1
|
Garcia-Sanchez JA, Bonnet E, Loubatier C, Doye A, Paillier G, Segui F, Larbret F, Chaintreuil P, Batistic L, Torre C, Deckert M, Polanowska J, Munro P, Boyer L, Visvikis O. Evolutionary conserved regulation of TFEB stability by the E3 ubiquitin ligase WWP2 modulates response to stress in vivo. iScience 2025; 28:111838. [PMID: 39995862 PMCID: PMC11848471 DOI: 10.1016/j.isci.2025.111838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/22/2024] [Accepted: 01/15/2025] [Indexed: 02/26/2025] Open
Abstract
Transcription factor EB (TFEB) is a key transcription factor that orchestrates the cellular response to stress. Dysregulation of TFEB is associated with a range of human diseases, and understanding the regulatory mechanisms of TFEB is crucial for identifying potential drug targets. In this study, we used Caenorhabditis elegans to screen for E3 ubiquitin ligases regulating the activity of TFEB's homolog, HLH-30, upon pathogenic infection. We identified WWP-1 as a regulator of HLH-30-dependent immune response controlling HLH-30 stability to mediate host defense in vivo. We found that HLH-30 interacts with WWP-1, supporting a model of WWP-1 directly regulating HLH-30. Furthermore, we found that WWP-1's human homolog WWP2 binds TFEB, directly induces TFEB ubiquitination and stabilizes TFEB. Finally, we found that WWP2 is required for TFEB-dependent host response in human monocytes-derived macrophages upon infection. Overall, our work has identified an evolutionarily conserved regulation of TFEB by WWP2 and highlighted its role in modulating stress response.
Collapse
Affiliation(s)
| | - Estelle Bonnet
- Université Côte d’Azur, INSERM, C3M, Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur, Centre Scientifique de Monaco, Monaco, Monaco
| | | | - Anne Doye
- Université Côte d’Azur, INSERM, C3M, Nice, France
| | | | - Fabien Segui
- Université Côte d’Azur, INSERM, C3M, Nice, France
| | | | | | | | - Cédric Torre
- Université Côte d’Azur, INSERM, C3M, Nice, France
| | | | | | | | | | | |
Collapse
|
2
|
Dudey A, Hughes GR, Rigby JM, Monaco S, Stephenson GR, Storr TE, Angulo J, Chantry A, Hemmings AM. 3,3'-Diindolylmethane (DIM): A Molecular Scaffold for Inhibition of WWP1 and WWP2, Members of the NEDD4 Family HECT E3 Ligases. ACS OMEGA 2025; 10:5963-5972. [PMID: 39989805 PMCID: PMC11840788 DOI: 10.1021/acsomega.4c09944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/25/2025]
Abstract
Indole-3-carbinol (I3C) is a metabolic derivative of glucobrassicin found in cruciferous vegetables. Known for its anticarcinogenic properties, I3C has been shown to target the NEDD4 family HECT E3 ligases, NEDD4-1 and WWP1, yet in vitro confirmation for the latter is lacking. Here, we characterize the interactions of I3C and a set of 17 derivatives with WWP1 and its homologue, WWP2. Saturation transfer difference (STD) NMR analysis confirmed strong interaction of I3C with WWP1 but weaker with WWP2. However, while autoubiquitination activity assays revealed weak inhibition of WWP1, the I3C condensation product, 3,3'-diindolylmethane (DIM), was more potent (IC50 111.2 μM; 95% CI = 85.1, 145.8). Molecular modeling of DIM to the ubiquitin exosite of both enzymes suggested the WW2 domain makes hydrophobic interactions with the ligand that may contribute to inhibitory action. Taken together, our results suggest future drug lead development should focus on the SAR between WWP1 and DIM.
Collapse
Affiliation(s)
- Ashley
P. Dudey
- School
of Biological Sciences, University of East
Anglia, Norwich NR4 7TJ, United
Kingdom
| | - Gregory R. Hughes
- School
of Biological Sciences, University of East
Anglia, Norwich NR4 7TJ, United
Kingdom
| | - Jake M. Rigby
- School
of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich NR4 7TJ, United
Kingdom
| | - Serena Monaco
- School
of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich NR4 7TJ, United
Kingdom
| | - G. Richard Stephenson
- School
of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich NR4 7TJ, United
Kingdom
| | - Thomas E. Storr
- School
of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich NR4 7TJ, United
Kingdom
| | - Jesus Angulo
- School
of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich NR4 7TJ, United
Kingdom
- Instituto
de Investigaciones Químicas (CSIC-Universidad de Sevilla), Sevilla 41092, Spain
| | - Andrew Chantry
- School
of Biological Sciences, University of East
Anglia, Norwich NR4 7TJ, United
Kingdom
| | - Andrew M. Hemmings
- School
of Biological Sciences, University of East
Anglia, Norwich NR4 7TJ, United
Kingdom
- School
of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich NR4 7TJ, United
Kingdom
- International
Research Center for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Nanhui New City, Shanghai 201306, P. R. China
| |
Collapse
|
3
|
Tang X, Liu X, Sha X, Zhang Y, Zu Y, Fan Q, Hu L, Sun S, Zhang Z, Chen F, Yan C, Chen X, Xu Y, Chen W, Shao Y, Gu J, Pu J, Yu B, Han Y, Xie L, Han Y, Ji Y. NEDD4-Mediated GSNOR Degradation Aggravates Cardiac Hypertrophy and Dysfunction. Circ Res 2025; 136:422-438. [PMID: 39846173 DOI: 10.1161/circresaha.124.324872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND The decrease in S-nitrosoglutathione reductase (GSNOR) leads to an elevation of S-nitrosylation, thereby exacerbating the progression of cardiomyopathy in response to hemodynamic stress. However, the mechanisms under GSNOR decrease remain unclear. Here, we identify NEDD4 (neuronal precursor cell expressed developmentally downregulated 4) as a novel molecule that plays a crucial role in the pathogenesis of pressure overload-induced cardiac hypertrophy, by modulating GSNOR levels, thereby demonstrating significant therapeutic potential. METHODS Protein synthesis and degradation inhibitors were used to verify the reasons for the decrease in GSNOR. Mass spectrometry and database filtering were used to uncover NEDD4, the E3 Ub (ubiquitin) ligase, involved in GSNOR decrease. NEDD4 cardiomyocyte-specific deficiency mice were used to evaluate the role of NEDD4 and NEDD4-induced ubiquitination of GSNOR in cardiac hypertrophy in vivo. Both IBM (indolebutenate methyl ester derivatives), a highly specific NEDD4 inhibitor, and indole-3-carbinol, a NEDD4 inhibitor currently undergoing phase 2 clinical trial, were used to effectively suppress the NEDD4/GSNOR axis. RESULTS GSNOR protein levels were reduced, while mRNA levels remained unchanged in myocardium samples from hypertrophic patients and transverse aortic constriction-induced mice, indicating GSNOR is regulated by ubiquitination. NEDD4, an E3 Ub ligase, was associated with GSNOR ubiquitination, which exhibited significantly higher expression levels in hypertrophic myocardial samples. Moreover, either the NEDD4 enzyme-dead mutant or GSNOR nonubiquitylated mutant decreased GSNOR ubiquitination and inhibited cardiac hypertrophic growth. Cardiomyocyte-specific NEDD4 deficiency inhibited cardiac hypertrophy in vitro and in vivo. NEDD4 inhibitor IBM effectively suppressed GSNOR ubiquitination and cardiac hypertrophy. Clinically, indole-3-carbinol, a NEDD4 inhibitor in phase II clinical trials used as an antitumor drug, demonstrated comparable efficacy. CONCLUSIONS Our findings showed that upregulated NEDD4 leads to GSNOR ubiquitination and subsequent degradation, thereby facilitating the progression of cardiac hypertrophy. NEDD4 inhibitors may serve as a potential therapeutic strategy for the treatment of cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Xin Tang
- Key Laboratory of Drug Targets and Translational Medicine for Cardio-cerebrovascular Diseases, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Jiangsu, China (X.T., X.L., X.S., Y. Zhang, Y. Zu, Q.F., L.H., S.S., F.C., L.X., Y.J.)
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu, China (X.T., X.L., X.S., Y. Zhang, Y. Zu, Q.F., L.H., S.S., F.C., L.X., Y.J.)
| | - Xiameng Liu
- Key Laboratory of Drug Targets and Translational Medicine for Cardio-cerebrovascular Diseases, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Jiangsu, China (X.T., X.L., X.S., Y. Zhang, Y. Zu, Q.F., L.H., S.S., F.C., L.X., Y.J.)
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu, China (X.T., X.L., X.S., Y. Zhang, Y. Zu, Q.F., L.H., S.S., F.C., L.X., Y.J.)
| | - Xinqi Sha
- Key Laboratory of Drug Targets and Translational Medicine for Cardio-cerebrovascular Diseases, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Jiangsu, China (X.T., X.L., X.S., Y. Zhang, Y. Zu, Q.F., L.H., S.S., F.C., L.X., Y.J.)
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu, China (X.T., X.L., X.S., Y. Zhang, Y. Zu, Q.F., L.H., S.S., F.C., L.X., Y.J.)
| | - Yan Zhang
- Key Laboratory of Drug Targets and Translational Medicine for Cardio-cerebrovascular Diseases, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Jiangsu, China (X.T., X.L., X.S., Y. Zhang, Y. Zu, Q.F., L.H., S.S., F.C., L.X., Y.J.)
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu, China (X.T., X.L., X.S., Y. Zhang, Y. Zu, Q.F., L.H., S.S., F.C., L.X., Y.J.)
| | - Yan Zu
- Key Laboratory of Drug Targets and Translational Medicine for Cardio-cerebrovascular Diseases, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Jiangsu, China (X.T., X.L., X.S., Y. Zhang, Y. Zu, Q.F., L.H., S.S., F.C., L.X., Y.J.)
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu, China (X.T., X.L., X.S., Y. Zhang, Y. Zu, Q.F., L.H., S.S., F.C., L.X., Y.J.)
| | - Qiyao Fan
- Key Laboratory of Drug Targets and Translational Medicine for Cardio-cerebrovascular Diseases, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Jiangsu, China (X.T., X.L., X.S., Y. Zhang, Y. Zu, Q.F., L.H., S.S., F.C., L.X., Y.J.)
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu, China (X.T., X.L., X.S., Y. Zhang, Y. Zu, Q.F., L.H., S.S., F.C., L.X., Y.J.)
| | - Lulu Hu
- Key Laboratory of Drug Targets and Translational Medicine for Cardio-cerebrovascular Diseases, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Jiangsu, China (X.T., X.L., X.S., Y. Zhang, Y. Zu, Q.F., L.H., S.S., F.C., L.X., Y.J.)
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu, China (X.T., X.L., X.S., Y. Zhang, Y. Zu, Q.F., L.H., S.S., F.C., L.X., Y.J.)
| | - Shixiu Sun
- Key Laboratory of Drug Targets and Translational Medicine for Cardio-cerebrovascular Diseases, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Jiangsu, China (X.T., X.L., X.S., Y. Zhang, Y. Zu, Q.F., L.H., S.S., F.C., L.X., Y.J.)
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu, China (X.T., X.L., X.S., Y. Zhang, Y. Zu, Q.F., L.H., S.S., F.C., L.X., Y.J.)
| | - Zhiren Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Key Laboratory of Cardiovascular Medicine Research and Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, NHC Key Laboratory of Cell Transplantation, the Central Laboratory of the First Affiliated Hospital, Harbin Medical University, Heilongjiang, China (Z.Z., Yi Han, Y.J.)
| | - Feng Chen
- Key Laboratory of Drug Targets and Translational Medicine for Cardio-cerebrovascular Diseases, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Jiangsu, China (X.T., X.L., X.S., Y. Zhang, Y. Zu, Q.F., L.H., S.S., F.C., L.X., Y.J.)
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu, China (X.T., X.L., X.S., Y. Zhang, Y. Zu, Q.F., L.H., S.S., F.C., L.X., Y.J.)
- Department of Forensic Medicine, Nanjing Medical University, China (F.C.)
| | - ChengHui Yan
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China (C.H.Y., Yaling Han)
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, China (X.C., Y.X., W.C.)
| | - Yueyue Xu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, China (X.C., Y.X., W.C.)
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, China (X.C., Y.X., W.C.)
| | - Yongfeng Shao
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, China (Y.S., J.G.)
| | - Jiaxi Gu
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, China (Y.S., J.G.)
| | - Jun Pu
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (J.P.)
| | - Bo Yu
- Department of Cardiology, the 2nd Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, China (B.Y.)
| | - Yaling Han
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China (C.H.Y., Yaling Han)
| | - Liping Xie
- Key Laboratory of Drug Targets and Translational Medicine for Cardio-cerebrovascular Diseases, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Jiangsu, China (X.T., X.L., X.S., Y. Zhang, Y. Zu, Q.F., L.H., S.S., F.C., L.X., Y.J.)
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu, China (X.T., X.L., X.S., Y. Zhang, Y. Zu, Q.F., L.H., S.S., F.C., L.X., Y.J.)
| | - Yi Han
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Key Laboratory of Cardiovascular Medicine Research and Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, NHC Key Laboratory of Cell Transplantation, the Central Laboratory of the First Affiliated Hospital, Harbin Medical University, Heilongjiang, China (Z.Z., Yi Han, Y.J.)
- Department of Critical Care Medicine, the 2nd Affiliated Hospital, Harbin Medical University, China (Yi Han)
| | - Yong Ji
- Key Laboratory of Drug Targets and Translational Medicine for Cardio-cerebrovascular Diseases, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Jiangsu, China (X.T., X.L., X.S., Y. Zhang, Y. Zu, Q.F., L.H., S.S., F.C., L.X., Y.J.)
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu, China (X.T., X.L., X.S., Y. Zhang, Y. Zu, Q.F., L.H., S.S., F.C., L.X., Y.J.)
