1
|
Kalita B, Martinez-Cebrian G, McEvoy J, Allensworth M, Knight M, Magli A, Perlingeiro RCR, Dyer MA, Stewart E, Dynlacht BD. PAX translocations remodel mitochondrial metabolism through altered leucine usage in rhabdomyosarcoma. Cell 2025; 188:2757-2777.e22. [PMID: 40185100 DOI: 10.1016/j.cell.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 01/09/2025] [Accepted: 03/06/2025] [Indexed: 04/07/2025]
Abstract
Alveolar rhabdomyosarcoma (ARMS) patients harboring paired-box fusion proteins (PAX3/7-FOXO1) exhibit a greater incidence of tumor relapse, metastasis, and poor survival outcome, thereby underscoring the urgent need to develop effective therapies to treat this subtype of childhood cancer. To uncover mechanisms that contribute to tumor initiation, we develop a muscle progenitor model and use epigenomic approaches to unravel genome rewiring events mediated by PAX3/7 fusion proteins. Among the key targets of PAX3/7 fusion proteins, we identify a cohort of oncogenes, fibroblast growth factor (FGF) receptors, tRNA-modifying enzymes, and genes essential for mitochondrial metabolism and protein translation, which we successfully targeted in preclinical trials. We identify leucine usage as a key factor driving the growth of aggressive PAX-fusion tumors, as limiting its bioavailability impaired oxidative phosphorylation and mitochondrial metabolism, delaying tumor progression and improving survival in vivo. Our data provide a compelling list of actionable targets and suggest promising new strategies to treat this tumor.
Collapse
Affiliation(s)
- Bhargab Kalita
- Department of Pathology and Perlmutter Cancer Institute, New York University School of Medicine, New York, NY 10016, USA.
| | - Gerard Martinez-Cebrian
- Department of Pathology and Perlmutter Cancer Institute, New York University School of Medicine, New York, NY 10016, USA; Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain
| | - Justina McEvoy
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 323, Memphis, TN 38105, USA
| | - Melody Allensworth
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 323, Memphis, TN 38105, USA
| | - Michelle Knight
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 323, Memphis, TN 38105, USA; Department of Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alessandro Magli
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA; Genomic Medicine Unit, Sanofi, 225nd Avenue, Waltham, MA 02451, USA
| | - Rita C R Perlingeiro
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 323, Memphis, TN 38105, USA
| | - Elizabeth Stewart
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 323, Memphis, TN 38105, USA; Department of Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Brian David Dynlacht
- Department of Pathology and Perlmutter Cancer Institute, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
2
|
Karpinska MA, Zhu Y, Fakhraei Ghazvini Z, Ramasamy S, Barbieri M, Cao TBN, Varahram N, Aljahani A, Lidschreiber M, Papantonis A, Oudelaar AM. CTCF depletion decouples enhancer-mediated gene activation from chromatin hub formation. Nat Struct Mol Biol 2025:10.1038/s41594-025-01555-z. [PMID: 40360814 DOI: 10.1038/s41594-025-01555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 04/09/2025] [Indexed: 05/15/2025]
Abstract
Enhancers and promoters interact in three-dimensional (3D) chromatin structures to regulate gene expression. Here we characterize the mechanisms that drive the formation and function of these structures in a lymphoid-to-myeloid transdifferentiation system. Based on analyses at base pair resolution, we demonstrate a close correlation between binding of regulatory proteins, formation of chromatin interactions and gene expression. Multi-way interaction analyses and computational modeling show that tissue-specific gene loci are organized into chromatin hubs, characterized by cooperative interactions between multiple enhancers, promoters and CTCF-binding sites. While depletion of CTCF strongly impairs the formation of these chromatin hubs, the effects of CTCF depletion on gene expression are modest and can be explained by rewired enhancer-promoter interactions. These findings demonstrate a role for enhancer-promoter interactions in gene regulation that is independent of cooperative interactions in chromatin hubs. Together, these results contribute to our understanding of the structure-function relationship of the genome during cellular differentiation.
Collapse
Affiliation(s)
- Magdalena A Karpinska
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Georg August University of Göttingen, Göttingen, Germany
| | - Yi Zhu
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Georg August University of Göttingen, Göttingen, Germany
| | - Zahra Fakhraei Ghazvini
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Georg August University of Göttingen, Göttingen, Germany
| | - Shyam Ramasamy
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Georg August University of Göttingen, Göttingen, Germany
| | - Mariano Barbieri
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - T B Ngoc Cao
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Georg August University of Göttingen, Göttingen, Germany
| | - Natalie Varahram
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Georg August University of Göttingen, Göttingen, Germany
| | - Abrar Aljahani
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Georg August University of Göttingen, Göttingen, Germany
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Michael Lidschreiber
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - A Marieke Oudelaar
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
3
|
Masuda S, Komatsu T, Atia S, Suzuki T, Hayashi M, Toyoda A, Kimura H, Inagaki T. Iron-Dependent JMJD1A-Mediated Demethylation of H3K9me2 Regulates Gene Expression During Adipogenesis in a Spatial Genome Organization-Dependent Manner. Genes Cells 2025; 30:e70023. [PMID: 40289791 PMCID: PMC12035669 DOI: 10.1111/gtc.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/28/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025]
Abstract
Chromatin restructuring across multiple hierarchical scales directs lineage-specific gene expression during cell differentiation. Here, we investigated the iron-dependent demethylation of histone H3 lysine 9 dimethylation (H3K9me2) by the demethylase jumonji domain-containing 1A (JMJD1A) in adipocyte differentiation. Using the 3T3-L1 adipocyte differentiation model, we show that JMJD1A knockdown increases H3K9me2 levels, whereas forced expression of wild-type JMJD1A reduces H3K9me2 levels within the A compartment, as defined by megabase scale high-throughput chromosome conformation capture (Hi-C) data. In contrast, a JMJD1A mutant defective in iron coordination was unable to demethylate H3K9me2. Genome-wide analyses of H3K9me2 levels at transcription start sites on a kilobase scale demonstrated that JMJD1A targets genes involved in peroxisome proliferator-activated receptor signaling and lipid metabolism in an iron-dependent manner, supporting a model in which H3K9me2 demethylation facilitates adipogenic transcription networks. Furthermore, we examined the relationship between H3K9me2 and lamin B1 levels within lamina-associated domains (LADs) specifically reorganized during differentiation. Although LADs with higher H3K9me2 exhibited modestly elevated lamin B1 association in preadipocytes, lamin B1 levels declined during differentiation regardless of H3K9me2 status. These findings emphasize the importance of the iron-dependent enzymatic function in JMJD1A and broaden our understanding of how specific H3K9 demethylases coordinate compartmentalized epigenetic programs during adipogenesis.
Collapse
Affiliation(s)
- Shinnosuke Masuda
- Laboratory of Epigenetics and MetabolismInstitute for Molecular and Cellular Regulation, Gunma UniversityMaebashiGunmaJapan
| | - Tetsuro Komatsu
- Laboratory of Epigenetics and MetabolismInstitute for Molecular and Cellular Regulation, Gunma UniversityMaebashiGunmaJapan
| | - Safiya Atia
- Laboratory of Epigenetics and MetabolismInstitute for Molecular and Cellular Regulation, Gunma UniversityMaebashiGunmaJapan
| | - Tomohiro Suzuki
- Laboratory of Epigenetics and MetabolismInstitute for Molecular and Cellular Regulation, Gunma UniversityMaebashiGunmaJapan
| | - Mayuko Hayashi
- Laboratory of Epigenetics and MetabolismInstitute for Molecular and Cellular Regulation, Gunma UniversityMaebashiGunmaJapan
| | - Atsushi Toyoda
- Advanced Genomics CenterNational Institute of GeneticsMishimaJapan
| | - Hiroshi Kimura
- Cell Biology CenterInstitute of Integrated Research, Institute of Science TokyoYokohamaJapan
| | - Takeshi Inagaki
- Laboratory of Epigenetics and MetabolismInstitute for Molecular and Cellular Regulation, Gunma UniversityMaebashiGunmaJapan
| |
Collapse
|
4
|
Rial SA, You Z, Vivoli A, Paré F, Sean D, AlKhoury A, Lavoie G, Civelek M, Martinez-Sanchez A, Roux PP, Durcan TM, Lim GE. 14-3-3ζ allows for adipogenesis by modulating chromatin accessibility during the early stages of adipocyte differentiation. Mol Metab 2025; 97:102159. [PMID: 40306359 DOI: 10.1016/j.molmet.2025.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/17/2025] [Accepted: 04/23/2025] [Indexed: 05/02/2025] Open
Abstract
OBJECTIVE We previously established the scaffold protein 14-3-3ζ as a critical regulator of adipogenesis and adiposity, but whether 14-3-3ζ exerted its regulatory functions in mature adipocytes or in adipose progenitor cells (APCs) remained unclear. METHODS To decipher which cell type accounted for 14-3-3ζ-regulated adiposity, adipocyte- (Adipoq14-3-3ζKO) and APC-specific (Pdgfra14-3-3ζKO) 14-3-3ζ knockout mice were generated. To further understand how 14-3-3ζ regulates adipogenesis, Tandem Affinity Purification (TAP)-tagged 14-3-3ζ-expressing 3T3-L1 preadipocytes (TAP-3T3-L1) were generated with CRISPR-Cas9, and affinity proteomics was used to examine how the nuclear 14-3-3ζ interactome changes during the initial stages of adipogenesis. ATAC-seq was used to determine how 14-3-3ζ depletion modulates chromatin accessibility during differentiation. RESULTS We show a pivotal role for 14-3-3ζ in APC differentiation, whereby male and female Pdgfra14-3-3ζKO mice displayed impaired or potentiated weight gain, respectively, as well as fat mass. Proteomics revealed that regulators of chromatin remodeling, like DNA methyltransferase 1 (DNMT1) and histone deacetylase 1 (HDAC1), were significantly enriched in the nuclear 14-3-3ζ interactome and their activities were impacted upon 14-3-3ζ depletion. Enhancing DNMT activity with S-Adenosyl methionine rescued the differentiation of 14-3-3ζ-depleted 3T3-L1 cells. ATAC-seq revealed that 14-3-3ζ depletion impacted the accessibility of up to 1,244 chromatin regions corresponding in part to adipogenic genes, promoters, and enhancers during the initial stages of adipogenesis. Finally, 14-3-3ζ-regulated chromatin accessibility correlated with the expression of key adipogenic genes. CONCLUSION Our study establishes 14-3-3ζ as a crucial epigenetic regulator of adipogenesis and highlights the usefulness of deciphering the nuclear 14-3-3ζ interactome to identify novel pro-adipogenic factors and pathways.
Collapse
Affiliation(s)
- Sabri A Rial
- Department of Medicine, Université de Montréal, Montreal, QC, Canada; Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| | - Zhipeng You
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Alexis Vivoli
- Department of Medicine, Université de Montréal, Montreal, QC, Canada; Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Fédéric Paré
- Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Daphné Sean
- Department of Medicine, Université de Montréal, Montreal, QC, Canada; Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Amal AlKhoury
- Department of Medicine, Université de Montréal, Montreal, QC, Canada; Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Geneviève Lavoie
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Mete Civelek
- Department of Biomedical Engineering, University of Virginia, Charlottesville, United States; Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, United States
| | - Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London, UK
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Thomas M Durcan
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Gareth E Lim
- Department of Medicine, Université de Montréal, Montreal, QC, Canada; Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| |
Collapse
|
5
|
Luo X, Huang B, Xu P, Wang H, Zhang B, Lin L, Liao J, Hu M, Liu X, Huang J, Fu Y, Kilby MD, Kellems RE, Fan X, Xia Y, Baker PN, Qi H, Tong C. The Placenta Regulates Intrauterine Fetal Growth via Exosomal PPARγ. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404983. [PMID: 39951006 PMCID: PMC12005745 DOI: 10.1002/advs.202404983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 12/25/2024] [Indexed: 04/19/2025]
Abstract
Abnormal adipogenesis is a major contributor to fetal growth restriction (FGR) and its associated complications. However, the underlying etiology remains unclear. Here, it is reported that the placentas of women with pregnancies complicated with FGR exhibit peroxisome proliferator-activated receptor γ (PPARγ) inactivation. In mice, trophoblast-specific ablation of murine PPARγ reproduces the phenotype of human fetuses with FGR and defective adipogenesis. Coculture of trophoblasts with preadipocytes significantly improves preadipocyte commitment and differentiation and increases the transcription of a series of adipogenic genes via intercellular transfer of exosomal PPARγ proteins. Moreover, nanoparticle-mediated placenta-specific delivery of rosiglitazone (RGZ) significantly rescues adipogenesis defects in an FGR-induced mouse model. In summary, the placenta is a major reservoir of PPARγ. An insufficient supply of placental PPARγ to fetal preadipocytes via exosomes during late gestation is a major mechanism underlying FGR. Preclinically, placenta-targeted RGZ administration can be a promising interventional therapy for FGR and/or defective intrauterine fat development.
