014) compared to the rest of the cohort. CONCLUSION Region-specific GR promoter methylation was an independent prognostic marker for patient survival and identified a subset of patients with poor prognosis, particularly without tamoxifen treatment. These findings provide a foundation for future studies into GR methylation as a promising prognostic biomarker in ER+ breast cancer.
Collapse
Affiliation(s)
- Hilary Snider
- Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Brithica Villavarajan
- Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Yingwei Peng
- Division of Cancer Care and Epidemiology, Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada.,Department of Mathematics and Statistics, Queen's University, Kingston, Ontario, Canada.,Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Lois E Shepherd
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.,Canadian Cancer Trials Group, Queen's University, Kingston, Canada
| | - Andrew C Robinson
- Department of Oncology, Division of Medical Oncology, Queen's University, Kingston, Canada
| | - Christopher R Mueller
- Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada. .,Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada. .,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
38
|
Tonsing-Carter E, Hernandez KM, Kim CR, Harkless RV, Oh A, Bowie KR, West-Szymanski DC, Betancourt-Ponce MA, Green BD, Lastra RR, Fleming GF, Chandarlapaty S, Conzen SD. Glucocorticoid receptor modulation decreases ER-positive breast cancer cell proliferation and suppresses wild-type and mutant ER chromatin association. Breast Cancer Res 2019; 21:82. [PMID: 31340854 PMCID: PMC6651939 DOI: 10.1186/s13058-019-1164-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/25/2019] [Indexed: 12/25/2022] Open
Abstract
Background Non-ER nuclear receptor activity can alter estrogen receptor (ER) chromatin association and resultant ER-mediated transcription. Consistent with GR modulation of ER activity, high tumor glucocorticoid receptor (GR) expression correlates with improved relapse-free survival in ER+ breast cancer (BC) patients. Methods In vitro cell proliferation assays were used to assess ER-mediated BC cell proliferation following GR modulation. ER chromatin association following ER/GR co-liganding was measured using global ChIP sequencing and directed ChIP analysis of proliferative gene enhancers. Results We found that GR liganding with either a pure agonist or a selective GR modulator (SGRM) slowed estradiol (E2)-mediated proliferation in ER+ BC models. SGRMs that antagonized transcription of GR-unique genes both promoted GR chromatin association and inhibited ER chromatin localization at common DNA enhancer sites. Gene expression analysis revealed that ER and GR co-activation decreased proliferative gene activation (compared to ER activation alone), specifically reducing CCND1, CDK2, and CDK6 gene expression. We also found that ligand-dependent GR occupancy of common ER-bound enhancer regions suppressed both wild-type and mutant ER chromatin association and decreased corresponding gene expression. In vivo, treatment with structurally diverse SGRMs also reduced MCF-7 Y537S ER-expressing BC xenograft growth. Conclusion These studies demonstrate that liganded GR can suppress ER chromatin occupancy at shared ER-regulated enhancers, including CCND1 (Cyclin D1), regardless of whether the ligand is a classic GR agonist or antagonist. Resulting GR-mediated suppression of ER+ BC proliferative gene expression and cell division suggests that SGRMs could decrease ER-driven gene expression. Electronic supplementary material The online version of this article (10.1186/s13058-019-1164-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eva Tonsing-Carter
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Kyle M Hernandez
- Center for Research Informatics, The University of Chicago, Chicago, IL, 60637, USA.,Department of Pediatrics, The University of Chicago, Chicago, IL, 60637, USA
| | - Caroline R Kim
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Ryan V Harkless
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Alyce Oh
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Kathleen R Bowie
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | | | | | - Bradley D Green
- Ben May Department for Cancer Research, The University of Chicago, 900 E 57th St, Chicago, IL, 60637, USA
| | - Ricardo R Lastra
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA
| | - Gini F Fleming
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Suzanne D Conzen
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA. .,Ben May Department for Cancer Research, The University of Chicago, 900 E 57th St, Chicago, IL, 60637, USA.