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Key Laboratory of Cardiovascular Medicine Research and Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, NHC Key Laboratory of Cell Transplantation, the Central Laboratory of the First Affiliated Hospital, Harbin Medical University, Heilongjiang, China (Z.Z., Yi Han, Y.J.)
| |
Collapse
|
4
|
Dudey AP, Rigby JM, Hughes GR, Stephenson GR, Storr TE, Chantry A, Hemmings AM. Expanding the inhibitor space of the WWP1 and WWP2 HECT E3 ligases. J Enzyme Inhib Med Chem 2024; 39:2394895. [PMID: 39223706 PMCID: PMC11373361 DOI: 10.1080/14756366.2024.2394895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
The HECT E3 ubiquitin ligases 1 (WWP1) and 2 (WWP2) are responsible for the ubiquitin-mediated degradation of key tumour suppressor proteins and are dysregulated in various cancers and diseases. Here we expand their limited inhibitor space by identification of NSC-217913 displaying a WWP1 IC50 of 158.3 µM (95% CI = 128.7, 195.1 µM). A structure-activity relationship by synthesis approach aided by molecular docking led to compound 11 which displayed increased potency with an IC50 of 32.7 µM (95% CI = 24.6, 44.3 µM) for WWP1 and 269.2 µM (95% CI = 209.4, 347.9 µM) for WWP2. Molecular docking yielded active site-bound poses suggesting that the heterocyclic imidazo[4,5-b]pyrazine scaffold undertakes a π-stacking interaction with the phenolic group of tyrosine, and the ethyl ester enables strong ion-dipole interactions. Given the therapeutic potential of WWP1 and WWP2, we propose that compound 11 may provide a basis for future lead compound development.
Collapse
Affiliation(s)
- Ashley P Dudey
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Jake M Rigby
- School of Chemistry, Pharmacy & Pharmacology, University of East Anglia, Norwich, UK
| | - Gregory R Hughes
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - G Richard Stephenson
- School of Chemistry, Pharmacy & Pharmacology, University of East Anglia, Norwich, UK
| | - Thomas E Storr
- School of Chemistry, Pharmacy & Pharmacology, University of East Anglia, Norwich, UK
| | - Andrew Chantry
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Andrew M Hemmings
- School of Biological Sciences, University of East Anglia, Norwich, UK
- School of Chemistry, Pharmacy & Pharmacology, University of East Anglia, Norwich, UK
- International Research Center for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
5
|
Borah SM, Kma L, Darjee MS, Deka D, Lyngdoh A, Sharan RN, Baruah TJ. Apigenin promotes cell death in NCI-H23 cells by upregulation of PTEN: potential involvement of the binding of apigenin with WWP2 protein. J Biomol Struct Dyn 2024; 42:9705-9719. [PMID: 37870050 DOI: 10.1080/07391102.2023.2272743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/21/2023] [Indexed: 10/24/2023]
Abstract
The tumour suppressor protein PTEN is often down-regulated in non-small cell lung cancer. A major protein promoting the lowering of the PTEN protein is WWP2. Polyphenols have been shown to promote the expression of tumour suppressor genes like PTEN. We carry out the study to check for the ability of apigenin to bind with the WWP2 protein using in-silico investigation comprising docking and simulation. We checked for the cytotoxic effect of apigenin upon the non-small cell lung cancer cell line NCI-H23. We checked the PTEN expression status at the gene and protein levels. The expression levels of the apoptotic regulators BCL2, BAX and CASPASE3 genes along with the activity levels of the caspase-3 protein were checked. The ultrastructure of the cells was analysed. Our Autodock analysis showed that apigenin bound favourably with the WWP2 protein. Molecular dynamics simulation revealed that apigenin increased the parameters of RMSD, Rg and SASA when bound with the WWP2 protein. The protein-ligand complex had hydrogen bonding and majorly van der Wal's interactions. PCA analysis revealed greater fluctuations in the apigenin-bound state of the protein. The mutant form of the WWP2 revealed similar results in the presence of apigenin. Apigenin showed efficacy against the NCI-H23 cell line and promoted PTEN protein levels, lowered BCL2 gene expression and up-regulated BAX and CASPASE3 gene expression. Increased caspase-3 activity and ultra-structural analysis revealed the occurrence of apoptosis. Thus the binding of apigenin with WWP2 could promote PTEN protein levels and lead to apoptotic activity in NCI-H23 cells.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sapna Mayuri Borah
- Department of Plant Pathology, Assam Agricultural University, Jorhat, India
| | - Lakhon Kma
- Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | | | - Dikshit Deka
- Department of Biochemistry, Assam Royal Global University, Guwahati, India
| | - Anisha Lyngdoh
- Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Rajesh N Sharan
- Department of Biochemistry, Assam Royal Global University, Guwahati, India
| | | |
Collapse
|
6
|
Wang Y, Wu Z, Wang C, Wu N, Wang C, Hu S, Shi J. The role of WWP1 and WWP2 in bone/cartilage development and diseases. Mol Cell Biochem 2024; 479:2907-2919. [PMID: 38252355 DOI: 10.1007/s11010-023-04917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
Bone and cartilage diseases are often associated with trauma and senescence, manifested as pain and limited mobility. The repair of bone and cartilage lesion by mesenchymal stem cells is regulated by various transcription factors. WW domain-containing protein 1 (WWP1) and WW domain-containing protein 2 (WWP2) are named for WW domain which recognizes PPXY (phono Ser Pro and Pro Arg) motifs of substrate. WWP1and WWP2 are prominent components of the homologous to the E6-AP carboxyl terminus (HECT) subfamily, a group of the ubiquitin ligase. Recently, some studies have found that WWP1 and WWP2 play an important role in the pathogenesis of bone and cartilage diseases and regulate the level and the transactivation of various transcription factors through ubiquitination. Therefore, this review summarizes the distribution and effects of WWP1 and WWP2 in the development of bone and cartilage, discusses the potential mechanism and therapeutic drugs in bone and cartilage diseases such as osteoarthritis, fracture, and osteoporosis.
Collapse
Affiliation(s)
- Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Zuping Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Cunyi Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Na Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Chenyu Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Shiyu Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Jiejun Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
7
|
Jiang H, Miller BD, Viennet T, Kim H, Lee K, Arthanari H, Cole PA. Protein semisynthesis reveals plasticity in HECT E3 ubiquitin ligase mechanisms. Nat Chem 2024; 16:1894-1905. [PMID: 39030419 DOI: 10.1038/s41557-024-01576-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/11/2024] [Indexed: 07/21/2024]
Abstract
Lys ubiquitination is catalysed by E3 ubiquitin ligases and is central to the regulation of protein stability and cell signalling in normal and disease states. There are gaps in our understanding of E3 mechanisms, and here we use protein semisynthesis, chemical rescue, microscale thermophoresis and other biochemical approaches to dissect the role of catalytic base/acid function and conformational interconversion in HECT-domain E3 catalysis. We demonstrate that there is plasticity in the use of the terminal side chain or backbone carboxylate for proton transfer in HECT E3 ubiquitin ligase reactions, with yeast Rsp5 orthologues appearing to be possible evolutionary intermediates. We also show that the HECT-domain ubiquitin covalent intermediate appears to eject the E2 conjugating enzyme, promoting catalytic turnover. These findings provide key mechanistic insights into how protein ubiquitination occurs and provide a framework for understanding E3 functions and regulation.
Collapse
Affiliation(s)
- Hanjie Jiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Bryant D Miller
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Human Biology, Sattler College, Boston, MA, USA
| | - Thibault Viennet
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Hyojeon Kim
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Kwangwoon Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Perron T, Boissan M, Bièche I, Courtois L, Dingli F, Loew D, Chouchène M, Colasse S, Levy L, Prunier C. CYYR1 promotes the degradation of the E3 ubiquitin ligase WWP1 and is associated with favorable prognosis in breast cancer. J Biol Chem 2024; 300:107601. [PMID: 39059493 PMCID: PMC11399591 DOI: 10.1016/j.jbc.2024.107601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/26/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Ubiquitination plays a crucial role in cellular homeostasis by regulating the degradation, localization, and activity of proteins, ensuring proper cell function and balance. Among E3 ubiquitin ligases, WW domain-containing protein 1 (WWP1) is implicated in cell proliferation, survival, and apoptosis. Notably WWP1 is frequently amplified in breast cancer and associated with poor prognosis. Here, we identify the protein cysteine and tyrosine-rich protein 1 (CYYR1) that had previously no assigned function, as a regulator of WWP1 activity and stability. We show that CYYR1 binds to the WW domains of the E3 ubiquitin ligase WWP1 through its PPxY motifs. This interaction triggers K63-linked autoubiquitination and subsequent degradation of WWP1. We furthermore demonstrate that CYYR1 localizes to late endosomal vesicles and directs polyubiquitinated WWP1 toward lysosomal degradation through binding to ANKyrin repeat domain-containing protein 13 A (ANKRD13A). Moreover, we found that CYYR1 expression attenuates breast cancer cell growth in anchorage-dependent and independent colony formation assays in a PPxY-dependent manner. Finally, we highlight that CYYR1 expression is significantly decreased in breast cancer and is associated with beneficial clinical outcome. Taken together our study suggests tumor suppressor properties for CYYR1 through regulation of WWP1 autoubiquitination and lysosomal degradation.
Collapse
Affiliation(s)
- Tiphaine Perron
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Mathieu Boissan
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France; APHP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Laboratoire de Biochimie Endocrinienne et Oncologique, Oncobiologie Cellulaire et Moléculaire, Paris, France
| | - Ivan Bièche
- Department of Genetics, Institut Curie, Université Paris Cité, Paris, France
| | - Laura Courtois
- Department of Genetics, Institut Curie, Université Paris Cité, Paris, France
| | - Florent Dingli
- CurieCoreTech Mass Spectrometry Proteomics, Institut Curie, PSL Research University, Paris, France
| | - Damarys Loew
- CurieCoreTech Mass Spectrometry Proteomics, Institut Curie, PSL Research University, Paris, France
| | - Mouna Chouchène
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Sabrina Colasse
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Laurence Levy
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France.
| | - Céline Prunier
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France.
| |
Collapse
|
9
|
Imamura M, Matsumoto H, Mannen H, Takeda S, Aoki Y. The R436Q missense mutation in WWP1 disrupts autoinhibition of its E3 ubiquitin ligase activity, leading to self-degradation and loss of function. In Vitro Cell Dev Biol Anim 2024; 60:771-780. [PMID: 38561589 DOI: 10.1007/s11626-024-00894-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Muscular dystrophy in the NH-413 chicken is caused by a missense mutation in the WWP1 gene. WWP1 is a HECT-type E3 ubiquitin ligase containing four tandem WW domains that interact with proline-rich peptide motifs of target proteins, and a short region connecting the second and third WW domains is crucial for the E3 ligase to maintain an autoinhibitory state. A mutation of the arginine in the WW2-WW3 linker to glutamine is thought to affect WWP1 function, but there is little information on this mutation to date. In this study, we generated a transgenic (Tg) mouse model expressing the WWP1 transgene with the R436Q mutation, which corresponds to the missense mutation found in the NH-413 chicken. Tg mice showed marked degradation of mutant WWP1 proteins in various tissues, particularly in striated muscle. Immunoprecipitation analysis using a WWP1-specific antibody demonstrated that the mutant WWP1 proteins lacked the C-terminal catalytic cysteine residue that is required for their binding to the E2-substrate complex during their degradation. In vitro analysis using the R436Q mutant of WWP1 lacking this catalytic cysteine residue showed no autodegradation, indicating that the loss-of-function degradation of this protein is caused by self-ubiquitination. Tg mice expressing R436Q WWP1 did not show stunted growth or premature death. Furthermore, histological analysis did not reveal any obvious changes. These observations suggested that the R436Q mutant WWP1 protein, which is released from autoinhibitory mode by its missense mutation, does not have abnormally activated enzyme function to substrates before its self-degradation and loss of enzyme function.
Collapse
Affiliation(s)
- Michihiro Imamura
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-Cho, Kodaira, Tokyo, 187-8502, Japan.
| | - Hirokazu Matsumoto
- Department of Animal Science, School of Agriculture, Tokai University, 871-12 Sugidou, Kumamoto, 861-2205, Japan
| | - Hideyuki Mannen
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Nada, Kobe, 657-8501, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-Cho, Kodaira, Tokyo, 187-8502, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-Cho, Kodaira, Tokyo, 187-8502, Japan
| |
Collapse
|
10
|
Bibert S, Quinodoz M, Perriot S, Krebs FS, Jan M, Malta RC, Collinet E, Canales M, Mathias A, Faignart N, Roulet-Perez E, Meylan P, Brouillet R, Opota O, Lozano-Calderon L, Fellmann F, Guex N, Zoete V, Asner S, Rivolta C, Du Pasquier R, Bochud PY. Herpes simplex encephalitis due to a mutation in an E3 ubiquitin ligase. Nat Commun 2024; 15:3969. [PMID: 38730242 PMCID: PMC11087577 DOI: 10.1038/s41467-024-48287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Encephalitis is a rare and potentially fatal manifestation of herpes simplex type 1 infection. Following genome-wide genetic analyses, we identified a previously uncharacterized and very rare heterozygous variant in the E3 ubiquitin ligase WWP2, in a 14-month-old girl with herpes simplex encephalitis. The p.R841H variant (NM_007014.4:c.2522G > A) impaired TLR3 mediated signaling in inducible pluripotent stem cells-derived neural precursor cells and neurons; cells bearing this mutation were also more susceptible to HSV-1 infection compared to control cells. The p.R841H variant increased TRIF ubiquitination in vitro. Antiviral immunity was rescued following the correction of p.R841H by CRISPR-Cas9 technology. Moreover, the introduction of p.R841H in wild type cells reduced such immunity, suggesting that this mutation is linked to the observed phenotypes.
