1
|
Araújo JL, Wagenblast E, Voisin V, McLeod J, Gan OI, Bansal S, Jin L, Mitchell A, Gratton B, Cutting S, Arruda A, Doedens M, Travas A, Kim D, Capo-Chichi JM, Abelson S, Minden MD, Wang JCY, Sobrinho-Simões MA, Pinto-do-Ó P, Lechman E, Dick JE. FLT3 is genetically essential for ITD-mutated leukemic stem cells but dispensable for human hematopoietic stem cells. Blood 2025; 145:2361-2373. [PMID: 39841016 DOI: 10.1182/blood.2024025886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/19/2024] [Accepted: 12/15/2024] [Indexed: 01/23/2025] Open
Abstract
ABSTRACT Leukemic stem cells (LSCs) fuel acute myeloid leukemia (AML) growth and relapse, but therapies tailored toward eradicating LSCs without harming normal hematopoietic stem cells (HSCs) are lacking. FMS-like tyrosine kinase 3 (FLT3) is considered an important therapeutic target due to frequent mutation in AML and association with relapse. However, there has been limited clinical success with FLT3 drug targeting, suggesting either that FLT3 is not a vulnerability in LSC or that more potent inhibition is required, a scenario where HSC toxicity could become limiting. We tested these possibilities by ablating FLT3 using CRISPR/Cas9-mediated FLT3 knockout (FLT3-KO) in human LSCs and HSCs followed by functional xenograft assays. FLT3-KO in LSCs from FLT3-internal tandem duplication (ITD)-mutated but not FLT3-wild-type AMLs resulted in short-term leukemic grafts of FLT3-KO edited cells that disappeared by 12 weeks. By contrast, FLT3-KO in HSCs from the fetal liver, cord blood, and adult bone marrow did not impair multilineage hematopoiesis in primary and secondary xenografts. Our study establishes FLT3 as an ideal therapeutic target where ITD-positive LSCs are eradicated upon FLT3 deletion whereas HSCs are spared. These findings support the development of more potent FLT3-targeting drugs or gene-editing approaches for LSC eradication to improve clinical outcomes.
Collapse
Affiliation(s)
- Joana L Araújo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Hematology, Centro Hospitalar Universitário de São João, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- Instituto Nacional de Investigação Biomédica, University of Porto, Porto, Portugal
- Ipatimup-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Elvin Wagenblast
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
- Tisch Cancer Institute, Black Family Stem Cell Institute, The Mindich Child Health and Development Institute, Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Veronique Voisin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jessica McLeod
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Olga I Gan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Suraj Bansal
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Liqing Jin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Amanda Mitchell
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Blaise Gratton
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sarah Cutting
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Andrea Arruda
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Monica Doedens
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Anthea Travas
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Dennis Kim
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Hematology, University of Toronto, Toronto, ON, Canada
| | - Jose-Mario Capo-Chichi
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sagi Abelson
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Mark D Minden
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jean C Y Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Manuel A Sobrinho-Simões
- Department of Hematology, Centro Hospitalar Universitário de São João, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- Ipatimup-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Perpétua Pinto-do-Ó
- Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- Instituto Nacional de Investigação Biomédica, University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Eric Lechman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Wang K, Saniei S, Poddar N, Autar S, Carcamo S, Sreenath M, Peplinski JH, Ries RE, Martinez IG, Chao C, Mei AHC, Rahman N, Mekerishvili L, Quijada-Álamo M, Freed G, Zhang M, Lachman K, Diaz Z, Gonzalez MM, Zhang J, Pham G, Filipescu D, Berisa M, Balestra T, Reisz JA, D'Alessandro A, Puleston DJ, Bernstein E, Chipuk JE, Wunderlich M, Tasian SK, Marcellino BK, Glass IA, Sturgeon CM, Landau DA, Chen Z, Papapetrou EP, Izzo F, Meshinchi S, Hasson D, Wagenblast E. Ontogeny Dictates Oncogenic Potential, Lineage Hierarchy, and Therapy Response in Pediatric Leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.643917. [PMID: 40166161 PMCID: PMC11957141 DOI: 10.1101/2025.03.19.643917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Accumulating evidence links pediatric cancers to prenatal transformation events, yet the influence of the developmental stage on oncogenesis remains elusive. We investigated how hematopoietic stem cell developmental stages affect leukemic transformation, disease progression, and therapy response using a novel, humanized model of NUP98∷NSD1-driven pediatric acute myeloid leukemia, that is particularly aggressive with WT1 co-mutations. Fetal-derived hematopoietic stem cells readily transform into leukemia, and WT1 mutations further enhance stemness and alter lineage hierarchy. In contrast, stem cells from later developmental stages become progressively resistant to transformation. Single-cell analyses revealed that fetal-origin leukemia stem cells exhibit greater quiescence and reliance on oxidative phosphorylation than their postnatal counterparts. These differences drive distinct therapeutic responses, despite identical oncogenic mutations. In patients, onco-fetal transcriptional programs correlate with worse outcomes. By targeting key vulnerabilities of fetal-origin leukemia cells, we identified combination therapies that significantly reduce aggressiveness, highlighting the critical role of ontogeny in pediatric cancer treatment.
Collapse
Affiliation(s)
- Ke Wang
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shayan Saniei
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nikita Poddar
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) core, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Subrina Autar
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saul Carcamo
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) core, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Meghana Sreenath
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jack H Peplinski
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rhonda E Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Isabella G Martinez
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clifford Chao
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna Huo-Chang Mei
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Noshin Rahman
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Levan Mekerishvili
- Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Miguel Quijada-Álamo
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Grace Freed
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mimi Zhang
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katherine Lachman
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zayna Diaz
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manuel M Gonzalez
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jing Zhang
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giang Pham
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Filipescu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mirela Berisa
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tommaso Balestra
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel J Puleston
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Bridget K Marcellino
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ian A Glass
- Department of Pediatrics, University of Washington, WA, USA
| | - Christopher M Sturgeon
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan A Landau
- Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Zhihong Chen
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eirini P Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Franco Izzo
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) core, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elvin Wagenblast
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health & Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Lukasiak S, Kalinka A, Gupta N, Papadopoulos A, Saeed K, McDermott U, Hannon GJ, Ross-Thriepland D, Walter D. A benchmark comparison of CRISPRn guide-RNA design algorithms and generation of small single and dual-targeting libraries to boost screening efficiency. BMC Genomics 2025; 26:198. [PMID: 40011813 PMCID: PMC11863645 DOI: 10.1186/s12864-025-11386-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/19/2025] [Indexed: 02/28/2025] Open
Abstract
Genome-wide CRISPR sgRNA libraries have emerged as transformative tools to systematically probe gene function. While these libraries have been iterated over time to be more efficient, their large size limits their use in some applications. Here, we benchmarked publicly available genome-wide single-targeting sgRNA libraries and evaluated dual targeting as a strategy for pooled CRISPR loss-of-function screens. We leveraged this data to design two minimal genome-wide human CRISPR-Cas9 libraries that are 50% smaller than other libraries and that preserve specificity and sensitivity, thus enabling broader deployment at scale.
Collapse
Affiliation(s)
- Sebastian Lukasiak
- Joint Astrazeneca-Cancer Research Horizons Functional Genomics Centre, Cambridge, UK
- Discovery Sciences, AstraZeneca, BioPharmaceuticals R&D, Cambridge, UK
| | - Alex Kalinka
- Joint Astrazeneca-Cancer Research Horizons Functional Genomics Centre, Cambridge, UK
- Cancer Research Horizons, Cambridge, UK
| | - Nikhil Gupta
- Joint Astrazeneca-Cancer Research Horizons Functional Genomics Centre, Cambridge, UK
- Cancer Research Horizons, Cambridge, UK
| | - Angelos Papadopoulos
- Joint Astrazeneca-Cancer Research Horizons Functional Genomics Centre, Cambridge, UK
- Discovery Sciences, AstraZeneca, BioPharmaceuticals R&D, Cambridge, UK
| | - Khalid Saeed
- Joint Astrazeneca-Cancer Research Horizons Functional Genomics Centre, Cambridge, UK
- Cancer Research Horizons, Cambridge, UK
| | - Ultan McDermott
- Joint Astrazeneca-Cancer Research Horizons Functional Genomics Centre, Cambridge, UK
- AstraZeneca, Oncology R&D, Cambridge, UK
| | - Gregory James Hannon
- Joint Astrazeneca-Cancer Research Horizons Functional Genomics Centre, Cambridge, UK
- Cancer Research UK, Cambridge Institute, Cambridge, UK
| | - Douglas Ross-Thriepland
- Joint Astrazeneca-Cancer Research Horizons Functional Genomics Centre, Cambridge, UK.
- Discovery Sciences, AstraZeneca, BioPharmaceuticals R&D, Cambridge, UK.
| | - David Walter
- Joint Astrazeneca-Cancer Research Horizons Functional Genomics Centre, Cambridge, UK.