| |
Collapse
|
39
|
Rivers CA, Rogers MF, Stubbs FE, Conway-Campbell BL, Lightman SL, Pooley JR. Glucocorticoid Receptor-Tethered Mineralocorticoid Receptors Increase Glucocorticoid-Induced Transcriptional Responses. Endocrinology 2019; 160:1044-1056. [PMID: 30980716 PMCID: PMC6462215 DOI: 10.1210/en.2018-00819] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/01/2019] [Indexed: 12/16/2022]
Abstract
Mineralocorticoid and glucocorticoid receptors (MRs and GRs) constitute a functionally important dual receptor system detecting and transmitting circulating corticosteroid signals. High expression of MRs and GRs occurs in the same cells in the limbic system, the primary site of glucocorticoid action on cognition, behavior, and mood; however, modes of interaction between the receptors are poorly characterized. We used chromatin immunoprecipitation with nucleotide resolution using exonuclease digestion, unique barcode, and single ligation (ChIP-nexus) for high-resolution genome-wide characterization of MR and GR DNA binding profiles in neuroblastoma cells and demonstrate recruitment to highly similar DNA binding sites. Expressed MR or GR showed differential regulation of endogenous gene targets, including Syt2 and Ddc, whereas coexpression produced augmented transcriptional responses even when MRs were unable to bind DNA (MR-XDBD). ChIP confirmed that MR-XDBD could be tethered to chromatin by GR. Our data demonstrate that MR can interact at individual genomic DNA sites in multiple modes and suggest a role for MR in increasing the transcriptional response to glucocorticoids.
Collapse
Affiliation(s)
- Caroline A Rivers
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Mark F Rogers
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Felicity E Stubbs
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Becky L Conway-Campbell
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Stafford L Lightman
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - John R Pooley
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Correspondence: John R. Pooley, PhD, University of Bristol, Translational Health Sciences, Bristol Medical School, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, United Kingdom. E-mail:
| |
Collapse
|
40
|
Yang L, Jeong KW. Flightless-I mediates the repression of estrogen receptor α target gene expression by the glucocorticoid receptor in MCF-7 cells. Endocr J 2019; 66:65-74. [PMID: 30369516 DOI: 10.1507/endocrj.ej18-0343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The human homologue of flightless-I (FLII) belong to the gelsolin protein family and contain a gelsolin-like domain at the C-terminus and a leucine-rich repeat (LRR) domain at the N-terminus. FLII regulates estrogen receptor alpha (ERα) and glucocorticoid receptor (GR)-mediated transcription by direct interaction through different domains, suggestive of its potential role in the crosstalk between the ERα and GR signaling pathway. Here, we demonstrate that FLII plays a critical role in GR-mediated repression of ERα target gene expression. In FLII-depleted cells, the reduction in 17-β-estradiol (E2)-induced ERα occupancy following treatment with dexamethasone (Dex) at the estrogen responsive element (ERE) site of the ERα target gene was significantly inhibited. The ERE binding of GR by the cotreatment with E2 and Dex was significantly inhibited by FLII depletion, indicating that FLII is required for the recruitment of GR at the ERE sites of ERα target genes. In addition, the recruitment of ERα-induced FLII to ERE sites was significantly reduced by Dex treatment. In protein binding assays, GR inhibited the E2-induced interaction between ERα and FLII, suggesting that GR interferes with the binding of ERα and FLII at the ERα target genes, resulting in the release of ERα and FLII from EREs. Taken together, our data reveal an unknown mechanism by which the transcription coactivator FLII regulates the GR-mediated repression of ERα target gene expression in MCF-7 cells.
Collapse
Affiliation(s)
- Liu Yang
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Kwang Won Jeong
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
41
|
Truong TH, Lange CA. Deciphering Steroid Receptor Crosstalk in Hormone-Driven Cancers. Endocrinology 2018; 159:3897-3907. [PMID: 30307542 PMCID: PMC6236424 DOI: 10.1210/en.2018-00831] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/04/2018] [Indexed: 12/27/2022]
Abstract
Steroid hormone receptors (SRs) have a multitude of functions in human biology and disease progression. The SR family of related ligand-activated transcription factors includes androgen, estrogen, glucocorticoid, mineralocorticoid, and progesterone receptors. Antiestrogen or estrogen receptor (ER)-targeted therapies to block ER action remain the primary treatment of luminal breast cancers. Although this strategy is successful, ∼40% of patients eventually relapse due to endocrine resistance. The majority of hormone-independent tumors retain some level of SR expression, but sidestep hormone ablation treatments. SRs are known to crosstalk extensively with kinase signaling pathways, and this interplay has been shown to bypass ER-targeted therapies in part by providing alternative proliferation and survival signals that enable hormone independence. Modified receptors adopt alternate conformations that resist antagonism or promote agonism. SR-regulated transcription and SR-binding events have been classically studied as single receptor events using single hormones. However, it is becoming increasingly evident that individual steroids and SRs rarely act alone. Emerging evidence shows that coexpressed SRs crosstalk with each other in hormone-driven cancers, such as breast and prostate. Crosstalk between related SRs allows them to modulate signaling and transcriptional responses to noncognate ligands. This flexibility can lead to altered genomic binding and subsequent changes in SR target gene expression. This review will discuss recent mechanistic advances in elucidating SR crosstalk and the implications for treating hormone-driven cancers. Understanding this crosstalk (i.e., both opposing and collaborative) is a critical step toward expanding and modernizing endocrine therapies and will ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Thu H Truong