Collapse
Affiliation(s)
- Stéphanie Bibert
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Sylvain Perriot
- Department of Clinical Neurosciences, Laboratory of Neuroimmunology, Neuroscience Research Centre, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fanny S Krebs
- Department of Oncology UNIL-CHUV, Computer-Aided Molecular Engineering, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Maxime Jan
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | - Rita C Malta
- Pediatric Infectious Diseases and Vaccinology Unit, Woman-Mother-Child Department, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Emilie Collinet
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mathieu Canales
- Department of Clinical Neurosciences, Laboratory of Neuroimmunology, Neuroscience Research Centre, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Amandine Mathias
- Department of Clinical Neurosciences, Laboratory of Neuroimmunology, Neuroscience Research Centre, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nicole Faignart
- Department of Pediatrics, Child Neurology Unit, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Eliane Roulet-Perez
- Department of Pediatrics, Child Neurology Unit, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pascal Meylan
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - René Brouillet
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Onya Opota
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Leyder Lozano-Calderon
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | - Vincent Zoete
- Department of Oncology UNIL-CHUV, Computer-Aided Molecular Engineering, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
- Molecular Modelling Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sandra Asner
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
- Pediatric Infectious Diseases and Vaccinology Unit, Woman-Mother-Child Department, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Renaud Du Pasquier
- Department of Clinical Neurosciences, Laboratory of Neuroimmunology, Neuroscience Research Centre, University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Clinical Neurosciences, Service of Neurology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pierre-Yves Bochud
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
11
|
You S, Xu J, Guo Y, Guo X, Zhang Y, Zhang N, Sun G, Sun Y. E3 ubiquitin ligase WWP2 as a promising therapeutic target for diverse human diseases. Mol Aspects Med 2024; 96:101257. [PMID: 38430667 DOI: 10.1016/j.mam.2024.101257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
Mammalian E3 ubiquitin ligases have emerged in recent years as critical regulators of cellular homeostasis due to their roles in targeting substrate proteins for ubiquitination and triggering subsequent downstream signals. In this review, we describe the multiple roles of WWP2, an E3 ubiquitin ligase with unique and important functions in regulating a wide range of biological processes, including DNA repair, gene expression, signal transduction, and cell-fate decisions. As such, WWP2 has evolved to play a key role in normal physiology and diseases, such as tumorigenesis, skeletal development and diseases, immune regulation, cardiovascular disease, and others. We attempt to provide an overview of the biochemical, physiological, and pathophysiological roles of WWP2, as well as open questions for future research, particularly in the context of putative therapeutic opportunities.
Collapse
Affiliation(s)
- Shilong You
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiaqi Xu
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yushan Guo
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaofan Guo
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Zhang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Naijin Zhang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility, National Health Commission, China Medical University, Shenyang, Liaoning, China.
| | - Guozhe Sun
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yingxian Sun
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
12
|
Wright KM, Nathan S, Jiang H, Xia W, Kim H, Chakouri N, Nwafor JN, Fossier L, Srinivasan L, Chen Z, Boronina T, Post J, Paul S, Cole RN, Ben-Johny M, Cole PA, Gabelli SB. NEDD4L intramolecular interactions regulate its auto and substrate Na V1.5 ubiquitination. J Biol Chem 2024; 300:105715. [PMID: 38309503 PMCID: PMC10933555 DOI: 10.1016/j.jbc.2024.105715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024] Open
Abstract
NEDD4L is a HECT-type E3 ligase that catalyzes the addition of ubiquitin to intracellular substrates such as the cardiac voltage-gated sodium channel, NaV1.5. The intramolecular interactions of NEDD4L regulate its enzymatic activity which is essential for proteostasis. For NaV1.5, this process is critical as alterations in Na+ current is involved in cardiac diseases including arrhythmias and heart failure. In this study, we perform extensive biochemical and functional analyses that implicate the C2 domain and the first WW-linker (1,2-linker) in the autoregulatory mechanism of NEDD4L. Through in vitro and electrophysiological experiments, the NEDD4L 1,2-linker was determined to be important in substrate ubiquitination of NaV1.5. We establish the preferred sites of ubiquitination of NEDD4L to be in the second WW-linker (2,3-linker). Interestingly, NEDD4L ubiquitinates the cytoplasmic linker between the first and second transmembrane domains of the channel (DI-DII) of NaV1.5. Moreover, we design a genetically encoded modulator of Nav1.5 that achieves Na+ current reduction using the NEDD4L HECT domain as cargo of a NaV1.5-binding nanobody. These investigations elucidate the mechanisms regulating the NEDD4 family and furnish a new molecular framework for understanding NaV1.5 ubiquitination.
Collapse
Affiliation(s)
- Katharine M Wright
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sara Nathan
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Hanjie Jiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Wendy Xia
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - HyoJeon Kim
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nourdine Chakouri
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA
| | - Justin N Nwafor
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Lucile Fossier
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA
| | - Lakshmi Srinivasan
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Zan Chen
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Tatiana Boronina
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeremy Post
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Suman Paul
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert N Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sandra B Gabelli
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
13
|
Hehl LA, Horn-Ghetko D, Prabu JR, Vollrath R, Vu DT, Pérez Berrocal DA, Mulder MPC, van der Heden van Noort GJ, Schulman BA. Structural snapshots along K48-linked ubiquitin chain formation by the HECT E3 UBR5. Nat Chem Biol 2024; 20:190-200. [PMID: 37620400 PMCID: PMC10830417 DOI: 10.1038/s41589-023-01414-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023]
Abstract
Ubiquitin (Ub) chain formation by homologous to E6AP C-terminus (HECT)-family E3 ligases regulates vast biology, yet the structural mechanisms remain unknown. We used chemistry and cryo-electron microscopy (cryo-EM) to visualize stable mimics of the intermediates along K48-linked Ub chain formation by the human E3, UBR5. The structural data reveal a ≈ 620 kDa UBR5 dimer as the functional unit, comprising a scaffold with flexibly tethered Ub-associated (UBA) domains, and elaborately arranged HECT domains. Chains are forged by a UBA domain capturing an acceptor Ub, with its K48 lured into the active site by numerous interactions between the acceptor Ub, manifold UBR5 elements and the donor Ub. The cryo-EM reconstructions allow defining conserved HECT domain conformations catalyzing Ub transfer from E2 to E3 and from E3. Our data show how a full-length E3, ubiquitins to be adjoined, E2 and intermediary products guide a feed-forward HECT domain conformational cycle establishing a highly efficient, broadly targeting, K48-linked Ub chain forging machine.
Collapse
Affiliation(s)
- Laura A Hehl
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Daniel Horn-Ghetko
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - J Rajan Prabu
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ronnald Vollrath
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - D Tung Vu
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - David A Pérez Berrocal
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Monique P C Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Brenda A Schulman
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching, Germany.
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
14
|
Wright K, Jiang H, Xia W, Murphy MB, Boronina TN, Nwafor JN, Kim H, Iheanacho AM, Azurmendi PA, Cole RN, Cole PA, Gabelli SB. The C-Terminal of Na V1.7 Is Ubiquitinated by NEDD4L. ACS BIO & MED CHEM AU 2023; 3:516-527. [PMID: 38144259 PMCID: PMC10739247 DOI: 10.1021/acsbiomedchemau.3c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 12/26/2023]
Abstract
NaV1.7, the neuronal voltage-gated sodium channel isoform, plays an important role in the human body's ability to feel pain. Mutations within NaV1.7 have been linked to pain-related syndromes, such as insensitivity to pain. To date, the regulation and internalization mechanisms of the NaV1.7 channel are not well known at a biochemical level. In this study, we perform biochemical and biophysical analyses that establish that the HECT-type E3 ligase, NEDD4L, ubiquitinates the cytoplasmic C-terminal (CT) region of NaV1.7. Through in vitro ubiquitination and mass spectrometry experiments, we identify, for the first time, the lysine residues of NaV1.7 within the CT region that get ubiquitinated. Furthermore, binding studies with an NEDD4L E3 ligase modulator (ubiquitin variant) highlight the dynamic partnership between NEDD4L and NaV1.7. These investigations provide a framework for understanding how NEDD4L-dependent regulation of the channel can influence the NaV1.7 function.
Collapse
Affiliation(s)
- Katharine
M. Wright
- Department
of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Hanjie Jiang
- Division
of Genetics, Department of Medicine, Brigham
and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Wendy Xia
- Department
of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | | | - Tatiana N. Boronina
- Mass
Spectrometry
and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Justin N. Nwafor
- Department
of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - HyoJeon Kim
- Division
of Genetics, Department of Medicine, Brigham
and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Akunna M. Iheanacho
- Department
of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Department
of Physiology, The Johns Hopkins School
of Medicine, Baltimore, Maryland 21205, United States
| | - P. Aitana Azurmendi
- Department
of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Robert N. Cole
- Mass
Spectrometry
and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Philip A. Cole
- Division
of Genetics, Department of Medicine, Brigham
and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Sandra B. Gabelli
- Department
of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Department
of Medicine, The Johns Hopkins University
School of Medicine, Baltimore, Maryland 21205, United States
- Department
of Oncology, The Johns Hopkins University
School of Medicine, Baltimore, Maryland 21287, United States
| |
Collapse
|
15
|
Kimani SW, Perveen S, Szewezyk M, Zeng H, Dong A, Li F, Ghiabi P, Li Y, Chau I, Arrowsmith CH, Barsyte-Lovejoy D, Santhakumar V, Vedadi M, Halabelian L. The co-crystal structure of Cbl-b and a small-molecule inhibitor reveals the mechanism of Cbl-b inhibition. Commun Biol 2023; 6:1272. [PMID: 38104184 PMCID: PMC10725504 DOI: 10.1038/s42003-023-05655-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023] Open
Abstract
Cbl-b is a RING-type E3 ubiquitin ligase that is expressed in several immune cell lineages, where it negatively regulates the activity of immune cells. Cbl-b has specifically been identified as an attractive target for cancer immunotherapy due to its role in promoting an immunosuppressive tumor environment. A Cbl-b inhibitor, Nx-1607, is currently in phase I clinical trials for advanced solid tumor malignancies. Using a suite of biophysical and cellular assays, we confirm potent binding of C7683 (an analogue of Nx-1607) to the full-length Cbl-b and its N-terminal fragment containing the TKBD-LHR-RING domains. To further elucidate its mechanism of inhibition, we determined the co-crystal structure of Cbl-b with C7683, revealing the compound's interaction with both the TKBD and LHR, but not the RING domain. Here, we provide structural insights into a novel mechanism of Cbl-b inhibition by a small-molecule inhibitor that locks the protein in an inactive conformation by acting as an intramolecular glue.
Collapse
Affiliation(s)
- Serah W Kimani
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Sumera Perveen
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Magdalena Szewezyk
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Pegah Ghiabi
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Yanjun Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Irene Chau
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | | | - Masoud Vedadi
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
16
|
Xiang Y, Duan X, Shao Y, Sun L. NEDD4 activates mitophagy by interacting with LC3 to restrain reactive oxygen species and apoptosis in Apostichopus japonicus challenged with Vibrio splendidus. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109037. [PMID: 37640120 DOI: 10.1016/j.fsi.2023.109037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Mitophagy, the selective degradation of damaged mitochondria by autophagy, plays a crucial role in the survival of coelomocytes in Apostichopus japonicus following Vibrio splendidus infection by suppressing the generation of reactive oxygen species (ROS) and attenuating cell apoptosis. A recent study revealed that reducing the expression of the neural precursor cell-expressed developmentally downregulated gene 4 (NEDD4), an enzyme 3 (E3) ubiquitin ligase, significantly affects mitochondrial degradation. Prior to the present study, the functional role of NEDD4 in marine invertebrates was largely unexplored. Therefore, we investigated the role of NEDD4 in the activation of mitophagy, modulation of ROS levels, and induction of apoptosis in A. japonicus infected with V. splendidus. The results demonstrated that V. splendidus infection and lipopolysaccharide (LPS) challenge significantly increased the mRNA levels of NEDD4 in A. japonicus coelomocytes, which was consistent with changes in mitophagy under the same conditions. Knockdown of AjNEDD4 using specific small interfering RNAs (siRNAs) impaired mitophagy and caused accumulation of damaged mitochondria, as observed using transmission electron microscopy (TEM) and confocal microscopy. Furthermore, AjNEDD4 was localized to the mitochondria in both coelomocytes and HEK293T cells. Simultaneously, coelomocytes were treated with the inhibitor indole-3-carbinol (I3C) to confirm the regulatory role of AjNEDD4 in mitophagy. The accumulation of AjNEDD4 in the mitochondria and the level of mitophagy decreased. Subsequent investigations demonstrated that AjNEDD4 interacts directly with the microtubule-associated protein light chain 3 (LC3), a key regulator of autophagy and mitophagy, indicating its involvement in the mitophagy pathway. Moreover, AjNEDD4 interference hindered the interaction between AjNEDD4 and LC3, thereby impairing the engulfment and subsequent clearance of damaged mitochondria. Finally, AjNEDD4 interference led to a significant increase in intracellular ROS levels, followed by increased apoptosis. Collectively, these findings suggest that NEDD4 acts as a crucial regulator of mitophagy in A. japonicus and plays a vital role in maintaining cellular homeostasis following V. splendidus infection. NEDD4 suppresses ROS production and subsequent apoptosis by promoting mitophagy, thereby safeguarding the survival of A. japonicus under pathogenic conditions. Further investigation of the mechanisms underlying NEDD4-mediated mitophagy may provide valuable insights into the development of novel strategies for disease control in aquaculture farms.