- Cancer Research Horizons, Cambridge, UK.
| |
Collapse
|
4
|
Yin JA, Frick L, Scheidmann MC, Liu T, Trevisan C, Dhingra A, Spinelli A, Wu Y, Yao L, Vena DL, Knapp B, Guo J, De Cecco E, Ging K, Armani A, Oakeley EJ, Nigsch F, Jenzer J, Haegele J, Pikusa M, Täger J, Rodriguez-Nieto S, Bouris V, Ribeiro R, Baroni F, Bedi MS, Berry S, Losa M, Hornemann S, Kampmann M, Pelkmans L, Hoepfner D, Heutink P, Aguzzi A. Arrayed CRISPR libraries for the genome-wide activation, deletion and silencing of human protein-coding genes. Nat Biomed Eng 2025; 9:127-148. [PMID: 39633028 PMCID: PMC11754104 DOI: 10.1038/s41551-024-01278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/04/2024] [Indexed: 12/07/2024]
Abstract
Arrayed CRISPR libraries extend the scope of gene-perturbation screens to non-selectable cell phenotypes. However, library generation requires assembling thousands of vectors expressing single-guide RNAs (sgRNAs). Here, by leveraging massively parallel plasmid-cloning methodology, we show that arrayed libraries can be constructed for the genome-wide ablation (19,936 plasmids) of human protein-coding genes and for their activation and epigenetic silencing (22,442 plasmids), with each plasmid encoding an array of four non-overlapping sgRNAs designed to tolerate most human DNA polymorphisms. The quadruple-sgRNA libraries yielded high perturbation efficacies in deletion (75-99%) and silencing (76-92%) experiments and substantial fold changes in activation experiments. Moreover, an arrayed activation screen of 1,634 human transcription factors uncovered 11 novel regulators of the cellular prion protein PrPC, screening with a pooled version of the ablation library led to the identification of 5 novel modifiers of autophagy that otherwise went undetected, and 'post-pooling' individually produced lentiviruses eliminated template-switching artefacts and enhanced the performance of pooled screens for epigenetic silencing. Quadruple-sgRNA arrayed libraries are a powerful and versatile resource for targeted genome-wide perturbations.
Collapse
Grants
- A.A. is supported by institutional core funding by the University of Zurich and the University Hospital of Zurich, and is the recipient of grants from the Nomis Foundation, the Swiss National Research Foundation (grant ID 179040 and grant ID 207872, Sinergia grant ID 183563), the Swiss Personal-ized Health Network (SPHN, 2017DRI17), an Advanced Grant of the European Research Council (ERC Prion2020 No. 670958), the HMZ ImmunoTarget grant, the Human Frontiers Science Pro-gram (grant ID RGP0001/2022), the Michael J. Fox Foundation (grant ID MJFF-022156), Swissuni-versities (CRISPR4ALL), and a donation from the estate of Dr. Hans Salvisberg.
- J-A.Y. is the recip-ient of the postdoc grant Forschungskredit from University of Zurich and the Career Development Awards grant of the Synapsis Foundation – Alzheimer Research Switzerland ARS (Grant ID 2021-CDA02).
- China Scholarship Council
Collapse
Affiliation(s)
- Jiang-An Yin
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland.
| | - Lukas Frick
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Manuel C Scheidmann
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Tingting Liu
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Chiara Trevisan
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Ashutosh Dhingra
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Anna Spinelli
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Yancheng Wu
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Longping Yao
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Dalila Laura Vena
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Britta Knapp
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Jingjing Guo
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Elena De Cecco
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Kathi Ging
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Andrea Armani
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
- Department of Biomedical Sciences, University of Padua, Padova, Italy
| | - Edward J Oakeley
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Florian Nigsch
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Joel Jenzer
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Jasmin Haegele
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Michal Pikusa
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Joachim Täger
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | | | - Vangelis Bouris
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Rafaela Ribeiro
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Federico Baroni
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Manmeet Sakshi Bedi
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Scott Berry
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Marco Losa
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Simone Hornemann
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Dominic Hoepfner
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Hamilton MC, Fife JD, Akinci E, Yu T, Khowpinitchai B, Cha M, Barkal S, Thi TT, Yeo GH, Ramos Barroso JP, Francoeur MJ, Velimirovic M, Gifford DK, Lettre G, Yu H, Cassa CA, Sherwood RI. Systematic elucidation of genetic mechanisms underlying cholesterol uptake. CELL GENOMICS 2023; 3:100304. [PMID: 37228746 PMCID: PMC10203276 DOI: 10.1016/j.xgen.2023.100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/02/2022] [Accepted: 03/24/2023] [Indexed: 05/27/2023]
Abstract
Genetic variation contributes greatly to LDL cholesterol (LDL-C) levels and coronary artery disease risk. By combining analysis of rare coding variants from the UK Biobank and genome-scale CRISPR-Cas9 knockout and activation screening, we substantially improve the identification of genes whose disruption alters serum LDL-C levels. We identify 21 genes in which rare coding variants significantly alter LDL-C levels at least partially through altered LDL-C uptake. We use co-essentiality-based gene module analysis to show that dysfunction of the RAB10 vesicle transport pathway leads to hypercholesterolemia in humans and mice by impairing surface LDL receptor levels. Further, we demonstrate that loss of function of OTX2 leads to robust reduction in serum LDL-C levels in mice and humans by increasing cellular LDL-C uptake. Altogether, we present an integrated approach that improves our understanding of the genetic regulators of LDL-C levels and provides a roadmap for further efforts to dissect complex human disease genetics.
Collapse
Affiliation(s)
- Marisa C. Hamilton
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - James D. Fife
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ersin Akinci
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Tian Yu
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Benyapa Khowpinitchai
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Minsun Cha
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sammy Barkal
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Thi Tun Thi
- Precision Medicine Research Programme, Cardiovascular Disease Research Programme, and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Grace H.T. Yeo
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Juan Pablo Ramos Barroso
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Matthew Jake Francoeur
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Minja Velimirovic
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - David K. Gifford
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Guillaume Lettre
- Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
- Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Haojie Yu
- Precision Medicine Research Programme, Cardiovascular Disease Research Programme, and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christopher A. Cassa
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Richard I. Sherwood
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Ahmed M, Muffat J, Li Y. Understanding neural development and diseases using CRISPR screens in human pluripotent stem cell-derived cultures. Front Cell Dev Biol 2023; 11:1158373. [PMID: 37101616 PMCID: PMC10123288 DOI: 10.3389/fcell.2023.1158373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/30/2023] [Indexed: 04/28/2023] Open
Abstract
The brain is arguably the most complex part of the human body in form and function. Much remains unclear about the molecular mechanisms that regulate its normal and pathological physiology. This lack of knowledge largely stems from the inaccessible nature of the human brain, and the limitation of animal models. As a result, brain disorders are difficult to understand and even more difficult to treat. Recent advances in generating human pluripotent stem cells (hPSCs)-derived 2-dimensional (2D) and 3-dimensional (3D) neural cultures have provided an accessible system to model the human brain. Breakthroughs in gene editing technologies such as CRISPR/Cas9 further elevate the hPSCs into a genetically tractable experimental system. Powerful genetic screens, previously reserved for model organisms and transformed cell lines, can now be performed in human neural cells. Combined with the rapidly expanding single-cell genomics toolkit, these technological advances culminate to create an unprecedented opportunity to study the human brain using functional genomics. This review will summarize the current progress of applying CRISPR-based genetic screens in hPSCs-derived 2D neural cultures and 3D brain organoids. We will also evaluate the key technologies involved and discuss their related experimental considerations and future applications.
Collapse
Affiliation(s)
- Mai Ahmed
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Julien Muffat
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Yun Li
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Hamilton MC, Fife JD, Akinci E, Yu T, Khowpinitchai B, Cha M, Barkal S, Thi TT, Yeo GH, Ramos Barroso JP, Jake Francoeur M, Velimirovic M, Gifford DK, Lettre G, Yu H, Cassa CA, Sherwood RI. Systematic elucidation of genetic mechanisms underlying cholesterol uptake. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.500804. [PMID: 36711952 PMCID: PMC9881906 DOI: 10.1101/2023.01.09.500804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Genetic variation contributes greatly to LDL cholesterol (LDL-C) levels and coronary artery disease risk. By combining analysis of rare coding variants from the UK Biobank and genome-scale CRISPR-Cas9 knockout and activation screening, we have substantially improved the identification of genes whose disruption alters serum LDL-C levels. We identify 21 genes in which rare coding variants significantly alter LDL-C levels at least partially through altered LDL-C uptake. We use co-essentiality-based gene module analysis to show that dysfunction of the RAB10 vesicle transport pathway leads to hypercholesterolemia in humans and mice by impairing surface LDL receptor levels. Further, we demonstrate that loss of function of OTX2 leads to robust reduction in serum LDL-C levels in mice and humans by increasing cellular LDL-C uptake. Altogether, we present an integrated approach that improves our understanding of genetic regulators of LDL-C levels and provides a roadmap for further efforts to dissect complex human disease genetics.
Collapse
Affiliation(s)
- Marisa C. Hamilton
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - James D. Fife
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ersin Akinci
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Tian Yu
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Benyapa Khowpinitchai
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Minsun Cha
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sammy Barkal
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Thi Tun Thi
- Precision Medicine Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cardiovascular Disease Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Grace H.T. Yeo
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Juan Pablo Ramos Barroso
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Matthew Jake Francoeur
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Minja Velimirovic
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - David K. Gifford
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Guillaume Lettre
- Montreal Heart Institute, Montréal, Québec, H1T 1C8, Canada
- Faculté de Médecine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Haojie Yu
- Precision Medicine Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cardiovascular Disease Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher A. Cassa
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Richard I. Sherwood
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Stoyko D, Timothy O, Hernandez A, Konstantinidou P, Meng Q, Haase AD. CRISPR-Cas9 Genome Editing and Rapid Selection of Cell Pools. Curr Protoc 2022; 2:e624. [PMID: 36546759 PMCID: PMC9793982 DOI: 10.1002/cpz1.624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The harnessing of the CRISPR-Cas9 system allows for quick and inexpensive genome editing in tissue culture models. Traditional CRISPR-Cas9 genome editing techniques rely on the ability of single progenitor cells to expand into new pools in a process known as clonal expansion. This is a significant technical challenge that is difficult to overcome for nontransformed cell culture models such as Drosophila ovarian somatic sheath cells (OSCs). OSCs are a unique ex vivo model for epigenetic regulation by PIWI-interacting RNAs (piRNAs) that establish restriction of mobile genetic elements in germ cells to protect genome integrity. Here, we provide a protocol to generate endogenously tagged proteins and gene knockouts without the need for clonal selection. We combine CRISPR-Cas genome editing and knockin of antibiotic selection markers to generate edited cell pools. At the example of Drosophila piwi in OSCs, we demonstrate a strategy that relies on the insertion of an artificial intron to accommodate a selection marker with minimal disturbance of the resulting mRNA. In brief, our donor cassette contains a peptide tag and an optimized intron that accommodates a selection marker driven by an independent promoter on the other genomic strand. The selection marker is transcribed as an independent mRNA, and the intron is efficiently removed from the mRNA encoding the endogenously tagged (endo-tagged) piwi gene. The endo-tagged Piwi protein is expressed at wild-type levels and appropriately localizes to the nucleus of OSCs. We also describe strategies for C-terminal tagging and generation of knockout alleles in OSCs and in human embryonic kidney cells, discuss different design strategies, and provide a plasmid toolkit (available at Addgene). Our protocol enables robust genome editing in OSCs for the first time and provides a simple and time-saving alternative for other cell culture systems. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol 1: Design and cloning of single-guide RNA plasmids Basic Protocol 2: Design and cloning of donor template plasmids for epitope tagging Alternate Protocol: Design and cloning of donor template plasmids for gene knockout Basic Protocol 3: Transfection and selection of edited cell pools.