Collapse
Affiliation(s)
- Xiaofang Luo
- Reproductive Medicine CenterThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Ministry of Education International Collaborative Laboratory of Reproduction and DevelopmentChongqing400016China
| | - Biao Huang
- Department of ObstetricsWomen and Children's Hospital of Chongqing Medical UniversityChongqing401147China
| | - Ping Xu
- Department of Biochemistry & Molecular BiologyUniversity of Texas McGovern Medical School at HoustonHoustonTX77030USA
| | - Hao Wang
- Department of ObstetricsWomen and Children's Hospital of Chongqing Medical UniversityChongqing401147China
| | - Baozhen Zhang
- Department of ObstetricsWomen and Children's Hospital of Chongqing Medical UniversityChongqing401147China
| | - Li Lin
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Ministry of Education International Collaborative Laboratory of Reproduction and DevelopmentChongqing400016China
- Department of ObstetricsWomen and Children's Hospital of Chongqing Medical UniversityChongqing401147China
| | - Jiujiang Liao
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Ministry of Education International Collaborative Laboratory of Reproduction and DevelopmentChongqing400016China
- Department of ObstetricsWomen and Children's Hospital of Chongqing Medical UniversityChongqing401147China
| | - Mingyu Hu
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Ministry of Education International Collaborative Laboratory of Reproduction and DevelopmentChongqing400016China
| | - Xiyao Liu
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Ministry of Education International Collaborative Laboratory of Reproduction and DevelopmentChongqing400016China
| | - Jiayu Huang
- Reproductive Medicine CenterThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Yong Fu
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Ministry of Education International Collaborative Laboratory of Reproduction and DevelopmentChongqing400016China
| | - Mark D. Kilby
- Institute of Metabolism and System ResearchUniversity of Birmingham, and the Fetal Medicine CentreBirmingham Women's and Children's Foundation TrustEdgbastonB15 2TTUK
| | - Rodney E. Kellems
- Department of ObstetricsWomen and Children's Hospital of Chongqing Medical UniversityChongqing401147China
| | - Xiujun Fan
- Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| | - Yang Xia
- Department of ObstetricsWomen and Children's Hospital of Chongqing Medical UniversityChongqing401147China
| | - Philip N. Baker
- College of Life SciencesUniversity of LeicesterLeicesterLE1 7RHUK
| | - Hongbo Qi
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Ministry of Education International Collaborative Laboratory of Reproduction and DevelopmentChongqing400016China
| | - Chao Tong
- National Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChildren's Hospital of Chongqing Medical UniversityChongqing401122China
| |
Collapse
|
6
|
Saw AK, Madhok A, Bhattacharya A, Nandi S, Galande S. Integrated promoter-capture Hi-C and Hi-C analysis reveals fine-tuned regulation of the 3D chromatin architecture in colorectal cancer. Front Genet 2025; 16:1553469. [PMID: 40225268 PMCID: PMC11985782 DOI: 10.3389/fgene.2025.1553469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/24/2025] [Indexed: 04/15/2025] Open
Abstract
Introduction Hi-C is a widely used technique for mapping chromosomal interactions within a 3D genomic framework, however, its resolution is often constrained by sequencing depth, making it challenging to detect fine-scale interactions. To overcome this limitation, Promoter-Capture Hi-C (PCHi-C), as it selectively enriches for promoter-associated interactions, was employed. This study integrates PCHi-C and Hi-C datasets from colorectal cancer (CRC) models investigate chromosomal interaction dynamics across various regulatory levels, from cis-regulatory elements to topologically associated domains (TADs). The primary goal is to examine how genomic structural alterations shape the epigenomic landscape in CRC and to assess their potential role in colorectal cancer susceptibility. Methods PCHi-C and Hi-C datasets from multiple colorectal cancer (CRC) studies were integrated to enhance the resolution of chromatin interaction mapping. The analysis focused on identifying fine-scale interactions within topologically associated domains (TADs) while incorporating histone modification landscapes (H3K27ac, H3K4me3) and transcriptomic signatures from CRC cell lines and the TCGA database. For experimental validation, ChIP-quantitative PCR was performed at the promoters of target genes using the highly malignant colorectal cell line HT29 and compared it to an embryonic cell line NT2D1. Results Our integrated analysis revealed significant genomic structural instability in CRC cells, closely associated with tumor-suppressive transcriptional programs. We identified nine dysregulated genes, including long non-coding RNAs (MALAT1, NEAT1, FTX, and PVT1), small nucleolar RNAs (SNORA26 and SNORA71A), and protein-coding genes (TMPRSS11D, TSPEAR, and DSG4), all of which exhibited a substantial increase in expression in CRC cell lines compared to human embryonic stem cells (hESCs). Additionally, we observed enriched activation-associated histone modifications (H3K27ac and H3K4me3) at the potential enhancer regions of these genes, indicating possible transcriptional activation. ChIP-quantitative PCRs conducted using in the highly malignant CRC cell line HT29, compared to the embryonic cell line NT2D1, further validated these findings, reinforcing the link between altered chromosomal interactions and gene dysregulation in CRC. Discussion This study sheds light on the dynamic 3D genome organization in CRC, highlighting critical structural changes associated with disease-associated loci. The identification of nine dysregulated genes points to potential biomarkers for colorectal cancer, with implications for diagnostic and therapeutic strategies. The combination of Hi-C and PCHi-C offers a refined approach for detecting chromosomal interactions at a higher resolution, laying the foundation for future studies on cancer-associated chromatin architecture.
Collapse
Affiliation(s)
- Ajay Kumar Saw
- Laboratory of Chromatin Biology and Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Ayush Madhok
- Laboratory of Chromatin Biology and Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Anupam Bhattacharya
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam, India
- Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam, India
| | - Soumyadeep Nandi
- Data Sciences and Computational Biology Centre, Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram, Manesar, Haryana, India
| | - Sanjeev Galande
- Laboratory of Chromatin Biology and Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
- Center of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, India
| |
Collapse
|
7
|
Kim P, Ward RR, Sharp BM, Williams RW, Chen H. Hi-C sequencing data from cortex of laboratory rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.09.636698. [PMID: 39990341 PMCID: PMC11844369 DOI: 10.1101/2025.02.09.636698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The three-dimensional conformation and packaging of chromosomes modulates the spatial organization of the nucleus, orchestrating DNA replication and repair, maintaining genome stability and integrity, and regulating gene expression. Hi-C methods provide high-resolution data on chromatin-to-chromatin interactions both within and among chromosomes at a genome-wide scale. Hi-C resolves topologically-associated domains (TADs) and chromatin loops that are linked to cell-specific transcriptional control. We present a comprehensive Hi-C dataset generated from the frontal cortex of laboratory rats, encompassing a diverse group of inbred strains (SHR/OlaIpcv, BN-Lx/Cub, BXH6/Cub, HXB2/Ipcv, HXB10/Ipcv, HXB23/Ipcv, HXB31/Ipcv, LE/Stm, F344/Stm) and an F1 hybrid (SHR/Olalpcv x BN/NHsdMcwi). This dataset serves as a valuable resource for studying the mechanisms by which three-dimensional chromatin architecture governs gene expression in the brain. Strain-specific variations in genome organization can illuminate the influence of chromatin structure on gene expression, neuronal functionality, and the predisposition to neurological and behavioral disorders.
Collapse
|
8
|
Chen Q, Zheng J, Bian Q. Cell Fate Regulation During the Development of Infantile Hemangioma. J Invest Dermatol 2025; 145:266-279. [PMID: 39023471 DOI: 10.1016/j.jid.2024.06.1275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 07/20/2024]
Abstract
As the most common benign vascular tumor in infants, infantile hemangioma (IH) is characterized by rapid growth and vasculogenesis early in infancy, followed by spontaneous involution into fibrofatty tissues over time. Extensive evidence suggests that IH originates from hemangioma stem cells (HemSCs), a group of stem cells with clonal expansion and multi-directional differentiation capacity. However, the intricate mechanisms governing the cell fate transition of HemSCs during IH development remain elusive. Here we comprehensively examine the cellular composition of IH, emphasizing the nuanced properties of various IH cell types and their correlation with the clinical features of the tumor. We also summarize the current understanding of the regulatory pathways directing HemSC differentiation into endothelial cells (ECs), pericytes, and adipocytes throughout the stages of IH progression and involution. Furthermore, we discuss recent advances in unraveling the transcriptional and epigenetic regulation of EC and adipocyte development under physiological conditions, which offer crucial perspectives for understanding IH pathogenesis.
Collapse
Affiliation(s)
- Qiming Chen
- Department of Oromaxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jiawei Zheng
- Department of Oromaxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China.
| | - Qian Bian
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Zeng S, Li Z, Li X, Du Q, Zhang Y, Zhong Z, Wang H, Zhang S, Li P, Li H, Chen L, Jiang A, Shang P, Li M, Long K. Inhibition of triglyceride metabolism-associated enhancers alters lipid deposition during adipocyte differentiation. FASEB J 2025; 39:e70347. [PMID: 39873971 PMCID: PMC11774232 DOI: 10.1096/fj.202401137r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/28/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025]
Abstract
Triglyceride (TG) metabolism is a complex and highly coordinated biological process regulated by a series of genes, and its dysregulation can lead to the occurrence of disorders in lipid metabolism. However, the transcriptional regulatory mechanisms of crucial genes in TG metabolism mediated by enhancer-promoter interactions remain elusive. Here, we identified candidate enhancers regulating the Agpat2, Dgat1, Dgat2, Pnpla2, and Lipe genes in 3T3-L1 adipocytes by integrating epigenomic data (H3K27ac, H3K4me1, and DHS-seq) with chromatin three-dimensional interaction data. Luciferase reporter assays revealed that 11 enhancers exhibited fluorescence activity. The repression of enhancers using the dCas9-KRAB system revealed the functional roles of enhancers of Dgat2 and Pnpla2 in regulating their expression and TG metabolism. Furthermore, transcriptome analyses revealed that inhibition of Dgat2-En4 downregulated pathways associated with lipid metabolism, lipid biosynthesis, and adipocyte differentiation. Additionally, overexpression and motif mutation experiments of transcription factor found that two TFs, PPARG and RXRA, regulate the activity of Agpat2-En1, Dgat2-En4, and Pnpla2-En5. Our study identified functional enhancers regulating TG metabolism and elucidated potential regulatory mechanisms of TG deposition from enhancer-promoter interactions, providing insights into understanding lipid deposition.
Collapse
Affiliation(s)
- Sha Zeng
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Ziqi Li
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Xiaokai Li
- Chongqing Academy of Animal SciencesChongqingChina
- National Center of Technology Innovation for PigsChongqingChina
| | - Qinjiao Du
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Yu Zhang
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Zhining Zhong
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Haoming Wang
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Songling Zhang
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Penghao Li
- Jinxin Research Institute for Reproductive Medicine and GeneticsSichuan Jinxin Xi'nan Women's and Children's HospitalChengduChina
| | - Haohuan Li
- College of Veterinary MedicineSichuan Agricultural UniversityChengduChina
| | - Li Chen
- Chongqing Academy of Animal SciencesChongqingChina
- National Center of Technology Innovation for PigsChongqingChina
| | - Anan Jiang
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Peng Shang
- Animal Science CollegeTibet Agriculture and Animal Husbandry UniversityLinzhiChina
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Keren Long
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
- Chongqing Academy of Animal SciencesChongqingChina
- National Center of Technology Innovation for PigsChongqingChina
| |
Collapse
|
10
|
Su D, Jiang T, Song Y, Li D, Zhan S, Zhong T, Guo J, Li L, Zhang H, Wang L. Identification of a distal enhancer of Ucp1 essential for thermogenesis and mitochondrial function in brown fat. Commun Biol 2025; 8:31. [PMID: 39789228 PMCID: PMC11718246 DOI: 10.1038/s42003-025-07468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025] Open
Abstract
Uncoupling protein 1 (UCP1) is a crucial protein located in the mitochondrial inner membrane that mediates nonshivering thermogenesis. However, the molecular mechanisms by which enhancer-promoter chromatin interactions control Ucp1 transcriptional regulation in brown adipose tissue (BAT) are unclear. Here, we employed circularized chromosome conformation capture coupled with next-generation sequencing (4C-seq) to generate high-resolution chromatin interaction profiles of Ucp1 in interscapular brown adipose tissue (iBAT) and epididymal white adipose tissue (eWAT) and revealed marked changes in Ucp1 chromatin interaction between iBAT and eWAT. Next, we identified four iBAT-specific active enhancers of Ucp1, and three of them were activated by cold stimulation. Transcriptional repression of the Ucp1-En4 or Ucp1-En6 region significantly downregulated Ucp1 and impaired mitochondrial function in brown adipocytes. Furthermore, depletion of the cohesin subunit RAD21 decreased the interaction intensity between Ucp1-En4 and the Ucp1 promoter and downregulated Ucp1. EBF2 cooperated with the acetyltransferase CBP to regulate Ucp1-En4 activity and increase Ucp1 transcriptional activity. In vivo, lentivirus-mediated repression of Ucp1-En4 was injected into iBAT, resulting in impacted iBAT thermogenic capacity and impaired iBAT mitochondrial function under cold acclimation conditions. Studying the functional enhancers regulating Ucp1 expression in iBAT will provide important insights into the regulatory mechanisms of BAT activity.
Collapse
Affiliation(s)
- Duo Su
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Tingting Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yulong Song
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Die Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Siyuan Zhan
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Tao Zhong
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Jiazhong Guo
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Li Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Hongping Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Linjie Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.
| |
Collapse
|
11
|
Zhang J, Wang Q, Liu J, Duan Y, Liu Z, Zhang Z, Li C. Active enhancers: recent research advances and insights into disease. Biol Direct 2024; 19:112. [PMID: 39533395 PMCID: PMC11556110 DOI: 10.1186/s13062-024-00559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Precise regulation of gene expression is crucial to development. Enhancers, the core of gene regulation, determine the spatiotemporal pattern of gene transcription. Since many disease-associated mutations are characterized in enhancers, the research on enhancer will provide clues to precise medicine. Rapid advances in high-throughput sequencing technology facilitate the characterization of enhancers at genome wide, but understanding the functional mechanisms of enhancers remains challenging. Herein, we provide a panorama of enhancer characteristics, including epigenetic modifications, enhancer transcripts, and enhancer-promoter interaction patterns. Furthermore, we outline the applications of high-throughput sequencing technology and functional genomics methods in enhancer research. Finally, we discuss the role of enhancers in human disease and their potential as targets for disease prevention and treatment strategies.