Collapse
Affiliation(s)
- Yangxi Xiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xuemei Duan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Lianlian Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
17
|
Yong D, Green SR, Ghiabi P, Santhakumar V, Vedadi M. Discovery of Nedd4 auto-ubiquitination inhibitors. Sci Rep 2023; 13:16057. [PMID: 37749144 PMCID: PMC10520017 DOI: 10.1038/s41598-023-42997-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
E3 ubiquitin ligases are critical to the protein degradation pathway by catalyzing the final step in protein ubiquitination by mediating ubiquitin transfer from E2 enzymes to target proteins. Nedd4 is a HECT domain-containing E3 ubiquitin ligase with a wide range of protein targets, the dysregulation of which has been implicated in myriad pathologies, including cancer and Parkinson's disease. Towards the discovery of compounds disrupting the auto-ubiquitination activity of Nedd4, we developed and optimized a TR-FRET assay for high-throughput screening. Through selective screening of a library of potentially covalent compounds, compounds 25 and 81 demonstrated apparent IC50 values of 52 µM and 31 µM, respectively. Tandem mass spectrometry (MS/MS) analysis confirmed that 25 and 81 were covalently bound to Nedd4 cysteine residues (Cys182 and Cys867). In addition, 81 also adducted to Cys627. Auto-ubiquitination assays of Nedd4 mutants featuring alanine substitutions for each of these cysteines suggested that the mode of inhibition of these compounds occurs through blocking the catalytic Cys867. The discovery of these inhibitors could enable the development of therapeutics for various diseases caused by Nedd4 E3 ligase dysregulation.
Collapse
Affiliation(s)
- Darren Yong
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Stuart R Green
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Pegah Ghiabi
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | | | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada.
| |
Collapse
|
18
|
Singh S, Machida S, Tulsian NK, Choong YK, Ng J, Shankar S, Liu Y, Chandiramani KV, Shi J, Sivaraman J. Structural Basis for the Enzymatic Activity of the HACE1 HECT-Type E3 Ligase Through N-Terminal Helix Dimerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207672. [PMID: 37537642 PMCID: PMC10520629 DOI: 10.1002/advs.202207672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/15/2023] [Indexed: 08/05/2023]
Abstract
HACE1 is an ankyrin repeat (AKR) containing HECT-type E3 ubiquitin ligase that interacts with and ubiquitinates multiple substrates. While HACE1 is a well-known tumor suppressor, its structure and mode of ubiquitination are not understood. The authors present the cryo-EM structures of human HACE1 along with in vitro functional studies that provide insights into how the enzymatic activity of HACE1 is regulated. HACE1 comprises of an N-terminal AKR domain, a middle (MID) domain, and a C-terminal HECT domain. Its unique G-shaped architecture interacts as a homodimer, with monomers arranged in an antiparallel manner. In this dimeric arrangement, HACE1 ubiquitination activity is hampered, as the N-terminal helix of one monomer restricts access to the C-terminal domain of the other. The in vitro ubiquitination assays, hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis, mutagenesis, and in silico modeling suggest that the HACE1 MID domain plays a crucial role along with the AKRs in RAC1 substrate recognition.
Collapse
Affiliation(s)
- Sunil Singh
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| | - Satoru Machida
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| | - Nikhil Kumar Tulsian
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
- Department of BiochemistryNational University of Singapore28 Medical DriveSingapore117546Singapore
| | - Yeu Khai Choong
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| | - Joel Ng
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| | - Srihari Shankar
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| | - Yaochen Liu
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| | | | - Jian Shi
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| | - J Sivaraman
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| |
Collapse
|
19
|
Li J, Zhu K, Gu A, Zhang Y, Huang S, Hu R, Hu W, Lei QY, Wen W. Feedback regulation of ubiquitination and phase separation of HECT E3 ligases. Proc Natl Acad Sci U S A 2023; 120:e2302478120. [PMID: 37549262 PMCID: PMC10438380 DOI: 10.1073/pnas.2302478120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/10/2023] [Indexed: 08/09/2023] Open
Abstract
Lipid homeostasis is essential for normal cellular functions and dysregulation of lipid metabolism is highly correlated with human diseases including neurodegenerative diseases. In the ubiquitin-dependent autophagic degradation pathway, Troyer syndrome-related protein Spartin activates and recruits HECT-type E3 Itch to lipid droplets (LDs) to regulate their turnover. In this study, we find that Spartin promotes the formation of Itch condensates independent of LDs. Spartin activates Itch through its multiple PPAY-motif platform generated by self-oligomerization, which targets the WW12 domains of Itch and releases the autoinhibition of the ligase. Spartin-induced activation and subsequent autoubiquitination of Itch lead to liquid-liquid phase separation (LLPS) of the poly-, but not oligo-, ubiquitinated Itch together with Spartin and E2 both in vitro and in living cells. LLPS-mediated condensation of the reaction components further accelerates the generation of polyubiquitin chains, thus forming a positive feedback loop. Such Itch-Spartin condensates actively promote the autophagy-dependent turnover of LDs. Moreover, we show that the catalytic HECT domain of Itch is sufficient to interact and phase separate with poly-, but not oligo-ubiquitin chains. HECT domains from other HECT E3 ligases also exhibit LLPS-mediated the promotion of ligase activity. Therefore, LLPS and ubiquitination are mutually interdependent and LLPS promotes the ligase activity of the HECT family E3 ligases.
Collapse
Affiliation(s)
- Jingyu Li
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, National Center for Neurological Disorders, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Kang Zhu
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, National Center for Neurological Disorders, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Aihong Gu
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, National Center for Neurological Disorders, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Yiqing Zhang
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, National Center for Neurological Disorders, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Shijing Huang
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, National Center for Neurological Disorders, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Ronggui Hu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai200032, China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Qun-Ying Lei
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Wenyu Wen
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, National Center for Neurological Disorders, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| |
Collapse
|
20
|
Mo ZW, Peng YM, Zhang YX, Li Y, Kang BA, Chen YT, Li L, Sorci-Thomas MG, Lin YJ, Cao Y, Chen S, Liu ZL, Gao JJ, Huang ZP, Zhou JG, Wang M, Chang GQ, Deng MJ, Liu YJ, Ma ZS, Hu ZJ, Dong YG, Ou ZJ, Ou JS. High-density lipoprotein regulates angiogenesis by long non-coding RNA HDRACA. Signal Transduct Target Ther 2023; 8:299. [PMID: 37574469 PMCID: PMC10423722 DOI: 10.1038/s41392-023-01558-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 06/17/2023] [Accepted: 07/09/2023] [Indexed: 08/15/2023] Open
Abstract
Normal high-density lipoprotein (nHDL) can induce angiogenesis in healthy individuals. However, HDL from patients with coronary artery disease undergoes various modifications, becomes dysfunctional (dHDL), and loses its ability to promote angiogenesis. Here, we identified a long non-coding RNA, HDRACA, that is involved in the regulation of angiogenesis by HDL. In this study, we showed that nHDL downregulates the expression of HDRACA in endothelial cells by activating WW domain-containing E3 ubiquitin protein ligase 2, which catalyzes the ubiquitination and subsequent degradation of its transcription factor, Kruppel-like factor 5, via sphingosine 1-phosphate (S1P) receptor 1. In contrast, dHDL with lower levels of S1P than nHDL were much less effective in decreasing the expression of HDRACA. HDRACA was able to bind to Ras-interacting protein 1 (RAIN) to hinder the interaction between RAIN and vigilin, which led to an increase in the binding between the vigilin protein and proliferating cell nuclear antigen (PCNA) mRNA, resulting in a decrease in the expression of PCNA and inhibition of angiogenesis. The expression of human HDRACA in a hindlimb ischemia mouse model inhibited the recovery of angiogenesis. Taken together, these findings suggest that HDRACA is involved in the HDL regulation of angiogenesis, which nHDL inhibits the expression of HDRACA to induce angiogenesis, and that dHDL is much less effective in inhibiting HDRACA expression, which provides an explanation for the decreased ability of dHDL to stimulate angiogenesis.
Collapse
Affiliation(s)
- Zhi-Wei Mo
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yue-Ming Peng
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yi-Xin Zhang
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Hypertension and Vascular Diseases, Department of Cardiology, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Li
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Bi-Ang Kang
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Le Li
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | | | - Yi-Jun Lin
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yang Cao
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Si Chen
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ze-Long Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Jian-Jun Gao
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zhan-Peng Huang
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jia-Guo Zhou
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, China
| | - Mian Wang
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guang-Qi Chang
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meng-Jie Deng
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yu-Jia Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zhen-Sheng Ma
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zuo-Jun Hu
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu-Gang Dong
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Department of Cardiology, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
- Division of Hypertension and Vascular Diseases, Department of Cardiology, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Jing-Song Ou
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, P.R. China.
| |
Collapse
|
21
|
Wedegaertner H, Bosompra O, Kufareva I, Trejo J. Divergent regulation of α-arrestin ARRDC3 function by ubiquitination. Mol Biol Cell 2023; 34:ar93. [PMID: 37223976 PMCID: PMC10398895 DOI: 10.1091/mbc.e23-02-0055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/14/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023] Open
Abstract
The α-arrestin ARRDC3 is a recently discovered tumor suppressor in invasive breast cancer that functions as a multifaceted adaptor protein to control protein trafficking and cellular signaling. However, the molecular mechanisms that control ARRDC3 function are unknown. Other arrestins are known to be regulated by posttranslational modifications, suggesting that ARRDC3 may be subject to similar regulatory mechanisms. Here we report that ubiquitination is a key regulator of ARRDC3 function and is mediated primarily by two proline-rich PPXY motifs in the ARRDC3 C-tail domain. Ubiquitination and the PPXY motifs are essential for ARRDC3 function in regulating GPCR trafficking and signaling. Additionally, ubiquitination and the PPXY motifs mediate ARRDC3 protein degradation, dictate ARRDC3 subcellular localization, and are required for interaction with the NEDD4-family E3 ubiquitin ligase WWP2. These studies demonstrate a role for ubiquitination in regulating ARRDC3 function and reveal a mechanism by which ARRDC3 divergent functions are controlled.
Collapse
Affiliation(s)
- Helen Wedegaertner
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA92093
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA92093
| | - Oye Bosompra
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA92093
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA92093
| | - Irina Kufareva
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA92093
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA92093
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA92093
| |
Collapse
|
22
|
Zhang Z, Lu YX, Liu F, Sang L, Shi C, Xie S, Bian W, Yang JC, Yang Z, Qu L, Chen SY, Li J, Yang L, Yan Q, Wang W, Fu P, Shao J, Li X, Lin A. lncRNA BREA2 promotes metastasis by disrupting the WWP2-mediated ubiquitination of Notch1. Proc Natl Acad Sci U S A 2023; 120:e2206694120. [PMID: 36795754 PMCID: PMC9974429 DOI: 10.1073/pnas.2206694120] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 01/12/2023] [Indexed: 02/17/2023] Open
Abstract
Notch has been implicated in human cancers and is a putative therapeutic target. However, the regulation of Notch activation in the nucleus remains largely uncharacterized. Therefore, characterizing the detailed mechanisms governing Notch degradation will identify attractive strategies for treating Notch-activated cancers. Here, we report that the long noncoding RNA (lncRNA) BREA2 drives breast cancer metastasis by stabilizing the Notch1 intracellular domain (NICD1). Moreover, we reveal WW domain containing E3 ubiquitin protein ligase 2 (WWP2) as an E3 ligase for NICD1 at K1821 and a suppressor of breast cancer metastasis. Mechanistically, BREA2 impairs WWP2-NICD1 complex formation and in turn stabilizes NICD1, leading to Notch signaling activation and lung metastasis. BREA2 loss sensitizes breast cancer cells to inhibition of Notch signaling and suppresses the growth of breast cancer patient-derived xenograft tumors, highlighting its therapeutic potential in breast cancer. Taken together, these results reveal the lncRNA BREA2 as a putative regulator of Notch signaling and an oncogenic player driving breast cancer metastasis.
Collapse
Affiliation(s)
- Zhen Zhang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang310058, China
| | - Yun-xin Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong510060, China
| | - Fangzhou Liu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang310058, China
| | - Lingjie Sang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Chengyu Shi
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Shaofang Xie
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, Zhejiang310024, China
| | - Weixiang Bian
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, Zhejiang310024, China
| | - Jie-cheng Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Zuozhen Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Lei Qu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Shi-yi Chen
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Jun Li
- Department of Pathology School of Medicine, The First Affiliated Hospital Zhejiang University, Hangzhou, Zhejiang310003, China
| | - Lu Yang
- Department of Radiotherapy, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, School of Medicine South China University of Technology, Guangzhou510080, China
| | - Qingfeng Yan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, CA92697
| | - Peifen Fu
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310003, China
| | - Jianzhong Shao
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Xu Li
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, Zhejiang310024, China
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang310058, China
- Breast Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310003, China
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang322000, China
| |
Collapse
|
23
|
Zhu J, Peng Z, Tian X, Wu T, Sun A, Yang W, Lin Q. Activation of E3 ubiquitin ligase WWP2 by non-receptor tyrosine kinase ACK1. IUBMB Life 2023. [PMID: 36773333 DOI: 10.1002/iub.2705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/19/2023] [Indexed: 02/13/2023]
Abstract
WW domain containing E3 ubiquitin protein ligase 2 (WWP2) is a member of the NEDD4 E3 ubiquitin ligase family. WWP2 ligase activity is regulated by the 2, 3-linker auto-inhibition. Tyrosine phosphorylation of the 2, 3-linker was identified as an activating means for releasing the auto-inhibition of WWP2. However, the tyrosine kinase (TK) for the phosphorylation and activation remains unknown. In this report, we have found that non-receptor TK ACK1 binds to the WW3 domain of WWP2 and phosphorylates WWP2. ACK1 phosphorylates WWP2 at the 2, 3-linker and partially activates the ubiquitination ligase activity. Unexpectedly, tyrosine phosphorylation of the 2, 3-linker seems not a major mode for activation of WWP2, as ACK1 causes much higher activation of the 2, 3-linker tyrosine phosphorylation defective mutants of WWP2 than that of wild-type WWP2. Furthermore, epidermal growth factor (EGF) stimulates tyrosine phosphorylation of WWP2 and this EGF-stimulated phosphorylation of WWP2 is mediated by ACK1. Finally, knockdown of WWP2 by shWWP2 inhibits the EGF-dependent cell proliferation of lung cancer A549 cells, suggesting that WWP2 may function in the EGFR signaling in lung cancer progression. Taken together, our findings have revealed a novel mechanism underlying activation of WWP2.