Collapse
Affiliation(s)
- Daniel Stoyko
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - O Timothy
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Adrianna Hernandez
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| | - Parthena Konstantinidou
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Qingcai Meng
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Astrid D. Haase
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
9
|
Walton RT, Singh A, Blainey PC. Pooled genetic screens with image-based profiling. Mol Syst Biol 2022; 18:e10768. [PMID: 36366905 PMCID: PMC9650298 DOI: 10.15252/msb.202110768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Spatial structure in biology, spanning molecular, organellular, cellular, tissue, and organismal scales, is encoded through a combination of genetic and epigenetic factors in individual cells. Microscopy remains the most direct approach to exploring the intricate spatial complexity defining biological systems and the structured dynamic responses of these systems to perturbations. Genetic screens with deep single-cell profiling via image features or gene expression programs have the capacity to show how biological systems work in detail by cataloging many cellular phenotypes with one experimental assay. Microscopy-based cellular profiling provides information complementary to next-generation sequencing (NGS) profiling and has only recently become compatible with large-scale genetic screens. Optical screening now offers the scale needed for systematic characterization and is poised for further scale-up. We discuss how these methodologies, together with emerging technologies for genetic perturbation and microscopy-based multiplexed molecular phenotyping, are powering new approaches to reveal genotype-phenotype relationships.
Collapse
Affiliation(s)
- Russell T Walton
- Broad Institute of MIT and HarvardCambridgeMAUSA
- Department of Biological EngineeringMITCambridgeMAUSA
| | - Avtar Singh
- Broad Institute of MIT and HarvardCambridgeMAUSA
- Present address:
Department of Cellular and Tissue GenomicsGenentechSouth San FranciscoCAUSA
| | - Paul C Blainey
- Broad Institute of MIT and HarvardCambridgeMAUSA
- Department of Biological EngineeringMITCambridgeMAUSA
- Koch Institute for Integrative Cancer ResearchMITCambridgeMAUSA
| |
Collapse
|
10
|
Tetraspanin-5-mediated MHC class I clustering is required for optimal CD8 T cell activation. Proc Natl Acad Sci U S A 2022; 119:e2122188119. [PMID: 36215490 PMCID: PMC9586303 DOI: 10.1073/pnas.2122188119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
MHC molecules are not randomly distributed on the plasma membrane but instead are present in discrete nanoclusters. The mechanisms that control formation of MHC I nanoclusters and the importance of such structures are incompletely understood. Here, we report a molecular association between tetraspanin-5 (Tspan5) and MHC I molecules that started in the endoplasmic reticulum and was maintained on the plasma membrane. This association was observed both in mouse dendritic cells and in human cancer cell lines. Loss of Tspan5 reduced the size of MHC I clusters without affecting MHC I peptide loading, delivery of complexes to the plasma membrane, or overall surface MHC I levels. Functionally, CD8 T cell responses to antigen presented by Tspan5-deficient dendritic cells were impaired but were restored by antibody-induced reclustering of MHC I molecules. In contrast, Tspan5 did not associate with two other plasma membrane proteins, Flotillin1 and CD55, with or the endoplasmic reticulum proteins Tapasin and TAP. Thus, our findings identify a mechanism underlying the clustering of MHC I molecules that is important for optimal T cell responses.
Collapse
|
11
|
Chan YT, Lu Y, Wu J, Zhang C, Tan HY, Bian ZX, Wang N, Feng Y. CRISPR-Cas9 library screening approach for anti-cancer drug discovery: overview and perspectives. Theranostics 2022; 12:3329-3344. [PMID: 35547744 PMCID: PMC9065202 DOI: 10.7150/thno.71144] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/31/2022] [Indexed: 11/29/2022] Open
Abstract
CRISPR-Cas9 is a Nobel Prize-winning robust gene-editing tool developed in the last decade. This technique enables a stable genetic engineering method with high precision on the genomes of all organisms. The latest advances in the technology include a genome library screening approach, which can detect survival-essential and drug resistance genes via gain or loss of function. The versatile machinery allows genomic screening for gene activation or inhibition, and targets non-coding sequences, such as promoters, miRNAs, and lncRNAs. In this review, we introduce the emerging high-throughput CRISPR-Cas9 library genome screening technology and its working principles to detect survival and drug resistance genes through positive and negative selection. The technology is compared with other existing approaches while focusing on the advantages of its variable applications in anti-cancer drug discovery, including functions and target identification, non-coding RNA information, actions of small molecules, and drug target discoveries. The combination of the CRISPR-Cas9 system with multi-omic platforms represents a dynamic field expected to advance anti-cancer drug discovery and precision medicine in the clinic.
Collapse
Affiliation(s)
- Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong
| | - Yuanjun Lu
- School of Chinese Medicine, The University of Hong Kong
| | - Junyu Wu
- School of Chinese Medicine, The University of Hong Kong
| | - Cheng Zhang
- School of Chinese Medicine, The University of Hong Kong
| | - Hor-Yue Tan
- School of Chinese Medicine, Hong Kong Baptist University
| | | | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong
| |
Collapse
|
12
|
Pacia CP, Yuan J, Yue Y, Xu L, Nazeri A, Desai R, Gach HM, Wang X, Talcott MR, Chaudhuri AA, Dunn GP, Leuthardt EC, Chen H. Sonobiopsy for minimally invasive, spatiotemporally-controlled, and sensitive detection of glioblastoma-derived circulating tumor DNA. Am J Cancer Res 2022; 12:362-378. [PMID: 34987650 PMCID: PMC8690937 DOI: 10.7150/thno.65597] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
Though surgical biopsies provide direct access to tissue for genomic characterization of brain cancer, they are invasive and pose significant clinical risks. Brain cancer management via blood-based liquid biopsies is a minimally invasive alternative; however, the blood-brain barrier (BBB) restricts the release of brain tumor-derived molecular biomarkers necessary for sensitive diagnosis. Methods: A mouse glioblastoma multiforme (GBM) model was used to demonstrate the capability of focused ultrasound (FUS)-enabled liquid biopsy (sonobiopsy) to improve the diagnostic sensitivity of brain tumor-specific genetic mutations compared with conventional blood-based liquid biopsy. Furthermore, a pig GBM model was developed to characterize the translational implications of sonobiopsy in humans. Magnetic resonance imaging (MRI)-guided FUS sonication was performed in mice and pigs to locally enhance the BBB permeability of the GBM tumor. Contrast-enhanced T1-weighted MR images were acquired to evaluate the BBB permeability change. Blood was collected immediately after FUS sonication. Droplet digital PCR was used to quantify the levels of brain tumor-specific genetic mutations in the circulating tumor DNA (ctDNA). Histological staining was performed to evaluate the potential for off-target tissue damage by sonobiopsy. Results: Sonobiopsy improved the detection sensitivity of EGFRvIII from 7.14% to 64.71% and TERT C228T from 14.29% to 45.83% in the mouse GBM model. It also improved the diagnostic sensitivity of EGFRvIII from 28.57% to 100% and TERT C228T from 42.86% to 71.43% in the porcine GBM model. Conclusion: Sonobiopsy disrupts the BBB at the spatially-targeted brain location, releases tumor-derived DNA into the blood circulation, and enables timely collection of ctDNA. Converging evidence from both mouse and pig GBM models strongly supports the clinical translation of sonobiopsy for the minimally invasive, spatiotemporally-controlled, and sensitive molecular characterization of brain cancer.