Collapse
Affiliation(s)
- Junyou Zhang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
| | - Qilin Wang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
| | - Jiaxin Liu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
| | - Yingying Duan
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
| | - Zhaoshuo Liu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
| | - Ziyi Zhang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
| | - Chunyan Li
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China.
| |
Collapse
|
12
|
Kalita B, Martinez-Cebrian G, McEvoy J, Allensworth M, Knight M, Magli A, Perlingeiro RCR, Dyer MA, Stewart E, Dynlacht BD. PAX fusion proteins deregulate gene networks controlling mitochondrial translation in pediatric rhabdomyosarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606039. [PMID: 39211084 PMCID: PMC11360909 DOI: 10.1101/2024.07.31.606039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Alveolar rhabdomyosarcoma (ARMS) patients harboring PAX3-FOXO1 and PAX7-FOXO1 fusion proteins exhibit a greater incidence of tumor relapse, metastasis, and poor survival outcome, thereby underscoring the urgent need to develop effective therapies to treat this subtype of childhood cancer. To uncover mechanisms that contribute to tumor initiation, we developed a novel muscle progenitor model and used epigenomic approaches to unravel genome re-wiring events mediated by PAX3/7 fusion proteins. Importantly, these regulatory mechanisms are conserved across established ARMS cell lines, primary tumors, and orthotopic-patient derived xenografts. Among the key targets of PAX3- and PAX7-fusion proteins, we identified a cohort of oncogenes, FGF receptors, and genes essential for mitochondrial metabolism and protein translation, which we successfully targeted in preclinical trials. Our data suggest an explanation for the relative paucity of recurring mutations in this tumor, provide a compelling list of actionable targets, and suggest promising new strategies to treat this tumor.
Collapse
|
13
|
Chen Q, Rong H, Zhang L, Wang Y, Bian Q, Zheng J. KLF2 Orchestrates Pathological Progression of Infantile Hemangioma through Hemangioma Stem Cell Fate Decisions. J Invest Dermatol 2024; 144:1850-1864.e9. [PMID: 38382868 DOI: 10.1016/j.jid.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
Infantile hemangioma (IH) is the most prevalent vascular tumor during infancy, characterized by a rapid proliferation phase of disorganized blood vessels and spontaneous involution. IH possibly arises from a special type of multipotent stem cells called hemangioma stem cells (HemSCs), which could differentiate into endothelial cells, pericytes, and adipocytes. However, the underlying mechanisms that regulate the cell fate determination of HemSCs remain elusive. In this study, we unveil KLF2 as a candidate transcription factor involved in the control of HemSCs differentiation. KLF2 exhibits high expression in endothelial cells in proliferating IH but diminishes in adipocytes in involuting IH. Using a combination of in vitro culture of patient-derived HemSCs and HemSCs implantation mouse models, we show that KLF2 governs the proliferation, apoptosis, and cell cycle progression of HemSCs. Importantly, KLF2 acts as a crucial determinant of HemSC fate, directing their differentiation toward endothelial cells while inhibiting adipogenesis. Knockdown of KLF2 induces a proadipogenic transcriptome in HemSCs, leading to impaired blood vessel formation and accelerated adipocyte differentiation. Collectively, our findings highlight KLF2 as a critical regulator controlling the progression and involution of IH by modulating HemSC fate decisions.
Collapse
Affiliation(s)
- Qiming Chen
- Department of Oromaxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Hao Rong
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Zhang
- Department of Oromaxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yanan Wang
- Department of Oromaxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Qian Bian
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jiawei Zheng
- Department of Oromaxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China.
| |
Collapse
|
14
|
Yadav B, Singh D, Mantri S, Rishi V. Genome-wide Methylation Dynamics and Context-dependent Gene Expression Variability in Differentiating Preadipocytes. J Endocr Soc 2024; 8:bvae121. [PMID: 38966711 PMCID: PMC11222978 DOI: 10.1210/jendso/bvae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Indexed: 07/06/2024] Open
Abstract
Obesity, characterized by the accumulation of excess fat, is a complex condition resulting from the combination of genetic and epigenetic factors. Recent studies have found correspondence between DNA methylation and cell differentiation, suggesting a role of the former in cell fate determination. There is a lack of comprehensive understanding concerning the underpinnings of preadipocyte differentiation, specifically when cells are undergoing terminal differentiation (TD). To gain insight into dynamic genome-wide methylation, 3T3 L1 preadipocyte cells were differentiated by a hormone cocktail. The genomic DNA was isolated from undifferentiated cells and 4 hours, 2 days postdifferentiated cells, and 15 days TD cells. We employed whole-genome bisulfite sequencing (WGBS) to ascertain global genomic DNA methylation alterations at single base resolution as preadipocyte cells differentiate. The genome-wide distribution of DNA methylation showed similar overall patterns in pre-, post-, and terminally differentiated adipocytes, according to WGBS analysis. DNA methylation decreases at 4 hours after differentiation initiation, followed by methylation gain as cells approach TD. Studies revealed novel differentially methylated regions (DMRs) associated with adipogenesis. DMR analysis suggested that though DNA methylation is global, noticeable changes are observed at specific sites known as "hotspots." Hotspots are genomic regions rich in transcription factor (TF) binding sites and exhibit methylation-dependent TF binding. Subsequent analysis indicated hotspots as part of DMRs. The gene expression profile of key adipogenic genes in differentiating adipocytes is context-dependent, as we found a direct and inverse relationship between promoter DNA methylation and gene expression.
Collapse
Affiliation(s)
- Binduma Yadav
- Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
- Regional Center for Biotechnology, Faridabad, Haryana 160014, India
| | - Dalwinder Singh
- Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
- Department of Anatomy and Cell Biology, Western University, London, Ontario N6A 5C1, Canada
| | - Shrikant Mantri
- Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| | - Vikas Rishi
- Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| |
Collapse
|
15
|
Martitz A, Schulz EG. Spatial orchestration of the genome: topological reorganisation during X-chromosome inactivation. Curr Opin Genet Dev 2024; 86:102198. [PMID: 38663040 DOI: 10.1016/j.gde.2024.102198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 06/11/2024]
Abstract
Genomes are organised through hierarchical structures, ranging from local kilobase-scale cis-regulatory contacts to large chromosome territories. Most notably, (sub)-compartments partition chromosomes according to transcriptional activity, while topologically associating domains (TADs) define cis-regulatory landscapes. The inactive X chromosome in mammals has provided unique insights into the regulation and function of the three-dimensional (3D) genome. Concurrent with silencing of the majority of genes and major alterations of its chromatin state, the X chromosome undergoes profound spatial rearrangements at multiple scales. These include the emergence of megadomains, alterations of the compartment structure and loss of the majority of TADs. Moreover, the Xist locus, which orchestrates X-chromosome inactivation, has provided key insights into regulation and function of regulatory domains. This review provides an overview of recent insights into the control of these structural rearrangements and contextualises them within a broader understanding of 3D genome organisation.
Collapse
Affiliation(s)
- Alexandra Martitz
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Edda G Schulz
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
16
|
Bi S, Jiang X, Ji Q, Wang Z, Ren J, Wang S, Yu Y, Wang R, Liu Z, Liu J, Hu J, Sun G, Wu Z, Diao Z, Li J, Sun L, Izpisua Belmonte JC, Zhang W, Liu GH, Qu J. The sirtuin-associated human senescence program converges on the activation of placenta-specific gene PAPPA. Dev Cell 2024; 59:991-1009.e12. [PMID: 38484732 DOI: 10.1016/j.devcel.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/15/2023] [Accepted: 02/20/2024] [Indexed: 04/25/2024]
Abstract
Sirtuins are pro-longevity genes with chromatin modulation potential, but how these properties are connected is not well understood. Here, we generated a panel of isogeneic human stem cell lines with SIRT1-SIRT7 knockouts and found that any sirtuin deficiency leads to accelerated cellular senescence. Through large-scale epigenomic analyses, we show how sirtuin deficiency alters genome organization and that genomic regions sensitive to sirtuin deficiency are preferentially enriched in active enhancers, thereby promoting interactions within topologically associated domains and the formation of de novo enhancer-promoter loops. In all sirtuin-deficient human stem cell lines, we found that chromatin contacts are rewired to promote aberrant activation of the placenta-specific gene PAPPA, which controls the pro-senescence effects associated with sirtuin deficiency and serves as a potential aging biomarker. Based on our survey of the 3D chromatin architecture, we established connections between sirtuins and potential target genes, thereby informing the development of strategies for aging interventions.
Collapse
Affiliation(s)
- Shijia Bi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zehua Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Science and Engineering, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; The Fifth People's Hospital of Chongqing, Chongqing 400062, China
| | - Yang Yu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Ruoqi Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhang Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianli Hu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zhiqing Diao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Liang Sun
- NHC Beijing Institute of Geriatrics, NHC Key Laboratory of Geriatrics, Institute of Geriatric Medicine of Chinese Academy of Medical Sciences, National Center of Gerontology/Beijing Hospital, Beijing 100730, China; Department of Clinical Laboratory, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | | | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Aging Biomarker Consortium, Beijing 100101, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Aging Biomarker Consortium, Beijing 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Aging Biomarker Consortium, Beijing 100101, China.
| |
Collapse
|
17
|
Pollex T, Rabinowitz A, Gambetta MC, Marco-Ferreres R, Viales RR, Jankowski A, Schaub C, Furlong EEM. Enhancer-promoter interactions become more instructive in the transition from cell-fate specification to tissue differentiation. Nat Genet 2024; 56:686-696. [PMID: 38467791 PMCID: PMC11018526 DOI: 10.1038/s41588-024-01678-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/31/2024] [Indexed: 03/13/2024]
Abstract
To regulate expression, enhancers must come in proximity to their target gene. However, the relationship between the timing of enhancer-promoter (E-P) proximity and activity remains unclear, with examples of uncoupled, anticorrelated and correlated interactions. To assess this, we selected 600 characterized enhancers or promoters with tissue-specific activity in Drosophila embryos and performed Capture-C in FACS-purified myogenic or neurogenic cells during specification and tissue differentiation. This enabled direct comparison between E-P proximity and activity transitioning from OFF-to-ON and ON-to-OFF states across developmental conditions. This showed remarkably similar E-P topologies between specified muscle and neuronal cells, which are uncoupled from activity. During tissue differentiation, many new distal interactions emerge where changes in E-P proximity reflect changes in activity. The mode of E-P regulation therefore appears to change as embryogenesis proceeds, from largely permissive topologies during cell-fate specification to more instructive regulation during terminal tissue differentiation, when E-P proximity is coupled to activation.
Collapse
Affiliation(s)
- Tim Pollex
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Directors' Research Unit, Heidelberg, Germany
| | - Adam Rabinowitz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Maria Cristina Gambetta
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Raquel Marco-Ferreres
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Rebecca R Viales
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Aleksander Jankowski
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | - Christoph Schaub
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.
| |
Collapse
|
18
|
Ibrahim DM. Enhancer contacts during embryonic development show diverse interaction modes and modest yet significant increases upon gene activation. Nat Genet 2024; 56:558-560. [PMID: 38528242 DOI: 10.1038/s41588-024-01700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Affiliation(s)
- Daniel M Ibrahim
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
19
|
Rial SA, You Z, Vivoli A, Sean D, Al-Khoury A, Lavoie G, Civelek M, Martinez-Sanchez A, Roux PP, Durcan TM, Lim GE. 14-3-3ζ regulates adipogenesis by modulating chromatin accessibility during the early stages of adipocyte differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585495. [PMID: 38562727 PMCID: PMC10983991 DOI: 10.1101/2024.03.18.585495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We previously established the scaffold protein 14-3-3ζ as a critical regulator of adipogenesis and adiposity, but the temporal specificity of its action during adipocyte differentiation remains unclear. To decipher if 14-3-3ζ exerts its regulatory functions on mature adipocytes or on adipose precursor cells (APCs), we generated Adipoq14-3-3ζKO and Pdgfra14-3-3ζKO mouse models. Our findings revealed a pivotal role for 14-3-3ζ in APC differentiation in a sex-dependent manner, whereby male and female Pdgfra14-3-3ζKO mice display impaired or potentiated weight gain, respectively, as well as fat mass. To better understand how 14-3-3ζ regulates the adipogenic transcriptional program in APCs, CRISPR-Cas9 was used to generate TAP-tagged 14-3-3ζ-expressing 3T3-L1 preadipocytes. Using these cells, we examined if the 14-3-3ζ nuclear interactome is enriched with adipogenic regulators during differentiation. Regulators of chromatin remodeling, such as DNMT1 and HDAC1, were enriched in the nuclear interactome of 14-3-3ζ, and their activities were impacted upon 14-3-3ζ depletion. The interactions between 14-3-3ζ and chromatin-modifying enzymes suggested that 14-3-3ζ may control chromatin remodeling during adipogenesis, and this was confirmed by ATAC-seq, which revealed that 14-3-3ζ depletion impacted the accessibility of up to 1,244 chromatin regions corresponding in part to adipogenic genes, promoters, and enhancers during the initial stages of adipogenesis. Moreover, 14-3-3ζ-dependent chromatin accessibility was found to directly correlate with the expression of key adipogenic genes. Altogether, our study establishes 14-3-3ζ as a crucial epigenetic regulator of adipogenesis and highlights the usefulness of deciphering the nuclear 14-3-3ζ interactome to identify novel pro-adipogenic factors and pathways.
Collapse
Affiliation(s)
- SA Rial
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Z You
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - A Vivoli
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - D Sean
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Amal Al-Khoury
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - G Lavoie
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - M Civelek
- Department of Biomedical Engineering, University of Virginia, Charlottesville, United States
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908
| | - A Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London, UK
| | - Roux PP
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - TM Durcan
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - GE Lim
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
20
|
Wang JJ, Zhang XY, Zeng Y, Liu QC, Feng XL, Yan JM, Li MH, Reiter RJ, Shen W. Melatonin alleviates the toxic effect of di(2-ethylhexyl) phthalate on oocyte quality resulting from CEBPB suppression during primordial follicle formation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:132997. [PMID: 38008054 DOI: 10.1016/j.jhazmat.2023.132997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 11/11/2023] [Indexed: 11/28/2023]
Abstract
Presently, the exposure of plasticizers to humans and animals occurs daily, which pose a potential threat to reproductive health. In the present study, a pregnant mouse model exposed to di(2-ethylhexyl) phthalate (DEHP, one of the most common plasticizers) and melatonin was established, and the single-cell transcriptome technology was applied to investigate the effects of melatonin in ovarian cells against DEHP. Results showed that DEHP markedly altered the gene expression pattern of ovarian cells, and severely weakened the histone methylation modification of oocytes. The administration of melatonin recovered the expression of LHX8 and SOHLH1 proteins that essential for primordial follicle formation, and increased the expression of CEBPB, as well as key genes of histone methylation modification (such as Smyd3 and Kdm5a). In addition, the ovarian damage caused by DEHP was also relieved after the overexpression of CEBPB, which suggested melatonin could improve primordial follicle formation progress via enhancing CEBPB expression in mice. Besides, the apoptosis of ovarian cells induced by DEHP also was diminished by melatonin. The study provides evidence of melatonin preventing the damage mediated by plasticizers on the reproductive system in females and CEBPB may serve as a downstream target factor of melatonin in the process.