Collapse
Affiliation(s)
- Jun Zhu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ziluo Peng
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xianyan Tian
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tiantian Wu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Aiqin Sun
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wannian Yang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qiong Lin
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
24
|
Viennet T, Rodriguez Ospina S, Lu Y, Cui A, Arthanari H, Dempsey DR. Chemical and structural approaches to investigate PTEN function and regulation. Methods Enzymol 2022; 682:289-318. [PMID: 36948705 PMCID: PMC10037535 DOI: 10.1016/bs.mie.2022.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Phosphatase and tensin homolog is a lipid phosphatase that serves as the major negative regulator of the PI3K/AKT pathway. It catalyzes the 3'-specific dephosphorylation of phosphatidylinositol (3,4,5)-trisphosphate (PIP3) to generate PIP2. PTEN's lipid phosphatase function depends on several domains, including an N-terminal segment spanning the first 24 amino acids, which results in a catalytically impaired enzyme when mutated. Furthermore, PTEN is regulated by a cluster of phosphorylation sites located on its C-terminal tail at Ser380, Thr382, Thr383, and Ser385, which drives its conformation from an open to a closed autoinhibited but stable state. Herein, we discuss the protein chemical strategies we used to reveal the structure and mechanism of how PTEN's terminal regions govern its function.
Collapse
Affiliation(s)
- Thibault Viennet
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Santiago Rodriguez Ospina
- Department of Dermatology, Boston University School of Medicine, Boston, MA, United States; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Yunqi Lu
- Department of Dermatology, Boston University School of Medicine, Boston, MA, United States; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Anna Cui
- Department of Dermatology, Boston University School of Medicine, Boston, MA, United States; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Daniel R Dempsey
- Department of Dermatology, Boston University School of Medicine, Boston, MA, United States; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States.
| |
Collapse
|
25
|
Jiang H, Chiang CY, Chen Z, Nathan S, D'Agostino G, Paulo JA, Song G, Zhu H, Gabelli SB, Cole PA. Enzymatic analysis of WWP2 E3 ubiquitin ligase using protein microarrays identifies autophagy-related substrates. J Biol Chem 2022; 298:101854. [PMID: 35331737 PMCID: PMC9034101 DOI: 10.1016/j.jbc.2022.101854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
WWP2 is a HECT E3 ligase that targets protein Lys residues for ubiquitination and is comprised of an N-terminal C2 domain, four central WW domains, and a C-terminal catalytic HECT domain. The peptide segment between the middle WW domains, the 2,3-linker, is known to autoinhibit the catalytic domain, and this autoinhibition can be relieved by phosphorylation at Tyr369. Several protein substrates of WWP2 have been identified, including the tumor suppressor lipid phosphatase PTEN, but the full substrate landscape and biological functions of WWP2 remain to be elucidated. Here, we used protein microarray technology and the activated enzyme phosphomimetic mutant WWP2Y369E to identify potential WWP2 substrates. We identified 31 substrate hits for WWP2Y369E using protein microarrays, of which three were known autophagy receptors (NDP52, OPTN, and SQSTM1). These three hits were validated with in vitro and cell-based transfection assays and the Lys ubiquitination sites on these proteins were mapped by mass spectrometry. Among the mapped ubiquitin sites on these autophagy receptors, many had been previously identified in the endogenous proteins. Finally, we observed that WWP2 KO SH-SH5Y neuroblastoma cells using CRISPR-Cas9 showed a defect in mitophagy, which could be rescued by WWP2Y369E transfection. These studies suggest that WWP2-mediated ubiquitination of the autophagy receptors NDP52, OPTN, and SQSTM1 may positively contribute to the regulation of autophagy.
Collapse
Affiliation(s)
- Hanjie Jiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Claire Y Chiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Zan Chen
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA; Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sara Nathan
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Gabriel D'Agostino
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Guang Song
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sandra B Gabelli
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
26
|
Aisenberg WH, McCray BA, Sullivan JM, Diehl E, DeVine LR, Alevy J, Bagnell AM, Carr P, Donohue JK, Goretzki B, Cole RN, Hellmich UA, Sumner CJ. Multiubiquitination of TRPV4 reduces channel activity independent of surface localization. J Biol Chem 2022; 298:101826. [PMID: 35300980 PMCID: PMC9010760 DOI: 10.1016/j.jbc.2022.101826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Ubiquitin (Ub)-mediated regulation of plasmalemmal ion channel activity canonically occurs via stimulation of endocytosis. Whether ubiquitination can modulate channel activity by alternative mechanisms remains unknown. Here, we show that the transient receptor potential vanilloid 4 (TRPV4) cation channel is multiubiquitinated within its cytosolic N-terminal and C-terminal intrinsically disordered regions (IDRs). Mutagenizing select lysine residues to block ubiquitination of the N-terminal but not C-terminal IDR resulted in a marked elevation of TRPV4-mediated intracellular calcium influx, without increasing cell surface expression levels. Conversely, enhancing TRPV4 ubiquitination via expression of an E3 Ub ligase reduced TRPV4 channel activity but did not decrease plasma membrane abundance. These results demonstrate Ub-dependent regulation of TRPV4 channel function independent of effects on plasma membrane localization. Consistent with ubiquitination playing a key negative modulatory role of the channel, gain-of-function neuropathy-causing mutations in the TRPV4 gene led to reduced channel ubiquitination in both cellular and Drosophila models of TRPV4 neuropathy, whereas increasing mutant TRPV4 ubiquitination partially suppressed channel overactivity. Together, these data reveal a novel mechanism via which ubiquitination of an intracellular flexible IDR domain modulates ion channel function independently of endocytic trafficking and identify a contributory role for this pathway in the dysregulation of TRPV4 channel activity by neuropathy-causing mutations.
Collapse
Affiliation(s)
- William H Aisenberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brett A McCray
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeremy M Sullivan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erika Diehl
- Department of Chemistry, Biochemistry Section, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Lauren R DeVine
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jonathan Alevy
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anna M Bagnell
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Patrice Carr
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jack K Donohue
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Benedikt Goretzki
- Institute of Organic Chemistry and Macromolecular Chemistry, Cluster of Excellence 'Balance of the Microverse', Friedrich-Schiller-Universität, Jena, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität, Frankfurt am Main, Germany
| | - Robert N Cole
- Institute of Organic Chemistry and Macromolecular Chemistry, Cluster of Excellence 'Balance of the Microverse', Friedrich-Schiller-Universität, Jena, Germany
| | - Ute A Hellmich
- Institute of Organic Chemistry and Macromolecular Chemistry, Cluster of Excellence 'Balance of the Microverse', Friedrich-Schiller-Universität, Jena, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität, Frankfurt am Main, Germany
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
27
|
Tsunoda T, Riku M, Yamada N, Tsuchiya H, Tomita T, Suzuki M, Kizuki M, Inoko A, Ito H, Murotani K, Murakami H, Saeki Y, Kasai K. ENTREP/FAM189A2 encodes a new ITCH ubiquitin ligase activator that is downregulated in breast cancer. EMBO Rep 2022; 23:e51182. [PMID: 34927784 PMCID: PMC8811627 DOI: 10.15252/embr.202051182] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/13/2021] [Accepted: 11/29/2021] [Indexed: 11/09/2022] Open
Abstract
The HECT-type ubiquitin E3 ligases including ITCH regulate many aspects of cellular function through ubiquitinating various substrates. These ligases are known to be allosterically autoinhibited and to require an activator protein to fully achieve the ubiquitination of their substrates. Here we demonstrate that FAM189A2, a downregulated gene in breast cancer, encodes a new type of ITCH activator. FAM189A2 is a transmembrane protein harboring PPxY motifs, and the motifs mediate its association with and ubiquitination by ITCH. FAM189A2 also associates with Epsin and accumulates in early and late endosomes along with ITCH. Intriguingly, FAM189A2 facilitates the association of a chemokine receptor CXCR4 with ITCH and enhances ITCH-mediated ubiquitination of CXCR4. FAM189A2-knockout prohibits CXCL12-induced endocytosis of CXCR4, thereby enhancing the effects of CXCL12 on the chemotaxis and mammosphere formation of breast cancer cells. In comparison to other activators or adaptors known in the previous studies, FAM189A2 is a unique activator for ITCH to desensitize CXCR4 activity, and we here propose that FAM189A2 be renamed as ENdosomal TRansmembrane binding with EPsin (ENTREP).
Collapse
Affiliation(s)
- Takumi Tsunoda
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| | - Miho Riku
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| | - Norika Yamada
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| | - Hikaru Tsuchiya
- Protein Metabolism ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Takuya Tomita
- Protein Metabolism ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Minako Suzuki
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| | - Mari Kizuki
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| | - Akihito Inoko
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
- Division of Cancer Epidemiology and PreventionAichi Cancer Center Research InstituteNagoyaJapan
| | - Hideaki Ito
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| | | | - Hideki Murakami
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| | - Yasushi Saeki
- Protein Metabolism ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Kenji Kasai
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| |
Collapse
|
28
|
Soh SM, Kim YJ, Kim HH, Lee HR. Modulation of Ubiquitin Signaling in Innate Immune Response by Herpesviruses. Int J Mol Sci 2022; 23:ijms23010492. [PMID: 35008917 PMCID: PMC8745310 DOI: 10.3390/ijms23010492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/16/2022] Open
Abstract
The ubiquitin proteasome system (UPS) is a protein degradation machinery that is crucial for cellular homeostasis in eukaryotes. Therefore, it is not surprising that the UPS coordinates almost all host cellular processes, including host-pathogen interactions. This protein degradation machinery acts predominantly by tagging substrate proteins designated for degradation with a ubiquitin molecule. These ubiquitin tags have been involved at various steps of the innate immune response. Hence, herpesviruses have evolved ways to antagonize the host defense mechanisms by targeting UPS components such as ubiquitin E3 ligases and deubiquitinases (DUBs) that establish a productive infection. This review delineates how herpesviruses usurp the critical roles of ubiquitin E3 ligases and DUBs in innate immune response to escape host-antiviral immune response, with particular focus on retinoic acid-inducible gene I (RIG-I)-like receptors (RLR), cyclic-GMP-AMP (cGAMP) synthase (cGAS), stimulator of interferon (IFN) genes (STING) pathways, and inflammasome signaling.
Collapse
Affiliation(s)
- Sandrine-M. Soh
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 30019, Korea; (S.-M.S.); (Y.-J.K.); (H.-H.K.)
| | - Yeong-Jun Kim
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 30019, Korea; (S.-M.S.); (Y.-J.K.); (H.-H.K.)
| | - Hong-Hee Kim
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 30019, Korea; (S.-M.S.); (Y.-J.K.); (H.-H.K.)
| | - Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 30019, Korea; (S.-M.S.); (Y.-J.K.); (H.-H.K.)
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul 136-701, Korea
- Correspondence: ; Tel.: +82-44-860-1831
| |
Collapse
|
29
|
Hwang D, Kim M, Kim S, Kwon MR, Kang YS, Kim D, Kang HC, Lim DS. AMOTL2 mono-ubiquitination by WWP1 promotes contact inhibition by facilitating LATS activation. Life Sci Alliance 2021; 4:4/10/e202000953. [PMID: 34404733 PMCID: PMC8372784 DOI: 10.26508/lsa.202000953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 11/24/2022] Open
Abstract
This work reveals a novel function of WWP1 E3 ligase in the mono-ubiquitination of AMOTL2, which enables the binding and activation of LATS kinases upon contact inhibition. Contact inhibition is a key cellular phenomenon that prevents cells from hyper-proliferating upon reaching confluence. Although not fully characterized, a critical driver of this process is the Hippo signaling pathway, whose downstream effector yes-associated protein plays pivotal roles in cell growth and differentiation. Here, we provide evidence that the E3 ligase WWP1 (WW-domain containing protein 1) mono-ubiquitinates AMOTL2 (angiomotin-like 2) at K347 and K408. Mono-ubiquitinated AMOTL2, in turn, interacts with the kinase LATS2, which facilitates recruitment of the upstream Hippo pathway component SAV1 and ultimately promotes yes-associated protein phosphorylation and subsequent cytoplasmic sequestration and/or degradation. Furthermore, contact inhibition induced by high cell density promoted the localization and stabilization of WWP1 at cell junctions, where it interacted with Crumbs polarity proteins. Notably, the Crumbs complex was functionally important for AMOTL2 mono-ubiquitination and LATS activation under high cell density conditions. These findings delineate a functionally important molecular mechanism in which AMOTL2 mono-ubiquitination by WWP1 at cell junctions and LATS activation are tightly coupled to upstream cell density cues.
Collapse
Affiliation(s)
- Daehee Hwang
- National Creative Research Center for Cell Plasticity, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Miju Kim
- National Creative Research Center for Cell Plasticity, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Soyeon Kim
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Mi Ra Kwon
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Ye-Seul Kang
- National Creative Research Center for Cell Plasticity, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Dahyun Kim
- National Creative Research Center for Cell Plasticity, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Ho-Chul Kang
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Dae-Sik Lim
- National Creative Research Center for Cell Plasticity, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
30
|
HUWE1 employs a giant substrate-binding ring to feed and regulate its HECT E3 domain. Nat Chem Biol 2021; 17:1084-1092. [PMID: 34294896 PMCID: PMC7611724 DOI: 10.1038/s41589-021-00831-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022]
Abstract
HUWE1 is a universal quality-control E3 ligase that marks diverse client proteins for proteasomal degradation. Although the giant HECT enzyme is an essential component of the ubiquitin-proteasome system closely linked with severe human diseases, its molecular mechanism is little understood. Here, we present the crystal structure of Nematocida HUWE1, revealing how a single E3 enzyme has specificity for a multitude of unrelated substrates. The protein adopts a remarkable snake-like structure where the C-terminal HECT domain heads an extended alpha solenoid body that coils in on itself and houses various protein-protein interaction modules. Our integrative structural analysis shows that this ring structure is highly dynamic, enabling the flexible HECT domain to reach protein targets presented by the various acceptor sites. Together, our data demonstrate how HUWE1 is regulated by its unique structure, adapting a promiscuous E3 ligase to selectively target unassembled orphan proteins.