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
42
|
Siersbæk R, Kumar S, Carroll JS. Signaling pathways and steroid receptors modulating estrogen receptor α function in breast cancer. Genes Dev 2018; 32:1141-1154. [PMID: 30181360 PMCID: PMC6120708 DOI: 10.1101/gad.316646.118] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Estrogen receptor α (ER) is the major driver of ∼75% of breast cancers, and multiple ER targeting drugs are routinely used clinically to treat patients with ER+ breast cancer. However, many patients relapse on these targeted therapies and ultimately develop metastatic and incurable disease, and understanding the mechanisms leading to drug resistance is consequently of utmost importance. It is now clear that, in addition to estrogens, ER function is modulated by other steroid receptors and multiple signaling pathways (e.g., growth factor and cytokine signaling), and many of these pathways affect drug resistance and patient outcome. Here, we review the mechanisms through which these pathways impact ER function and drug resistance as well as discuss the clinical implications.
Collapse
Affiliation(s)
- Rasmus Siersbæk
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Sanjeev Kumar
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
- Addenbrookes Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
43
|
Swinstead EE, Paakinaho V, Hager GL. Chromatin reprogramming in breast cancer. Endocr Relat Cancer 2018; 25:R385-R404. [PMID: 29692347 PMCID: PMC6029727 DOI: 10.1530/erc-18-0033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/24/2018] [Indexed: 02/06/2023]
Abstract
Reprogramming of the chromatin landscape is a critical component to the transcriptional response in breast cancer. Effects of sex hormones such as estrogens and progesterone have been well described to have a critical impact on breast cancer proliferation. However, the complex network of the chromatin landscape, enhancer regions and mode of function of steroid receptors (SRs) and other transcription factors (TFs), is an intricate web of signaling and functional processes that is still largely misunderstood at the mechanistic level. In this review, we describe what is currently known about the dynamic interplay between TFs with chromatin and the reprogramming of enhancer elements. Emphasis has been placed on characterizing the different modes of action of TFs in regulating enhancer activity, specifically, how different SRs target enhancer regions to reprogram chromatin in breast cancer cells. In addition, we discuss current techniques employed to study enhancer function at a genome-wide level. Further, we have noted recent advances in live cell imaging technology. These single-cell approaches enable the coupling of population-based assays with real-time studies to address many unsolved questions about SRs and chromatin dynamics in breast cancer.
Collapse
Affiliation(s)
- Erin E Swinstead
- Laboratory of Receptor Biology and Gene ExpressionNational Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Ville Paakinaho
- Laboratory of Receptor Biology and Gene ExpressionNational Cancer Institute, NIH, Bethesda, Maryland, USA
- Institute of BiomedicineUniversity of Eastern Finland, Kuopio, Finland
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene ExpressionNational Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
44
|
Berto M, Jean V, Zwart W, Picard D. ERα activity depends on interaction and target site corecruitment with phosphorylated CREB1. Life Sci Alliance 2018; 1:e201800055. [PMID: 30456355 PMCID: PMC6238530 DOI: 10.26508/lsa.201800055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022] Open
Abstract
The two transcription factors estrogen receptor α (ERα) and cyclic adenosine monophosphate (cAMP)-responsive element binding protein 1 (CREB1) mediate different signals, bind different response elements, and control different transcriptional programs. And yet, results obtained with transfected reporter genes suggested that their activities may intersect. We demonstrate here that CREB1 stimulates and is necessary for ERα activity on a transfected reporter gene and several endogenous targets both in response to its cognate ligand estrogen and to ligand-independent activation by cAMP. The stimulatory activity of CREB1 requires its DNA binding and activation by phosphorylation, and affects the chromatin recruitment of ERα. CREB1 and ERα are biochemically associated and share hundreds to thousands of chromatin binding sites upon stimulation by estrogen and cAMP, respectively. These shared regulatory activities may underlie the anti-apoptotic effects of estrogen and cAMP signaling in ERα-positive breast cancer cells. Moreover, high levels of CREB1 are associated with good prognosis in ERα-positive breast cancer patients, which may be because of its ability to promote ERα functions, thereby maintaining it as a successful therapeutic target.