Collapse
Affiliation(s)
- Jun-Jie Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao-Yuan Zhang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Yue Zeng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Qing-Chun Liu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Xin-Lei Feng
- Animal Products Quality and Safety Center, Shandong Animal Husbandry and Veterinary Bureau, Jinan 250100, China
| | - Jia-Mao Yan
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Ming-Hao Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health, San Antonio, TX 78229, USA
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
21
|
Li X, Zeng S, Chen L, Zhang Y, Li X, Zhang B, Su D, Du Q, Zhang J, Wang H, Zhong Z, Zhang J, Li P, Jiang A, Long K, Li M, Ge L. An intronic enhancer of Cebpa regulates adipocyte differentiation and adipose tissue development via long-range loop formation. Cell Prolif 2024; 57:e13552. [PMID: 37905345 PMCID: PMC10905358 DOI: 10.1111/cpr.13552] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 11/02/2023] Open
Abstract
Cebpa is a master transcription factor gene for adipogenesis. However, the mechanisms of enhancer-promoter chromatin interactions controlling Cebpa transcriptional regulation during adipogenic differentiation remain largely unknown. To reveal how the three-dimensional structure of Cebpa changes during adipogenesis, we generated high-resolution chromatin interactions of Cebpa in 3T3-L1 preadipocytes and 3T3-L1 adipocytes using circularized chromosome conformation capture sequencing (4C-seq). We revealed dramatic changes in chromatin interactions and chromatin status at interaction sites during adipogenic differentiation. Based on this, we identified five active enhancers of Cebpa in 3T3-L1 adipocytes through epigenomic data and luciferase reporter assays. Next, epigenetic repression of Cebpa-L1-AD-En2 or -En3 by the dCas9-KRAB system significantly down-regulated Cebpa expression and inhibited adipocyte differentiation. Furthermore, experimental depletion of cohesin decreased the interaction intensity between Cebpa-L1-AD-En2 and the Cebpa promoter and down-regulated Cebpa expression, indicating that long-range chromatin loop formation was mediated by cohesin. Two transcription factors, RXRA and PPARG, synergistically regulate the activity of Cebpa-L1-AD-En2. To test whether Cebpa-L1-AD-En2 plays a role in adipose tissue development, we injected dCas9-KRAB-En2 lentivirus into the inguinal white adipose tissue (iWAT) of mice to suppress the activity of Cebpa-L1-AD-En2. Repression of Cebpa-L1-AD-En2 significantly decreased Cebpa expression and adipocyte size, altered iWAT transcriptome, and affected iWAT development. We identified functional enhancers regulating Cebpa expression and clarified the crucial roles of Cebpa-L1-AD-En2 and Cebpa promoter interaction in adipocyte differentiation and adipose tissue development.
Collapse
Affiliation(s)
- Xiaokai Li
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Sha Zeng
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Li Chen
- Chongqing Academy of Animal SciencesChongqingChina
- National Center of Technology Innovation for PigsChongqingChina
- Key Laboratory of Pig Industry ScienceMinistry of AgricultureChongqingChina
| | - Yu Zhang
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Xuemin Li
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Biwei Zhang
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Duo Su
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Qinjiao Du
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Jiaman Zhang
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Haoming Wang
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Zhining Zhong
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Jinwei Zhang
- Chongqing Academy of Animal SciencesChongqingChina
- National Center of Technology Innovation for PigsChongqingChina
- Key Laboratory of Pig Industry ScienceMinistry of AgricultureChongqingChina
| | - Penghao Li
- Jinxin Research Institute for Reproductive Medicine and GeneticsSichuan Jinxin Xi'nan Women's and Children's HospitalChengduChina
| | - Anan Jiang
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Keren Long
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
- Chongqing Academy of Animal SciencesChongqingChina
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Liangpeng Ge
- Chongqing Academy of Animal SciencesChongqingChina
- National Center of Technology Innovation for PigsChongqingChina
- Key Laboratory of Pig Industry ScienceMinistry of AgricultureChongqingChina
| |
Collapse
|
22
|
Zhao Y, Skovgaard Z, Wang Q. Regulation of adipogenesis by histone methyltransferases. Differentiation 2024; 136:100746. [PMID: 38241884 DOI: 10.1016/j.diff.2024.100746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/15/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
Epigenetic regulation is a critical component of lineage determination. Adipogenesis is the process through which uncommitted stem cells or adipogenic precursor cells differentiate into adipocytes, the most abundant cell type of the adipose tissue. Studies examining chromatin modification during adipogenesis have provided further understanding of the molecular blueprint that controls the onset of adipogenic differentiation. Unlike histone acetylation, histone methylation has context dependent effects on the activity of a transcribed region of DNA, with individual or combined marks on different histone residues providing distinct signals for gene expression. Over half of the 42 histone methyltransferases identified in mammalian cells have been investigated in their role during adipogenesis, but across the large body of literature available, there is a lack of clarity over potential correlations or emerging patterns among the different players. In this review, we will summarize important findings from studies published in the past 15 years that have investigated the role of histone methyltransferases during adipogenesis, including both protein arginine methyltransferases (PRMTs) and lysine methyltransferases (KMTs). We further reveal that PRMT1/4/5, H3K4 KMTs (MLL1, MLL3, MLL4, SMYD2 and SET7/9) and H3K27 KMTs (EZH2) all play positive roles during adipogenesis, while PRMT6/7 and H3K9 KMTs (G9a, SUV39H1, SUV39H2, and SETDB1) play negative roles during adipogenesis.
Collapse
Affiliation(s)
| | | | - Qinyi Wang
- Computer Science Department, California State Polytechnic University Pomona, USA
| |
Collapse
|
23
|
Ramos-Alonso L, Chymkowitch P. Maintaining transcriptional homeostasis during cell cycle. Transcription 2024; 15:1-21. [PMID: 37655806 PMCID: PMC11093055 DOI: 10.1080/21541264.2023.2246868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
The preservation of gene expression patterns that define cellular identity throughout the cell division cycle is essential to perpetuate cellular lineages. However, the progression of cells through different phases of the cell cycle severely disrupts chromatin accessibility, epigenetic marks, and the recruitment of transcriptional regulators. Notably, chromatin is transiently disassembled during S-phase and undergoes drastic condensation during mitosis, which is a significant challenge to the preservation of gene expression patterns between cell generations. This article delves into the specific gene expression and chromatin regulatory mechanisms that facilitate the preservation of transcriptional identity during replication and mitosis. Furthermore, we emphasize our recent findings revealing the unconventional role of yeast centromeres and mitotic chromosomes in maintaining transcriptional fidelity beyond mitosis.
Collapse
Affiliation(s)
- Lucía Ramos-Alonso
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Pierre Chymkowitch
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
24
|
Pessa JC, Joutsen J, Sistonen L. Transcriptional reprogramming at the intersection of the heat shock response and proteostasis. Mol Cell 2024; 84:80-93. [PMID: 38103561 DOI: 10.1016/j.molcel.2023.11.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
Cellular homeostasis is constantly challenged by a myriad of extrinsic and intrinsic stressors. To mitigate the stress-induced damage, cells activate transient survival programs. The heat shock response (HSR) is an evolutionarily well-conserved survival program that is activated in response to proteotoxic stress. The HSR encompasses a dual regulation of transcription, characterized by rapid activation of genes encoding molecular chaperones and concomitant global attenuation of non-chaperone genes. Recent genome-wide approaches have delineated the molecular depth of stress-induced transcriptional reprogramming. The dramatic rewiring of gene and enhancer networks is driven by key transcription factors, including heat shock factors (HSFs), that together with chromatin-modifying enzymes remodel the 3D chromatin architecture, determining the selection of either gene activation or repression. Here, we highlight the current advancements of molecular mechanisms driving transcriptional reprogramming during acute heat stress. We also discuss the emerging implications of HSF-mediated stress signaling in the context of physiological and pathological conditions.
Collapse
Affiliation(s)
- Jenny C Pessa
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jenny Joutsen
- Department of Pathology, Lapland Central Hospital, Lapland Wellbeing Services County, Rovaniemi, Finland
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
25
|
Matsumura Y, Osborne TF, Ito R, Takahashi H, Sakai J. β-Adrenergic Signal and Epigenomic Regulatory Process for Adaptive Thermogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:213-227. [PMID: 39289284 DOI: 10.1007/978-981-97-4584-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Activation of β-adrenergic (β-AR) signaling induces fight-or-flight stress responses which include enhancement of cardiopulmonary function, metabolic regulation, and muscle contraction. Classical dogma for β-AR signaling has dictated that the receptor-mediated response results in an acute and transient signal. However, more recent studies support more wide-ranging roles for β-AR signaling with long-term effects including cell differentiation that requires precisely timed and coordinated integration of many signaling pathways that culminate in precise epigenomic chromatin modifications. In this chapter, we discuss cold stress/β-AR signaling-induced epigenomic changes in adipose tissues that influence adaptive thermogenesis. We highlight recent studies showing dual roles for the histone demethylase JMJD1A as a mediator of both acute and chronic thermogenic responses to cold stress, in two distinct thermogenic tissues, and through two distinct molecular mechanisms. β-AR signaling not only functions through transient signals during acute stress responses but also relays a more sustained signal to long-term adaptation to environmental changes.
Collapse
Affiliation(s)
- Yoshihiro Matsumura
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, Akita, Japan
| | - Timothy F Osborne
- Institute for Fundamental Biomedical Research Division of Endocrinology, Diabetes and Metabolism Johns Hopkins University School of Medicine, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Ryo Ito
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroki Takahashi
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Juro Sakai
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan.
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
26
|
Romero MA, Pyle AD. 'Enhancing' skeletal muscle and stem cells in three-dimensions: genome regulation of skeletal muscle in development and disease. Curr Opin Genet Dev 2023; 83:102133. [PMID: 37951138 PMCID: PMC10872784 DOI: 10.1016/j.gde.2023.102133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 11/13/2023]
Abstract
The noncoding genome imparts important regulatory control over gene expression. In particular, gene enhancers represent a critical layer of control that integrates developmental and differentiation signals outside the cell into transcriptional outputs inside the cell. Recently, there has been an explosion in genomic techniques to probe enhancer control, function, and regulation. How enhancers are regulated and integrate signals in stem cell development and differentiation is largely an open question. In this review, we focus on the role gene enhancers play in muscle stem cell specification, differentiation, and progression. We pay specific attention toward the identification of muscle-specific enhancers, the binding of transcription factors to these enhancers, and how enhancers communicate to their target genes via three-dimensional looping.
Collapse
Affiliation(s)
- Matthew A Romero
- Department of Microbiology, Immunology and Molecular Genetics, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA
| | - April D Pyle
- Department of Microbiology, Immunology and Molecular Genetics, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
27
|
Scadden AW, Graybill AS, Hull-Crew C, Lundberg TJ, Lande NM, Klocko AD. Histone deacetylation and cytosine methylation compartmentalize heterochromatic regions in the genome organization of Neurospora crassa. Proc Natl Acad Sci U S A 2023; 120:e2311249120. [PMID: 37963248 PMCID: PMC10666030 DOI: 10.1073/pnas.2311249120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Chromosomes must correctly fold in eukaryotic nuclei for proper genome function. Eukaryotic organisms hierarchically organize their genomes, including in the fungus Neurospora crassa, where chromatin fiber loops compact into Topologically Associated Domain-like structures formed by heterochromatic region aggregation. However, insufficient data exist on how histone posttranslational modifications (PTMs), including acetylation, affect genome organization. In Neurospora, the HCHC complex [composed of the proteins HDA-1, CDP-2 (Chromodomain Protein-2), Heterochromatin Protein-1, and CHAP (CDP-2 and HDA-1 Associated Protein)] deacetylates heterochromatic nucleosomes, as loss of individual HCHC members increases centromeric acetylation, and alters the methylation of cytosines in DNA. Here, we assess whether the HCHC complex affects genome organization by performing Hi-C in strains deleted of the cdp-2 or chap genes. CDP-2 loss increases intra- and interchromosomal heterochromatic region interactions, while loss of CHAP decreases heterochromatic region compaction. Individual HCHC mutants exhibit different patterns of histone PTMs genome-wide, as CDP-2 deletion increases heterochromatic H4K16 acetylation, yet smaller heterochromatic regions lose H3K9 trimethylation and gain interheterochromatic region interactions; CHAP loss produces minimal acetylation changes but increases heterochromatic H3K9me3 enrichment. Loss of both CDP-2 and the DIM-2 DNA methyltransferase causes extensive genome disorder as heterochromatic-euchromatic contacts increase despite additional H3K9me3 enrichment. Our results highlight how the increased cytosine methylation in HCHC mutants ensures genome compartmentalization when heterochromatic regions become hyperacetylated without HDAC activity.