Collapse
|
31
|
Henneberg LT, Schulman BA. Decoding the messaging of the ubiquitin system using chemical and protein probes. Cell Chem Biol 2021; 28:889-902. [PMID: 33831368 PMCID: PMC7611516 DOI: 10.1016/j.chembiol.2021.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/22/2021] [Accepted: 03/12/2021] [Indexed: 12/29/2022]
Abstract
Post-translational modification of proteins by ubiquitin is required for nearly all aspects of eukaryotic cell function. The numerous targets of ubiquitylation, and variety of ubiquitin modifications, are often likened to a code, where the ultimate messages are diverse responses to target ubiquitylation. E1, E2, and E3 multiprotein enzymatic assemblies modify specific targets and thus function as messengers. Recent advances in chemical and protein tools have revolutionized our ability to explore the ubiquitin system, through enabling new high-throughput screening methods, matching ubiquitylation enzymes with their cellular targets, revealing intricate allosteric mechanisms regulating ubiquitylating enzymes, facilitating structural revelation of transient assemblies determined by multivalent interactions, and providing new paradigms for inhibiting and redirecting ubiquitylation in vivo as new therapeutics. Here we discuss the development of methods that control, disrupt, and extract the flow of information across the ubiquitin system and have enabled elucidation of the underlying molecular and cellular biology.
Collapse
Affiliation(s)
- Lukas T Henneberg
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
32
|
P300-mediated NEDD4 acetylation drives ebolavirus VP40 egress by enhancing NEDD4 ligase activity. PLoS Pathog 2021; 17:e1009616. [PMID: 34111220 PMCID: PMC8191996 DOI: 10.1371/journal.ppat.1009616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
The final stage of Ebola virus (EBOV) replication is budding from host cells, where the matrix protein VP40 is essential for driving this process. Many post-translational modifications such as ubiquitination are involved in VP40 egress, but acetylation has not been studied yet. Here, we characterize NEDD4 is acetylated at a conserved Lys667 mediated by the acetyltransferase P300 which drives VP40 egress process. Importantly, P300-mediated NEDD4 acetylation promotes NEDD4-VP40 interaction which enhances NEDD4 E3 ligase activity and is essential for the activation of VP40 ubiquitination and subsequent egress. Finally, we find that Zaire ebolavirus production is dramatically reduced in P300 knockout cell lines, suggesting that P300-mediated NEDD4 acetylation may have a physiological effect on Ebola virus life cycle. Thus, our study identifies an acetylation-dependent regulatory mechanism that governs VP40 ubiquitination and provides insights into how acetylation controls EBOV VP40 egress. Ebola virus (EBOV) is one of the deadliest pathogens, causing fatal hemorrhagic fever diseases in humans and primates. In this study, we find that P300-mediated NEDD4 acetylation facilitates EBOV egress. Acetylation promotes NEDD4-VP40 interactions which enhances NEDD4 E3 ligase activity and is essential for the activation of VP40 ubiquitination and subsequent egress. This study implies that inhibitory effect of acetylation can be regarded as an attractive candidate of drug target for the treatment of Ebola virus disease.
Collapse
|
33
|
The Role of HECT-Type E3 Ligase in the Development of Cardiac Disease. Int J Mol Sci 2021; 22:ijms22116065. [PMID: 34199773 PMCID: PMC8199989 DOI: 10.3390/ijms22116065] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Despite advances in medicine, cardiac disease remains an increasing health problem associated with a high mortality rate. Maladaptive cardiac remodeling, such as cardiac hypertrophy and fibrosis, is a risk factor for heart failure; therefore, it is critical to identify new therapeutic targets. Failing heart is reported to be associated with hyper-ubiquitylation and impairment of the ubiquitin–proteasome system, indicating an importance of ubiquitylation in the development of cardiac disease. Ubiquitylation is a post-translational modification that plays a pivotal role in protein function and degradation. In 1995, homologous to E6AP C-terminus (HECT) type E3 ligases were discovered. E3 ligases are key enzymes in ubiquitylation and are classified into three families: really interesting new genes (RING), HECT, and RING-between-RINGs (RBRs). Moreover, 28 HECT-type E3 ligases have been identified in human beings. It is well conserved in evolution and is characterized by the direct attachment of ubiquitin to substrates. HECT-type E3 ligase is reported to be involved in a wide range of human diseases and health. The role of HECT-type E3 ligases in the development of cardiac diseases has been uncovered in the last decade. There are only a few review articles summarizing recent advancements regarding HECT-type E3 ligase in the field of cardiac disease. This study focused on cardiac remodeling and described the role of HECT-type E3 ligases in the development of cardiac disease. Moreover, this study revealed that the current knowledge could be exploited for the development of new clinical therapies.
Collapse
|
34
|
González-Calvo I, Iyer K, Carquin M, Khayachi A, Giuliani FA, Sigoillot SM, Vincent J, Séveno M, Veleanu M, Tahraoui S, Albert M, Vigy O, Bosso-Lefèvre C, Nadjar Y, Dumoulin A, Triller A, Bessereau JL, Rondi-Reig L, Isope P, Selimi F. Sushi domain-containing protein 4 controls synaptic plasticity and motor learning. eLife 2021; 10:65712. [PMID: 33661101 PMCID: PMC7972451 DOI: 10.7554/elife.65712] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/03/2021] [Indexed: 01/28/2023] Open
Abstract
Fine control of protein stoichiometry at synapses underlies brain function and plasticity. How proteostasis is controlled independently for each type of synaptic protein in a synapse-specific and activity-dependent manner remains unclear. Here, we show that Susd4, a gene coding for a complement-related transmembrane protein, is expressed by many neuronal populations starting at the time of synapse formation. Constitutive loss-of-function of Susd4 in the mouse impairs motor coordination adaptation and learning, prevents long-term depression at cerebellar synapses, and leads to misregulation of activity-dependent AMPA receptor subunit GluA2 degradation. We identified several proteins with known roles in the regulation of AMPA receptor turnover, in particular ubiquitin ligases of the NEDD4 subfamily, as SUSD4 binding partners. Our findings shed light on the potential role of SUSD4 mutations in neurodevelopmental diseases.
Collapse
Affiliation(s)
- Inés González-Calvo
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS, Université de Strasbourg, Strasbourg, France
| | - Keerthana Iyer
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Mélanie Carquin
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Anouar Khayachi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Fernando A Giuliani
- Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS, Université de Strasbourg, Strasbourg, France
| | - Séverine M Sigoillot
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Jean Vincent
- Institut Biology Paris Seine (IBPS), Neuroscience Paris Seine (NPS), CeZaMe, CNRS, Sorbonne University, INSERM, Paris, France
| | - Martial Séveno
- BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Maxime Veleanu
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Sylvana Tahraoui
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Mélanie Albert
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Oana Vigy
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Célia Bosso-Lefèvre
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Yann Nadjar
- École Normale Supérieure, Institut de Biologie de l'ENS, INSERM, CNRS, PSL Research University, Paris, France
| | - Andréa Dumoulin
- École Normale Supérieure, Institut de Biologie de l'ENS, INSERM, CNRS, PSL Research University, Paris, France
| | - Antoine Triller
- École Normale Supérieure, Institut de Biologie de l'ENS, INSERM, CNRS, PSL Research University, Paris, France
| | - Jean-Louis Bessereau
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut Neuromyogène, Lyon, France
| | - Laure Rondi-Reig
- Institut Biology Paris Seine (IBPS), Neuroscience Paris Seine (NPS), CeZaMe, CNRS, Sorbonne University, INSERM, Paris, France
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS, Université de Strasbourg, Strasbourg, France
| | - Fekrije Selimi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| |
Collapse
|
35
|
Characterization of Small-Molecule-Induced Changes in Parkinson's-Related Trafficking via the Nedd4 Ubiquitin Signaling Cascade. Cell Chem Biol 2021; 28:14-25.e9. [PMID: 33176158 PMCID: PMC9812001 DOI: 10.1016/j.chembiol.2020.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 01/07/2023]
Abstract
The benzdiimidazole NAB2 rescues α-synuclein-associated trafficking defects associated with early onset Parkinson's disease in a Nedd4-dependent manner. Despite identification of E3 ubiquitin ligase Nedd4 as a putative target of NAB2, its molecular mechanism of action has not been elucidated. As such, the effect of NAB2 on Nedd4 activity and specificity was interrogated through biochemical, biophysical, and proteomic analyses. NAB2 was found to bind Nedd4 (KDapp = 42 nM), but this binding is side chain mediated and does not alter its conformation or ubiquitination kinetics in vitro. Nedd4 co-localizes with trafficking organelles, and NAB2 exposure did not alter its co-localization. Ubiquitin enrichment coupled proteomics revealed that NAB2 stimulates ubiquitination of trafficking-associated proteins, most likely through modulating the substrate specificity of Nedd4, providing a putative protein network involved in the NAB2 mechanism and revealing trafficking scaffold protein TFG as a Nedd4 substrate.
Collapse
|
36
|
Jiang H, Dempsey DR, Cole PA. Ubiquitin Ligase Activities of WWP1 Germline Variants K740N and N745S. Biochemistry 2021; 60:357-364. [PMID: 33470109 DOI: 10.1021/acs.biochem.0c00869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
WWP1 is an E3 ubiquitin ligase that has been reported to target the tumor suppressor lipid phosphatase PTEN. K740N and N745S are recently identified germline variants of WWP1 that have been linked to PTEN-associated cancers [Lee, Y. R., et al. (2020) N. Engl. J. Med.]. These WWP1 variants have been suggested to release WWP1 from its native autoinhibited state, thereby promoting enhanced PTEN ubiquitination as a mechanism for driving cancer. Using purified proteins and in vitro enzymatic assays, we investigate the possibility that K740N and N745S WWP1 possess enhanced ubiquitin ligase activity and demonstrate that these variants are similar to the wild type (WT) in both autoubiquitination and PTEN ubiquitination. Furthermore, K740N and N745S WWP1 show dependencies similar to those of WT in terms of allosteric activation by an engineered ubiquitin variant, upstream E2 concentration, and substrate ubiquitin concentration. Transfected WWP1 WT and mutants demonstrate comparable effects on cellular PTEN levels. These findings challenge the idea that K740N and N745S WWP1 variants promote cancer by enhanced PTEN ubiquitination.
Collapse
Affiliation(s)
- Hanjie Jiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Daniel R Dempsey
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
37
|
Adaptors as the regulators of HECT ubiquitin ligases. Cell Death Differ 2021; 28:455-472. [PMID: 33402750 DOI: 10.1038/s41418-020-00707-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
The HECT (homologous to E6AP C-terminus) ubiquitin ligases (E3s) are a small family of highly conserved enzymes involved in diverse cellular functions and pathological conditions. Characterised by a C-terminal HECT domain that accepts ubiquitin from E2 ubiquitin conjugating enzymes, these E3s regulate key signalling pathways. The activity and functional regulation of HECT E3s are controlled by several factors including post-translational modifications, inter- and intramolecular interactions and binding of co-activators and adaptor proteins. In this review, we focus on the regulation of HECT E3s by accessory proteins or adaptors and discuss various ways by which adaptors mediate their regulatory roles to affect physiological outcomes. We discuss common features that are conserved from yeast to mammals, regardless of the type of E3s as well as shed light on recent discoveries explaining some existing enigmas in the field.
Collapse
|
38
|
Jiang H, Cole PA. N-Terminal Protein Labeling with N-Hydroxysuccinimide Esters and Microscale Thermophoresis Measurements of Protein-Protein Interactions Using Labeled Protein. Curr Protoc 2021; 1:e14. [PMID: 33484499 PMCID: PMC7839251 DOI: 10.1002/cpz1.14] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein labeling strategies have been explored for decades to study protein structure, function, and regulation. Fluorescent labeling of a protein enables the study of protein-protein interactions through biophysical methods such as microscale thermophoresis (MST). MST measures the directed motion of a fluorescently labeled protein in response to microscopic temperature gradients, and the protein's thermal mobility can be used to determine binding affinity. However, the stoichiometry and site specificity of fluorescent labeling are hard to control, and heterogeneous labeling can generate inaccuracies in binding measurements. Here, we describe an easy-to-apply protocol for high-stoichiometric, site-specific labeling of a protein at its N-terminus with N-hydroxysuccinimide (NHS) esters as a means to measure protein-protein interaction affinity by MST. This protocol includes guidelines for NHS ester labeling, fluorescent-labeled protein purification, and MST measurement using a labeled protein. As an example of the entire workflow, we additionally provide a protocol for labeling a ubiquitin E3 enzyme and testing ubiquitin E2-E3 enzyme binding affinity. These methods are highly adaptable and can be extended for protein interaction studies in various biological and biochemical circumstances. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Labeling a protein of interest at its N-terminus with NHS esters through stepwise reaction Alternate Protocol: Labeling a protein of interest at its N-terminus with NHS esters through a one-pot reaction Basic Protocol 2: Purifying the N-terminal fluorescent-labeled protein and determining its concentration and labeling efficiency Basic Protocol 3: Using MST to determine the binding affinity of an N-terminal fluorescent-labeled protein to a binding partner. Basic Protocol 4: NHS ester labeling of ubiquitin E3 ligase WWP2 and measurement of the binding affinity between WWP2 and an E2 conjugating enzyme by the MST binding assay.