Collapse
Affiliation(s)
- Melissa Berto
- Département de Biologie Cellulaire and Institute of Genetics and Genomics of Geneva, Université de Genève, Genève, Switzerland
| | - Valerie Jean
- Département de Biologie Cellulaire and Institute of Genetics and Genomics of Geneva, Université de Genève, Genève, Switzerland
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Didier Picard
- Département de Biologie Cellulaire and Institute of Genetics and Genomics of Geneva, Université de Genève, Genève, Switzerland
| |
Collapse
|
45
|
Johnson MB, Hoffmann JN, You HM, Lastra RR, Fernandez S, Strober JW, Allaw AB, Brady MJ, Conzen SD, McClintock MK. Psychosocial Stress Exposure Disrupts Mammary Gland Development. J Mammary Gland Biol Neoplasia 2018; 23:59-73. [PMID: 29687293 PMCID: PMC6207373 DOI: 10.1007/s10911-018-9392-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 03/22/2018] [Indexed: 01/18/2023] Open
Abstract
Exposure to psychosocial stressors and ensuing stress physiology have been associated with spontaneous invasive mammary tumors in the Sprague-Dawley rat model of human breast cancer. Mammary gland (MG) development is a time when physiologic and environmental exposures influence breast cancer risk. However, the effect of psychosocial stress exposure on MG development remains unknown. Here, in the first comprehensive longitudinal study of MG development in nulliparous female rats (from puberty through young adulthood; 8-25 wks of age), we quantify the spatial gradient of differentiation within the MG of socially stressed (isolated) and control (grouped) rats. We then demonstrate that social isolation increased stress reactivity to everyday stressors, resulting in downregulation of glucocorticoid receptor (GR) expression in the MG epithelium. Surprisingly, given that chemical carcinogens increase MG cancer risk by preventing normal terminal end bud (TEB) differentiation, chronic isolation stress did not alter TEBs. Instead, isolation blunted MG growth and alveolobular differentiation and reduced epithelial cell proliferation in these structures. Social isolation also enhanced corpora luteal progesterone at all ages but reduced estrogenization only in early adulthood, a pattern that precludes modulated ovarian function as a sufficient mechanism for the effects of isolation on MG development. This longitudinal study of natural variation provides an integrated view of MG development and the importance of increased GR activation in nulliparous ductal growth and alveolobular differentiation. Thus, social isolation and its physiological sequelae disrupt MG growth and differentiation and suggest a contribution of stress exposure during puberty and young adulthood to the previously observed increase in invasive MG cancer observed in chronically socially-isolated adult Sprague-Dawley rats.
Collapse
Affiliation(s)
- Marianna B Johnson
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, USA
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | | | - Hannah M You
- Institute for Mind and Biology, The University of Chicago, Chicago, IL, USA
| | - Ricardo R Lastra
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Sully Fernandez
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, USA
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Jordan W Strober
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, USA
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Ahmad B Allaw
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Matthew J Brady
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, USA
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Suzanne D Conzen
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, USA
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Martha K McClintock
- Institute for Mind and Biology, The University of Chicago, Chicago, IL, USA.
- Departments of Psychology and Comparative Human Development, The University of Chicago, 940 East 57th Street, Chicago, IL, 60637, USA.