Collapse
|
13
|
Lloyd R, Urban V, Muñoz-Martínez F, Ayestaran I, Thomas J, de Renty C, O’Connor M, Forment J, Galanty Y, Jackson S. Loss of Cyclin C or CDK8 provides ATR inhibitor resistance by suppressing transcription-associated replication stress. Nucleic Acids Res 2021; 49:8665-8683. [PMID: 34329458 PMCID: PMC8421211 DOI: 10.1093/nar/gkab628] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
The protein kinase ATR plays pivotal roles in DNA repair, cell cycle checkpoint engagement and DNA replication. Consequently, ATR inhibitors (ATRi) are in clinical development for the treatment of cancers, including tumours harbouring mutations in the related kinase ATM. However, it still remains unclear which functions and pathways dominate long-term ATRi efficacy, and how these vary between clinically relevant genetic backgrounds. Elucidating common and genetic-background specific mechanisms of ATRi efficacy could therefore assist in patient stratification and pre-empting drug resistance. Here, we use CRISPR-Cas9 genome-wide screening in ATM-deficient and proficient mouse embryonic stem cells to interrogate cell fitness following treatment with the ATRi, ceralasertib. We identify factors that enhance or suppress ATRi efficacy, with a subset of these requiring intact ATM signalling. Strikingly, two of the strongest resistance-gene hits in both ATM-proficient and ATM-deficient cells encode Cyclin C and CDK8: members of the CDK8 kinase module for the RNA polymerase II mediator complex. We show that Cyclin C/CDK8 loss reduces S-phase DNA:RNA hybrid formation, transcription-replication stress, and ultimately micronuclei formation induced by ATRi. Overall, our work identifies novel biomarkers of ATRi efficacy in ATM-proficient and ATM-deficient cells, and highlights transcription-associated replication stress as a predominant driver of ATRi-induced cell death.
Collapse
Affiliation(s)
- Rebecca L Lloyd
- Wellcome/Cancer Research UK Gurdon Institute, and Department of Biochemistry, University of Cambridge, UK
| | - Vaclav Urban
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Francisco Muñoz-Martínez
- Wellcome/Cancer Research UK Gurdon Institute, and Department of Biochemistry, University of Cambridge, UK
| | - Iñigo Ayestaran
- Wellcome/Cancer Research UK Gurdon Institute, and Department of Biochemistry, University of Cambridge, UK
| | - John C Thomas
- Wellcome/Cancer Research UK Gurdon Institute, and Department of Biochemistry, University of Cambridge, UK
| | | | | | | | - Yaron Galanty
- Wellcome/Cancer Research UK Gurdon Institute, and Department of Biochemistry, University of Cambridge, UK
| | - Stephen P Jackson
- Wellcome/Cancer Research UK Gurdon Institute, and Department of Biochemistry, University of Cambridge, UK
| |
Collapse
|
14
|
Wagenblast E, Araújo J, Gan OI, Cutting SK, Murison A, Krivdova G, Azkanaz M, McLeod JL, Smith SA, Gratton BA, Marhon SA, Gabra M, Medeiros JJF, Manteghi S, Chen J, Chan-Seng-Yue M, Garcia-Prat L, Salmena L, De Carvalho DD, Abelson S, Abdelhaleem M, Chong K, Roifman M, Shannon P, Wang JCY, Hitzler JK, Chitayat D, Dick JE, Lechman ER. Mapping the cellular origin and early evolution of leukemia in Down syndrome. Science 2021; 373:eabf6202. [PMID: 34244384 DOI: 10.1126/science.abf6202] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/09/2021] [Accepted: 05/21/2021] [Indexed: 12/14/2022]
Abstract
Children with Down syndrome have a 150-fold increased risk of developing myeloid leukemia, but the mechanism of predisposition is unclear. Because Down syndrome leukemogenesis initiates during fetal development, we characterized the cellular and developmental context of preleukemic initiation and leukemic progression using gene editing in human disomic and trisomic fetal hematopoietic cells and xenotransplantation. GATA binding protein 1 (GATA1) mutations caused transient preleukemia when introduced into trisomy 21 long-term hematopoietic stem cells, where a subset of chromosome 21 microRNAs affected predisposition to preleukemia. By contrast, progression to leukemia was independent of trisomy 21 and originated in various stem and progenitor cells through additional mutations in cohesin genes. CD117+/KIT proto-oncogene (KIT) cells mediated the propagation of preleukemia and leukemia, and KIT inhibition targeted preleukemic stem cells.
Collapse
MESH Headings
- Animals
- Antigens, CD34/analysis
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Lineage
- Cell Proliferation
- Cell Transformation, Neoplastic
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 21/metabolism
- Disease Models, Animal
- Disease Progression
- Down Syndrome/complications
- Down Syndrome/genetics
- Female
- GATA1 Transcription Factor/genetics
- GATA1 Transcription Factor/metabolism
- Hematopoiesis
- Hematopoietic Stem Cell Transplantation
- Hematopoietic Stem Cells/physiology
- Heterografts
- Humans
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid/pathology
- Liver/embryology
- Male
- Megakaryocytes/physiology
- Mice
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Mutation
- Preleukemia/genetics
- Preleukemia/metabolism
- Preleukemia/pathology
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Mas
- Proto-Oncogene Proteins c-kit/analysis
- Proto-Oncogene Proteins c-kit/antagonists & inhibitors
- Cohesins
Collapse
Affiliation(s)
- Elvin Wagenblast
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada.
| | - Joana Araújo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Hematology, Centro Hospitalar Universitário de São João, Porto, 4200-319, Portugal
- Faculty of Medicine, University of Porto, Porto, 4200-319, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, 4200-135, Portugal
- Instituto Nacional de Investigação Biomédica, University of Porto, Porto, 4200-135, Portugal
| | - Olga I Gan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Sarah K Cutting
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Alex Murison
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Gabriela Krivdova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Maria Azkanaz
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Jessica L McLeod
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Sabrina A Smith
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Blaise A Gratton
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Sajid A Marhon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Martino Gabra
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jessie J F Medeiros
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Sanaz Manteghi
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 1X8, Canada
| | - Jian Chen
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 1X8, Canada
| | - Michelle Chan-Seng-Yue
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Laura Garcia-Prat
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Leonardo Salmena
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sagi Abelson
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Mohamed Abdelhaleem
- Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Karen Chong
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Maian Roifman
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Patrick Shannon
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jean C Y Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Division of Medical Oncology and Hematology, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Johann K Hitzler
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 1X8, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
- Division of Hematology and Oncology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - David Chitayat
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Eric R Lechman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
15
|
Paraskevopoulos M, McGuigan AP. Application of CRISPR screens to investigate mammalian cell competition. Brief Funct Genomics 2021; 20:135-147. [PMID: 33782689 DOI: 10.1093/bfgp/elab020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 11/14/2022] Open
Abstract
Cell competition is defined as the context-dependent elimination of cells that is mediated by intercellular communication, such as paracrine or contact-dependent cell signaling, and/or mechanical stresses. It is considered to be a quality control mechanism that facilitates the removal of suboptimal cells from both adult and embryonic tissues. Cell competition, however, can also be hijacked by transformed cells to acquire a 'super-competitor' status and outcompete the normal epithelium to establish a precancerous field. To date, many genetic drivers of cell competition have been identified predominately through studies in Drosophila. Especially during the last couple of years, ethylmethanesulfonate-based genetic screens have been instrumental to our understanding of the molecular regulators behind some of the most common competition mechanisms in Drosophila, namely competition due to impaired ribosomal function (or anabolism) and mechanical sensitivity. Despite recent findings in Drosophila and in mammalian models of cell competition, the drivers of mammalian cell competition remain largely elusive. Since the discovery of CRISPR/Cas9, its use in functional genomics has been indispensable to uncover novel cancer vulnerabilities. We envision that CRISPR/Cas9 screens will enable systematic, genome-scale probing of mammalian cell competition to discover novel mutations that not only trigger cell competition but also identify novel molecular components that are essential for the recognition and elimination of less fit cells. In this review, we summarize recent contributions that further our understanding of the molecular mechanisms of cell competition by genetic screening in Drosophila, and provide our perspective on how similar and novel screening strategies made possible by whole-genome CRISPR/Cas9 screening can advance our understanding of mammalian cell competition in the future.
Collapse
|
16
|
Oughtred R, Rust J, Chang C, Breitkreutz B, Stark C, Willems A, Boucher L, Leung G, Kolas N, Zhang F, Dolma S, Coulombe‐Huntington J, Chatr‐aryamontri A, Dolinski K, Tyers M. The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci 2021; 30:187-200. [PMID: 33070389 PMCID: PMC7737760 DOI: 10.1002/pro.3978] [Citation(s) in RCA: 914] [Impact Index Per Article: 228.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
The BioGRID (Biological General Repository for Interaction Datasets, thebiogrid.org) is an open-access database resource that houses manually curated protein and genetic interactions from multiple species including yeast, worm, fly, mouse, and human. The ~1.93 million curated interactions in BioGRID can be used to build complex networks to facilitate biomedical discoveries, particularly as related to human health and disease. All BioGRID content is curated from primary experimental evidence in the biomedical literature, and includes both focused low-throughput studies and large high-throughput datasets. BioGRID also captures protein post-translational modifications and protein or gene interactions with bioactive small molecules including many known drugs. A built-in network visualization tool combines all annotations and allows users to generate network graphs of protein, genetic and chemical interactions. In addition to general curation across species, BioGRID undertakes themed curation projects in specific aspects of cellular regulation, for example the ubiquitin-proteasome system, as well as specific disease areas, such as for the SARS-CoV-2 virus that causes COVID-19 severe acute respiratory syndrome. A recent extension of BioGRID, named the Open Repository of CRISPR Screens (ORCS, orcs.thebiogrid.org), captures single mutant phenotypes and genetic interactions from published high throughput genome-wide CRISPR/Cas9-based genetic screens. BioGRID-ORCS contains datasets for over 1,042 CRISPR screens carried out to date in human, mouse and fly cell lines. The biomedical research community can freely access all BioGRID data through the web interface, standardized file downloads, or via model organism databases and partner meta-databases.