Collapse
Affiliation(s)
- Hanjie Jiang
- Division of Genetics, Brigham and Women’s Hospital,
Department of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard
Medical School, Boston, Massachusetts 02115, United States
- Department of Pharmacology and Molecular Sciences, Johns
Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Philip A. Cole
- Division of Genetics, Brigham and Women’s Hospital,
Department of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard
Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
39
|
Patwardhan A, Cheng N, Trejo J. Post-Translational Modifications of G Protein-Coupled Receptors Control Cellular Signaling Dynamics in Space and Time. Pharmacol Rev 2021; 73:120-151. [PMID: 33268549 PMCID: PMC7736832 DOI: 10.1124/pharmrev.120.000082] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family comprising >800 signaling receptors that regulate numerous cellular and physiologic responses. GPCRs have been implicated in numerous diseases and represent the largest class of drug targets. Although advances in GPCR structure and pharmacology have improved drug discovery, the regulation of GPCR function by diverse post-translational modifications (PTMs) has received minimal attention. Over 200 PTMs are known to exist in mammalian cells, yet only a few have been reported for GPCRs. Early studies revealed phosphorylation as a major regulator of GPCR signaling, whereas later reports implicated a function for ubiquitination, glycosylation, and palmitoylation in GPCR biology. Although our knowledge of GPCR phosphorylation is extensive, our knowledge of the modifying enzymes, regulation, and function of other GPCR PTMs is limited. In this review we provide a comprehensive overview of GPCR post-translational modifications with a greater focus on new discoveries. We discuss the subcellular location and regulatory mechanisms that control post-translational modifications of GPCRs. The functional implications of newly discovered GPCR PTMs on receptor folding, biosynthesis, endocytic trafficking, dimerization, compartmentalized signaling, and biased signaling are also provided. Methods to detect and study GPCR PTMs as well as PTM crosstalk are further highlighted. Finally, we conclude with a discussion of the implications of GPCR PTMs in human disease and their importance for drug discovery. SIGNIFICANCE STATEMENT: Post-translational modification of G protein-coupled receptors (GPCRs) controls all aspects of receptor function; however, the detection and study of diverse types of GPCR modifications are limited. A thorough understanding of the role and mechanisms by which diverse post-translational modifications regulate GPCR signaling and trafficking is essential for understanding dysregulated mechanisms in disease and for improving and refining drug development for GPCRs.
Collapse
Affiliation(s)
- Anand Patwardhan
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - Norton Cheng
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - JoAnn Trejo
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
40
|
Harris LD, Le Pen J, Scholz N, Mieszczanek J, Vaughan N, Davis S, Berridge G, Kessler BM, Bienz M, Licchesi JDF. The deubiquitinase TRABID stabilizes the K29/K48-specific E3 ubiquitin ligase HECTD1. J Biol Chem 2021; 296:100246. [PMID: 33853758 PMCID: PMC7948964 DOI: 10.1074/jbc.ra120.015162] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022] Open
Abstract
Ubiquitin is a versatile posttranslational modification, which is covalently attached to protein targets either as a single moiety or as a ubiquitin chain. In contrast to K48 and K63-linked chains, which have been extensively studied, the regulation and function of most atypical ubiquitin chains are only starting to emerge. The deubiquitinase TRABID/ZRANB1 is tuned for the recognition and cleavage of K29 and K33-linked chains. Yet, substrates of TRABID and the cellular functions of these atypical ubiquitin signals remain unclear. We determined the interactome of two TRABID constructs rendered catalytic dead either through a point mutation in the catalytic cysteine residue or through removal of the OTU catalytic domain. We identified 50 proteins trapped by both constructs and which therefore represent candidate substrates of TRABID. The E3 ubiquitin ligase HECTD1 was then validated as a substrate of TRABID and used UbiCREST and Ub-AQUA proteomics to show that HECTD1 preferentially assembles K29- and K48-linked ubiquitin chains. Further in vitro autoubiquitination assays using ubiquitin mutants established that while HECTD1 can assemble short homotypic K29 and K48-linked chains, it requires branching at K29/K48 in order to achieve its full ubiquitin ligase activity. We next used transient knockdown and genetic knockout of TRABID in mammalian cells in order to determine the functional relationship between TRABID and HECTD1. This revealed that upon TRABID depletion, HECTD1 is readily degraded. Thus, this study identifies HECTD1 as a mammalian E3 ligase that assembles branched K29/K48 chains and also establishes TRABID-HECTD1 as a DUB/E3 pair regulating K29 linkages.
Collapse
Affiliation(s)
- Lee D Harris
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Janic Le Pen
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Nico Scholz
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Juliusz Mieszczanek
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Natalie Vaughan
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Simon Davis
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Georgina Berridge
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mariann Bienz
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Julien D F Licchesi
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom.
| |
Collapse
|
41
|
Xia Q, Ali S, Liu L, Li Y, Liu X, Zhang L, Dong L. Role of Ubiquitination in PTEN Cellular Homeostasis and Its Implications in GB Drug Resistance. Front Oncol 2020; 10:1569. [PMID: 32984016 PMCID: PMC7492558 DOI: 10.3389/fonc.2020.01569] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GB) is the most common and aggressive brain malignancy, characterized by heterogeneity and drug resistance. PTEN, a crucial tumor suppressor, exhibits phosphatase-dependent (PI3K-AKT-mTOR pathway)/independent (nucleus stability) activities to maintain the homeostatic regulation of numerous physiological processes. Premature and absolute loss of PTEN activity usually tends to cellular senescence. However, monoallelic loss of PTEN is frequently observed at tumor inception, and absolute loss of PTEN activity also occurs at the late stage of gliomagenesis. Consequently, aberrant PTEN homeostasis, mainly regulated at the post-translational level, renders cells susceptible to tumorigenesis and drug resistance. Ubiquitination-mediated degradation or deregulated intracellular localization of PTEN hijacks cell growth rheostat control for neoplastic remodeling. Functional inactivation of PTEN mediated by the overexpression of ubiquitin ligases (E3s) renders GB cells adaptive to PTEN loss, which confers resistance to EGFR tyrosine kinase inhibitors and immunotherapies. In this review, we discuss how glioma cells develop oncogenic addiction to the E3s-PTEN axis, promoting their growth and proliferation. Antitumor strategies involving PTEN-targeting E3 ligase inhibitors can restore the tumor-suppressive environment. E3 inhibitors collectively reactivate PTEN and may represent next-generation treatment against deadly malignancies such as GB.
Collapse
Affiliation(s)
- Qin Xia
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Sakhawat Ali
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Liqun Liu
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Yang Li
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Xuefeng Liu
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Lei Dong
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
42
|
Wang ZA, Cole PA. The Chemical Biology of Reversible Lysine Post-translational Modifications. Cell Chem Biol 2020; 27:953-969. [PMID: 32698016 PMCID: PMC7487139 DOI: 10.1016/j.chembiol.2020.07.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/09/2020] [Accepted: 07/01/2020] [Indexed: 12/31/2022]
Abstract
Lysine (Lys) residues in proteins undergo a wide range of reversible post-translational modifications (PTMs), which can regulate enzyme activities, chromatin structure, protein-protein interactions, protein stability, and cellular localization. Here we discuss the "writers," "erasers," and "readers" of some of the common protein Lys PTMs and summarize examples of their major biological impacts. We also review chemical biology approaches, from small-molecule probes to protein chemistry technologies, that have helped to delineate Lys PTM functions and show promise for a diverse set of biomedical applications.
Collapse
Affiliation(s)
- Zhipeng A Wang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 77 Avenue Louis Pasteur NRB, Boston, MA 02115, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 77 Avenue Louis Pasteur NRB, Boston, MA 02115, USA.
| |
Collapse
|
43
|
Alix E, Godlee C, Cerny O, Blundell S, Tocci R, Matthews S, Liu M, Pruneda JN, Swatek KN, Komander D, Sleap T, Holden DW. The Tumour Suppressor TMEM127 Is a Nedd4-Family E3 Ligase Adaptor Required by Salmonella SteD to Ubiquitinate and Degrade MHC Class II Molecules. Cell Host Microbe 2020; 28:54-68.e7. [PMID: 32526160 PMCID: PMC7342019 DOI: 10.1016/j.chom.2020.04.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/13/2020] [Accepted: 04/29/2020] [Indexed: 12/21/2022]
Abstract
The Salmonella enterica effector SteD depletes mature MHC class II (mMHCII) molecules from the surface of infected antigen-presenting cells through ubiquitination of the cytoplasmic tail of the mMHCII β chain. Here, through a genome-wide mutant screen of human antigen-presenting cells, we show that the NEDD4 family HECT E3 ubiquitin ligase WWP2 and a tumor-suppressing transmembrane protein of unknown biochemical function, TMEM127, are required for SteD-dependent ubiquitination of mMHCII. Although evidently not involved in normal regulation of mMHCII, TMEM127 was essential for SteD to suppress both mMHCII antigen presentation in mouse dendritic cells and MHCII-dependent CD4+ T cell activation. We found that TMEM127 contains a canonical PPxY motif, which was required for binding to WWP2. SteD bound to TMEM127 and enabled TMEM127 to interact with and induce ubiquitination of mature MHCII. Furthermore, SteD also underwent TMEM127- and WWP2-dependent ubiquitination, which both contributed to its degradation and augmented its activity on mMHCII.
Collapse
Affiliation(s)
- Eric Alix
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Camilla Godlee
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Ondrej Cerny
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Samkeliso Blundell
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Romina Tocci
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Sophie Matthews
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Mei Liu
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Jonathan N Pruneda
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA
| | - Kirby N Swatek
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royale Parade, 3052 Parkville, Melbourne, Australia
| | - David Komander
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Tabitha Sleap
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - David W Holden
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK.
| |
Collapse
|
44
|
Aberrant activation of neuronal cell cycle caused by dysregulation of ubiquitin ligase Itch results in neurodegeneration. Cell Death Dis 2020; 11:441. [PMID: 32513985 PMCID: PMC7280246 DOI: 10.1038/s41419-020-2647-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022]
Abstract
It is critical for the neuronal cell cycle to remain suppressed in terminally differentiated neurons as its activation results in aberrant cell cycle re-entry that causes neuronal apoptosis (CRNA), which has been observed in several neurodegenerative disorders like Alzheimer's disease (AD). In the present study, we report that E3 ubiquitin ligase Itch is a major regulator of CRNA and elucidated the mechanism via which it is regulated in this process. Neurotoxic amyloid peptide Aβ42-treated neurons or neurons from an AD transgenic mouse model (TgAD) exhibited aberrant activation of the JNK pathway which resulted in the hyperphosphorylation of Itch. The phosphorylation of Itch primes it for autoubiquitination, which is necessary for its activation. These post-translational modifications of Itch facilitate its interaction with TAp73 resulting in its degradation. These series of events are critical for Itch-mediated CRNA and its phosphorylation and autoubiquitination site mutants reversed this process and were neuroprotective. These studies unravel a novel pathway via which neurodegeneration in AD and possibly other related disorders may be regulated by aberrant regulation of the neuronal cell cycle.
Collapse
|
45
|
Rennie ML, Chaugule VK, Walden H. Modes of allosteric regulation of the ubiquitination machinery. Curr Opin Struct Biol 2020; 62:189-196. [PMID: 32305021 DOI: 10.1016/j.sbi.2020.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/29/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Ubiquitination is a post-translational modification crucial for cellular signaling. A diverse range of enzymes constitute the machinery that mediates attachment of ubiquitin onto target proteins. This diversity allows the targeting of various proteins in a highly regulated fashion. Many of the enzymes have multiple domains or subunits that bind allosteric effectors and exhibit large conformational rearrangements to facilitate regulation. Here we consider recent examples of ubiquitin itself as an allosteric effector of RING and RBR E3 ligases, as well as advances in the understanding of allosteric regulatory elements within HECT E3 ligases.
Collapse
Affiliation(s)
- Martin L Rennie
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Viduth K Chaugule
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Helen Walden
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
46
|
Lee YR, Yehia L, Kishikawa T, Ni Y, Leach B, Zhang J, Panch N, Liu J, Wei W, Eng C, Pandolfi PP. WWP1 Gain-of-Function Inactivation of PTEN in Cancer Predisposition. N Engl J Med 2020; 382:2103-2116. [PMID: 32459922 PMCID: PMC7839065 DOI: 10.1056/nejmoa1914919] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Patients with PTEN hamartoma tumor syndrome (PHTS) have germline mutations in the tumor-suppressor gene encoding phosphatase and tensin homologue (PTEN). Such mutations have been associated with a hereditary predisposition to multiple types of cancer, including the Cowden syndrome. However, a majority of patients who have PHTS-related phenotypes have tested negative for PTEN mutations. In a previous study, we found that the E3 ubiquitin ligase WWP1 negatively regulates the function of PTEN. METHODS In a prospective cohort study conducted from 2005 through 2015, we enrolled 431 patients with wild-type PTEN who met at least the relaxed diagnostic criteria of the International Cowden Consortium. Patients were scanned for WWP1 germline variants. We used the Cancer Genome Atlas (TCGA) data set as representative of apparently sporadic cancers and the Exome Aggregation Consortium data set excluding TCGA (non-TCGA ExAC) and the noncancer Genome Aggregation Database (gnomAD) as representative of population controls without a reported cancer diagnosis. We established both in vitro and murine in vivo models to functionally characterize representative WWP1 variants. RESULTS The existence of germline WWP1 variants was first established in a family with wild-type PTEN who had oligopolyposis and early-onset colon cancers. A validation series indicated that WWP1 germline variants occurred in 5 of 126 unrelated patients (4%) with oligopolyposis as a predominant phenotype. Germline WWP1 variants, particularly the WWP1 K740N and N745S alleles, were enriched in patients who did not have PHTS but had prevalent sporadic cancers, including PTEN-related cancer types in TCGA (odds ratio, 1.5; 95% confidence interval, 1.1 to 2.1; P = 0.01). The prioritized WWP1 variants resulted in gain-of-function effects, which led to aberrant enzymatic activation with consequent PTEN inactivation, thereby triggering hyperactive growth-promoting PI3K signaling in cellular and murine models. CONCLUSIONS In this study involving patients with disorders resulting in a predisposition to the development of multiple malignant neoplasms without PTEN germline mutations, we confirmed the function of WWP1 as a cancer-susceptibility gene through direct aberrant regulation of the PTEN-PI3K signaling axis. (Funded by the National Institutes of Health and others.).