Collapse
Affiliation(s)
- Ashley W. Scadden
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO80918
| | - Alayne S. Graybill
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO80918
| | - Clayton Hull-Crew
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO80918
| | - Tiffany J. Lundberg
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO80918
| | - Nickolas M. Lande
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO80918
| | - Andrew D. Klocko
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO80918
| |
Collapse
|
28
|
Wang M, He B, Hao Y, Srinivasan D, Shrinet J, Fraser P. Cellular reprogramming is driven by widespread rewiring of promoter-enhancer interactions. BMC Biol 2023; 21:264. [PMID: 37981682 PMCID: PMC10658794 DOI: 10.1186/s12915-023-01766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Long-range interactions between promoters and cis-regulatory elements, such as enhancers, play critical roles in gene regulation. However, the role of three-dimensional (3D) chromatin structure in orchestrating changes in transcriptional regulation during direct cell reprogramming is not fully understood. RESULTS Here, we performed integrated analyses of chromosomal architecture, epigenetics, and gene expression using Hi-C, promoter Capture Hi-C (PCHi-C), ChIP-seq, and RNA-seq during trans-differentiation of Pre-B cells into macrophages with a β-estradiol inducible C/EBPαER transgene. Within 1h of β-estradiol induction, C/EBPα translocated from the cytoplasm to the nucleus, binding to thousands of promoters and putative regulatory elements, resulting in the downregulation of Pre-B cell-specific genes and induction of macrophage-specific genes. Hi-C results were remarkably consistent throughout trans-differentiation, revealing only a small number of TAD boundary location changes, and A/B compartment switches despite significant changes in the expression of thousands of genes. PCHi-C revealed widespread changes in promoter-anchored loops with decreased interactions in parallel with decreased gene expression, and new and increased promoter-anchored interactions in parallel with increased expression of macrophage-specific genes. CONCLUSIONS Overall, our data demonstrate that C/EBPα-induced trans-differentiation involves few changes in genome architecture at the level of TADs and A/B compartments, in contrast with widespread reorganization of thousands of promoter-anchored loops in association with changes in gene expression and cell identity.
Collapse
Affiliation(s)
- Miao Wang
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Bing He
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Yueling Hao
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Divyaa Srinivasan
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Jatin Shrinet
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Peter Fraser
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
29
|
Zhang Z, Cui Y, Su V, Wang D, Tol MJ, Cheng L, Wu X, Kim J, Rajbhandari P, Zhang S, Li W, Tontonoz P, Villanueva CJ, Sallam T. A PPARγ/long noncoding RNA axis regulates adipose thermoneutral remodeling in mice. J Clin Invest 2023; 133:e170072. [PMID: 37909330 PMCID: PMC10617768 DOI: 10.1172/jci170072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/06/2023] [Indexed: 11/03/2023] Open
Abstract
Interplay between energy-storing white adipose cells and thermogenic beige adipocytes contributes to obesity and insulin resistance. Irrespective of specialized niche, adipocytes require the activity of the nuclear receptor PPARγ for proper function. Exposure to cold or adrenergic signaling enriches thermogenic cells though multiple pathways that act synergistically with PPARγ; however, the molecular mechanisms by which PPARγ licenses white adipose tissue to preferentially adopt a thermogenic or white adipose fate in response to dietary cues or thermoneutral conditions are not fully elucidated. Here, we show that a PPARγ/long noncoding RNA (lncRNA) axis integrates canonical and noncanonical thermogenesis to restrain white adipose tissue heat dissipation during thermoneutrality and diet-induced obesity. Pharmacologic inhibition or genetic deletion of the lncRNA Lexis enhances uncoupling protein 1-dependent (UCP1-dependent) and -independent thermogenesis. Adipose-specific deletion of Lexis counteracted diet-induced obesity, improved insulin sensitivity, and enhanced energy expenditure. Single-nuclei transcriptomics revealed that Lexis regulates a distinct population of thermogenic adipocytes. We systematically map Lexis motif preferences and show that it regulates the thermogenic program through the activity of the metabolic GWAS gene and WNT modulator TCF7L2. Collectively, our studies uncover a new mode of crosstalk between PPARγ and WNT that preserves white adipose tissue plasticity.
Collapse
Affiliation(s)
- Zhengyi Zhang
- Division of Cardiology, Department of Medicine
- Department of Physiology, and
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Ya Cui
- Division of Computational Biomedicine, Biological Chemistry, University of California, Irvine, Irvine, California, USA
| | - Vivien Su
- Division of Cardiology, Department of Medicine
- Department of Physiology, and
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Dan Wang
- Division of Cardiology, Department of Medicine
- Department of Physiology, and
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Marcus J. Tol
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
| | - Lijing Cheng
- Division of Cardiology, Department of Medicine
- Department of Physiology, and
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Xiaohui Wu
- Division of Cardiology, Department of Medicine
- Department of Physiology, and
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Jason Kim
- Division of Cardiology, Department of Medicine
- Department of Physiology, and
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Prashant Rajbhandari
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sicheng Zhang
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Wei Li
- Division of Computational Biomedicine, Biological Chemistry, University of California, Irvine, Irvine, California, USA
| | - Peter Tontonoz
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
- Department of Biological Chemistry and
| | - Claudio J. Villanueva
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
- Department of Integrative Biology and Physiology, College of Life Sciences, UCLA, Los Angeles, California, USA
| | - Tamer Sallam
- Division of Cardiology, Department of Medicine
- Department of Physiology, and
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| |
Collapse
|
30
|
Parker SM, Davis ES, Phanstiel DH. Guiding the design of well-powered Hi-C experiments to detect differential loops. BIOINFORMATICS ADVANCES 2023; 3:vbad152. [PMID: 38023330 PMCID: PMC10645293 DOI: 10.1093/bioadv/vbad152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/28/2023] [Accepted: 10/14/2023] [Indexed: 12/01/2023]
Abstract
Motivation Three-dimensional chromatin structure plays an important role in gene regulation by connecting regulatory regions and gene promoters. The ability to detect the formation and loss of these loops in various cell types and conditions provides valuable information on the mechanisms driving these cell states and is critical for understanding long-range gene regulation. Hi-C is a powerful technique for characterizing 3D chromatin structure; however, Hi-C can quickly become costly and labor-intensive, and proper planning is required to ensure efficient use of time and resources while maintaining experimental rigor and well-powered results. Results To facilitate better planning and interpretation of human Hi-C experiments, we conducted a detailed evaluation of statistical power using publicly available Hi-C datasets, paying particular attention to the impact of loop size on Hi-C contacts and fold change compression. In addition, we have developed Hi-C Poweraid, a publicly hosted web application to investigate these findings. For experiments involving well-replicated cell lines, we recommend a total sequencing depth of at least 6 billion contacts per condition, split between at least two replicates to achieve the power to detect differences in the majority of loops. For experiments with higher variation, more replicates and deeper sequencing depths are required. Values for specific cases can be determined by using Hi-C Poweraid. This tool simplifies Hi-C power calculations, allowing for more efficient use of time and resources and more accurate interpretation of experimental results. Availability and implementation Hi-C Poweraid is available as an R Shiny application deployed at http://phanstiel-lab.med.unc.edu/poweraid/, with code available at https://github.com/sarmapar/poweraid.
Collapse
Affiliation(s)
- Sarah M Parker
- Curriculum in Bioinformatics and Computational Biology, Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Eric S Davis
- Curriculum in Bioinformatics and Computational Biology, Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Douglas H Phanstiel
- Curriculum in Bioinformatics and Computational Biology, Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
- Curriculum in Genetics and Molecular Biology, Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, 27599, United States
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, 27599, United States
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| |
Collapse
|
31
|
Gamberoni F, Borgese M, Pagiatakis C, Armenia I, Grazù V, Gornati R, Serio S, Papait R, Bernardini G. Iron Oxide Nanoparticles with and without Cobalt Functionalization Provoke Changes in the Transcription Profile via Epigenetic Modulation of Enhancer Activity. NANO LETTERS 2023; 23:9151-9159. [PMID: 37494138 PMCID: PMC10571150 DOI: 10.1021/acs.nanolett.3c01967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/22/2023] [Indexed: 07/28/2023]
Abstract
Despite the progress in the field of nanotoxicology, much about the cellular mechanisms that mediate the adverse effects of nanoparticles (NPs) and, in particular, the possible role of epigenetics in nanotoxicity, remains to be clarified. Therefore, we studied the changes occurring in the genome-wide distribution of H3K27ac, H3K4me1, H3K9me2, and H3K27me3 histone modifications and compared them with the transcriptome after exposing NIH3T3 cells to iron-based magnetic NPs (i.e., Fe2O3 and Fe2O3@Co NPs). We found that the transcription response is mainly due to changes in the genomic distribution of H3K27ac that can modulate the activity of enhancers. We propose that alteration of the epigenetic landscape is a key mechanism in defining the gene expression program changes resulting in nanotoxicity. With this approach, it is possible to construct a data set of genomic regions that could be useful for defining toxicity in a manner that is more comprehensive than what is possible with the present toxicology assays.
Collapse
Affiliation(s)
- Federica Gamberoni
- Department
of Biotechnology and Life Sciences, University
of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Marina Borgese
- Department
of Medicine and Surgery, University of Insubria, via Guicciardini 9, 21100 Varese, Italy
| | - Christina Pagiatakis
- Department
of Biotechnology and Life Sciences, University
of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
- IRCCS
Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Ilaria Armenia
- BioNanoSurf
Group, Instituto de Nanociencia y Materiales
de Aragón (INMA, CSIC-UNIZAR), Edificio I + D, 50018 Zaragoza, Spain
| | - Valeria Grazù
- BioNanoSurf
Group, Instituto de Nanociencia y Materiales
de Aragón (INMA, CSIC-UNIZAR), Edificio I + D, 50018 Zaragoza, Spain
| | - Rosalba Gornati
- Department
of Biotechnology and Life Sciences, University
of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Simone Serio
- Department
of Biotechnology and Life Sciences, University
of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
- IRCCS
Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
- Department
of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Pieve Emanuele, MI, Italy
| | - Roberto Papait
- Department
of Biotechnology and Life Sciences, University
of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
- IRCCS
Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Giovanni Bernardini
- Department
of Biotechnology and Life Sciences, University
of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| |
Collapse
|
32
|
Baldini F, Zeaiter L, Diab F, Zbeeb H, Cuneo L, Pagano A, Portincasa P, Diaspro A, Vergani L. Nuclear and chromatin rearrangement associate to epigenome and gene expression changes in a model of in vitro adipogenesis and hypertrophy. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159368. [PMID: 37499858 DOI: 10.1016/j.bbalip.2023.159368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Hypertrophy of adipocytes represents the main cause of obesity. We investigated in vitro the changes associated with adipocyte differentiation and hypertrophy focusing on the nuclear morphometry and chromatin epigenetic remodelling. The 3 T3-L1 pre-adipocytes were firstly differentiated into mature adipocytes, then cultured with long-chain fatty acids to induce hypertrophy. Confocal and super-resolution stimulation emission depletion (STED) microscopy combined with ELISA assays allowed us to explore nuclear architecture, chromatin distribution and epigenetic modifications. In each condition, we quantified the triglyceride accumulation, the mRNA expression of adipogenesis and dysfunction markers, the release of five pro-inflammatory cytokines. Confocal microscopy revealed larger volume and less elongated shape of the nuclei in both mature and hypertrophic cells respect to pre-adipocytes, and a trend toward reduced chromatin compaction. Compared to mature adipocytes, the hypertrophic phenotype showed larger triglyceride content, increased PPARγ expression reduced IL-1a release, and up-regulation of a pool of genes markers for adipose tissue dysfunction. Moreover, a remodelling of both epigenome and chromatin organization was observed in hypertrophic adipocytes, with an increase in the average fluorescence of H3K9 acetylated domains in parallel with the increase in KAT2A expression, and a global hypomethylation of DNA. These findings making light on the nuclear changes during adipocyte differentiation and hypertrophy might help the strategies for treating obesity and metabolic complications.
Collapse
Affiliation(s)
- Francesca Baldini
- Nanoscopy, Istituto Italiano Tecnologia, Via Enrico Melen 83, 16152, Genova, Italy
| | - Lama Zeaiter
- Nanoscopy, Istituto Italiano Tecnologia, Via Enrico Melen 83, 16152, Genova, Italy; Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy
| | - Farah Diab
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy
| | - Hawraa Zbeeb
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy
| | - Lisa Cuneo
- Nanoscopy, Istituto Italiano Tecnologia, Via Enrico Melen 83, 16152, Genova, Italy; Department of Physics (DIFILAB), University of Genoa, Via Dodecaneso 33, 16146, Genoa, Italy
| | - Aldo Pagano
- DIMES, Department of Experimental Medicine, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari, Medical School, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Alberto Diaspro
- Nanoscopy, Istituto Italiano Tecnologia, Via Enrico Melen 83, 16152, Genova, Italy; Department of Physics (DIFILAB), University of Genoa, Via Dodecaneso 33, 16146, Genoa, Italy
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy.
| |
Collapse
|
33
|
Scadden AW, Graybill AS, Hull-Crew C, Lundberg TJ, Lande NM, Klocko AD. Histone deacetylation and cytosine methylation compartmentalize heterochromatic regions in the genome organization of Neurospora crassa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547530. [PMID: 37461718 PMCID: PMC10349943 DOI: 10.1101/2023.07.03.547530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Chromosomes must correctly fold in eukaryotic nuclei for proper genome function. Eukaryotic organisms hierarchically organize their genomes, including in the fungus Neurospora crassa, where chromatin fiber loops compact into Topologically Associated Domain (TAD)-like structures formed by heterochromatic region aggregation. However, insufficient data exists on how histone post-translational modifications, including acetylation, affect genome organization. In Neurospora, the HCHC complex (comprised of the proteins HDA-1, CDP-2, HP1, and CHAP) deacetylates heterochromatic nucleosomes, as loss of individual HCHC members increases centromeric acetylation and alters the methylation of cytosines in DNA. Here, we assess if the HCHC complex affects genome organization by performing Hi-C in strains deleted of the cdp-2 or chap genes. CDP-2 loss increases intra- and inter-chromosomal heterochromatic region interactions, while loss of CHAP decreases heterochromatic region compaction. Individual HCHC mutants exhibit different patterns of histone post-translational modifications genome-wide: without CDP-2, heterochromatic H4K16 acetylation is increased, yet smaller heterochromatic regions lose H3K9 trimethylation and gain inter-heterochromatic region interactions; CHAP loss produces minimal acetylation changes but increases heterochromatic H3K9me3 enrichment. Loss of both CDP-2 and the DIM-2 DNA methyltransferase causes extensive genome disorder, as heterochromatic-euchromatic contacts increase despite additional H3K9me3 enrichment. Our results highlight how the increased cytosine methylation in HCHC mutants ensures genome compartmentalization when heterochromatic regions become hyperacetylated without HDAC activity.