Collapse
Affiliation(s)
- Rose Oughtred
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
| | - Jennifer Rust
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
| | - Christie Chang
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
| | | | - Chris Stark
- The Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
| | - Andrew Willems
- The Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
| | - Lorrie Boucher
- The Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
| | - Genie Leung
- The Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
| | - Nadine Kolas
- The Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
| | - Frederick Zhang
- Arthur and Sonia Labatt Brain Tumor Research Center and Developmental and Stem Cell BiologyThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Sonam Dolma
- Arthur and Sonia Labatt Brain Tumor Research Center and Developmental and Stem Cell BiologyThe Hospital for Sick ChildrenTorontoOntarioCanada
| | | | | | - Kara Dolinski
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
| | - Mike Tyers
- The Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
- Institute for Research in Immunology and CancerUniversité de MontréalQuebecCanada
| |
Collapse
|
17
|
Fernando PC, Mabee PM, Zeng E. Integration of anatomy ontology data with protein-protein interaction networks improves the candidate gene prediction accuracy for anatomical entities. BMC Bioinformatics 2020; 21:442. [PMID: 33028186 PMCID: PMC7542696 DOI: 10.1186/s12859-020-03773-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 09/22/2020] [Indexed: 01/04/2023] Open
Abstract
Background Identification of genes responsible for anatomical entities is a major requirement in many fields including developmental biology, medicine, and agriculture. Current wet lab techniques used for this purpose, such as gene knockout, are high in resource and time consumption. Protein–protein interaction (PPI) networks are frequently used to predict disease genes for humans and gene candidates for molecular functions, but they are rarely used to predict genes for anatomical entities. Moreover, PPI networks suffer from network quality issues, which can be a limitation for their usage in predicting candidate genes. Therefore, we developed an integrative framework to improve the candidate gene prediction accuracy for anatomical entities by combining existing experimental knowledge about gene-anatomical entity relationships with PPI networks using anatomy ontology annotations. We hypothesized that this integration improves the quality of the PPI networks by reducing the number of false positive and false negative interactions and is better optimized to predict candidate genes for anatomical entities. We used existing Uberon anatomical entity annotations for zebrafish and mouse genes to construct gene networks by calculating semantic similarity between the genes. These anatomy-based gene networks were semantic networks, as they were constructed based on the anatomy ontology annotations that were obtained from the experimental data in the literature. We integrated these anatomy-based gene networks with mouse and zebrafish PPI networks retrieved from the STRING database and compared the performance of their network-based candidate gene predictions. Results According to evaluations of candidate gene prediction performance tested under four different semantic similarity calculation methods (Lin, Resnik, Schlicker, and Wang), the integrated networks, which were semantically improved PPI networks, showed better performances by having higher area under the curve values for receiver operating characteristic and precision-recall curves than PPI networks for both zebrafish and mouse. Conclusion Integration of existing experimental knowledge about gene-anatomical entity relationships with PPI networks via anatomy ontology improved the candidate gene prediction accuracy and optimized them for predicting candidate genes for anatomical entities.
Collapse
Affiliation(s)
- Pasan C Fernando
- Department of Biology, University of South Dakota, Vermillion, SD, USA.
| | - Paula M Mabee
- Department of Biology, University of South Dakota, Vermillion, SD, USA.,National Ecological Observatory Network, Battelle Memorial Institute, 1685 38th St., Suite 100, Boulder, CO, 80301, USA
| | - Erliang Zeng
- Division of Biostatistics and Computational Biology, College of Dentistry, University of Iowa, Iowa City, IA, USA. .,Department of Preventive and Community Dentistry, College of Dentistry, University of Iowa, Iowa City, IA, USA. .,Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA. .,Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
18
|
Veeneman B, Gao Y, Grant J, Fruhling D, Ahn J, Bosbach B, Bienkowska J, Follettie M, Arndt K, Myers J, Zhong W. PINCER: improved CRISPR/Cas9 screening by efficient cleavage at conserved residues. Nucleic Acids Res 2020; 48:9462-9477. [PMID: 32821942 PMCID: PMC7515706 DOI: 10.1093/nar/gkaa645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/26/2022] Open
Abstract
CRISPR/Cas9 functional genomic screens have emerged as essential tools in drug target discovery. However, the sensitivity of available genome-wide CRISPR libraries is impaired by guides which inefficiently abrogate gene function. While Cas9 cleavage efficiency optimization and essential domain targeting have been developed as independent guide design rationales, no library has yet combined these into a single cohesive strategy to knock out gene function. Here, in a massive reanalysis of CRISPR tiling data using the most comprehensive feature database assembled, we determine which features of guides and their targets best predict activity and how to best combine them into a single guide design algorithm. We present the ProteIN ConsERvation (PINCER) genome-wide CRISPR library, which for the first time combines enzymatic efficiency optimization with conserved length protein region targeting, and also incorporates domains, coding sequence position, U6 termination (TTT), restriction sites, polymorphisms and specificity. Finally, we demonstrate superior performance of the PINCER library compared to alternative genome-wide CRISPR libraries in head-to-head validation. PINCER is available for individual gene knockout and genome-wide screening for both the human and mouse genomes.
Collapse
Affiliation(s)
- Brendan Veeneman
- Oncology Research and Development, Pfizer Worldwide Research, Development and Medical, Pearl River, NY 10965, USA
| | - Ying Gao
- Oncology Research and Development, Pfizer Worldwide Research, Development and Medical, Pearl River, NY 10965, USA
| | - Joy Grant
- Oncology Research and Development, Pfizer Worldwide Research, Development and Medical, Pearl River, NY 10965, USA
| | - David Fruhling
- Oncology Research and Development, Pfizer Worldwide Research, Development and Medical, Pearl River, NY 10965, USA
| | - James Ahn
- Oncology Research and Development, Pfizer Worldwide Research, Development and Medical, Pearl River, NY 10965, USA
| | - Benedikt Bosbach
- Emerging Sciences & Innovation, Pfizer Worldwide Research, Development and Medical, New York, NY 10016, USA
| | - Jadwiga Bienkowska
- Oncology Research and Development, Pfizer Worldwide Research, Development and Medical, San Diego, CA 92121, USA
| | - Maximillian Follettie
- Oncology Research and Development, Pfizer Worldwide Research, Development and Medical, Pearl River, NY 10965, USA
| | - Kim Arndt
- Oncology Research and Development, Pfizer Worldwide Research, Development and Medical, Pearl River, NY 10965, USA
| | - Jeremy Myers
- Oncology Research and Development, Pfizer Worldwide Research, Development and Medical, Pearl River, NY 10965, USA
| | - Wenyan Zhong
- Oncology Research and Development, Pfizer Worldwide Research, Development and Medical, Pearl River, NY 10965, USA
| |
Collapse
|
19
|
Joseph SA, Taglialatela A, Leuzzi G, Huang JW, Cuella-Martin R, Ciccia A. Time for remodeling: SNF2-family DNA translocases in replication fork metabolism and human disease. DNA Repair (Amst) 2020; 95:102943. [PMID: 32971328 DOI: 10.1016/j.dnarep.2020.102943] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023]
Abstract
Over the course of DNA replication, DNA lesions, transcriptional intermediates and protein-DNA complexes can impair the progression of replication forks, thus resulting in replication stress. Failure to maintain replication fork integrity in response to replication stress leads to genomic instability and predisposes to the development of cancer and other genetic disorders. Multiple DNA damage and repair pathways have evolved to allow completion of DNA replication following replication stress, thus preserving genomic integrity. One of the processes commonly induced in response to replication stress is fork reversal, which consists in the remodeling of stalled replication forks into four-way DNA junctions. In normal conditions, fork reversal slows down replication fork progression to ensure accurate repair of DNA lesions and facilitates replication fork restart once the DNA lesions have been removed. However, in certain pathological situations, such as the deficiency of DNA repair factors that protect regressed forks from nuclease-mediated degradation, fork reversal can cause genomic instability. In this review, we describe the complex molecular mechanisms regulating fork reversal, with a focus on the role of the SNF2-family fork remodelers SMARCAL1, ZRANB3 and HLTF, and highlight the implications of fork reversal for tumorigenesis and cancer therapy.
Collapse
Affiliation(s)
- Sarah A Joseph
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Angelo Taglialatela
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Giuseppe Leuzzi
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Jen-Wei Huang
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Raquel Cuella-Martin
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
20
|
Bowden AR, Morales-Juarez DA, Sczaniecka-Clift M, Agudo MM, Lukashchuk N, Thomas JC, Jackson SP. Parallel CRISPR-Cas9 screens clarify impacts of p53 on screen performance. eLife 2020; 9:e55325. [PMID: 32441252 PMCID: PMC7244323 DOI: 10.7554/elife.55325] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022] Open
Abstract
CRISPR-Cas9 genome engineering has revolutionised high-throughput functional genomic screens. However, recent work has raised concerns regarding the performance of CRISPR-Cas9 screens using TP53 wild-type human cells due to a p53-mediated DNA damage response (DDR) limiting the efficiency of generating viable edited cells. To directly assess the impact of cellular p53 status on CRISPR-Cas9 screen performance, we carried out parallel CRISPR-Cas9 screens in wild-type and TP53 knockout human retinal pigment epithelial cells using a focused dual guide RNA library targeting 852 DDR-associated genes. Our work demonstrates that although functional p53 status negatively affects identification of significantly depleted genes, optimal screen design can nevertheless enable robust screen performance. Through analysis of our own and published screen data, we highlight key factors for successful screens in both wild-type and p53-deficient cells.