Collapse
Affiliation(s)
- Yu-Ru Lee
- From the Cancer Research Institute, Beth Israel Deaconess Cancer Center (Y.-R.L., T.K., J.Z., N.P., J.L., W.W., P.P.P.), and the Departments of Medicine (Y.-R.L., T.K., N.P., P.P.P.) and Pathology (J.Z., J.L., W.W., P.P.P.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston; the Genomic Medicine Institute (L.Y., Y.N., B.L., C.E.) and the Department of Quantitative Health Sciences (Y.N.), Lerner Research Institute, Cleveland Clinic, the Taussig Cancer Institute (C.E.), the Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine (C.E.), and the Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University (C.E.) - all in Cleveland; the Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University (J.Z.), and the Medical Research Institute, Wuhan University (J.Z.) - both in Wuhan, China; and the Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy (P.P.P.)
| | - Lamis Yehia
- From the Cancer Research Institute, Beth Israel Deaconess Cancer Center (Y.-R.L., T.K., J.Z., N.P., J.L., W.W., P.P.P.), and the Departments of Medicine (Y.-R.L., T.K., N.P., P.P.P.) and Pathology (J.Z., J.L., W.W., P.P.P.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston; the Genomic Medicine Institute (L.Y., Y.N., B.L., C.E.) and the Department of Quantitative Health Sciences (Y.N.), Lerner Research Institute, Cleveland Clinic, the Taussig Cancer Institute (C.E.), the Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine (C.E.), and the Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University (C.E.) - all in Cleveland; the Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University (J.Z.), and the Medical Research Institute, Wuhan University (J.Z.) - both in Wuhan, China; and the Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy (P.P.P.)
| | - Takahiro Kishikawa
- From the Cancer Research Institute, Beth Israel Deaconess Cancer Center (Y.-R.L., T.K., J.Z., N.P., J.L., W.W., P.P.P.), and the Departments of Medicine (Y.-R.L., T.K., N.P., P.P.P.) and Pathology (J.Z., J.L., W.W., P.P.P.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston; the Genomic Medicine Institute (L.Y., Y.N., B.L., C.E.) and the Department of Quantitative Health Sciences (Y.N.), Lerner Research Institute, Cleveland Clinic, the Taussig Cancer Institute (C.E.), the Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine (C.E.), and the Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University (C.E.) - all in Cleveland; the Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University (J.Z.), and the Medical Research Institute, Wuhan University (J.Z.) - both in Wuhan, China; and the Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy (P.P.P.)
| | - Ying Ni
- From the Cancer Research Institute, Beth Israel Deaconess Cancer Center (Y.-R.L., T.K., J.Z., N.P., J.L., W.W., P.P.P.), and the Departments of Medicine (Y.-R.L., T.K., N.P., P.P.P.) and Pathology (J.Z., J.L., W.W., P.P.P.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston; the Genomic Medicine Institute (L.Y., Y.N., B.L., C.E.) and the Department of Quantitative Health Sciences (Y.N.), Lerner Research Institute, Cleveland Clinic, the Taussig Cancer Institute (C.E.), the Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine (C.E.), and the Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University (C.E.) - all in Cleveland; the Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University (J.Z.), and the Medical Research Institute, Wuhan University (J.Z.) - both in Wuhan, China; and the Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy (P.P.P.)
| | - Brandie Leach
- From the Cancer Research Institute, Beth Israel Deaconess Cancer Center (Y.-R.L., T.K., J.Z., N.P., J.L., W.W., P.P.P.), and the Departments of Medicine (Y.-R.L., T.K., N.P., P.P.P.) and Pathology (J.Z., J.L., W.W., P.P.P.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston; the Genomic Medicine Institute (L.Y., Y.N., B.L., C.E.) and the Department of Quantitative Health Sciences (Y.N.), Lerner Research Institute, Cleveland Clinic, the Taussig Cancer Institute (C.E.), the Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine (C.E.), and the Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University (C.E.) - all in Cleveland; the Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University (J.Z.), and the Medical Research Institute, Wuhan University (J.Z.) - both in Wuhan, China; and the Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy (P.P.P.)
| | - Jinfang Zhang
- From the Cancer Research Institute, Beth Israel Deaconess Cancer Center (Y.-R.L., T.K., J.Z., N.P., J.L., W.W., P.P.P.), and the Departments of Medicine (Y.-R.L., T.K., N.P., P.P.P.) and Pathology (J.Z., J.L., W.W., P.P.P.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston; the Genomic Medicine Institute (L.Y., Y.N., B.L., C.E.) and the Department of Quantitative Health Sciences (Y.N.), Lerner Research Institute, Cleveland Clinic, the Taussig Cancer Institute (C.E.), the Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine (C.E.), and the Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University (C.E.) - all in Cleveland; the Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University (J.Z.), and the Medical Research Institute, Wuhan University (J.Z.) - both in Wuhan, China; and the Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy (P.P.P.)
| | - Nivedita Panch
- From the Cancer Research Institute, Beth Israel Deaconess Cancer Center (Y.-R.L., T.K., J.Z., N.P., J.L., W.W., P.P.P.), and the Departments of Medicine (Y.-R.L., T.K., N.P., P.P.P.) and Pathology (J.Z., J.L., W.W., P.P.P.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston; the Genomic Medicine Institute (L.Y., Y.N., B.L., C.E.) and the Department of Quantitative Health Sciences (Y.N.), Lerner Research Institute, Cleveland Clinic, the Taussig Cancer Institute (C.E.), the Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine (C.E.), and the Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University (C.E.) - all in Cleveland; the Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University (J.Z.), and the Medical Research Institute, Wuhan University (J.Z.) - both in Wuhan, China; and the Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy (P.P.P.)
| | - Jing Liu
- From the Cancer Research Institute, Beth Israel Deaconess Cancer Center (Y.-R.L., T.K., J.Z., N.P., J.L., W.W., P.P.P.), and the Departments of Medicine (Y.-R.L., T.K., N.P., P.P.P.) and Pathology (J.Z., J.L., W.W., P.P.P.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston; the Genomic Medicine Institute (L.Y., Y.N., B.L., C.E.) and the Department of Quantitative Health Sciences (Y.N.), Lerner Research Institute, Cleveland Clinic, the Taussig Cancer Institute (C.E.), the Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine (C.E.), and the Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University (C.E.) - all in Cleveland; the Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University (J.Z.), and the Medical Research Institute, Wuhan University (J.Z.) - both in Wuhan, China; and the Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy (P.P.P.)
| | - Wenyi Wei
- From the Cancer Research Institute, Beth Israel Deaconess Cancer Center (Y.-R.L., T.K., J.Z., N.P., J.L., W.W., P.P.P.), and the Departments of Medicine (Y.-R.L., T.K., N.P., P.P.P.) and Pathology (J.Z., J.L., W.W., P.P.P.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston; the Genomic Medicine Institute (L.Y., Y.N., B.L., C.E.) and the Department of Quantitative Health Sciences (Y.N.), Lerner Research Institute, Cleveland Clinic, the Taussig Cancer Institute (C.E.), the Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine (C.E.), and the Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University (C.E.) - all in Cleveland; the Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University (J.Z.), and the Medical Research Institute, Wuhan University (J.Z.) - both in Wuhan, China; and the Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy (P.P.P.)
| | - Charis Eng
- From the Cancer Research Institute, Beth Israel Deaconess Cancer Center (Y.-R.L., T.K., J.Z., N.P., J.L., W.W., P.P.P.), and the Departments of Medicine (Y.-R.L., T.K., N.P., P.P.P.) and Pathology (J.Z., J.L., W.W., P.P.P.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston; the Genomic Medicine Institute (L.Y., Y.N., B.L., C.E.) and the Department of Quantitative Health Sciences (Y.N.), Lerner Research Institute, Cleveland Clinic, the Taussig Cancer Institute (C.E.), the Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine (C.E.), and the Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University (C.E.) - all in Cleveland; the Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University (J.Z.), and the Medical Research Institute, Wuhan University (J.Z.) - both in Wuhan, China; and the Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy (P.P.P.)
| | - Pier Paolo Pandolfi
- From the Cancer Research Institute, Beth Israel Deaconess Cancer Center (Y.-R.L., T.K., J.Z., N.P., J.L., W.W., P.P.P.), and the Departments of Medicine (Y.-R.L., T.K., N.P., P.P.P.) and Pathology (J.Z., J.L., W.W., P.P.P.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston; the Genomic Medicine Institute (L.Y., Y.N., B.L., C.E.) and the Department of Quantitative Health Sciences (Y.N.), Lerner Research Institute, Cleveland Clinic, the Taussig Cancer Institute (C.E.), the Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine (C.E.), and the Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University (C.E.) - all in Cleveland; the Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University (J.Z.), and the Medical Research Institute, Wuhan University (J.Z.) - both in Wuhan, China; and the Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy (P.P.P.)
| |
Collapse
|
47
|
Jiang H, D'Agostino GD, Cole PA, Dempsey DR. Selective protein N-terminal labeling with N-hydroxysuccinimide esters. Methods Enzymol 2020; 639:333-353. [PMID: 32475408 DOI: 10.1016/bs.mie.2020.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In order to gain detailed insight into the biochemical behavior of proteins, researchers have developed chemical tools to incorporate new functionality into proteins beyond the canonical 20 amino acids. Important considerations regarding effective chemical modification of proteins include chemoselectivity, near stoichiometric labeling, and reaction conditions that maintain protein stability. Taking these factors into account, we discuss an N-terminal labeling strategy that employs a simple two-step "one-pot" method using N-hydroxysuccinimide (NHS) esters. The first step converts a R-NHS ester into a more chemoselective R-thioester. The second step reacts the in situ generated R-thioester with a protein that harbors an N-terminal cysteine to generate a new amide bond. This labeling reaction is selective for the N-terminus with high stoichiometry. Herein, we provide a detailed description of this method and further highlight its utility with a large protein (>100kDa) and labeling with a commonly used cyanine dye.
Collapse
Affiliation(s)
- Hanjie Jiang
- Division of Genetics, Brigham and Women's Hospital, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Gabriel D D'Agostino
- Division of Genetics, Brigham and Women's Hospital, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Philip A Cole
- Division of Genetics, Brigham and Women's Hospital, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Daniel R Dempsey
- Division of Genetics, Brigham and Women's Hospital, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
48
|
Hatstat AK, McCafferty DG. Robust and facile purification of full-length, untagged human Nedd4 as a recombinant protein from Escherichia coli. Protein Expr Purif 2020; 173:105649. [PMID: 32334140 DOI: 10.1016/j.pep.2020.105649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/07/2020] [Accepted: 04/19/2020] [Indexed: 12/20/2022]
Abstract
Nedd4 is an E3 ubiquitin ligase that has received increased attention due to its role in the maintenance of proteostasis and in cellular stress responses. Investigation of Nedd4 enzymology has revealed a complex enzymatic mechanism that involves intermolecular interactions with upstream E2 conjugating enzymes and with substrates and intramolecular interactions that serve to regulate Nedd4 function. Thus, it is imperative that investigations of Nedd4 enzymology that employ recombinant enzyme be conducted with Nedd4 in its native, untagged form. We report herein an optimized, facile method for purification of recombinant human Nedd4 in its full-length form as a stable and active recombinant enzyme. Specifically, Nedd4 can be purified through a two-step purification which employs glutathione-S-transferase and hexahistidine sequences as orthogonal affinity tags. Proteolytic cleavage of Nedd4 was optimized to enable removal of the affinity tags with TEV protease, providing access to the untagged enzyme in yields of 2-3 mg/L. Additionally, investigation of Nedd4 storage conditions reveal that the enzyme is not stable through freeze-thaw cycles, and storage conditions should be carefully considered for preservation of enzyme stability. Finally, Nedd4 activity was validated through three activity assays which measure ubiquitin chain formation, Nedd4 autoubiquitination, and monoubiquitin consumption, respectively. Comparison of the method described herein with previously reported purification methods reveal that our optimized purification strategy enables access to Nedd4 in fewer chromatographic steps and eliminates reagents and materials that are potentially cost-prohibitive. This method, therefore, is more efficient and provides a more accessible route for purifying recombinant full-length Nedd4.
Collapse
Affiliation(s)
| | - Dewey G McCafferty
- Department of Chemistry, Duke University, Durham, NC, 27708, United States; Department of Biochemistry, Duke University, Durham, NC, 27708, United States.
| |
Collapse
|
49
|
Jiang Q, Li F, Cheng Z, Kong Y, Chen C. The role of E3 ubiquitin ligase HECTD3 in cancer and beyond. Cell Mol Life Sci 2020; 77:1483-1495. [PMID: 31637449 PMCID: PMC11105068 DOI: 10.1007/s00018-019-03339-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 02/07/2023]
Abstract
Ubiquitin modification plays significant roles in protein fate determination, signaling transduction, and cellular processes. Over the past 2 decades, the number of studies on ubiquitination has demonstrated explosive growth. E3 ubiquitin ligases are the key enzymes that determine the substrate specificity and are involved in cancer. Several recent studies shed light on the functions and mechanisms of HECTD3 E3 ubiquitin ligase. This review describes the progress in the recent studies of HECTD3 in cancer and other diseases. We propose that HECTD3 is a potential biomarker and a therapeutic target, and discuss the future directions for HECTD3 investigations.
Collapse
Affiliation(s)
- Qiuyun Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650204, China
| | - Fubing Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Zhuo Cheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650204, China
| | - Yanjie Kong
- Institute of Translation Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650204, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
50
|
Abstract
Protein semisynthesis-defined herein as the assembly of a protein from a combination of synthetic and recombinant fragments-is a burgeoning field of chemical biology that has impacted many areas in the life sciences. In this review, we provide a comprehensive survey of this area. We begin by discussing the various chemical and enzymatic methods now available for the manufacture of custom proteins containing noncoded elements. This section begins with a discussion of methods that are more chemical in origin and ends with those that employ biocatalysts. We also illustrate the commonalities that exist between these seemingly disparate methods and show how this is allowing for the development of integrated chemoenzymatic methods. This methodology discussion provides the technical foundation for the second part of the review where we cover the great many biological problems that have now been addressed using these tools. Finally, we end the piece with a short discussion on the frontiers of the field and the opportunities available for the future.
Collapse
Affiliation(s)
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|