Collapse
Affiliation(s)
- Ashley W. Scadden
- University of Colorado Colorado Springs, Department of Chemistry & Biochemistry, Colorado Springs, CO 80918, USA
| | - Alayne S. Graybill
- University of Colorado Colorado Springs, Department of Chemistry & Biochemistry, Colorado Springs, CO 80918, USA
| | - Clayton Hull-Crew
- University of Colorado Colorado Springs, Department of Chemistry & Biochemistry, Colorado Springs, CO 80918, USA
| | - Tiffany J. Lundberg
- University of Colorado Colorado Springs, Department of Chemistry & Biochemistry, Colorado Springs, CO 80918, USA
| | - Nickolas M. Lande
- University of Colorado Colorado Springs, Department of Chemistry & Biochemistry, Colorado Springs, CO 80918, USA
| | - Andrew D. Klocko
- University of Colorado Colorado Springs, Department of Chemistry & Biochemistry, Colorado Springs, CO 80918, USA
| |
Collapse
|
34
|
Liu H, Tsai H, Yang M, Li G, Bian Q, Ding G, Wu D, Dai J. Three-dimensional genome structure and function. MedComm (Beijing) 2023; 4:e326. [PMID: 37426677 PMCID: PMC10329473 DOI: 10.1002/mco2.326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Linear DNA undergoes a series of compression and folding events, forming various three-dimensional (3D) structural units in mammalian cells, including chromosomal territory, compartment, topologically associating domain, and chromatin loop. These structures play crucial roles in regulating gene expression, cell differentiation, and disease progression. Deciphering the principles underlying 3D genome folding and the molecular mechanisms governing cell fate determination remains a challenge. With advancements in high-throughput sequencing and imaging techniques, the hierarchical organization and functional roles of higher-order chromatin structures have been gradually illuminated. This review systematically discussed the structural hierarchy of the 3D genome, the effects and mechanisms of cis-regulatory elements interaction in the 3D genome for regulating spatiotemporally specific gene expression, the roles and mechanisms of dynamic changes in 3D chromatin conformation during embryonic development, and the pathological mechanisms of diseases such as congenital developmental abnormalities and cancer, which are attributed to alterations in 3D genome organization and aberrations in key structural proteins. Finally, prospects were made for the research about 3D genome structure, function, and genetic intervention, and the roles in disease development, prevention, and treatment, which may offer some clues for precise diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Hao Liu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Hsiangyu Tsai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Maoquan Yang
- School of Clinical MedicineWeifang Medical UniversityWeifangChina
| | - Guozhi Li
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Qian Bian
- Shanghai Institute of Precision MedicineShanghaiChina
| | - Gang Ding
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Dandan Wu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Jiewen Dai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| |
Collapse
|
35
|
Joo J, Cho S, Hong S, Min S, Kim K, Kumar R, Choi JM, Shin Y, Jung I. Probabilistic establishment of speckle-associated inter-chromosomal interactions. Nucleic Acids Res 2023; 51:5377-5395. [PMID: 37013988 PMCID: PMC10287923 DOI: 10.1093/nar/gkad211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 03/08/2023] [Accepted: 03/25/2023] [Indexed: 04/05/2023] Open
Abstract
Inter-chromosomal interactions play a crucial role in genome organization, yet the organizational principles remain elusive. Here, we introduce a novel computational method to systematically characterize inter-chromosomal interactions using in situ Hi-C results from various cell types. Our method successfully identifies two apparently hub-like inter-chromosomal contacts associated with nuclear speckles and nucleoli, respectively. Interestingly, we discover that nuclear speckle-associated inter-chromosomal interactions are highly cell-type invariant with a marked enrichment of cell-type common super-enhancers (CSEs). Validation using DNA Oligopaint fluorescence in situ hybridization (FISH) shows a strong but probabilistic interaction behavior between nuclear speckles and CSE-harboring genomic regions. Strikingly, we find that the likelihood of speckle-CSE associations can accurately predict two experimentally measured inter-chromosomal contacts from Hi-C and Oligopaint DNA FISH. Our probabilistic establishment model well describes the hub-like structure observed at the population level as a cumulative effect of summing individual stochastic chromatin-speckle interactions. Lastly, we observe that CSEs are highly co-occupied by MAZ binding and MAZ depletion leads to significant disorganization of speckle-associated inter-chromosomal contacts. Taken together, our results propose a simple organizational principle of inter-chromosomal interactions mediated by MAZ-occupied CSEs.
Collapse
Affiliation(s)
- Jaegeon Joo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sunghyun Cho
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sukbum Hong
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunwoo Min
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyukwang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Rajeev Kumar
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Jeong-Mo Choi
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Yongdae Shin
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Inkyung Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
36
|
Syed SA, Shqillo K, Nand A, Zhan Y, Dekker J, Imbalzano AN. Protein arginine methyltransferase 5 (Prmt5) localizes to chromatin loop anchors and modulates expression of genes at TAD boundaries during early adipogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544859. [PMID: 37398486 PMCID: PMC10312757 DOI: 10.1101/2023.06.13.544859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Protein arginine methyltransferase 5 (Prmt5) is an essential regulator of embryonic development and adult progenitor cell functions. Prmt5 expression is mis-regulated in many cancers, and the development of Prmt5 inhibitors as cancer therapeutics is an active area of research. Prmt5 functions via effects on gene expression, splicing, DNA repair, and other critical cellular processes. We examined whether Prmt5 functions broadly as a genome-wide regulator of gene transcription and higher-order chromatin interactions during the initial stages of adipogenesis using ChIP-Seq, RNA-seq, and Hi-C using 3T3-L1 cells, a frequently utilized model for adipogenesis. We observed robust genome-wide Prmt5 chromatin-binding at the onset of differentiation. Prmt5 localized to transcriptionally active genomic regions, acting as both a positive and a negative regulator. A subset of Prmt5 binding sites co-localized with mediators of chromatin organization at chromatin loop anchors. Prmt5 knockdown decreased insulation strength at the boundaries of topologically associating domains (TADs) adjacent to sites with Prmt5 and CTCF co-localization. Genes overlapping such weakened TAD boundaries showed transcriptional dysregulation. This study identifies Prmt5 as a broad regulator of gene expression, including regulation of early adipogenic factors, and reveals an unappreciated requirement for Prmt5 in maintaining strong insulation at TAD boundaries and overall chromatin organization.
Collapse
Affiliation(s)
- Sabriya A Syed
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA USA
| | - Kristina Shqillo
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA USA
| | - Ankita Nand
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA USA
| | - Ye Zhan
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA USA
| | - Job Dekker
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA USA
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA USA
- Howard Hughes Medical Institute, Chevy Chase, MD USA
| | - Anthony N Imbalzano
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA USA
| |
Collapse
|
37
|
Liu P, Li D, Zhang J, He M, Gao D, Wang Y, Lin Y, Pan D, Li P, Wang T, Li J, Kong F, Zeng B, Lu L, Ma J, Long K, Li G, Tang Q, Jin L, Li M. Comparative three-dimensional genome architectures of adipose tissues provide insight into human-specific regulation of metabolic homeostasis. J Biol Chem 2023; 299:104757. [PMID: 37116707 PMCID: PMC10245122 DOI: 10.1016/j.jbc.2023.104757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/22/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023] Open
Abstract
Elucidating the regulatory mechanisms of human adipose tissues (ATs) evolution is essential for understanding human-specific metabolic regulation, but the functional importance and evolutionary dynamics of three-dimensional (3D) genome organizations of ATs are not well defined. Here, we compared the 3D genome architectures of anatomically distinct ATs from humans and six representative mammalian models. We recognized evolutionarily conserved and human-specific chromatin conformation in ATs at multiple scales, including compartmentalization, topologically associating domain (TAD), and promoter-enhancer interactions (PEI), which have not been described previously. We found PEI are much more evolutionarily dynamic with respect to compartmentalization and topologically associating domain. Compared to conserved PEIs, human-specific PEIs are enriched for human-specific sequence, and the binding motifs of their potential mediators (transcription factors) are less conserved. Our data also demonstrated that genes involved in the evolutionary dynamics of chromatin organization have weaker transcriptional conservation than those associated with conserved chromatin organization. Furthermore, the genes involved in energy metabolism and the maintenance of metabolic homeostasis are enriched in human-specific chromatin organization, while housekeeping genes, health-related genes, and genetic variations are enriched in evolutionarily conserved compared to human-specific chromatin organization. Finally, we showed extensively divergent human-specific 3D genome organizations among one subcutaneous and three visceral ATs. Together, these findings provide a global overview of 3D genome architecture dynamics between ATs from human and mammalian models and new insights into understanding the regulatory evolution of human ATs.
Collapse
Affiliation(s)
- Pengliang Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu, Sichuan, China.
| | - Jiaman Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mengnan He
- Wildlife Conservation Research Department, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Dengfeng Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yujie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu Lin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dengke Pan
- Institute of Organ Transplantation, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Penghao Li
- Jinxin Research Institute for Reproductive Medicine & Genetics, Chengdu Xi'nan Gynecology Hospital, Chengdu, Sichuan, China
| | - Tao Wang
- School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Jing Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fanli Kong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lu Lu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jideng Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Keren Long
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guisen Li
- Renal Department & Nephrology Institute, Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Qianzi Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Long Jin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
38
|
McAllan L, Baranasic D, Villicaña S, Brown S, Zhang W, Lehne B, Adamo M, Jenkinson A, Elkalaawy M, Mohammadi B, Hashemi M, Fernandes N, Lambie N, Williams R, Christiansen C, Yang Y, Zudina L, Lagou V, Tan S, Castillo-Fernandez J, King JWD, Soong R, Elliott P, Scott J, Prokopenko I, Cebola I, Loh M, Lenhard B, Batterham RL, Bell JT, Chambers JC, Kooner JS, Scott WR. Integrative genomic analyses in adipocytes implicate DNA methylation in human obesity and diabetes. Nat Commun 2023; 14:2784. [PMID: 37188674 PMCID: PMC10185556 DOI: 10.1038/s41467-023-38439-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/03/2023] [Indexed: 05/17/2023] Open
Abstract
DNA methylation variations are prevalent in human obesity but evidence of a causative role in disease pathogenesis is limited. Here, we combine epigenome-wide association and integrative genomics to investigate the impact of adipocyte DNA methylation variations in human obesity. We discover extensive DNA methylation changes that are robustly associated with obesity (N = 190 samples, 691 loci in subcutaneous and 173 loci in visceral adipocytes, P < 1 × 10-7). We connect obesity-associated methylation variations to transcriptomic changes at >500 target genes, and identify putative methylation-transcription factor interactions. Through Mendelian Randomisation, we infer causal effects of methylation on obesity and obesity-induced metabolic disturbances at 59 independent loci. Targeted methylation sequencing, CRISPR-activation and gene silencing in adipocytes, further identifies regional methylation variations, underlying regulatory elements and novel cellular metabolic effects. Our results indicate DNA methylation is an important determinant of human obesity and its metabolic complications, and reveal mechanisms through which altered methylation may impact adipocyte functions.
Collapse
Affiliation(s)
- Liam McAllan
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | - Damir Baranasic
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | - Sergio Villicaña
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Scarlett Brown
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Middlesex, UB1 3HW, UK
| | - Benjamin Lehne
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
| | - Marco Adamo
- UCLH Bariatric Centre for Weight Loss, Weight Management and Metabolic and Endocrine Surgery, University College London Hospitals, Ground Floor West Wing, 250 Euston Road, London, NW1 2PG, UK
| | - Andrew Jenkinson
- UCLH Bariatric Centre for Weight Loss, Weight Management and Metabolic and Endocrine Surgery, University College London Hospitals, Ground Floor West Wing, 250 Euston Road, London, NW1 2PG, UK
| | - Mohamed Elkalaawy
- UCLH Bariatric Centre for Weight Loss, Weight Management and Metabolic and Endocrine Surgery, University College London Hospitals, Ground Floor West Wing, 250 Euston Road, London, NW1 2PG, UK
| | - Borzoueh Mohammadi
- UCLH Bariatric Centre for Weight Loss, Weight Management and Metabolic and Endocrine Surgery, University College London Hospitals, Ground Floor West Wing, 250 Euston Road, London, NW1 2PG, UK
| | - Majid Hashemi
- UCLH Bariatric Centre for Weight Loss, Weight Management and Metabolic and Endocrine Surgery, University College London Hospitals, Ground Floor West Wing, 250 Euston Road, London, NW1 2PG, UK
| | - Nadia Fernandes
- Imperial BRC Genomics Facility, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Nathalie Lambie
- Imperial BRC Genomics Facility, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Richard Williams
- Imperial BRC Genomics Facility, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Colette Christiansen
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, UK
| | - Youwen Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, King's College London British Heart Foundation Centre of Excellence, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Liudmila Zudina
- Department of Clinical & Experimental Medicine, University of Surrey, Guildford, UK
| | - Vasiliki Lagou
- Department of Microbiology and Immunology, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Sili Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | - James W D King
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | - Richie Soong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pathology, National University Hospital, Singapore, Singapore
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute for Health Research Biomedical Research Centre, Imperial College London, London, UK
| | - James Scott
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
- Imperial College Healthcare NHS Trust, London, W12 0HS, UK
| | - Inga Prokopenko
- Department of Clinical & Experimental Medicine, University of Surrey, Guildford, UK
- People-Centred Artificial Intelligence Institute, University of Surrey, Guildford, UK
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre Russian Academy of Sciences, Ufa, Russian Federation
| | - Inês Cebola
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Marie Loh
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Boris Lenhard
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | - Rachel L Batterham
- UCLH Bariatric Centre for Weight Loss, Weight Management and Metabolic and Endocrine Surgery, University College London Hospitals, Ground Floor West Wing, 250 Euston Road, London, NW1 2PG, UK
- Centre for Obesity Research, Rayne Institute, Department of Medicine, University College, London, WC1E 6JJ, UK
- National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, W1T 7DN, UK
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - John C Chambers
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Middlesex, UB1 3HW, UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, W12 0HS, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Middlesex, UB1 3HW, UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
- Imperial College Healthcare NHS Trust, London, W12 0HS, UK
| | - William R Scott
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- MRC London Institute of Medical Sciences, London, W12 0NN, UK.