Collapse
Affiliation(s)
- Anne Ramsay Bowden
- Wellcome/Cancer Research UK Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| | - David A Morales-Juarez
- Wellcome/Cancer Research UK Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| | | | - Maria Martin Agudo
- Wellcome/Cancer Research UK Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| | - Natalia Lukashchuk
- Wellcome/Cancer Research UK Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| | - John Christopher Thomas
- Wellcome/Cancer Research UK Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| | - Stephen P Jackson
- Wellcome/Cancer Research UK Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
21
|
Mong EF, Yang Y, Akat KM, Canfield J, VanWye J, Lockhart J, Tsibris JCM, Schatz F, Lockwood CJ, Tuschl T, Kayisli UA, Totary-Jain H. Chromosome 19 microRNA cluster enhances cell reprogramming by inhibiting epithelial-to-mesenchymal transition. Sci Rep 2020; 10:3029. [PMID: 32080251 PMCID: PMC7033247 DOI: 10.1038/s41598-020-59812-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 02/04/2020] [Indexed: 02/08/2023] Open
Abstract
During implantation, cytotrophoblasts undergo epithelial-to-mesenchymal transition (EMT) as they differentiate into invasive extravillous trophoblasts (EVTs). The primate-specific microRNA cluster on chromosome 19 (C19MC) is exclusively expressed in the placenta, embryonic stem cells and certain cancers however, its role in EMT gene regulation is unknown. In situ hybridization for miR-517a/c, a C19MC cistron microRNA, in first trimester human placentas displayed strong expression in villous trophoblasts and a gradual decrease from proximal to distal cell columns as cytotrophoblasts differentiate into invasive EVTs. To investigate the role of C19MC in the regulation of EMT genes, we employed the CRISPR/dCas9 Synergistic Activation Mediator (SAM) system, which induced robust transcriptional activation of the entire C19MC cistron and resulted in suppression of EMT associated genes. Exposure of human iPSCs to hypoxia or differentiation of iPSCs into either cytotrophoblast-stem-like cells or EVT-like cells under hypoxia reduced C19MC expression and increased EMT genes. Furthermore, transcriptional activation of the C19MC cistron induced the expression of OCT4 and FGF4 and accelerated cellular reprogramming. This study establishes the CRISPR/dCas9 SAM as a powerful tool that enables activation of the entire C19MC cistron and uncovers its novel role in suppressing EMT genes critical for maintaining the epithelial cytotrophoblasts stem cell phenotype.
Collapse
Affiliation(s)
- Ezinne F Mong
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Kemal M Akat
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, New York, New York, USA
| | - John Canfield
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Jeffrey VanWye
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - John Lockhart
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - John C M Tsibris
- Department of Obstetrics and Gynecology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Frederick Schatz
- Department of Obstetrics and Gynecology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Charles J Lockwood
- Department of Obstetrics and Gynecology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Thomas Tuschl
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, New York, New York, USA
| | - Umit A Kayisli
- Department of Obstetrics and Gynecology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Hana Totary-Jain
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA.
| |
Collapse
|
22
|
Zhang G, Dai Z, Dai X. A Novel Hybrid CNN-SVR for CRISPR/Cas9 Guide RNA Activity Prediction. Front Genet 2020; 10:1303. [PMID: 31969902 PMCID: PMC6960259 DOI: 10.3389/fgene.2019.01303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/26/2019] [Indexed: 12/26/2022] Open
Abstract
Accurate prediction of guide RNA (gRNA) on-target efficacy is critical for effective application of CRISPR/Cas9 system. Although some machine learning-based and convolutional neural network (CNN)-based methods have been proposed, prediction accuracy remains to be improved. Here, firstly we improved architectures of current CNNs for predicting gRNA on-target efficacy. Secondly, we proposed a novel hybrid system which combines our improved CNN with support vector regression (SVR). This CNN-SVR system is composed of two major components: a merged CNN as the front-end for extracting gRNA feature and an SVR as the back-end for regression and predicting gRNA cleavage efficiency. We demonstrate that CNN-SVR can effectively exploit features interactions from feed-forward directions to learn deeper features of gRNAs and their corresponding epigenetic features. Experiments on commonly used datasets show that our CNN-SVR system outperforms available state-of-the-art methods in terms of prediction accuracy, generalization, and robustness. Source codes are available at https://github.com/Peppags/CNN-SVR.
Collapse
Affiliation(s)
- Guishan Zhang
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
| | - Zhiming Dai
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Big Data Analysis and Processing, Sun Yat-sen University, Guangzhou, China
| | - Xianhua Dai
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
23
|
Functional profiling of single CRISPR/Cas9-edited human long-term hematopoietic stem cells. Nat Commun 2019; 10:4730. [PMID: 31628330 PMCID: PMC6802205 DOI: 10.1038/s41467-019-12726-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/29/2019] [Indexed: 12/20/2022] Open
Abstract
In the human hematopoietic system, rare self-renewing multipotent long-term hematopoietic stem cells (LT-HSCs) are responsible for the lifelong production of mature blood cells and are the rational target for clinical regenerative therapies. However, the heterogeneity in the hematopoietic stem cell compartment and variable outcomes of CRISPR/Cas9 editing make functional interrogation of rare LT-HSCs challenging. Here, we report high efficiency LT-HSC editing at single-cell resolution using electroporation of modified synthetic gRNAs and Cas9 protein. Targeted short isoform expression of the GATA1 transcription factor elicit distinct differentiation and proliferation effects in single highly purified LT-HSC when analyzed with functional in vitro differentiation and long-term repopulation xenotransplantation assays. Our method represents a blueprint for systematic genetic analysis of complex tissue hierarchies at single-cell resolution. Previous gene editing in haematopoietic stem cells (HSCs) has focussed on a heterogeneous CD34+ population. Here, the authors demonstrate high efficiency CRISPR/Cas9-based editing of purified long-term HSCs using non-homologous end joining and homology-directed repair, by directing isoform-specific expression of GATA1.
Collapse
|
24
|
El-Kenawy A, Benarba B, Neves AF, de Araujo TG, Tan BL, Gouri A. Gene surgery: Potential applications for human diseases. EXCLI JOURNAL 2019; 18:908-930. [PMID: 31762718 PMCID: PMC6868916 DOI: 10.17179/excli2019-1833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022]
Abstract
Gene therapy became in last decade a new emerging therapeutic era showing promising results against different diseases such as cancer, cardiovascular diseases, diabetes, and neurological disorders. Recently, the genome editing technique for eukaryotic cells called CRISPR-Cas (Clustered Regulatory Interspaced Short Palindromic Repeats) has enriched the field of gene surgery with enhanced applications. In the present review, we summarized the different applications of gene surgery for treating human diseases such as cancer, diabetes, nervous, and cardiovascular diseases, besides the molecular mechanisms involved in these important effects. Several studies support the important therapeutic applications of gene surgery in a large number of health disorders and diseases including β-thalassemia, cancer, immunodeficiencies, diabetes, and neurological disorders. In diabetes, gene surgery was shown to be effective in type 1 diabetes by triggering different signaling pathways. Furthermore, gene surgery, especially that using CRISPR-Cas possessed important application on diagnosis, screening and treatment of several cancers such as lung, liver, pancreatic and colorectal cancer. Nevertheless, gene surgery still presents some limitations such as the design difficulties and costs regarding ZFNs (Zinc Finger Nucleases) and TALENs (Transcription Activator-Like Effector Nucleases) use, off-target effects, low transfection efficiency, in vivo delivery-safety and ethical issues.
Collapse
Affiliation(s)
- Ayman El-Kenawy
- Department of Pathology, College of Medicine, Taif University, Saudi Arabia
- Department of Molecular Biology, GEBRI, University of Sadat City, P.O. Box 79, Sadat City, Egypt
| | - Bachir Benarba
- Laboratory Research on Biological Systems and Geomatics, Faculty of Nature and Life Sciences, University of Mascara, Algeria
| | - Adriana Freitas Neves
- Institute of Biotechnology, Molecular Biology Laboratory, Universidade Federal de Goias, Catalao, Brazil
| | - Thaise Gonçalves de Araujo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas, MG, Brazil
| | - Bee Ling Tan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Adel Gouri
- Laboratory of Medical Biochemistry, Faculty of Medicine, University of Annaba, Algeria
| |
Collapse
|
25
|
A one-step tRNA-CRISPR system for genome-wide genetic interaction mapping in mammalian cells. Sci Rep 2019; 9:14499. [PMID: 31601883 PMCID: PMC6787096 DOI: 10.1038/s41598-019-51090-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
Mapping genetic interactions in mammalian cells is limited due to technical obstacles. Here we describe a method called TCGI (tRNA-CRISPR for genetic interactions) to generate a high-efficient, barcode-free and scalable pairwise CRISPR libraries in mammalian cells for identifying genetic interactions. We have generated a genome- wide library to identify genes genetically interacting with TAZ in cell viability regulation. Validation of candidate synergistic genes reveals the screening accuracy of 85% and TAZ-MCL1 is characterized as combinational drug targets for non-small cell lung cancer treatments. TCGI has dramatically improved the current methods for mapping genetic interactions and screening drug targets for combinational therapies.
Collapse
|
26
|
Simonneau C, Yang J, Kong X, Kilker R, Edelstein L, Fortina P, Londin E, Horowitz A. Validation of a Miniaturized Permeability Assay Compatible with CRISPR-Mediated Genome-Wide Screen. Sci Rep 2019; 9:14238. [PMID: 31578372 PMCID: PMC6775082 DOI: 10.1038/s41598-019-50588-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/11/2019] [Indexed: 12/28/2022] Open
Abstract
The impermeability of the luminal endothelial cell monolayer is crucial for the normal performance of the vascular and lymphatic systems. A key to this function is the integrity of the monolayer's intercellular junctions. The known repertoire of junction-regulating genes is incomplete. Current permeability assays are incompatible with high-throughput genome-wide screens that could identify these genes. To overcome these limitations, we designed a new permeability assay that consists of cell monolayers grown on ~150 μm microcarriers (MCs). Each MC functions as a miniature individual assay of permeability (MAP). We demonstrate that false-positive results can be minimized, and that MAP sensitivity to thrombin-induced increase in monolayer permeability is similar to the sensitivity of impedance measurement. We validated the assay by showing that the expression of single guide RNAs (sgRNAs) that target genes encoding known thrombin signaling proteins blocks effectively thrombin-induced junction disassembly, and that MAPs carrying such cells can be separated effectively by fluorescence-assisted sorting from those that carry cells expressing non-targeting sgRNAs. These results indicate that MAPs are suitable for high-throughput experimentation and for genome-wide screens for genes that mediate the disruptive effect of thrombin on endothelial cell junctions.