| |
Collapse
|
46
|
West DC, Kocherginsky M, Tonsing-Carter EY, Dolcen DN, Hosfield DJ, Lastra RR, Sinnwell JP, Thompson KJ, Bowie KR, Harkless RV, Skor MN, Pierce CF, Styke SC, Kim CR, de Wet L, Greene GL, Boughey JC, Goetz MP, Kalari KR, Wang L, Fleming GF, Györffy B, Conzen SD. Discovery of a Glucocorticoid Receptor (GR) Activity Signature Using Selective GR Antagonism in ER-Negative Breast Cancer. Clin Cancer Res 2018; 24:3433-3446. [PMID: 29636357 DOI: 10.1158/1078-0432.ccr-17-2793] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/14/2018] [Accepted: 04/04/2018] [Indexed: 12/30/2022]
Abstract
Purpose: Although high glucocorticoid receptor (GR) expression in early-stage estrogen receptor (ER)-negative breast cancer is associated with shortened relapse-free survival (RFS), how associated GR transcriptional activity contributes to aggressive breast cancer behavior is not well understood. Using potent GR antagonists and primary tumor gene expression data, we sought to identify a tumor-relevant gene signature based on GR activity that would be more predictive than GR expression alone.Experimental Design: Global gene expression and GR ChIP-sequencing were performed to identify GR-regulated genes inhibited by two chemically distinct GR antagonists, mifepristone and CORT108297. Differentially expressed genes from MDA-MB-231 cells were cross-evaluated with significantly expressed genes in GR-high versus GR-low ER-negative primary breast cancers. The resulting subset of GR-targeted genes was analyzed in two independent ER-negative breast cancer cohorts to derive and then validate the GR activity signature (GRsig).Results: Gene expression pathway analysis of glucocorticoid-regulated genes (inhibited by GR antagonism) revealed cell survival and invasion functions. GR ChIP-seq analysis demonstrated that GR antagonists decreased GR chromatin association for a subset of genes. A GRsig that comprised n = 74 GR activation-associated genes (also reversed by GR antagonists) was derived from an adjuvant chemotherapy-treated Discovery cohort and found to predict probability of relapse in a separate Validation cohort (HR = 1.9; P = 0.012).Conclusions: The GRsig discovered herein identifies high-risk ER-negative/GR-positive breast cancers most likely to relapse despite administration of adjuvant chemotherapy. Because GR antagonism can reverse expression of these genes, we propose that addition of a GR antagonist to chemotherapy may improve outcome for these high-risk patients. Clin Cancer Res; 24(14); 3433-46. ©2018 AACR.
Collapse
Affiliation(s)
- Diana C West
- Department of Medicine, The University of Chicago, Chicago, Illinois.,Department of Chemistry and Physics, Ave Maria University, Ave Maria, Florida
| | - Masha Kocherginsky
- Department of Preventive Medicine, Northwestern University, Chicago, Illinois
| | | | - D Nesli Dolcen
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - David J Hosfield
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois
| | - Ricardo R Lastra
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Jason P Sinnwell
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Kevin J Thompson
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Kathleen R Bowie
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Ryan V Harkless
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Maxwell N Skor
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Charles F Pierce
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Sarah C Styke
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Caroline R Kim
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Larischa de Wet
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Geoffrey L Greene
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois
| | - Judy C Boughey
- Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Matthew P Goetz
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota.,Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Krishna R Kalari
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Gini F Fleming
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Balázs Györffy
- MTA-TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary.,Semmelweis University, Second Department of Pediatrics, Budapest, Hungary
| | - Suzanne D Conzen
- Department of Medicine, The University of Chicago, Chicago, Illinois. .,Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois
| |
Collapse
|
47
|
Rider V, Abdou NI, Kimler BF, Lu N, Brown S, Fridley BL. Gender Bias in Human Systemic Lupus Erythematosus: A Problem of Steroid Receptor Action? Front Immunol 2018; 9:611. [PMID: 29643853 PMCID: PMC5882779 DOI: 10.3389/fimmu.2018.00611] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/12/2018] [Indexed: 12/31/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease resulting from abnormal interactions between T and B cells. The acquisition of SLE is linked to genetic susceptibility, and diverse environmental agents can trigger disease onset in genetically susceptible individuals. However, the strongest risk factor for developing SLE is being female (9:1 female to male ratio). The female sex steroid, estradiol, working through its receptors, contributes to the gender bias in SLE although the mechanisms remain enigmatic. In a small clinical trial, monthly administration of the estrogen receptor (ERα) antagonist, ICI182,780 (fulvestrant), significantly reduced disease indicators in SLE patients. In order to identify changes that could account for improved disease status, the present study utilized fulvestrant (Faslodex) to block ERα action in cultured SLE T cells that were purified from blood samples collected from SLE patients (n = 18, median age 42 years) and healthy control females (n = 25, median age 46 years). The effects of ERα antagonism on estradiol-dependent gene expression and canonical signaling pathways were analyzed. Pathways that were significantly altered by addition of Faslodex included T helper (Th) cell differentiation, steroid receptor signaling [glucocorticoid receptor (GR), ESR1 (ERα)], ubiquitination, and sumoylation pathways. ERα protein expression was significantly lower (p < 0.018) in freshly isolated, resting SLE T cells suggesting ERα turnover is inherently faster in SLE T cells. In contrast, ERα/ERβ mRNA and ERβ protein levels were not significantly different between SLE and normal control T cell samples. Plasma estradiol levels did not differ (p > 0.05) between SLE patients and controls. A previously undetected interaction between GR and ERα signaling pathways suggests posttranslational modification of steroid receptors in SLE T cells may alter ERα/GR actions and contribute to the strong gender bias of this autoimmune disorder.