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK.
- Imperial College Healthcare NHS Trust, London, W12 0HS, UK.
| |
Collapse
|
39
|
Pahl MC, Grant SFA, Leibel RL, Stratigopoulos G. Technologies, strategies, and cautions when deconvoluting genome-wide association signals: FTO in focus. Obes Rev 2023; 24:e13558. [PMID: 36882962 DOI: 10.1111/obr.13558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/08/2022] [Accepted: 01/31/2023] [Indexed: 03/09/2023]
Abstract
Genome-wide association studies have revealed a plethora of genetic variants that correlate with polygenic conditions. However, causal molecular mechanisms have proven challenging to fully define. Without such information, the associations are not physiologically useful or clinically actionable. By reviewing studies of the FTO locus in the genetic etiology of obesity, we wish to highlight advances in the field fueled by the evolution of technical and analytic strategies in assessing the molecular bases for genetic associations. Particular attention is drawn to extrapolating experimental findings from animal models and cell types to humans, as well as technical aspects used to identify long-range DNA interactions and their biological relevance with regard to the associated trait. A unifying model is proposed by which independent obesogenic pathways regulated by multiple FTO variants and genes are integrated at the primary cilium, a cellular antenna where signaling molecules that control energy balance convene.
Collapse
Affiliation(s)
- Matthew C Pahl
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Diabetes and Endocrinology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rudolph L Leibel
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, New York, USA
| | - George Stratigopoulos
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
40
|
HSFA1a modulates plant heat stress responses and alters the 3D chromatin organization of enhancer-promoter interactions. Nat Commun 2023; 14:469. [PMID: 36709329 PMCID: PMC9884265 DOI: 10.1038/s41467-023-36227-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/19/2023] [Indexed: 01/30/2023] Open
Abstract
The complex and dynamic three-dimensional organization of chromatin within the nucleus makes understanding the control of gene expression challenging, but also opens up possible ways to epigenetically modulate gene expression. Because plants are sessile, they evolved sophisticated ways to rapidly modulate gene expression in response to environmental stress, that are thought to be coordinated by changes in chromatin conformation to mediate specific cellular and physiological responses. However, to what extent and how stress induces dynamic changes in chromatin reorganization remains poorly understood. Here, we comprehensively investigated genome-wide chromatin changes associated with transcriptional reprogramming response to heat stress in tomato. Our data show that heat stress induces rapid changes in chromatin architecture, leading to the transient formation of promoter-enhancer contacts, likely driving the expression of heat-stress responsive genes. Furthermore, we demonstrate that chromatin spatial reorganization requires HSFA1a, a transcription factor (TF) essential for heat stress tolerance in tomato. In light of our findings, we propose that TFs play a key role in controlling dynamic transcriptional responses through 3D reconfiguration of promoter-enhancer contacts.
Collapse
|
41
|
Lyons H, Veettil RT, Pradhan P, Fornero C, De La Cruz N, Ito K, Eppert M, Roeder RG, Sabari BR. Functional partitioning of transcriptional regulators by patterned charge blocks. Cell 2023; 186:327-345.e28. [PMID: 36603581 PMCID: PMC9910284 DOI: 10.1016/j.cell.2022.12.013] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/15/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023]
Abstract
Components of transcriptional machinery are selectively partitioned into specific condensates, often mediated by protein disorder, yet we know little about how this specificity is achieved. Here, we show that condensates composed of the intrinsically disordered region (IDR) of MED1 selectively partition RNA polymerase II together with its positive allosteric regulators while excluding negative regulators. This selective compartmentalization is sufficient to activate transcription and is required for gene activation during a cell-state transition. The IDRs of partitioned proteins are necessary and sufficient for selective compartmentalization and require alternating blocks of charged amino acids. Disrupting this charge pattern prevents partitioning, whereas adding the pattern to proteins promotes partitioning with functional consequences for gene activation. IDRs with similar patterned charge blocks show similar partitioning and function. These findings demonstrate that disorder-mediated interactions can selectively compartmentalize specific functionally related proteins from a complex mixture of biomolecules, leading to regulation of a biochemical pathway.
Collapse
Affiliation(s)
- Heankel Lyons
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Reshma T Veettil
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prashant Pradhan
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christy Fornero
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nancy De La Cruz
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Keiichi Ito
- Laboratory of Biochemistry and Molecular Biology, the Rockefeller University, New York, NY 10065, USA
| | - Mikayla Eppert
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, the Rockefeller University, New York, NY 10065, USA
| | - Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
42
|
Tomás-Daza L, Rovirosa L, López-Martí P, Nieto-Aliseda A, Serra F, Planas-Riverola A, Molina O, McDonald R, Ghevaert C, Cuatrecasas E, Costa D, Camós M, Bueno C, Menéndez P, Valencia A, Javierre BM. Low input capture Hi-C (liCHi-C) identifies promoter-enhancer interactions at high-resolution. Nat Commun 2023; 14:268. [PMID: 36650138 PMCID: PMC9845235 DOI: 10.1038/s41467-023-35911-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
Long-range interactions between regulatory elements and promoters are key in gene transcriptional control; however, their study requires large amounts of starting material, which is not compatible with clinical scenarios nor the study of rare cell populations. Here we introduce low input capture Hi-C (liCHi-C) as a cost-effective, flexible method to map and robustly compare promoter interactomes at high resolution. As proof of its broad applicability, we implement liCHi-C to study normal and malignant human hematopoietic hierarchy in clinical samples. We demonstrate that the dynamic promoter architecture identifies developmental trajectories and orchestrates transcriptional transitions during cell-state commitment. Moreover, liCHi-C enables the identification of disease-relevant cell types, genes and pathways potentially deregulated by non-coding alterations at distal regulatory elements. Finally, we show that liCHi-C can be harnessed to uncover genome-wide structural variants, resolve their breakpoints and infer their pathogenic effects. Collectively, our optimized liCHi-C method expands the study of 3D chromatin organization to unique, low-abundance cell populations, and offers an opportunity to uncover factors and regulatory networks involved in disease pathogenesis.
Collapse
Affiliation(s)
- Laureano Tomás-Daza
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain
- Barcelona Supercomputing Center, Barcelona, Barcelona, Spain
| | - Llorenç Rovirosa
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain
| | - Paula López-Martí
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain
- Barcelona Supercomputing Center, Barcelona, Barcelona, Spain
| | | | - François Serra
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain
| | | | - Oscar Molina
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain
| | | | - Cedric Ghevaert
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Esther Cuatrecasas
- Pediatric Institute of Rare Diseases, Sant Joan de Déu Hospital, Esplugues de Llobregat, Barcelona, Spain
| | - Dolors Costa
- Hospital Clinic, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer, Barcelona, Spain
- Cancer Network Biomedical Research Center, Barcelona, Spain
| | - Mireia Camós
- Sant Joan de Déu Research Institute, Esplugues de Llobregat, Barcelona, Spain
- Sant Joan de Déu Hospital, Esplugues de Llobregat, Barcelona, Spain
- Center for Biomedical Research in the Rare Diseases Network (CIBERER), Carlos III Health Institute, Madrid, Spain
| | - Clara Bueno
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain
| | - Pablo Menéndez
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Alfonso Valencia
- Barcelona Supercomputing Center, Barcelona, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Biola M Javierre
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain.
- Institute for Health Science Research Germans Trias i Pujol, Badalona, Barcelona, Spain.
| |
Collapse
|
43
|
Ling X, Liu X, Jiang S, Fan L, Ding J. The dynamics of three-dimensional chromatin organization and phase separation in cell fate transitions and diseases. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:42. [PMID: 36539553 PMCID: PMC9768101 DOI: 10.1186/s13619-022-00145-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/18/2022] [Indexed: 12/24/2022]
Abstract
Cell fate transition is a fascinating process involving complex dynamics of three-dimensional (3D) chromatin organization and phase separation, which play an essential role in cell fate decision by regulating gene expression. Phase separation is increasingly being considered a driving force of chromatin folding. In this review, we have summarized the dynamic features of 3D chromatin and phase separation during physiological and pathological cell fate transitions and systematically analyzed recent evidence of phase separation facilitating the chromatin structure. In addition, we discuss current advances in understanding how phase separation contributes to physical and functional enhancer-promoter contacts. We highlight the functional roles of 3D chromatin organization and phase separation in cell fate transitions, and more explorations are required to study the regulatory relationship between 3D chromatin organization and phase separation. 3D chromatin organization (shown by Hi-C contact map) and phase separation are highly dynamic and play functional roles during early embryonic development, cell differentiation, somatic reprogramming, cell transdifferentiation and pathogenetic process. Phase separation can regulate 3D chromatin organization directly, but whether 3D chromatin organization regulates phase separation remains unclear.
Collapse
Affiliation(s)
- Xiaoru Ling
- grid.12981.330000 0001 2360 039XAdvanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XRNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XCenter for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Xinyi Liu
- grid.12981.330000 0001 2360 039XAdvanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XRNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XCenter for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Shaoshuai Jiang
- grid.12981.330000 0001 2360 039XAdvanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XRNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XCenter for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Lili Fan
- grid.258164.c0000 0004 1790 3548Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong China
| | - Junjun Ding
- grid.12981.330000 0001 2360 039XAdvanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XRNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XCenter for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.410737.60000 0000 8653 1072Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436 China ,grid.13291.380000 0001 0807 1581West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
44
|
Hao RH, Guo Y, Wang C, Chen F, Di CX, Dong SS, Cao QL, Guo J, Rong Y, Yao S, Zhu DL, Chen YX, Chen H, Yang TL. Lineage-specific rearrangement of chromatin loops and epigenomic features during adipocytes and osteoblasts commitment. Cell Death Differ 2022; 29:2503-2518. [PMID: 35906483 PMCID: PMC9751090 DOI: 10.1038/s41418-022-01035-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 01/31/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) can be differentiated into adipocytes and osteoblasts. The processes are driven by the rewiring of chromatin architectures and transcriptomic/epigenomic changes. Here, we induced hMSCs to adipogenic and osteogenic differentiation, and performed 2 kb resolution Hi-C experiments for chromatin loops detection. We also generated matched RNA-seq, ChIP-seq and ATAC-seq data for integrative analysis. After comprehensively comparing adipogenesis and osteogenesis, we quantitatively identified lineage-specific loops and screened out lineage-specific enhancers and open chromatin. We reveal that lineage-specific loops can activate gene expression and facilitate cell commitment through combining enhancers and accessible chromatin in a lineage-specific manner. We finally proposed loop-mediated regulatory networks and identified the controlling factors for adipocytes and osteoblasts determination. Functional experiments validated the lineage-specific regulation networks towards IRS2 and RUNX2 that are associated with adipogenesis and osteogenesis, respectively. These results are expected to help better understand the chromatin conformation determinants of hMSCs fate commitment.
Collapse
Affiliation(s)
- Ruo-Han Hao
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yan Guo
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Chen Wang
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Fei Chen
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Chen-Xi Di
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Shan-Shan Dong
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Qi-Long Cao
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- Research and Development Department, Qingdao Haier Biotech Co. Ltd, Qingdao, Shandong, 266109, P. R. China
| | - Jing Guo
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yu Rong
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Shi Yao
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, P. R. China
| | - Dong-Li Zhu
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yi-Xiao Chen
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, P. R. China
| | - Hao Chen
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Tie-Lin Yang
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China.
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, P. R. China.
| |
Collapse
|
45
|
Garske KM, Comenho C, Pan DZ, Alvarez M, Mohlke K, Laakso M, Pietiläinen KH, Pajukanta P. Long-range chromosomal interactions increase and mark repressed gene expression during adipogenesis. Epigenetics 2022; 17:1849-1862. [PMID: 35746833 PMCID: PMC9665133 DOI: 10.1080/15592294.2022.2088145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Obesity perturbs central functions of human adipose tissue, centred on differentiation of preadipocytes to adipocytes, i.e., adipogenesis. The large environmental component of obesity makes it important to elucidate epigenetic regulatory factors impacting adipogenesis. Promoter Capture Hi-C (pCHi-C) has been used to identify chromosomal interactions between promoters and associated regulatory elements. However, long range interactions (LRIs) greater than 1 Mb are often filtered out of pCHi-C datasets, due to technical challenges and their low prevalence. To elucidate the unknown role of LRIs in adipogenesis, we investigated preadipocyte differentiation to adipocytes using pCHi-C and bulk and single nucleus RNA-seq data. We first show that LRIs are reproducible between biological replicates, and they increase >2-fold in frequency across adipogenesis. We further demonstrate that genomic loci containing LRIs are more epigenetically repressed than regions without LRIs, corresponding to lower gene expression in the LRI regions. Accordingly, as preadipocytes differentiate into adipocytes, LRI regions are more likely to contain repressed preadipocyte marker genes; whereas these same LRI regions are depleted of actively expressed adipocyte marker genes. Finally, we show that LRIs can be used to restrict multiple testing of the long-range cis-eQTL analysis to identify variants that regulate genes via LRIs. We exemplify this by identifying a putative long range cis regulatory mechanism at the LYPLAL1/TGFB2 obesity locus. In summary, we identify LRIs that mark repressed regions of the genome, and these interactions increase across adipogenesis, pinpointing developmental regions that need to be repressed in a cell-type specific way for adipogenesis to proceed.