Collapse
Affiliation(s)
- Claire Simonneau
- Cardeza Center for Hematology Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Roche Innovation Center Basel, Zürich, Switzerland
| | - Junning Yang
- Cardeza Center for Hematology Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Xianguo Kong
- Cardeza Center for Hematology Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Robert Kilker
- Cardeza Center for Hematology Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Leonard Edelstein
- Cardeza Center for Hematology Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Paolo Fortina
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
27
|
Wang H, Diaz AK, Shaw TI, Li Y, Niu M, Cho JH, Paugh BS, Zhang Y, Sifford J, Bai B, Wu Z, Tan H, Zhou S, Hover LD, Tillman HS, Shirinifard A, Thiagarajan S, Sablauer A, Pagala V, High AA, Wang X, Li C, Baker SJ, Peng J. Deep multiomics profiling of brain tumors identifies signaling networks downstream of cancer driver genes. Nat Commun 2019; 10:3718. [PMID: 31420543 PMCID: PMC6697699 DOI: 10.1038/s41467-019-11661-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 07/19/2019] [Indexed: 12/11/2022] Open
Abstract
High throughput omics approaches provide an unprecedented opportunity for dissecting molecular mechanisms in cancer biology. Here we present deep profiling of whole proteome, phosphoproteome and transcriptome in two high-grade glioma (HGG) mouse models driven by mutated RTK oncogenes, PDGFRA and NTRK1, analyzing 13,860 proteins and 30,431 phosphosites by mass spectrometry. Systems biology approaches identify numerous master regulators, including 41 kinases and 23 transcription factors. Pathway activity computation and mouse survival indicate the NTRK1 mutation induces a higher activation of AKT downstream targets including MYC and JUN, drives a positive feedback loop to up-regulate multiple other RTKs, and confers higher oncogenic potency than the PDGFRA mutation. A mini-gRNA library CRISPR-Cas9 validation screening shows 56% of tested master regulators are important for the viability of NTRK-driven HGG cells, including TFs (Myc and Jun) and metabolic kinases (AMPKa1 and AMPKa2), confirming the validity of the multiomics integrative approaches, and providing novel tumor vulnerabilities.
Collapse
Affiliation(s)
- Hong Wang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Alexander K Diaz
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Timothy I Shaw
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yuxin Li
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Mingming Niu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ji-Hoon Cho
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Barbara S Paugh
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yang Zhang
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jeffrey Sifford
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Bing Bai
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Zhiping Wu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Suiping Zhou
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Laura D Hover
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Heather S Tillman
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Abbas Shirinifard
- Department of Information Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Suresh Thiagarajan
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Andras Sablauer
- Department of Information Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Vishwajeeth Pagala
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anthony A High
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xusheng Wang
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
28
|
Khan FJ, Yuen G, Luo J. Multiplexed CRISPR/Cas9 gene knockout with simple crRNA:tracrRNA co-transfection. Cell Biosci 2019; 9:41. [PMID: 31139343 PMCID: PMC6528186 DOI: 10.1186/s13578-019-0304-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 05/10/2019] [Indexed: 12/26/2022] Open
Abstract
Background CRISPR/Cas9 mediated gene knockout is a powerful tool for genome editing with the ability to target multiple genes simultaneously. Establishing an efficient, multiplexed gene knockout system using CRISPR/Cas9 that is both simple and robust in its application would further advance the adoption of CRISPR/Cas9 for genetic studies. Results In this study, we present a simple, versatile and highly efficient method to achieve acute gene knockout with CRISPR/Cas9 using chemically synthesized crRNA and tracrRNA oligos. We demonstrate that co-transfection of the crRNA:tracrRNA duplex into Cas9-expressing cells leads to target gene mutation and loss of target protein expression in the majority of the cell population. We also show that delivering three crRNAs targeting EGFP, KRAS and PTEN in the same reaction leads to the simultaneous knockout of all three genes. Direct comparison of multiplexed gene targeting by crRNA:tracrRNA and by siRNA indicates that these two methods are comparable in their efficiency and kinetics of gene silencing. Conclusions Our method is a convenient yet powerful tool to enable rapid and scalable gene knockout using CRISPR/Cas9 in mammalian cells. Electronic supplementary material The online version of this article (10.1186/s13578-019-0304-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fehad J Khan
- 1Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA.,2Undergraduate Scholarship Program, National Institutes of Health, Bethesda, MD USA
| | - Garmen Yuen
- 1Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA.,3Master of Science in Biotechnology Program, The Johns Hopkins University Krieger School of Arts and Sciences, Washington, DC USA.,Present Address: Cygnal Therapeutics, Boston, MA USA
| | - Ji Luo
- 1Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA
| |
Collapse
|
29
|
Chow RD, Wang G, Ye L, Codina A, Kim HR, Shen L, Dong MB, Errami Y, Chen S. In vivo profiling of metastatic double knockouts through CRISPR-Cpf1 screens. Nat Methods 2019; 16:405-408. [PMID: 30962622 PMCID: PMC6592845 DOI: 10.1038/s41592-019-0371-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 03/05/2019] [Indexed: 12/26/2022]
Abstract
The genetic interactions influencing metastatic potential have been challenging to investigate systematically. Here we developed MCAP (massively parallel CRISPR-Cpf1/Cas12a crRNA array profiling), an approach for combinatorial interrogation of double knockouts in vivo. We designed an MCAP library of 11,934 arrays targeting 325 pairwise combinations of genes implicated in metastasis. By assessing the metastatic potential of the double knockouts in mice, we unveiled a quantitative landscape of genetic interactions driving metastasis.
Collapse
Affiliation(s)
- Ryan D Chow
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,System Biology Institute, Integrated Science & Technology Center, Yale University, West Haven, CT, USA.,Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, CT, USA.,Yale MD-PhD Program, Yale University, New Haven, CT, USA
| | - Guangchuan Wang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,System Biology Institute, Integrated Science & Technology Center, Yale University, West Haven, CT, USA.,Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, CT, USA
| | - Lupeng Ye
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,System Biology Institute, Integrated Science & Technology Center, Yale University, West Haven, CT, USA.,Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, CT, USA
| | - Adan Codina
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,System Biology Institute, Integrated Science & Technology Center, Yale University, West Haven, CT, USA.,Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, CT, USA.,Yale Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
| | - Hyunu Ray Kim
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,System Biology Institute, Integrated Science & Technology Center, Yale University, West Haven, CT, USA.,Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, CT, USA
| | - Li Shen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,System Biology Institute, Integrated Science & Technology Center, Yale University, West Haven, CT, USA.,Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, CT, USA
| | - Matthew B Dong
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,System Biology Institute, Integrated Science & Technology Center, Yale University, West Haven, CT, USA.,Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, CT, USA.,Yale MD-PhD Program, Yale University, New Haven, CT, USA.,Yale Immunobiology Program, The Anlyan Center for Medical Research & Education, New Haven, CT, USA
| | - Youssef Errami
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,System Biology Institute, Integrated Science & Technology Center, Yale University, West Haven, CT, USA.,Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA. .,System Biology Institute, Integrated Science & Technology Center, Yale University, West Haven, CT, USA. .,Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, CT, USA. .,Yale MD-PhD Program, Yale University, New Haven, CT, USA. .,Yale Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA. .,Yale Immunobiology Program, The Anlyan Center for Medical Research & Education, New Haven, CT, USA. .,Yale Comprehensive Cancer Center, New Haven, CT, USA. .,Yale Stem Cell Center, New Haven, CT, USA.
| |
Collapse
|
30
|
Schoonenberg VAC, Cole MA, Yao Q, Macias-Treviño C, Sher F, Schupp PG, Canver MC, Maeda T, Pinello L, Bauer DE. CRISPRO: identification of functional protein coding sequences based on genome editing dense mutagenesis. Genome Biol 2018; 19:169. [PMID: 30340514 PMCID: PMC6195731 DOI: 10.1186/s13059-018-1563-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 10/09/2018] [Indexed: 12/21/2022] Open
Abstract
CRISPR/Cas9 pooled screening permits parallel evaluation of comprehensive guide RNA libraries to systematically perturb protein coding sequences in situ and correlate with functional readouts. For the analysis and visualization of the resulting datasets, we develop CRISPRO, a computational pipeline that maps functional scores associated with guide RNAs to genomes, transcripts, and protein coordinates and structures. No currently available tool has similar functionality. The ensuing genotype-phenotype linear and three-dimensional maps raise hypotheses about structure-function relationships at discrete protein regions. Machine learning based on CRISPRO features improves prediction of guide RNA efficacy. The CRISPRO tool is freely available at gitlab.com/bauerlab/crispro .