Collapse
Affiliation(s)
- Virginia Rider
- Department of Biology, Pittsburg State University, Pittsburg, KS, United States
| | - Nabih I Abdou
- Center for Rheumatic Diseases, St. Luke's Hospital, Kansas City, MO, United States
| | - Bruce F Kimler
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, MO, United States
| | - Nanyan Lu
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Susan Brown
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Brooke L Fridley
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, MO, United States
| |
Collapse
|
48
|
Vahrenkamp JM, Yang CH, Rodriguez AC, Almomen A, Berrett KC, Trujillo AN, Guillen KP, Welm BE, Jarboe EA, Janat-Amsbury MM, Gertz J. Clinical and Genomic Crosstalk between Glucocorticoid Receptor and Estrogen Receptor α In Endometrial Cancer. Cell Rep 2018; 22:2995-3005. [PMID: 29539426 PMCID: PMC5870123 DOI: 10.1016/j.celrep.2018.02.076] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/31/2018] [Accepted: 02/21/2018] [Indexed: 11/27/2022] Open
Abstract
Steroid hormone receptors are simultaneously active in many tissues and are capable of altering each other's function. Estrogen receptor α (ER) and glucocorticoid receptor (GR) are expressed in the uterus, and their ligands have opposing effects on uterine growth. In endometrial tumors with high ER expression, we surprisingly found that expression of GR is associated with poor prognosis. Dexamethasone reduced normal uterine growth in vivo; however, this growth inhibition was abolished in estrogen-induced endometrial hyperplasia. We observed low genomic-binding site overlap when ER and GR are induced with their respective ligands; however, upon simultaneous induction they co-occupy more sites. GR binding is altered significantly by estradiol with GR recruited to ER-bound loci that become more accessible upon estradiol induction. Gene expression responses to co-treatment were more similar to estradiol but with additional regulated genes. Our results suggest phenotypic and molecular interplay between ER and GR in endometrial cancer.
Collapse
Affiliation(s)
- Jeffery M Vahrenkamp
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Chieh-Hsiang Yang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT 84112, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Adriana C Rodriguez
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Aliyah Almomen
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT 84112, USA; College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Kristofer C Berrett
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Katrin P Guillen
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Bryan E Welm
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Surgery, University of Utah, Salt Lake City, UT 84112, USA
| | - Elke A Jarboe
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Margit M Janat-Amsbury
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT 84112, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Jason Gertz
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
49
|
McDonnell DP, Norris JD, Chang CY. Neomorphic ERα Mutations Drive Progression in Breast Cancer and Present a Challenge for New Drug Discovery. Cancer Cell 2018; 33:153-155. [PMID: 29438688 DOI: 10.1016/j.ccell.2018.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this issue of Cancer Cell, Jeselsohn et al. dissect the function of several of the most clinically important estrogen receptor alpha mutants associated with endocrine therapy resistance in breast cancer and demonstrate that they manifest disease-relevant neomorphic activities that likely contribute to tumor pathogenesis.
Collapse
Affiliation(s)
- Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - John D Norris
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
50
|
Rakers C, Najnin RA, Polash AH, Takeda S, Brown J. Chemogenomic Active Learning's Domain of Applicability on Small, Sparse qHTS Matrices: A Study Using Cytochrome P450 and Nuclear Hormone Receptor Families. ChemMedChem 2018; 13:511-521. [DOI: 10.1002/cmdc.201700677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/04/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Christin Rakers
- Institute of Transformative bio-Molecules, WPI-ITbM; Nagoya University; Furo-cho Chikusa-ku Nagoya 464-8602 Japan
| | - Rifat Ara Najnin
- Department of Radiation Genetics; Kyoto University Graduate School of Medicine; Sakyo, Yoshida-konoemachi Building D, 3F Kyoto 606-8501 Japan
| | - Ahsan Habib Polash
- Department of Radiation Genetics; Kyoto University Graduate School of Medicine; Sakyo, Yoshida-konoemachi Building D, 3F Kyoto 606-8501 Japan
| | - Shunichi Takeda
- Department of Radiation Genetics; Kyoto University Graduate School of Medicine; Sakyo, Yoshida-konoemachi Building D, 3F Kyoto 606-8501 Japan
| | - J.B. Brown
- Laboratory for Molecular Biosciences; Kyoto University Graduate School of Medicine; Yoshida-konoemachi Building E 606-8501 Kyoto Sakyo Japan
| |
Collapse
|