Collapse
Affiliation(s)
- Kristina M. Garske
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Caroline Comenho
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - David Z. Pan
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA,Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA
| | - Marcus Alvarez
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Karen Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Markku Laakso
- Internal Medicine, Institute of Clinical Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Kirsi H. Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland,Obesity Center, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA,Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA,Institute for Precision Heath, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA,CONTACT Päivi Pajukanta Department of Human Genetics David Geffen School of Medicine at UCLA
| |
Collapse
|
46
|
Zhao Z, Wang C, Jia J, Wang Z, Li L, Deng X, Cai Z, Yang L, Wang D, Ma S, Zhao L, Tu Z, Yuan G. Regulatory network of metformin on adipogenesis determined by combining high-throughput sequencing and GEO database. Adipocyte 2022; 11:56-68. [PMID: 34974794 PMCID: PMC8741290 DOI: 10.1080/21623945.2021.2013417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Adipose differentiation and excessive lipid accumulation are the important characteristics of obesity. Metformin, as a classic hypoglycaemic drug, has been proved to reduce body weight in type 2 diabetes, the specific mechanism has not been completely clear. A few studies have explored its effect on adipogenesis in vitro, but the existing experimental results are ambiguous. 3T3-L1 preadipocytes were used to explore the effects of metformin on the morphological and physiological changes of lipid droplets during adipogenesis. A high throughput sequencing was used to examine the effects of metformin on the transcriptome of adipogenesis. Considering the inevitable errors among independent experiments, we performed integrated bioinformatics analysis to identify important genes involved in adipogenesis and reveal potential molecular mechanisms. During the process of adipogenesis, metformin visibly relieved the morphological and functional changes. In addition, metformin reverses the expression pattern of genes related to adipogenesis at the transcriptome level. Combining with integrated bioinformatics analyses to further identify the potential targeted genes regulated by metformin during adipogenesis. The present study identified novel changes in the transcriptome of metformin in the process of adipogenesis that might shed light on the underlying mechanism by which metformin impedes the progression of obesity.
Collapse
Affiliation(s)
- Zhicong Zhao
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chenxi Wang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jue Jia
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhaoxiang Wang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lian Li
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xia Deng
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhensheng Cai
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ling Yang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dong Wang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Suxian Ma
- Department of Endocrinology, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Li Zhao
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
47
|
Lohia R, Fox N, Gillis J. A global high-density chromatin interaction network reveals functional long-range and trans-chromosomal relationships. Genome Biol 2022; 23:238. [PMID: 36352464 PMCID: PMC9647974 DOI: 10.1186/s13059-022-02790-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chromatin contacts are essential for gene-expression regulation; however, obtaining a high-resolution genome-wide chromatin contact map is still prohibitively expensive owing to large genome sizes and the quadratic scale of pairwise data. Chromosome conformation capture (3C)-based methods such as Hi-C have been extensively used to obtain chromatin contacts. However, since the sparsity of these maps increases with an increase in genomic distance between contacts, long-range or trans-chromatin contacts are especially challenging to sample. RESULTS Here, we create a high-density reference genome-wide chromatin contact map using a meta-analytic approach. We integrate 3600 human, 6700 mouse, and 500 fly Hi-C experiments to create species-specific meta-Hi-C chromatin contact maps with 304 billion, 193 billion, and 19 billion contacts in respective species. We validate that meta-Hi-C contact maps are uniquely powered to capture functional chromatin contacts in both cis and trans. We find that while individual dataset Hi-C networks are largely unable to predict any long-range coexpression (median 0.54 AUC), meta-Hi-C networks perform comparably in both cis and trans (0.65 AUC vs 0.64 AUC). Similarly, for long-range expression quantitative trait loci (eQTL), meta-Hi-C contacts outperform all individual Hi-C experiments, providing an improvement over the conventionally used linear genomic distance-based association. Assessing between species, we find patterns of chromatin contact conservation in both cis and trans and strong associations with coexpression even in species for which Hi-C data is lacking. CONCLUSIONS We have generated an integrated chromatin interaction network which complements a large number of methodological and analytic approaches focused on improved specificity or interpretation. This high-depth "super-experiment" is surprisingly powerful in capturing long-range functional relationships of chromatin interactions, which are now able to predict coexpression, eQTLs, and cross-species relationships. The meta-Hi-C networks are available at https://labshare.cshl.edu/shares/gillislab/resource/HiC/ .
Collapse
Affiliation(s)
- Ruchi Lohia
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, USA
| | - Nathan Fox
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, USA
| | - Jesse Gillis
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, USA
- Department of Physiology and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| |
Collapse
|
48
|
Richter WF, Nayak S, Iwasa J, Taatjes DJ. The Mediator complex as a master regulator of transcription by RNA polymerase II. Nat Rev Mol Cell Biol 2022; 23:732-749. [PMID: 35725906 PMCID: PMC9207880 DOI: 10.1038/s41580-022-00498-3] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 02/08/2023]
Abstract
The Mediator complex, which in humans is 1.4 MDa in size and includes 26 subunits, controls many aspects of RNA polymerase II (Pol II) function. Apart from its size, a defining feature of Mediator is its intrinsic disorder and conformational flexibility, which contributes to its ability to undergo phase separation and to interact with a myriad of regulatory factors. In this Review, we discuss Mediator structure and function, with emphasis on recent cryogenic electron microscopy data of the 4.0-MDa transcription preinitiation complex. We further discuss how Mediator and sequence-specific DNA-binding transcription factors enable enhancer-dependent regulation of Pol II function at distal gene promoters, through the formation of molecular condensates (or transcription hubs) and chromatin loops. Mediator regulation of Pol II reinitiation is also discussed, in the context of transcription bursting. We propose a working model for Mediator function that combines experimental results and theoretical considerations related to enhancer-promoter interactions, which reconciles contradictory data regarding whether enhancer-promoter communication is direct or indirect. We conclude with a discussion of Mediator's potential as a therapeutic target and of future research directions.
Collapse
Affiliation(s)
- William F Richter
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Shraddha Nayak
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Janet Iwasa
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
49
|
Wang C, Xing Y, Zhang J, He M, Dong J, Chen S, Wu H, Huang HY, Chou CH, Bai L, He F, She J, Su A, Wang Y, Thistlethwaite PA, Huang HD, Yuan JXJ, Yuan ZY, Shyy JYJ. MED1 Regulates BMP/TGF-β in Endothelium: Implication for Pulmonary Hypertension. Circ Res 2022; 131:828-841. [PMID: 36252121 DOI: 10.1161/circresaha.122.321532] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/26/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Dysregulated BMP (bone morphogenetic protein) or TGF-β (transforming growth factor beta) signaling pathways are imperative in idiopathic and familial pulmonary arterial hypertension (PAH) as well as experimental pulmonary hypertension (PH) in rodent models. MED1 (mediator complex subunit 1) is a key transcriptional co-activator and KLF4 (Krüppel-like factor 4) is a master transcription factor in endothelium. However, MED1 and KLF4 epigenetic and transcriptional regulations of the BMP/TGF-β axes in pulmonary endothelium and their dysregulations leading to PAH remain elusive. We investigate the MED1/KLF4 co-regulation of the BMP/TGF-β axes in endothelium by studying the epigenetic regulation of BMPR2 (BMP receptor type II), ETS-related gene (ERG), and TGFBR2 (TGF-β receptor 2) and their involvement in the PH. METHODS High-throughput screening involving data from RNA-seq, MED1 ChIP-seq, H3K27ac ChIP-seq, ATAC-seq, and high-throughput chromosome conformation capture together with in silico computations were used to explore the epigenetic and transcriptional regulation of BMPR2, ERG, and TGFBR2 by MED1 and KLF4. In vitro experiments with cultured pulmonary arterial endothelial cells (ECs) and bulk assays were used to validate results from these in silico analyses. Lung tissue from patients with idiopathic PAH, animals with experimental PH, and mice with endothelial ablation of MED1 (EC-MED1-/-) were used to study the PH-protective effect of MED1. RESULTS Levels of MED1 were decreased in lung tissue or pulmonary arterial endothelial cells from idiopathic PAH patients and rodent PH models. Mechanistically, MED1 acted synergistically with KLF4 to transactivate BMPR2, ERG, and TGFBR2 via chromatin remodeling and enhancer-promoter interactions. EC-MED1-/- mice showed PH susceptibility. In contrast, MED1 overexpression mitigated the PH phenotype in rodents. CONCLUSIONS A homeostatic regulation of BMPR2, ERG, and TGFBR2 in ECs by MED1 synergistic with KLF4 is essential for the normal function of the pulmonary endothelium. Dysregulation of MED1 and the resulting impairment of the BMP/TGF-β signaling is implicated in the disease progression of PAH in humans and PH in rodent models.
Collapse
Affiliation(s)
- Chen Wang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, China (C.W., Y.X., J.Z., J.D., H.W., L.B., J.S., Z.-Y.)
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (C.W., Y.X., J.Z., J.D., S.C., L.B., F.H., A.S.)
| | - Yuanming Xing
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, China (C.W., Y.X., J.Z., J.D., H.W., L.B., J.S., Z.-Y.)
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (C.W., Y.X., J.Z., J.D., S.C., L.B., F.H., A.S.)
| | - Jiao Zhang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, China (C.W., Y.X., J.Z., J.D., H.W., L.B., J.S., Z.-Y.)
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (C.W., Y.X., J.Z., J.D., S.C., L.B., F.H., A.S.)
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA (J.Z., M.H., J.D., J.Y.-J.)
| | - Ming He
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA (J.Z., M.H., J.D., J.Y.-J.)
| | - Jianjie Dong
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, China (C.W., Y.X., J.Z., J.D., H.W., L.B., J.S., Z.-Y.)
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (C.W., Y.X., J.Z., J.D., S.C., L.B., F.H., A.S.)
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA (J.Z., M.H., J.D., J.Y.-J.)
| | - Shanshan Chen
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (C.W., Y.X., J.Z., J.D., S.C., L.B., F.H., A.S.)
| | - Haoyu Wu
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, China (C.W., Y.X., J.Z., J.D., H.W., L.B., J.S., Z.-Y.)
| | - Hsi-Yuan Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong-Shenzhen, Shenzhen, China (H.-Y.H., H.-D.H.)
- School of Life and Health Sciences, The Chinese University of Hong Kong-Shenzhen, Shenzhen, China (H.-Y.H., H.-D.H.)
| | - Chih-Hung Chou
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan (C.-H.C.)
| | - Liang Bai
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, China (C.W., Y.X., J.Z., J.D., H.W., L.B., J.S., Z.-Y.)
| | - Fangzhou He
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (C.W., Y.X., J.Z., J.D., S.C., L.B., F.H., A.S.)
| | - Jianqing She
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, China (C.W., Y.X., J.Z., J.D., H.W., L.B., J.S., Z.-Y.)
| | - Ailing Su
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (C.W., Y.X., J.Z., J.D., S.C., L.B., F.H., A.S.)
| | - Youhua Wang
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi'an, China (Y.W.)
| | - Patricia A Thistlethwaite
- Division of Cardiothoracic Surgery, Department of Surgery, University of California, San Diego, La Jolla, CA (P.A.T.)
| | - Hsien-Da Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong-Shenzhen, Shenzhen, China (H.-Y.H., H.-D.H.)
- School of Life and Health Sciences, The Chinese University of Hong Kong-Shenzhen, Shenzhen, China (H.-Y.H., H.-D.H.)
| | - Jason X-J Yuan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA (J.X.-J.Y.)
| | - Zu-Yi Yuan
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, China (C.W., Y.X., J.Z., J.D., H.W., L.B., J.S., Z.-Y.)
| | - John Y-J Shyy
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA (J.Z., M.H., J.D., J.Y.-J.)
| |
Collapse
|
50
|
Orozco G, Schoenfelder S, Walker N, Eyre S, Fraser P. 3D genome organization links non-coding disease-associated variants to genes. Front Cell Dev Biol 2022; 10:995388. [PMID: 36340032 PMCID: PMC9631826 DOI: 10.3389/fcell.2022.995388] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Genome sequencing has revealed over 300 million genetic variations in human populations. Over 90% of variants are single nucleotide polymorphisms (SNPs), the remainder include short deletions or insertions, and small numbers of structural variants. Hundreds of thousands of these variants have been associated with specific phenotypic traits and diseases through genome wide association studies which link significant differences in variant frequencies with specific phenotypes among large groups of individuals. Only 5% of disease-associated SNPs are located in gene coding sequences, with the potential to disrupt gene expression or alter of the function of encoded proteins. The remaining 95% of disease-associated SNPs are located in non-coding DNA sequences which make up 98% of the genome. The role of non-coding, disease-associated SNPs, many of which are located at considerable distances from any gene, was at first a mystery until the discovery that gene promoters regularly interact with distal regulatory elements to control gene expression. Disease-associated SNPs are enriched at the millions of gene regulatory elements that are dispersed throughout the non-coding sequences of the genome, suggesting they function as gene regulation variants. Assigning specific regulatory elements to the genes they control is not straightforward since they can be millions of base pairs apart. In this review we describe how understanding 3D genome organization can identify specific interactions between gene promoters and distal regulatory elements and how 3D genomics can link disease-associated SNPs to their target genes. Understanding which gene or genes contribute to a specific disease is the first step in designing rational therapeutic interventions.
Collapse
Affiliation(s)
- Gisela Orozco
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- NIHR Manchester Biomedical Research Centre, Manchester University Foundation Trust, Manchester, United Kingdom
| | - Stefan Schoenfelder
- Enhanc3D Genomics Ltd., Cambridge, United Kingdom
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, CB22 3AT Cambridge, Cambridge, United Kingdom
| | | | - Stephan Eyre
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- NIHR Manchester Biomedical Research Centre, Manchester University Foundation Trust, Manchester, United Kingdom
| | - Peter Fraser
- Enhanc3D Genomics Ltd., Cambridge, United Kingdom
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| |
Collapse
|