Collapse
Affiliation(s)
- Vivien A. C. Schoonenberg
- Division of Hematology/Oncology, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA 02115 USA
- Faculty of Science, Radboud University, 6525 AJ Nijmegen, the Netherlands
| | - Mitchel A. Cole
- Division of Hematology/Oncology, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Qiuming Yao
- Division of Hematology/Oncology, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA 02115 USA
- Molecular Pathology Unit & Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - Claudio Macias-Treviño
- Division of Hematology/Oncology, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Falak Sher
- Division of Hematology/Oncology, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Patrick G. Schupp
- Division of Hematology/Oncology, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Matthew C. Canver
- Division of Hematology/Oncology, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Takahiro Maeda
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, 812-8582 Japan
| | - Luca Pinello
- Molecular Pathology Unit & Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - Daniel E. Bauer
- Division of Hematology/Oncology, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
31
|
Dabrowska M, Czubak K, Juzwa W, Krzyzosiak WJ, Olejniczak M, Kozlowski P. qEva-CRISPR: a method for quantitative evaluation of CRISPR/Cas-mediated genome editing in target and off-target sites. Nucleic Acids Res 2018; 46:e101. [PMID: 29878242 PMCID: PMC6158505 DOI: 10.1093/nar/gky505] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023] Open
Abstract
Genome editing technology based on engineered nucleases has been increasingly applied for targeted modification of genes in a variety of cell types and organisms. However, the methods currently used for evaluating the editing efficiency still suffer from many limitations, including preferential detection of some mutation types, sensitivity to polymorphisms that hamper mismatch detection, lack of multiplex capability, or sensitivity to assay conditions. Here, we describe qEva-CRISPR, a new quantitative method that overcomes these limitations and allows simultaneous (multiplex) analysis of CRISPR/Cas9-induced modifications in a target and the corresponding off-targets or in several different targets. We demonstrate all of the advantages of the qEva-CRISPR method using a number of sgRNAs targeting the TP53, VEGFA, CCR5, EMX1 and HTT genes in different cell lines and under different experimental conditions. Unlike other methods, qEva-CRISPR detects all types of mutations, including point mutations and large deletions, and its sensitivity does not depend on the mutation type. Moreover, this approach allows for successful analysis of targets located in 'difficult' genomic regions. In conclusion, qEva-CRISPR may become a method of choice for unbiased sgRNA screening to evaluate experimental conditions that affect genome editing or to distinguish homology-directed repair from non-homologous end joining.
Collapse
Affiliation(s)
- Magdalena Dabrowska
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Karol Czubak
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Wojciech Juzwa
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Marta Olejniczak
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Piotr Kozlowski
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
32
|
Sun H, Li F, Liu J, Yang F, Zeng Z, Lv X, Tu M, Liu Y, Ge X, Liu C, Zhao J, Zhang Z, Qu J, Song Z, Gu F. A Single Multiplex crRNA Array for FnCpf1-Mediated Human Genome Editing. Mol Ther 2018; 26:2070-2076. [PMID: 29910177 PMCID: PMC6094396 DOI: 10.1016/j.ymthe.2018.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 01/10/2023] Open
Abstract
Cpf1 has been harnessed as a tool for genome manipulation in various species because of its simplicity and high efficiency. Our recent study demonstrated that FnCpf1 could be utilized for human genome editing with notable advantages for target sequence selection due to the flexibility of the protospacer adjacent motif (PAM) sequence. Multiplex genome editing provides a powerful tool for targeting members of multigene families, dissecting gene networks, modeling multigenic disorders in vivo, and applying gene therapy. However, there are no reports at present that show FnCpf1-mediated multiplex genome editing via a single customized CRISPR RNA (crRNA) array. In the present study, we utilize a single customized crRNA array to simultaneously target multiple genes in human cells. In addition, we also demonstrate that a single customized crRNA array to target multiple sites in one gene could be achieved. Collectively, FnCpf1, a powerful genome-editing tool for multiple genomic targets, can be harnessed for effective manipulation of the human genome.
Collapse
Affiliation(s)
- Huihui Sun
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027, China
| | - Fanfan Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jie Liu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Fayu Yang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027, China
| | - Zhenhai Zeng
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027, China
| | - Xiujuan Lv
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027, China
| | - Mengjun Tu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027, China
| | - Yeqing Liu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027, China
| | - Xianglian Ge
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027, China
| | - Changbao Liu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Junzhao Zhao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zongduan Zhang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027, China
| | - Jia Qu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027, China
| | - Zongming Song
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Feng Gu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
33
|
Becker AK, Erfle H, Gunkel M, Beil N, Kaderali L, Starkuviene V. Comparison of Cell Arrays and Multi-Well Plates in Microscopy-Based Screening. High Throughput 2018; 7:ht7020013. [PMID: 29762489 PMCID: PMC6023461 DOI: 10.3390/ht7020013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 01/30/2023] Open
Abstract
Multi-well plates and cell arrays enable microscopy-based screening assays in which many samples can be analysed in parallel. Each of the formats possesses its own strengths and weaknesses, but reference comparisons between these platforms and their application rationale is lacking. We aim to fill this gap by comparing two RNA interference (RNAi)-mediated fluorescence microscopy-based assays, namely epidermal growth factor (EGF) internalization and cell cycle progression, on both platforms. Quantitative analysis revealed that both platforms enabled the generation of data with the appearance of the expected phenotypes significantly distinct from the negative controls. The measurements of cell cycle progression were less variable in multi-well plates. The result can largely be attributed to higher cell numbers resulting in less data variability when dealing with the assay generating phenotypic cell subpopulations. The EGF internalization assay with a uniform phenotype over nearly the whole cell population performed better on cell arrays than in multi-well plates. The result was achieved by scoring five times less cells on cell arrays than in multi-well plates, indicating the efficiency of the cell array format. Our data indicate that the choice of the screening platform primarily depends on the type of the cellular assay to achieve a maximum data quality and screen efficiency.
Collapse
Affiliation(s)
- Ann-Kristin Becker
- Institute of Bioinformatics, University Medicine Greifswald, 17475 Greifswald, Germany.
| | - Holger Erfle
- BioQuant, Heidelberg University, 69120 Heidelberg, Germany.
| | - Manuel Gunkel
- BioQuant, Heidelberg University, 69120 Heidelberg, Germany.
| | - Nina Beil
- BioQuant, Heidelberg University, 69120 Heidelberg, Germany.
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, 17475 Greifswald, Germany.
| | - Vytaute Starkuviene
- BioQuant, Heidelberg University, 69120 Heidelberg, Germany.
- Institute of Biosciences, Vilnius University Life Sciences Center, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
34
|
Kim SI, Matsumoto T, Kagawa H, Nakamura M, Hirohata R, Ueno A, Ohishi M, Sakuma T, Soga T, Yamamoto T, Woltjen K. Microhomology-assisted scarless genome editing in human iPSCs. Nat Commun 2018; 9:939. [PMID: 29507284 PMCID: PMC5838097 DOI: 10.1038/s41467-018-03044-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 01/16/2018] [Indexed: 12/26/2022] Open
Abstract
Gene-edited induced pluripotent stem cells (iPSCs) provide relevant isogenic human disease models in patient-specific or healthy genetic backgrounds. Towards this end, gene targeting using antibiotic selection along with engineered point mutations remains a reliable method to enrich edited cells. Nevertheless, integrated selection markers obstruct scarless transgene-free gene editing. Here, we present a method for scarless selection marker excision using engineered microhomology-mediated end joining (MMEJ). By overlapping the homology arms of standard donor vectors, short tandem microhomologies are generated flanking the selection marker. Unique CRISPR-Cas9 protospacer sequences nested between the selection marker and engineered microhomologies are cleaved after gene targeting, engaging MMEJ and scarless excision. Moreover, when point mutations are positioned unilaterally within engineered microhomologies, both mutant and normal isogenic clones are derived simultaneously. The utility and fidelity of our method is demonstrated in human iPSCs by editing the X-linked HPRT1 locus and biallelic modification of the autosomal APRT locus, eliciting disease-relevant metabolic phenotypes.
Collapse
Affiliation(s)
- Shin-Il Kim
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Tomoko Matsumoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Harunobu Kagawa
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Michiko Nakamura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Ryoko Hirohata
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Ayano Ueno
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
| | - Maki Ohishi
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Knut Woltjen
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
- Hakubi Center for Advanced Research, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
35
|
Zhao D, Badur MG, Luebeck J, Magaña JH, Birmingham A, Sasik R, Ahn CS, Ideker T, Metallo CM, Mali P. Combinatorial CRISPR-Cas9 Metabolic Screens Reveal Critical Redox Control Points Dependent on the KEAP1-NRF2 Regulatory Axis. Mol Cell 2018; 69:699-708.e7. [PMID: 29452643 PMCID: PMC5819357 DOI: 10.1016/j.molcel.2018.01.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/01/2017] [Accepted: 01/17/2018] [Indexed: 12/26/2022]
Abstract
The metabolic pathways fueling tumor growth have been well characterized, but the specific impact of transforming events on network topology and enzyme essentiality remains poorly understood. To this end, we performed combinatorial CRISPR-Cas9 screens on a set of 51 carbohydrate metabolism genes that represent glycolysis and the pentose phosphate pathway (PPP). This high-throughput methodology enabled systems-level interrogation of metabolic gene dispensability, interactions, and compensation across multiple cell types. The metabolic impact of specific combinatorial knockouts was validated using 13C and 2H isotope tracing, and these assays together revealed key nodes controlling redox homeostasis along the KEAP-NRF2 signaling axis. Specifically, targeting KEAP1 in combination with oxidative PPP genes mitigated the deleterious effects of these knockouts on growth rates. These results demonstrate how our integrated framework, combining genetic, transcriptomic, and flux measurements, can improve elucidation of metabolic network alterations and guide precision targeting of metabolic vulnerabilities based on tumor genetics.
Collapse
Affiliation(s)
- Dongxin Zhao
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Mehmet G Badur
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Jens Luebeck
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Jose H Magaña
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Amanda Birmingham
- Center for Computational Biology and Bioinformatics, University of California, San Diego, La Jolla, CA, USA
| | - Roman Sasik
- Center for Computational Biology and Bioinformatics, University of California, San Diego, La Jolla, CA, USA
| | - Christopher S Ahn
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Trey Ideker
- Department of Medicine, Division of Genetics, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|